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Abstract
First-order phase transitions in the very early universe are a prediction of many 
extensions of the Standard Model of particle physics and could provide the depar-
ture from equilibrium needed for a dynamical explanation of the baryon asymme-
try of the Universe. They could also produce gravitational waves of a frequency 
observable by future space-based detectors such as the Laser Interferometer Space 
Antenna. All calculations of the gravitational wave power spectrum rely on a rela-
tivistic version of the classical nucleation theory of Cahn-Hilliard and Langer, due 
to Coleman and Linde. The high purity and precise control of pressure and tempera-
ture achievable in the laboratory made the first-order A to B transition of superfluid 
3 He ideal for test of classical nucleation theory. As Leggett and others have noted, 
the theory fails dramatically. The lifetime of the metastable A phase is measurable, 
typically of order minutes to hours, far faster than classical nucleation theory pre-
dicts. If the nucleation of B phase from the supercooled A phase is due to a new, 
rapid intrinsic mechanism that would have implications for first-order cosmologi-
cal phase transitions as well as predictions for gravitational wave production in the 
early universe. Here we discuss studies of the A-B phase transition dynamics in 3He, 
both experimental and theoretical, and show how the computational technology for 
cosmological phase transition can be used to simulate the dynamics of the A-B tran-
sition, support the experimental investigations of the A-B transition in the QUEST-
DMC collaboration with the goal of identifying and quantifying the mechanism(s) 
responsible for nucleation of stable phases in ultra-pure metastable quantum phases.
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1 Introduction

First-order phase transitions are predicted to occur during cooling in the early 
universe as a signal of physics beyond the Standard Model. The transition is 
expected to proceed by the nucleation of bubbles of the stable phase by quan-
tum or thermal fluctuations after supercooling. These bubbles grow rapidly due to 
the pressure difference between inside and outside, and subsequently merge. The 
“fizz” generates pressure waves, which on collision produce shear stresses with 
non-vanishing quadrupole moment, and hence gravitational waves [1, 2] (see [3] 
for a review).

The power spectrum of the gravitational waves depends on a relatively small 
number of equilibrium and near-equilibrium properties of the phase transition, 
at least in the case where the super-cooled transition happens fairly close to the 
critical temperature. Two of the most important are the temperature at which bub-
bles nucleate, and the duration of the transition. Both can be computed from the 
bubble nucleation rate per unit volume as a function of temperature. In the stand-
ard approach, the nucleation rate density is computed in homogeneous nucleation 
theory [4, 5] adapted to relativistic quantum field theory [6, 7].

Given the importance of cosmological nucleation theory for the prediction of 
GWs in the early universe, and its close relation to nucleation theory developed 
for laboratory systems, it is important to test the theory against experiment. Bub-
ble nucleation observed in nature and in standard laboratory systems usually hap-
pens around seeds: small particles in suspension or surface irregularities. Testing 
nucleation theory in the bulk requires extremely pure systems in containers with 
very smooth walls. Thus, the ideal system for such a test is superfluid 3He, which 
in zero magnetic field has two phases distinguished by their residual symmetries, 
and a first -order transition between them. The transition from a normal Fermi 
liquid to the superfluid takes place between 1-−2.5  mK, at which temperatures 
superfluid 3 He is essentially pure. Even 4 He is insoluble in the limit T → 0 , with 
a solubility of order X4 ∼ 10−6 at T = 2 mK [8].

At zero magnetic field, A phase is stable in a small wedge in the plane of tem-
perature T and pressure P below the superfluid critical temperature (see Fig. 1), 
but above the polycritical pressure PPCP ≃ 21 bar. As the system is cooled further, 
A phase becomes metastable below a temperature TAB . Homogeneous nucleation 
theory predicts that the lifetime of the A phase at any temperature or pressure is 
enormous, far longer than the age of the universe. Yet the transition is observed 
to happen within in a few hours, even in cells with smooth walls [9, 10]. In con-
trast, recent experiments in an atomic superfluid [11] show good agreement with 
theory, applied to the effectively one-dimensional system. However, the dramatic 
failure of homogeneous nucleation theory in the case of the A-B transition raises 
questions about its extension to cosmological phase transitions.

