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Abstract
The input in the Minimum-Cost Constraint Satisfaction Problem (MinCSP) over the Point
Algebra contains a set of variables, a collection of constraints of the form x < y, x = y, x ≤ y and
x ̸= y, and a budget k. The goal is to check whether it is possible to assign rational values to
the variables while breaking constraints of total cost at most k. This problem generalizes several
prominent graph separation and transversal problems:

MinCSP(<) is equivalent to Directed Feedback Arc Set,
MinCSP(<, ≤) is equivalent to Directed Subset Feedback Arc Set,
MinCSP(=, ̸=) is equivalent to Edge Multicut, and
MinCSP(≤, ̸=) is equivalent to Directed Symmetric Multicut.

Apart from trivial cases, MinCSP(Γ) for Γ ⊆ {<, =, ≤, ̸=} is NP-hard even to approximate within
any constant factor under the Unique Games Conjecture. Hence, we study parameterized complexity
of this problem under a natural parameterization by the solution cost k. We obtain a complete
classification: if Γ ⊆ {<, =, ≤, ̸=} contains both ≤ and ̸=, then MinCSP(Γ) is W[1]-hard, otherwise
it is fixed-parameter tractable. For the positive cases, we solve MinCSP(<, =, ̸=), generalizing the
FPT results for Directed Feedback Arc Set and Edge Multicut as well as their weighted
versions. Our algorithm works by reducing the problem into a Boolean MinCSP, which is in
turn solved by flow augmentation. For the lower bounds, we prove that Directed Symmetric
Multicut is W[1]-hard, solving an open problem.
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1 Introduction

The study of graph transversal and separation problems parameterized by solution size is a
central research direction in parameterized complexity. It is usually easy to obtain algorithms
for such problems running in nO(k) time, where n is the size of the graph, by enumerating
all possible solutions of size at most k. However, obtaining or ruling out fixed-parameter
tractable (FPT) algorithms, i.e. those running in f(k) · nO(1) time for some computable
function f that depends solely on the parameter, is a more challenging task. Successful
examples include the 3k · nO(1) algorithm of Reed, Smith and Vetta [26] for Odd Cycle
Transversal, which introduced iterative compression – a technique that has since become a
standard opening in FPT algorithms (see e.g. [10, Chapter 4]). The algorithms of Marx [22]
for Multiway Cut and Marx and Razgon [23] for Multicut have introduced, respectively,
important separators and shadow removal to the toolbox of parameterized algorithms; these
techniques have also found numerous applications in the field. Another notable example is
the algorithm of Chen et al. [8] for Directed Feedback Arc Set (DFAS).

The Minimum-Cost Constraint Satisfaction Problem (MinCSP) provides a
unifying framework for modeling optimization problems, including transversal and separator
problems in graphs. The input to a MinCSP is a collection of constraints applied to a set of
variables, and the goal is to find a solution of minimum cost, i.e. an assignment of values
from a fixed domain to the variables that breaks the minimum number of constraints. One
can cast many problems as MinCSPs by restricting the constraint language, i.e. the types of
allowed constraints. More formally, let Γ be a set of finitary relations on a fixed domain D.
Then MinCSP(Γ) is the problem with constraints of the form R(x1, . . . , xr), where R ∈ Γ
is a relation of arity r and (x1, . . . , xr) ∈ V r is a tuple of variables from V . An assignment
α : V → D satisfies the constraint R(x1, . . . , xr) if (α(x1), . . . , α(xr)) ∈ R.

For example, MinCSP(<) on domain Q is equivalent to the Directed Feedback Arc
Set (DFAS) problem that asks to find a minimum-size set of arcs in a directed graph meeting
every cycle. In other words, deleting this set of arcs makes the graph acyclic. The reductions
in both directions are straightforward: arcs uv in the graph translate into constraints u < v,
and vice versa. Clearly, to make a set of <-constraints satisfiable, it is necessary and sufficient
to delete all cycles of <-constraints. Another example is MinCSP(=, ̸=) on domain N (or Q).
This problem is essentially equivalent to the Edge Multicut problem defined as follows:
given an undirected graph and vertex pairs {s1, t1}, . . . , {sm, tm} called cut requests, find a
minimum edge set that separates si and ti for all i. Without loss of generality, we may also
assume that cut requests are deletable at unit cost (see e.g. [23]). This make the reductions
rather simple: edges uv of the graph translate into constraints u = v, while cut requests
{si, ti} translate into constraints si ≠ ti, and vice versa. To make a set of such constraints
satisfiable, it is necessary and sufficient to ensure that, for every constraint s ̸= t, there is no
=-path connecting s and t.

As evident from the examples above, many important MinCSPs are NP-hard, and to
cope with this, it is natural to parameterize them by solution cost. This line of work has
recently gained momentum, notably after Kim et al. introduced flow augmentation [17, 18]
and successfully used it to resolve the complexity of MinCSP(Γ) for every Boolean constraint
language Γ, i.e. Γ with domain {0, 1} [19]. Previously, Bonnet et al. [6, 5] classified the
complexity of fpt-approximating Boolean MinCSPs within a constant factor. Osipov and
Wahlström [24] resolved the parameterized complexity of exactly solving and constant-factor
approximation of Equality MinCSPs, i.e. MinCSP(Γ) for all Γ on domain N with relations
first-order definable using predicate =.
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In this paper we consider MinCSP over subsets of Point Algebra [30, 29], i.e. MinCSP(Γ)
for constraint languages Γ ⊆ {<,≤, =, ̸=} on domain Q. Our motivation is twofold:

On the CSP side, constraint language {<,≤, =, ̸=} arguably contains the most basic
relations over Q and understanding the complexity of MinCSP(Γ) for all Γ ⊆ {<,≤, =, ̸=} has
been identified [20] as a necessary stepping stone towards broader classification projects, e.g.
for all temporal [4] and interval constraint languages [1, 21, 2]. Additionally, Point Algebra is
a prominent temporal reasoning formalism in artificial intelligence, and MinCSP(<,≤, =, ̸=)
provides a natural way of dealing with inconsistencies in knowledge bases encoded using this
language. The problem being NP-hard even to approximate within any constant factor (under
the Unique Games Conjecture [16, 28, 14]) motivates studying parameterized algorithms. For
the study of exact exponential-time algorithms and polynomial-time approximation, see [15].