The QUEST-DMC (Quantum-Enhanced Superfluid Technologies for Dark 
Matter and Cosmology) collaboration was set up under UK Quantum Technology 
for Fundamental Physics programme to tackle the nucleation problem using new 
techniques, both experimental and theoretical, which have become available since 
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the experiments performed in the 1990s. In this article we report on progress in 
building simulation code to investigate the dynamics of the order parameter of the 
system, using established field theory of superfluid 3He, and tools and techniques 
borrowed from cosmological simulations of phase transitions (see e.g. Ref. [12] 
on time-dependent Ginzburg-Landau (TDGL) theory, Ref. [13] on cosmological 
phase transitions, and Refs.  [14, 15] on topological defects).

2  Cosmological Phase Transitions and GWs

At early times in its evolution the Universe was very close to thermal equilibrium, 
as the perfect blackbody spectrum of the Cosmic Microwave Background radia-
tion demonstrates [16]. The earlier the time, the higher the temperature, and at very 
high temperatures the state of matter in the early Universe must change. At tem-
peratures (thermal energies) higher than around 100 MeV, reached at about 0.1 ms 
after the Big Bang, the theory of the strong interactions—Quantum Chromodynam-
ics (QCD)—predicts that quarks and gluons inside nucleons are liberated. At still 
higher temperatures, around 100 GeV, the average value of the Higgs field is pre-
dicted to vanish. Elementary particles are then massless, and the electroweak sym-
metry between the photons, W and Z bosons restored (for a compact introduction to 
the Higgs see [17]).

If an early Universe phase transition were of first order the consequences would 
be very interesting. The development of homogeneous nucleation theory in quantum 
field theory [6, 7], combined with relativistic combustion theory [18, 19], builds a 
picture of a transition proceeding by nucleation of bubbles of the low-temperature 
phase by thermal or quantum fluctuations, followed by rapid expansion, which trans-
fers some of the latent heat of the system into motion of the plasma. The result-
ing shear stresses generate gravitational waves [1, 2]. One can estimate that these 
gravitational waves would be of frequencies observable by pulsar timing arrays 

Fig. 1  Phase diagram of bulk 3 He at low temperatures and zero magnetic field
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(QCD transition, nHz) and space-based interferometers with million-km baselines 
(electroweak transition, mHz). Another important consequence of a first-order elec-
troweak phase transition is that it supplies one of the prerequisites for the dynami-
cal generation of the baryon (matter–antimatter) asymmetry in the Universe: namely 
departure from thermal equilibrium [20, 21].

The first calculations of the free energy of the Standard Model (SM) [22, 23] 
indicated that gauge field theories like the electroweak theory have a first-order tran-
sition, albeit with rather small latent heat [24]. Early calculations with lattice quan-
tum field theory also showed that gluons confine in a first-order phase transition [25, 
26].

Further investigation of the Standard Model transitions has shown that they are 
both cross-overs [27–29]. All thermodynamic quantities evolve smoothly with tem-
perature, and while there are peaks in various susceptibilities, there is no possibility 
that the Universe became stuck in a metastable state. The Universe of the Standard 
Model stays very close to thermal equilibrium, as the particle scattering rate is many 
orders of magnitude higher than the rate of change of temperature due to expansion.

This is perhaps disappointing. However, the majority of particle physicists are 
convinced that the Standard Model is not the ultimate description of matter and 
interactions. Apart from lacking a description of gravity, the SM has no explanation 
for dark matter or the baryon asymmetry (see e.g. [30, 31] for pedagogical reviews). 
Moreover, calculations of the vacuum fluctuations of the Standard Model particles 
indicate that the current magnitude of the Higgs field, 174 GeV, is not the lowest 
energy state [32, 33]. A related puzzle is what determines the magnitude of the 
Higgs field, and why it is so different from the fundamental mass scale set by grav-
ity, 1019 GeV.

The problems with the Standard Model motivate extending it. The study of exten-
sions to the Standard Model is known as BSM (beyond the Standard Model) phys-
ics, and it emerges that a first-order phase transition in the early Universe is very 
much a possibility in Standard Model extensions [34]. The search for gravitational 
waves from the early Universe then becomes a search for BSM physics. There follow 
some major questions: how to observe these gravitational waves, and how to calcu-
late their spectrum. Both have become very active areas in the intersection between 
particle physics and cosmology, and now ultra-low-temperature physics.

The simulations and modelling of first-order transitions in the early Universe (see 
[3] for a review) have shown that the gravitational wave spectrum depends mainly 
on a handful of thermodynamic quantities: the critical temperature, the transition 
rate, the latent heat, the phase boundary terminal velocity and the sound speeds in 
the two phases. The most difficult to calculate accurately are the transition rate � 
(the inverse lifetime of the metastable phase) and the phase boundary speed vw , as 
they are both non-equilibrium quantities. The amplitude and shape of the gravita-
tional wave power spectrum are quite sensitive to these parameters. For example, the 
peak frequency is proportional to the ratio vw∕� and the transition temperature.

Calculations of the transition rate � are based on the homogeneous nuclea-
tion theory of Langer [5], a formalisation of the Cahn-Hilliard theory [4]. It was 
introduced into quantum field theory at zero temperature by Coleman [6], and at 
nonzero temperature by Linde [7] (see [35] for a discussion of the theory). There 
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has been recent progress with perturbative calculations of the rate parameter � [36], 
and it has also been calculated non-perturbatively using numerical lattice simula-
tions of Standard Model-like gauge-Higgs system [37, 38]. Calculations of the wall 
speed are based on modelling of the plasma in terms of quasi-stable particles and 
the Boltzmann equation [39, 40]. Here, too, progress can be made with numerical 
methods [41, 42]. Both of these frameworks have direct analogies in superfluid 3He, 
which offers the opportunity to test and further develop the theory behind the gravi-
tational wave calculations.

3  The A‑B Nucleation Puzzle

According to the homogeneous nucleation theory of Cahn and Hilliard [4] and 
Langer [5], a metastable system makes the transition to the stable state with lower 
free energy via nucleation in a small region, which is nevertheless large enough for 
the pressure difference between the interior and exterior to overcome the surface 
tension of the boundary between. In the bulk, such a region with lowest energy 
is spherical: the critical droplet or bubble. The critical bubble provides the route 
through the space of order parameter configurations to the ground state.

The thermal activation rate per unit volume is

where �a is the attempt frequency, the rate at which the system tries to get over the 
barrier between the metastable state and ground state, na is the number density of 
regions in which an attempt can be made, Ec is the energy barrier, and T is the bath 
temperature. The attempt frequency and density are set by microscopic dynamics of 
the order parameter and are difficult to calculate. This calculation has recently been 
automated for a single-component order parameter [43], but the rate evaluation for 
the 18-component order parameter of 3 He is more challenging. However, the pair 
correlation length, � , provides an estimate for the maximum density, na ∼ �−3 . The 
attempt rate is governed by a combination of inertial dynamics and diffusion over 
the barrier [5, 35, 44].

In the case of superfluid 3He, the two phases in question are the A and B phases 
separated by the first-order transition line TAB(p) (see Fig. 1). In zero magnetic field, 
above the polycritical point pressure PPCP ≃ 21 bar, the A phase is stable below 
the superfluid critical temperature Tc and TAB , where the B phase takes over as the 
phase with lower free energy. Both phases belong to the spin-triplet ( S = 1 ), p-wave 
( L = 1 ) manifold of pairing states defined by the macroscopic amplitude of fermion 
pairs, ⟨�p,a�−p,b⟩ , where p is the relative momentum of the pair of orbiting 3 He fer-
mions, while a and b are the spin projections ( ↑ or ↓ ) of the fermions comprising 
the pair. The corresponding mean-field pairing self-energy, Δab(p) = g ⟨�p,a�−p,b⟩ , 
where g is the attractive pairing interaction in the spin-triplet, p-wave Cooper chan-
nel. These amplitudes are the elements of a symmetric 2 × 2 matrix order param-
eter, �Δ(p) = i�⃗�𝜎y ⋅ d⃗(p) , where i�⃗�𝜎y are the symmetric Pauli matrices, and the 

(1)Γ(T ,P) = �anae
−Ec∕kBT ,
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three-component spin vector, d⃗(p) , is in general a linear superposition of the p-wave 
basis functions for momenta restricted to the Fermi surface. Thus,

is parametrized by a 3 × 3 complex matrix, A�i , that transforms as a vector with 
respect to index � under spin rotations, and, separately, as a vector with respect to 
index i under orbital rotations.1 This representation for the order parameter provides 
us with an S = 1 , L = 1 basis for an irreducible representation of the maximal sym-
metry group of normal 3He,

which includes SO(3)L rotations in three-dimensional space, SO(3)S rotations in the 
spin space, and the global phase transformation group U(1)N , as well as discrete 
symmetries T, C, and P, where T is time-reversal symmetry, C is the particle-hole 
symmetry, and P is parity symmetry. The subscripts L , S refer to the generators 
for the rotation groups, while N is the number operator which is the generator for 
changes in phase.