On the FPT side, the set of problems MinCSP(Γ) for Γ ⊆ {<,≤, =, ̸=} contains two
classical NP-hard graph separation and transversal problems – DFAS and Edge Multicut
– as well as several robust generalizations and variants. Studying some of these problems has
played an important role in the development of the parameterized algorithms, and looking
at a broader unifying class allows exploring the power and limits of existing techniques.
Among the problems within our scope are MinCSP(<,≤), which is equivalent to Directed
Subset Feedback Arc Set (Subset-DFAS), and MinCSP(≤, ̸=), which is equivalent to
Directed Symmetric Multicut (DSMC).

Subset-DFAS is a variant of DFAS in which the input graph comes with a subset of
special arcs, and the goal is to find a minimum transversal for the family of cycles that
contain at least one special arc (special arcs translate into <-constraints while other arcs
translate into ≤-constraints, and vice versa). Parameterized complexity of this problem was
resolved by Chitnis et al. [9] by generalizing the shadow removal technique of [23] to directed
graphs. Recently, Kim et al. [20] gave a flow-augmentation based algorithm for this problem
that can also handle the arc-weighted version where the weight budget is not part of the
parameter.

In DSMC, we are given a directed graph G and cut requests {s1, t1}, . . . , {sm, tm}, and the
goal is to find a minimum subset of arcs that separates si and ti for all i into distinct strongly
connected components. Again, without loss of generality, we may assume that a cut request
can be ignored at unit cost. The translation into MinCSP(≤, ̸=) is as follows: an arc uv in
the graph becomes a constraint u ≤ v and a cut request {si, ti} becomes a constraint si ≠ ti,
and vice versa. Note that a set of ≤-constraints is always satisfiable, and adding a constraint
si ̸= ti makes it unsatisfiable if and only if si reaches ti and ti reaches si by directed paths
of ≤-constraints. Using the CSP language, it is easy to see that MinCSP(≤, ̸=) generalizes
both Subset-DFAS and Edge Multicut: one obtains a cost-preserving reduction from
MinCSP(<,≤) to MinCSP(≤, ̸=) by replacing every constraint of the form x < y with
two constraints x ≤ y and x ̸= y and a cost-preserving reduction from MinCSP(=, ≠)
to MinCSP(≤, ̸=) by replacing every constraint of the form x = y with x ≤ y, y ≤ x.1
In fact, these reductions show that MinCSP(<,≤, =, ̸=) is equivalent to MinCSP(≤, ̸=)
under cost-preserving reductions. While Edge Multicut and Subset-DFAS are known
to be in FPT (by [23, 7] and [9], respectively), the parameterized complexity status of
DSMC was open [13] (see also [11, 24, 20]) prior to our work. In a related problem called
Directed Multicut the input contains a directed graph and a set of ordered vertex pairs
{(s1, t1), . . . (sm, tm)}, and the goal is to delete the smallest number of arcs from the graph so

1 The latter reduction is analogous to saying that Edge Multicut is the same problem as DSMC on
bidirected graphs.
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{<}

{<, =} {<,≤}{=, ̸=}

{<, =,≤}{<, =, ̸=}

{≤, ̸=}

Figure 1 These are seven subsets of Point Algebra. Arrow represent polynomial-time cost-
preserving reductions between corresponding MinCSPs that either follow by inclusion or using
(x = y) ≡ (x ≤ y) ∧ (y ≤ x) and (x < y) ≡ (x ≤ y) ∧ (x ̸= y). MinCSPs for all of them are
NP-hard, and in FPT for all except the red language, for which it is W[1]-hard. There are eight
more non-empty subsets, out of which four give rise to polynomial-time solvable MinCSPs ( ̸= and
{≤, =} with subsets), subset {<, ̸=}, which reduces to {<} because all ̸=-constraints can be safely
disregarded, and three more subsets that contain both ≤ and ̸=.

that no si reaches ti. This problem is W[1]-hard [23] even with four pairs (i.e. m = 4) [25].
The scope of our study also includes less prominent and new problems: MinCSP(<, =)

and MinCSP(<, =, ̸=). We remark that the former problem appeared in [11] and was solved
by reduction into MinCSP(<,≤). These can be thought of as generalizations of Multicut
with asymmetric cut requests: intuitively, if one thinks of the equality constraints as edges in
an undirected graph, the constraints of the form x ̸= y correspond to the usual, symmetric
cut requests that require separating x and y into distinct connected components, while
constraints of the form x < y additionally require that the connected components can be
ordered so that the component of x precedes the component of y.

Our contributions. We fully classify the complexity of MinCSP for all subsets of Point
Algebra. For polynomial-time complexity, observe that MinCSP(Γ) is NP-hard unless
Γ ⊆ {=,≤} or Γ = {≠}: on the one hand, if Γ ⊆ {=,≤} or Γ = {̸=}, then every instance is
satisfiable at zero cost using, respectively, any constant or any injective assignment; on the
other hand, if Γ is not covered by these cases, then it contains either {<}, {=, ̸=} or {≤, ̸=}
as a subset, all of which imply NP-hardness by reductions from DFAS and Multicut. Our
main result is the parameterized complexity classification. We provide algorithms for the
weighted version of MinCSP(Γ), where every constraint comes with an integer weight, and
the input also contains a weight budget W . We are allowed to break at most k constraints of
total cost at most W – observe that the parameter is only k. On the other hand, our lower
bounds work in the weightless version.