The bulk B-phase, which minimizes the bulk free energy over most of the pres-
sure-temperature plane below Tc , is the “isotropic” state defined by

with residual symmetry HB = SO(3)L+S × T  , i.e. the B-phase is time-reversal invari-
ant and invariant under joint rotations of spin and orbital components of the order 
parameter. This state was shown by Balian and Werthamer to be the ground state 
for spin-triplet, p-wave pairing in the weak-coupling limit [47]. The high degree of 
symmetry of the B-phase implies a large continuous degeneracy space,

corresponding to the choice of phase of the order parameter defined by the elements 
of U(1)N , as well as the relative orientation of the spin and orbital coordinates of the 
spin-triplet, p-wave Cooper pairs, represented by SO(3)L−S . As a result the class of 
degenerate B-phase order parameters is,

where � is the global phase and R𝛼i[𝜗n̂] is an orthogonal matrix defining a rotation 
of the spin and orbital coordinates by angle � about the direction n̂ . Thus, there are 

(2)�Δ(p) = (i𝜎𝛼𝜎y)A𝛼i (p̂)i,

(3)G = SO(3)L × SO(3)S × U(1)N × T × C × P,

(4)AB

�i
=

1√
3

ΔB ��i,

(5)RB = U(1)N × SO(3)L−S,

(6)AB

𝛼i
=

1√
3

ΔB e
i𝜑 R𝛼i[𝜗n̂],

1 We follow the notation of Ref. [45] for the form of the spin-triplet, p-wave order parameter, and Gin-
zburg-Landau (GL) functional. See also Vollhardt and Wölfle [46] for a pedagogical development of the 
same.
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4 continuous degeneracy parameters, and hence 4 gapless Nambu-Goldstone (NG) 
modes. The phase mode is realized as collisionless sound in superfluid 3He-B and 
plays a central role in observations of the spectrum of Higgs modes [48, 49]. There 
are three spin-orbit modes that are key signatures of spin-triplet pairing in NMR 
spectroscopy of 3 He [50]. Nuclear dipolar interactions and Zeeman energies in an 
external magnetic field partially lift the degeneracy of these modes, opening small 
gaps providing a novel example of the Light Higgs scenario [51].

The stability of the A-phase at high pressure and temperatures relatively near to 
Tc results from corrections to weak-coupling BCS theory that become sufficiently 
large at high pressures to stabilize an equal-spin pairing (ESP) state that also sponta-
neously breaks time-reversal symmetry with an order parameter of the form,

where d̂ is a real unit vector in spin space along which the A-phase Cooper pairs 
have zero spin projection. The orthonormal unit vectors m̂ and n̂ combined with 
the relative phase of �∕2 define orbital motion of the A-phase Cooper pairs with 
orbital angular momentum +ℏ per Cooper pair along the axis l̂ = ̂m × n̂ . This axis 
is chiral and it highlights both broken mirror symmetry and broken time-reversal 
symmetry by the A-phase. The latter allows for a macroscopic ground state angular 
momentum predicted to be, Lz = Nℏ∕2 for a system with N 3 He atoms. 2 The cor-
responding residual symmetry group is then, HA = SO(2)d × U(1)Lz−N

× Z2 , where 
SO(2)d is the group of rotations in spin space about the axis d̂ . The A phase breaks 
orbital rotation symmetry as well as global gauge symmetry; however, a rotation 
by any angle about the chiral axis can be undone with an appropriately chose ele-
ment of U(1)N which leads to the residual gauge-rotation symmetry of the A-phase 
defined by U(1)Lz−N

 . The residual discrete Z2 symmetry results from the combina-
tion of time-reversal and mirror reflection in a plane containing the chiral axis. This 
symmetry allows for the remarkable transport properties of the A phase including 
the anomalous Hall effect that was reported for electrons moving in 3He-A driven by 
an electric field perpendicular to the chiral axis [53, 54].