▶ Theorem 1. Let Γ ⊆ {<,≤, =, ̸=}.
1. If Γ ⊆ {<,≤, =}, then Weighted MinCSP(Γ) is fixed-parameter tractable.
2. If Γ ⊆ {<, =, ̸=}, then Weighted MinCSP(Γ) is fixed-parameter tractable.
3. Otherwise, MinCSP(Γ) is W[1]-hard.

The first point is easily obtained by reduction to MinCSP(<,≤) and applying an FPT
algorithm of Chitnis et al. [9] or Kim et al. [20]. For the second point, we design a new
algorithm in Section 3 using flow augmentation (in the guise of Boolean MinCSP). Our



G. Osipov, M. Pilipczuk, M. Wahlström 23:5

algorithm for MinCSP(<, =, ̸=) combines two strains of flow augmentation-based algorithms
that have appeared (explicitly or implicitly) in the literature: one that is suitable for
undirected separation problems like Multicut (cf. [17, 12, 20]) and another suitable for
directed transversal problems like DFAS and Subset-DFAS (cf. [18, 11, 20]). One could
have hoped that pushing these ideas one step further would solve the more general DSMC
problem – alas, this hope is squashed in Section 4 where we prove that MinCSP(≤, ̸=), i.e.
DSMC, is W[1]-hard. By noting that every language not covered by the first and the second
point of the theorem contains both ̸= and ≤, this completes the classification. See Figure 1
for an illustration.

2 Preliminaries

Fix a domain of values D. A relation R of arity r on D is a subset of tuples in Dr. An
instance of a constraint satisfaction problem (CSP) is a set of variables V and a collection
of constraints C of the form R(x1, . . . , xr), where R is a relation of arity r and x1, . . . , xr

are variables in V . The set {x1, . . . , xr} is called the scope of constraint R(x1, . . . , xr).
An assignment α : V → D satisfies a constraint R(x1, . . . , xr) if (α(x1), . . . , α(xr)) ∈ R,
otherwise we say that it breaks the constraint. Similarly, an assignment satisfies an instance
I = (V, C) of a CSP if it satisfies all constraints in C. A constraint language Γ is a set of
relations on D, and CSP(Γ) is the CSP problem in which constraint relations come from the
set Γ.

The Minimum-Cost Constraint Satisfaction Problem over Γ (MinCSP(Γ)) is
defined as follows: given an instance I = (V, C) of CSP(Γ), a function κ : C → Z+ and an
integer parameter k, decide whether there exists X ⊆ C such that

∑
C∈X κ(C) ≤ k and

(V, C \X) is satisfiable. We refer to the set X as the solution. Note that the constraints of
cost more than k cannot be in the solution, while a constraint of cost ℓ ≤ k can be replaced
by ℓ unit-cost copies. Thus, we assume without loss of generality that the cost of every
constraint is either 1 or ∞, and refer to such constraints as soft and crisp, respectively. We
can also handle an additional weight budget and arrive at the following definition.

Weighted MinCSP(Γ)

Instance: Instance (V, C) of CSP(Γ), functions κ : C → {1, ∞}, ω : C → Z+ and
integers k, W .

Parameter: k.
Question: Does there exist X ⊆ C such that

∑
C∈C κ(C) ≤ k,

∑
C∈C ω(C) ≤ W and

(V, C \ X) is satisfiable?

Note that W is not part of the parameter. Moreover, no constraint of weight more than W

can be part of a solution, so we assume those are always crisp.
The Point Algebra is a constraint language on the domain Q with four binary relations

<, ≤, = and ̸=. We use infix notation for Point Algebra constraints, e.g. x < y and x ̸= y.
One can check in polynomial time whether an instance of CSP(<,≤, =, ̸=) is satisfiable by,
e.g., reducing to CSP( ̸=,≤), constructing directed graph of ≤-constraints and, for every
constraint x ̸= y, checking that x and y are not strongly connected (cf. [29]).

3 FPT Algorithm for MinCSP(<, =, ̸=)

In this section we prove the following theorem.

▶ Theorem 2. Weighted MinCSP(<, =, ̸=) is fixed-parameter tractable.

CVIT 2016
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Our algorithm follows the compress-branch-cut paradigm (cf. [26, 8, 23]). On the high
level, we use iterative compression to obtain an approximate solution of size bounded by a
function of the parameter. This allows us to exhaustively guess certain information about
the variables appearing in the approximate solution and then reduce the problem to a
fixed-parameter tractable Boolean MinCSP. The last step blends two types of reductions
suitable for symmetric and asymmetric properties, respectively.

We start this section by describing the compression and branching steps, which are quite
standard. Then we set up the Boolean MinCSP machinery, describe the algorithm for
MinCSP(<, =, ̸=) and prove its correctness. We finish with some high-level observations
about the algorithm and the obstacles in pushing it further.

Compression and Branching

Let I = (V, C, κ, ω, k, W ) be an instance of Weighted MinCSP(<, =, ̸=). By a standard
iterative compression argument (cf. [10, Chapter 4]), we may assume access to a set of
constraints Xin ⊆ C of size at most k + 1 such that (V, C \Xin) is satisfiable. Moreover, if I
is a yes-instance, then by branching over subsets of Xin we may assume that it admits an
optimal solution Xopt disjoint from Xin, and an assignment αopt that satisfies (V, C \Xopt).
Since |V (Xin)| ≤ 2(k + 1), we can furthermore enumerate ordered partitions of V (Xin) in
O∗(kk) time and thus guess an assignment αin : V (Xin)→ Q that agrees with αopt in the
following sense: for every x, y ∈ V (Xin), we have

αin(x) = αin(y) if and only if αopt(x) = αopt(y), and
αin(x) < αin(y) if and only if αopt(x) < αopt(y).

Since Xin ∩Xopt = ∅ and αin agrees with αopt, we obtain that αin satisfies Xin. Moreover,
every assignment that agrees with αin satisfies Xin as well, so we can safely remove Xin from
C. Assuming our guesses were correct, we now have a satisfiable instance (V, C \ Xin) of
CSP(<, =, ̸=) and, additionally, a partial assignment αin : V (Xin) → Q with the promise
that, if I is a yes-instance, then there is an assignment to I that agrees with αin and breaks
constraints of cost at most k and weight at most W . Moreover, if αin(x) = αin(y) for some
x, y ∈ V (Xin), then we can identify x and y. Thus, in time O∗(kk) we have reduced the
problem to the following version.

Compressed Weighted MinCSP(<, =, ̸=)

Instance: A satisfiable instance (V, C) of CSP(<, =, ̸=), functions κ : C → {1, ∞}
and ω : C → Z+, integers k and W , a subset U ⊆ V with |U | ≤ 2(k + 1)
and an injective assignment α : U → Q.

Parameter: k.
Question: Does there exist X ⊆ C such that

∑
C∈X

κ(C) ≤ k,
∑

C∈X
ω(C) ≤ W ,

and (V, C \ X) is satisfiable by an assignment that agrees with α?

By a standard correctness argument (cf. [10, Chapter 4]), we have the following.

▶ Proposition 3. If Compressed Weighted MinCSP(<, =, ̸=) is fixed-parameter tract-
able, then Weighted MinCSP(<, =, ̸=) is fixed-parameter tractable.

To solve the compressed version, we reduce it into a separation problem handled by the
Boolean MinCSP machinery.

Cutting tool: Boolean MinCSP

A Boolean constraint language is a set of relations on domain {0, 1}. Kim et al. [19] classified
parameterized complexity of Weighted MinCSP(Γ) for every finite Boolean constraint
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language Γ. We will use the positive part of their classification. To describe it, we start with
some definitions.

A Boolean relation R ⊆ {0, 1}r can be modeled as a set of satisfying assignments to a
propositional formula on r variables. Formally, let ϕ be a propositional formula on variables
x1, . . . , xr. For b1, . . . , br ∈ {0, 1}, let ϕ(b1, . . . , br) be the Boolean expression obtained by
substituting variable xi with the Boolean value bi for all i ∈ {1, . . . , r}. Then, for every
R ⊆ {0, 1}r, there exists a formula ϕ such that

R = {(b1, . . . , br) ∈ {0, 1}r | ϕ(b1, . . . , br) evaluates to true}.

We remark in passing that ϕ does not have to be unique.
A propositional formula is bijunctive if it is a conjunction of 1- or 2-clauses, i.e. sub-

formulas of the form (x), (¬x), (x → y), (x ∨ y) and (¬x ∨ ¬y). Associate an undirected
Gaifman graph Gϕ with ϕ: let {1, . . . , r} be the vertices of Gϕ and let Gϕ contain an edge ij

whenever xi and xj appear together in a 2-clause in ϕ. We say that a Boolean relation is
bijunctive if it is definable by a bijunctive propositional formula. Furthermore, a bijunctive
relation is 2K2-free if it is definable by a bijunctive formula ϕ such that Gϕ does not contain
an induced 2K2, i.e. for every pair of vertex-disjoint edges ij and i′j′ in Gϕ, there is an edge
with one endpoint in {i, j} and another in {i′, j′}.

▶ Theorem 4 (Theorem 1.2 in [19]). Let Γ be a set of 2K2-free bijunctive Boolean relations
of arity at most r. Then Weighted MinCSP(Γ) is in FPT parameterized by k + r.

In the forthcoming description of the algorithm we will abuse the notation and define
Boolean constraints explicitly using propositional formulas.

Solving the Compressed Version

We define a procedure that takes an instance I of Compressed Weighted MinCSP(<
, =, ̸=) as input and in polynomial time outputs an instance I ′ of Weighted MinCSP(Γ)
with the same parameter k, with Γ being a Boolean constraint language. We will argue that
all relations in Γ are bijunctive 2K2-free and of arity at most O(k) (in Lemma 5), and I
is a yes-instance if and only if I ′ is a yes-instance (in Lemmas 6 and 7). Combined with
Proposition 3 and Theorem 4, this yields Theorem 2.

We start by describing the reduction procedure. Let the input be an instance I =
(V, C, κ, ω, k, W, U, α) of Compressed Weighted MinCSP(<, =, ̸=). Construct the output
instance I ′ = (V ′, C′, κ′, ω′, k, W ) of Weighted MinCSP(Γ) with the same values k and
W as follows. Let ℓ = |U | and observe that ℓ ≤ 2(k + 1). Enumerate U as u1, . . . , uℓ ordered
so that α(u1) < α(u2) < · · · < α(uℓ). For every variable v ∈ V , introduce Boolean variables
cv,i for i ∈ {1, . . . , ℓ} and pv,j for j ∈ {1, . . . , 2ℓ + 1} in V ′.