The A phase is also endowed with a large degeneracy space, in this case by the 
combined degeneracy in the orientation of the spin direction d̂ on the surface of a 
unit sphere, S2 , and the orientation of the orbital triad, {m̂, n̂, l̂} , which is the group 
of rotations in 3-space, SO(3) . However, the combined transformations: ̂d → − d̂ 
and (m̂ + i n̂) → −(m̂ + i n̂) is a discrete symmetry of the A-phase ( Z′

2
 ), and thus the 

degeneracy space excludes these combined changes of sign such that [55]

The continuous degeneracy space implies the existence of 5 Nambu-Goldstone 
modes, 2 spin wave modes, 2 orbital wave modes and the sound mode. It is also 

(7)AA

𝛼i
= ΔA d̂𝛼

�
m̂i + i n̂i

�
∕
√
2,

(8)RA = S2 × SO(3)∕Z
�

2
.

2 See Ref. [52] for a discussion of the connection between the topological edge states, the edge currents 
and L

z
 as well as review of theoretical literature on the ground state angular momentum.
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worth noting that the Z′

2
 symmetry is directly related to topologically stable half 

quantum vortices originally predicted by Volovik and Mineev for ESP states [56, 
57], which were recently discovered in NMR spectroscopy of the ESP polar phase of 
3 He under rotation [58].

In simulating non-equilibrium dynamics and nucleation processes the low energy 
excitations—Goldstone and pseudo-Goldstone modes—are expected to play an 
important role in transporting mass, energy and magnetization. Another notable fact 
is that the residual symmetry group of the B phase is not a sub-group of HA , and 
thus the phase transition is necessarily first order. Thus, to nucleate the B phase from 
the homogeneous A-phase requires deviations or fluctuations of the order parameter 
from the local equilibrium A phase that incur an energy barrier, inhibiting nuclea-
tion and allowing for supercooling of the A phase below TAB . Cooling below TAB 
at pressures above PPCP puts the superfluid into a metastable state with free energy 
excess ΔfAB = fA − fB , where fA and fB are the condensation energy densities of the 
A- and B-phases, which can be determined by integrating the measured specific 
heats from Tc to the relevant temperature below Tc.

The path in order parameter space that minimizes the energy cost of a domain 
wall (DW) separating the A and B phases, AA

�i
→ ADW

�i
(x) → AB

�i
 , for a bubble of 

radius R of 3He-B embedded in 3He-A plays a key role in the theory of nucleation 
of the B-phase in supercooled A phase. The surface energy of the A-B interface was 
measured at high pressure by Osheroff and Cross [59], and at low pressure and high 
magnetic field by Bartkowiak et al [60]. Theoretical calculations using GL theory 
[61–63] give �AB ∝ �fB , where � is the Ginzburg-Landau coherence length, with 
proportionality constant close to 1 in good agreement with experiment.

To estimate the energy and radius of the critical bubble in the thin-wall approxi-
mation ( R ≫ 𝜉 ) we express the total energy of a bubble of B-phase embedded in 
metastable A-phase as a sum of the gain in condensation energy proportional to 
−ΔfAB , and the cost in surface energy, proportional to �AB . Both depend on tempera-
ture and pressure. Thus,

The critical bubble is determined by the condition E�(R) = 0 , representing a spheri-
cal bubble poised between expansion and contraction. The radius and energy of the 
critical bubble are then

and the critical bubble free energy is

where � ≃ 10 . The Ginzburg-Landau coherence length near the critical tempera-
ture is � = �GL(1 − T∕Tc)

−1∕2 , where �GL =
√
7� (3)∕20 �0 and �0 = ℏvF∕2�kBTc 

is the Cooper pair correlation length in the ballistic limit [64]. The order of 

(9)E(R) = 4�R2�AB −
4�

3
R3ΔfAB.

(10)Rc =
2�AB
ΔfAB

, Ec =
16�

3

�3

AB

Δf 2
AB

,

(11)Ec ≃ �|fB|�3
(
ΔfAB∕|fB|

)−2
,
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magnitude of the condensation energy density is set by the density of states at 
the Fermi surface N(0) = m∗kf∕(2�

2ℏ2) and the critical temperature according to 
fB ∼ −N(0)(kBTc)

2(1 − T∕Tc)
2 . Hence

where Gi = N(0)�3
0
(kBTc) is the Ginzburg number, which takes values between 800 

at zero pressure and 2900 at melting pressure, about 34 bar. A plausible estimate for 
the order of magnitude of the length scale in the attempt density is the Cooper pair 
correlation length �0 , which takes values in the range 16–77 nm. An upper bound the 
attempt rate is vF∕�0 , where the Fermi velocity vF is in the range 30–60 ms−1.