Before defining the constraints of C′, we elaborate on the intended interpretation of the
Boolean variables in V ′. Suppose αopt is an assignment that breaks constraints of total cost
at most k, total weight at most W and agrees with αin on U . Variables cv,i indicate whether
αopt(v) equals αopt(ui) for some ui ∈ U . Since αin is injective, cv,i equals 1 for at most one
i. Variables pv,j encode how the values αopt(v) are ordered with respect to αopt(ui). More
precisely, pv,2i is set to 1 if and only if αopt(v) ≥ αopt(ui) and pv,2i+1 is set to 1 if and only
if αopt(v) > αopt(ui). Note that pv,1 = 1 should hold vacuously in this interpretation, while
pv,j′ = 1 implies pv,j = 1 for all j < j′ since αin(uj) < αin(uj′). Thus, for a variable v,
the variables cv,i and pv,j represent two distinct ways of encoding integer values into the
Boolean domain; e.g., for ℓ = 3 the valid combined values for the variables cv,i are 000, 001,

CVIT 2016
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010, 100 while the valid values for the variables pv,j are 1000000, 1100000, . . . , 1111111.
The c-variables are used to implement constraints (v ̸= w) while the p-variables are used to
implement constraints (v < w). The full argument for correctness here is somewhat intricate
and depends on assumptions from the iterative compression step, but informally, the reason
we need two encodings is that we need our constraints to be bijunctive. As an illustration,
for variables v, w and some value i ∈ [ℓ], an assignment α that sets α(v) = α(w) = α(ui) can
be eliminated by a clause (¬cv,i ∨ ¬cw,i), and an assignment that sets α(v) ≥ α(ui) ≥ α(w)
can be eliminated by a clause (pv,2i → pw,2i+1). In the other direction, the corresponding
conditions cannot be detected by looking at only two variables at a time.

With the intuition in mind, we populate C′ with crisp constraints. For every v ∈ V and
every 1 ≤ i < i′ ≤ ℓ, add a crisp Boolean constraint

(¬cv,i ∨ ¬cv,i′). (1)

For every ui ∈ U , add a crisp Boolean constraint

(cui,i). (2)

For every v ∈ V , add crisp Boolean constraints

(pv,1) and (pv,j ← pv,j′) for all 1 ≤ j < j′ ≤ 2ℓ + 1. (3)

For every ui ∈ U , add crisp Boolean constraints

(pui,2i), (¬pui,2i+1). (4)

Finally, for every v ∈ V and i ∈ {1, . . . , ℓ}, add crisp Boolean constraints

(cv,i → pv,j) for all 1 ≤ j ≤ 2i, and
(cv,i → ¬pv,j) for all 2i < j ≤ 2ℓ + 1.

(5)

Now, for every C ∈ C, we define a constraint C ′ in C′ with κ′(C ′) = κ(C) and ω′(C ′) =
ω(C). We will use purple for clauses that also appear as crisp clauses. If C is an equality
constraint (v = w), then let C ′ be the Boolean constraint

ℓ∧
i=1

(cv,i = cw,i) ∧
ℓ∧

i=1

ℓ∧
i′=i+1

(¬cv,i ∨ ¬cv,i′)∧

2ℓ+1∧
j=1

(pv,j = pw,j) ∧
2ℓ+1∧
j=1

2ℓ+1∧
j′=j+1

(pv,j ← pv,j′)∧

ℓ∧
i=1

2i∧
j=1

(cv,i → pv,j) ∧
ℓ∧

i=1

2ℓ+1∧
j=2i+1

(cv,i → ¬pv,j),

(6)

where clause (x = y) is a short-hand for the conjunction (x → y) ∧ (x ← y). If C is an
disequality constraint (v ̸= w), then let C ′ be the Boolean constraint

ℓ∧
i=1

(¬cv,i ∨ ¬cw,i) ∧
ℓ∧

i=1

ℓ∧
i′=i+1

(¬cv,i ∨ ¬cv,i′) (7)

Finally, if C is an ordering constraint (v < w), then let C ′ be the Boolean constraint
ℓ∧

i=1
(pv,2i−1 → pw,2i−1) ∧

ℓ∧
i=1

(pv,2i → pw,2i+1) ∧
2ℓ+1∧
j=1

2ℓ+1∧
j′=j+1

(pv,j ← pv,j′) (8)
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This completes the construction.
Clearly, the reduction requires polynomial time. To show that I ′ can be decided in FPT

time with respect to k, we use Theorem 4 and the following lemma.

▶ Lemma 5. Every Boolean relation used in the constraints of C′ is bijunctive 2K2-free and
of arity at most 8k + 10.

Proof. The Gaifman graphs of the propositional formulas in Equations (1)–(5) contain at
most two vertices. The Gaifman graphs of propositional formulas in Equations (6)–(8) consist
of a clique (formed by the edges corresponding to clauses that also appear as crisp constraints
defined in Equations (1), (3), and (5) and are highlighted in purple) and edges with exactly
one endpoint in the clique. These graphs are 2K2-free. The constraints of maximum arity
are defined in Equation (6), each contains 2(ℓ + 1 + ℓ) = 4ℓ + 2 ≤ 4(2k + 2) + 2 ≤ 8k + 10
variables in its scope. ◀

To show that the reduction is correct, we start with the forward direction.

▶ Lemma 6. If I is a yes-instance of Compressed Weighted MinCSP(<, =, ̸=), then
I ′ is a yes-instance of Weighted MinCSP(Γ).

Proof. Let X be a solution to I, i.e. a subset of constraints in C such that
∑

C∈X κ(C) ≤ k,∑
C∈X ω(C) ≤ W , and (V, C \ X) admits a satisfying assignment β : V → Q that agrees

with the partial assignment α : U → Q. Define a subset of Boolean constraints X ′ = {C ′ ∈
C′ : C ∈ X}. By construction, X ′ has cost at most k and weight at most W , so it remains to
show that (V ′, C′ \X ′) is satisfiable. To this end, we define an assignment β′ : V ′ → {0, 1}
as follows. For every v ∈ V and i ∈ {1, . . . , ℓ}, set β′(cv,i) = 1 if and only if β(cv,i) = β(ui).
For every v ∈ V and i ∈ {1, . . . , ℓ}, set β′(pv,1) = 1, β′(pv,2i) = 1 if and only if β(v) ≥ β(ui),
and β′(pv,2i+1) = 1 if and only if β(v) > β(ui).

Observe that since α is injective and β agrees with α, the assignment β is also inject-
ive on U , so β′ satisfies the constraints defined in Equations (1), (2), and (4). Further,
(β′(pv,1), . . . , β′(pv,2ℓ+1)) is a vector starting with ones followed by (possibly no) zeros, so
β′ satisfies the constraints defined in Equation (3). Moreover, β′(cv,i) = 1 if and only if
β(v) = β(ui), in which case β′(pv,2i) = 1 and β′(pv,2i+1) = 0, hence β′ satisfies the constraints
defined in Equation (5).

Now consider a constraint C ∈ C \ X satisfied by β. We claim that β′ satisfies the
corresponding Boolean constraint C ′ ∈ C \X ′. Note that it is sufficient to check that the
clauses not present in the crisp constraints defined in Equations (1), (3), and (5) are satisfied.
Suppose C is an equality constraint (v = w) and recall the definition of C ′ from Equation (6).
By definition of β′, it is clear that β(v) = β(w) implies that β′(cv,i) = β′(cw,i) for all i and
β′(pv,j) = β′(pw,j) for all j, so β′ satisfies C ′. Now suppose C is a disequality constraint
(v ̸= w) and recall the definition of C ′ from Equation (7). If β(v) = β(ui) for some i, then
β(w) ̸= β(ui), and β′(cv,i) = 1 implies that β′(cw,i) = 0. Otherwise, β(v) ̸= β(ui) for all
i, and β′(cv,i) = 0 for all i. In both cases, β′ satisfies C ′. Finally, if C is an ordering
constraint (v < w), recall the definition of C ′ from Equation (8). If β(v) = β(ui) for some
i, then β(ui) < β(w), hence β′(pv,2i) = 1, β′(pv,2i+1) = 0 and β′(pw,2i) = β′(pw,2i+1) = 1.
Otherwise, we have three more cases:

if β(v) < β(u1), then β′(pv,j) = 0 for all j ≥ 2;
if β(ui−1) < β(v) < β(ui) for some i, then β(ui−1) < β(w), so β′(pv,j) = 0 for all j ≥ 2i

and β′(pw,j′) = 1 for all j′ < 2i;
if β(v) > β(uℓ), then β(w) > β(uℓ), so β′(pv,j) = β′(pw,j) = 1 for all j.

In all cases, β′ satisfies C ′. ◀
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To complete the proof of Theorem 2, it remains to show the converse Lemma 6.

▶ Lemma 7. If I ′ is a yes-instance of Weighted MinCSP(Γ), then I is a yes-instance of
Compressed Weighted MinCSP(<, =, ̸=).

Proof. Let X ′ be a solution to I ′, i.e. a subset of constraints in C′ such that
∑

C′∈X′ κ′(C ′) ≤
k,

∑
C′∈X′ ω′(C ′) ≤W , and (V ′, C′ \X ′) is satisfiable. Fix an assignment β′ : V ′ → {0, 1}

that satisfies (V ′, C′ \ X ′) and define X = {C ∈ C : C ′ ∈ X ′}. By construction, we have∑
C∈X κ(C) ≤ k and

∑
C∈X ω(C) ≤ W , so it remains to show that (V, C \ X) admits

a satisfying assignment β : V → Q that agrees with α : U → Q. To define such an
assignment, recall that (V, C) is satisfiable, and let γ : V → Q be a satisfying assignment.
Without loss of generality, assume that the range of γ is (0, 1). Define ι : V → {1, . . . , ℓ} as
ι(v) := max{i : β′(pv,2i) = 1} and let

β(v) =
{

i if there exists i such that β′(cv,i) = 1,

ι(v) + γ(v) otherwise.

Note that β(ui) = i for all i, so it agrees with α on U . We claim that if β′ satisfies a
constraint C ′ ∈ C′ \ X ′, then β satisfies the corresponding constraint C ∈ C \ X. Note
that by the crisp constraints from Equation (1), we have β′(cv,i) = 1 for at most one i.
Suppose C is an equality constraint (v = w), and recall C ′ from Equation (6). If there
exists i such that β′(cv,i) = 1, then β′(cw,i) = 1 and β(v) = β(w) = i. Otherwise, note that
ι(v) = ι(w) since β′(pv,j) = β′(pw,j) for all j, and γ(v) = γ(w) since γ satisfies (v = w).
Hence, β(v) = β(w) in this case as well. Now suppose that C is a disequality constraint
(v ̸= w), and recall C ′ from Equation (7). If there exists i such that β′(cv,i) = 1, then
β′(cw,i) = 0 and β(v) = i ̸= β(w). Otherwise, γ(v) ̸= γ(w) since γ satisfies (v ̸= w), so the
fractional parts of β(v) and β(w) are distinct, and β(v) ̸= β(w). Finally, suppose C is an
ordering constraint (v < w). If there exists i such that β′(cv,i) = 1, then β′(pv,2i) = 1 and
β′(pw,2i+1) = 1, so β(v) = i and β(w) = ι(w) + γ(w) > i. Otherwise, since pv,2i−1 → pw,2i−1
for all i, we have ι(v) ≤ ι(w) and γ(v) < γ(w) since γ satisfies (v < w). Hence, β(v) < β(w),
as desired. ◀

4 W[1]-hardness of Directed Symmetric Multicut

Recall the definition of the problem.

Directed Symmetric Multicut (DSMC)

Instance: A directed graph D, a collection P of vertex pairs in D, and integer k.
Parameter: k.
Question: Does there exist a set X of at most k arcs in D such that no pair {s, t} ∈ P

is strongly connected in D − X?

Pairs in P are referred to as cut requests. In this section we prove the following.

▶ Theorem 8. Directed Symmetric Multicut parameterized by solution size is W[1]-
hard.

Our starting point is a multicolored variant of k-Clique: given an undirected graph G,
an integer k and a partition V 1 ⊎ · · · ⊎ V k of V (G) such that |V 1| = · · · = |V k| = n, the
question is whether G contains a complete subgraph with one vertex from each V i. Given an
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w

n

e

s

Figure 2 A diamond digraph on the left and a sequence of three joined diamonds on the right.
Undeletable arcs are drawn with thick lines, and deletable arcs are drawn with a thin line.

instance (G, k, V 1 ⊎ · · · ⊎ V k) of this problem, we construct an instance (D,P, k′) of DSMC,
where k′ = 3k2.

On the high level, the construction consists of two parts – choice gadgets for every
vertex set V i, and coordination gadgets that disallow choosing non-adjacent vertices into the
solution. The building blocks of the choice gadgets are diamonds, which are graphs ♢ on
four vertices w, n, e, s (for west, north, east and south) with four undeletable arcs sw, wn,
se, en and one deletable arc ns (note that we can make an arc essentially undeletable by
having k + 1 parallel copies). Note that ♢ is strongly connected, but loses this property if
ns is deleted. We refer to vertices w and e of a diamond as junction vertices. By picking
a diamond we mean deleting the arc ns. By joining two diamonds we mean identifying
the eastern vertex of the first with the western vertex of the other. Note that the result of
sequentially joining diamonds is a strongly connected graph which loses this property if any
diamond is picked. See Figure 2 for an illustration.

Choice gadgets

Denote the vertices of V i by vi
1, . . . , vi

n. For every subset V i in G, create a necklace of 3kn

diamonds in D joined in a cyclic fashion: construct k strings Si
j for 1 ≤ j ≤ k, where each

Si
j consists of 3n sequentially joined diamonds ♢i,j

1 , . . . ,♢i,j
3n; create the necklace by joining

the last diamond of string Si
j with the first diamond of Si

j+1 mod k for all 1 ≤ j ≤ k. Let
the junction vertices of the diamonds on the necklace be c0, . . . , c3kn−1. Add cut requests
{cα, cα+n mod 3kn} to P for all 0 ≤ α < 3kn.

Before proceeding with coordination gadgets, we observe some properties of the necklace.
To satisfy the cut requests introduced so far, a solution needs to pick at least 3k diamonds
since we have requests {c(i−1)n, cin} for every i ∈ [3k] whose endpoints occur in arc-disjoint
strongly connected subgraphs. The budget is k′ = k · 3k, and there are k such necklaces, so
a solution has to pick exactly 3k diamonds in each necklace. We claim that picked diamonds
are evenly spaced, i.e. there exists α ∈ {1, . . . , n} such that the solution picks diamonds
♢i,j

α , ♢i,j
α+n and ♢i,j

α+2n in the strings Si
j for all 1 ≤ j ≤ k. Indeed, if a hypothetical solution

picks any other set of 3k diamonds, then a sequence of at least n joined and unpicked
diamonds remains on the necklace, and any such sequence contains an unsatisfied cut request.
Intuitively, we can interpret a solution picking diamonds ♢i,1

α as choosing vertex vi
α ∈ V i to

be part of the clique in G.

Coordination gadgets

Now we construct the coordination gadgets that disallow choosing non-adjacent vertices.
Consider a pair of non-adjacent vertices vi

α and vj
β in G with i < j. Let the junction vertices
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Figure 3 Snippet of the construction of the gadget (bottom) for the graph G of non-edges (top)
with n = 4 and k = 2. Vertices x0, . . . , x16 and y0, . . . , y16 are junction vertices of the necklaces
corresponding to the left hand side and the right hand side of G, respectively. Colorful arrows in
the gadget represent paths of crossing arcs. Solid delimiters at x0, x12 and y0, y12 indicate starts of
new strings. For the sake of clarity, s- and t-vertices are omitted from the picture.

in strings Si
j and Sj

i be xi,j
0 , . . . , xi,j

3n−1 and yj,i
0 , . . . , yj,i

3n−1, respectively. Introduce vertices
si,j

α,β and tj,i
α,β and add four undeletable arcs forming directed paths

xi,j
n+α → si,j

α,β → yj,i
2n+β−1 and yj,i

n+β → tj,i
α,β → xi,j

2n+α−1.

Call these four arcs crossing. Add cut request {si,j
α,β , tj,i

α,β} to P. Observe that this request
requires the solution to pick a diamond between xi,j

n+α and xi,j
2n+α−1 or a diamond between

yj,i
n+β and yj,i

2n+β−1.
The construction is complete (see Figure 3). We proceed with the correctness proof.

Directed Symmetric Multicut to Clique

Suppose X is a solution to (D,P, k′). Let X ′ ⊆ V (G) contain the vertices of G picked by X,
i.e. X ′ contains vi

α whenever the deletable arc of ♢i,1
α is in X. Note that |X ′| = k by the

observation that α is unique to the set V i. We claim that X ′ forms a clique in G. Suppose
for the sake of contradiction that two non-adjacent vertices vi

α, vj
β are in X ′. Let the junction

vertices in Si
j and Sj

i be xi,j
0 , . . . , xi,j

3n−1 and yj,i
0 , . . . , yj,i

3n−1, respectively. By construction, X

picks diamonds ♢i,j
α , ♢i,j

α+n, ♢i,j
α+2n in Si

j and ♢j,i
β , ♢j,i

β+n, ♢j,i
β+2n in Sj

i . Then D−X contains
a closed walk

xi,j
n+α → si,j

α,β → yj,i
2n+β−1 → · · · → yj,i

n+β → tj,i
α,β → xi,j

2n+α−1 → · · · → xi,j
n+α,
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contradicting that {si,j
α,β , tj,i

α,β} is satisfied.

Clique to Directed Symmetric Multicut

Suppose Z ⊆ V (G) induces a complete subgraph in G, and |Z ∩ V i| = 1 for all 1 ≤ i ≤ k.
Define a set of arcs Z ′ in D by picking diamonds ♢i,j

α , ♢i,j
α+n, ♢i,j

α+2n for all vi
α ∈ Z and

1 ≤ j ≤ k. Clearly, |Z ′| = 3k|Z| = k′. Further, we show that Z ′ is a solution to (D,P, k′).
To this end, we prove an auxiliary claim, and show that it implies that every cut request in
P is satisfied in D − Z ′.

Observe that removing arcs of Z ′ partitions each necklace into 3k strongly connected
components of size more than one which we call runs. We claim that no two neighbouring runs
are strongly connected in D − Z ′. It suffices to show that for every pair of consecutive runs,
there is no closed walk containing vertices from both of them. Note that a counterexample
would need to contain a crossing arc because chosen diamonds separate runs within the
necklace. By construction, junction vertices x0, . . . , x3n−1 in any string Si

j are of one of the
following types with respect to the crossing arcs:

x0, . . . , xn admit neither incoming nor outgoing crossing arcs,
xn+1, . . . , x2n−1 admit only outgoing crossing arcs,
x2n admits both incoming and outgoing crossing arcs, and
x2n+1, . . . , x3n−1 admit only incoming crossing arcs.

Moreover, since the construction is periodic, n + 1 vertices following x3n−1 also admit no
incoming or outgoing crossing arcs. Chosen diamonds are evenly spaced, so a run contains n

junction vertices. Note that if a run admits both incoming and outgoing crossing arcs, then
it contains x2n and one of its neighbouring runs admits only outgoing and another – only
incoming crossing arcs. Hence, no pair among these three runs is strongly connected.

With this observation, we first verify that every cut request within a necklace is satisfied
by Z ′. Indeed, endpoints of cut requests in D − Z ′ are in neighbouring runs, so they are
not strongly connected. Now consider cut requests {si,j

αβ , tj,i
αβ} for every pair of non-adjacent

vertices vi
α and vj

β in G. Let the junction vertices on strings Si
j and Sj

i be xi,j
0 , . . . , xi,j

3n−1

and yj,i
0 , . . . , yj,i

3n−1, respectively. Four endpoints of the crossing arcs incident to si,j
α,β and

ti,j
α,β are xi,j

n+α, xi,j
2n+α−1 and yj,i

n+β , yj,i
2n+β−1. We claim that either xi,j

n+α and xi,j
2n+α−1 are not

strongly connected or yj,i
n+β and yj,i

2n+β−1 are not strongly connected. Recall that Z induces a
clique in G, and vi

α, vj
β are non-adjacent in G, hence either vi

α /∈ Z or vj
β /∈ Z. Without loss

of generality, assume that vi
α /∈ Z, and observe that Z contains vi

α′ for some α′ ̸= α. Then
Z ′ chooses a diamond that lies between xi,j

n+α and xi,j
2n+α−1, hence these two vertices end up

in neighbouring runs and are not strongly connected. The case with vj
β /∈ Z is symmetric.

5 Concluding remarks

We classified parameterized complexity of Weighted MinCSP(Γ) for all subsets Γ of Point
Algebra, i.e. {<,≤, =, ̸=} on domain Q. In particular, we prove that MinCSP(≤, ≠) is W[1]-
hard, settling the complexity of Directed Symmetric Multicut. DSMC was a roadblock
to classifying interval and temporal constraint languages, i.e. first-order generalizations of
Point Algebra and Allen’s Interval Algebra, respectively. Tackling these two classifications
is a natural continuation. There are several difficulties: for interval constraint languages,
even a polynomial-time CSP dichotomy is still unavailable (see [2]), and this is a prerequisite
for a MinCSP classification. A more approachable fragment is the set of all binary interval
relations for which the dichotomy is known [21].
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For temporal constraints, a CSP dichotomy is known [4]. However, if we compare with
Boolean and equality languages, the only ones for which parameterized MinCSP dichotomies
have been obtained, the temporal CSP classification is much less manageable – the Boolean
dichotomy is Schaefer’s celebrated result from 1978 [27], while the equality CSP dichotomy [3]
has only one nontrivial tractable class. In contrast, there are ten nontrivial tractable fragments
of temporal relations defined by their algebraic invariants [4, Theorem 50].

On the algorithmic side, we want to highlight MinCSP(<, =). By reduction to Subset-
DFAS and using the best known algorithm [9], one can solve this problem in O∗(2O(k3))
time. Can this running time be improved? We remark that such an improvement would
speed up the 2-approximation algorithm for fixed-parameter tractable MinCSPs over basic
interval relations [11].
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