The last factor in Eq. (12) diverges as (1 − T∕TAB)
−2 as the A-B equilibrium line 

is approached, but even without the divergent factor the size of the Ginzburg number 
already ensures that the exponential e−Ec∕kBT in the nucleation rate, Eq.  (1), over-
whelms the attempt frequency in an experimentally accessible volume, leading to 
an estimate of the lifetime of the metastable A-phase that vastly exceeds the current 
age of the universe. Thus, as pointed out early after the discovery of the superfluid 
phases [61, 65] classical nucleation theory predicts that the superfluid 3 He should 
remain in the metastable A-phase indefinitely in any experiment that can be real-
istically conceived. However, experimental investigations of supercooled 3He-A 
all show that the B phase nucleates on timescales of seconds to hours, suggesting 
another mechanism is responsible for the nucleation of 3He-B [9, 10, 10, 66–71].

4  Explanations for the Nucleation Puzzle

Proposed explanations for the puzzle are many and varied [65, 68, 71–77]. They 
generally invoke an external mechanism acting in addition to the intrinsic mecha-
nisms of critical bubble nucleation from thermal or quantum fluctuations in con-
densed matter and quantum field theory [4, 5, 78–80]. The leading contenders 
consider that nucleation in bulk, metastable superfluid 3He-A is caused by energy 
injection by cosmic-ray muons or another energetic particle. In the “Baked Alaska” 
scenario proposed by Leggett [65] the energy deposition breaks Cooper pairs cre-
ating a local region of “hot” quasiparticles surrounded by the cold metastable A 
phase. A shell of energetic quasiparticles expands, driving the system locally nor-
mal, behind which the superfluid returns to a temperature below Tc , allowing the 
B-phase to nucleate with measurable probability. At this point the size of the shell 
must be larger than the critical bubble size, otherwise the surface tension of the A-B 
phase boundary will overwhelm the pressure difference, and the B-phase bubble 
will collapse. Support for such a scenario of local heating nucleating the B-phase is 
reported by Schiffer et al. where it was shown that 764 keV neutrons as well as MeV 
� rays from 60 Co stimulate the A-B transition [9].

A particularly interesting consequence of a second-order symmetry-breaking 
phase transition such as the normal-superfluid transition in 3He, was pointed out 
by Kibble in the context of phase transitions in the early Universe: the generation 

(12)Ec∕kBT ∼ Gi (Tc∕T)
(
1 − T∕Tc

)1∕2(
ΔfAB∕|fB|

)−2
.
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of topological defects [81]. He showed how to predict the type of defect on the 
basis of the topology of the manifold of equilibrium states and the defect density 
on the basis of estimates of the correlation length as the universe cools through a 
continuous phase transition. The density estimate was later updated by Zurek who 
made the explicit link to defect formation in rapid quenches in superfluid 4 He 
[82, 83]. Experiments to investigate vortex formation in superfluid 4 He [84, 85] 
proved inconclusive, but experiments in the B phase of superfluid 3 He [86, 87] 
demonstrated spontaneous vortex generation in rapid quenches consistent with 
the Kibble-Zurek mechanism.

The “Cosmological Scenario” for A-B nucleation proposed by Volovik and 
Kibble [74, 88] envisages that energy is transported rapidly out of the injection 
region by thermal diffusion, and that the front where the quasiparticle tempera-
ture goes below Tc is swiftly followed by another front where it goes below TAB . 
The rapidity of the quench inside the energy deposition region suggests that it 
contains causally disconnected regions of local order, which evolve either into 
the A or B phases according to the Kibble-Zurek scenario. In this case a com-
plex region of multiple phases, separated by domain walls, emerges. If a large 
enough B phase region has formed, it will expand and eventually take over the 
condensate. Moreover, different types of topological defects such as domain walls 
between B-phases [89], as well as vortices can be generated in the energy deposi-
tion region. Indeed vortices have been detected in the Helsinki group’s experi-
ments injecting energy with neutrons [87]. There has been discussion between the 
authors of the competing models [90, 91], but as yet no consensus.

It has also been pointed out that nucleation may be seeded by complex order 
parameter configurations at the boundaries of an experimental cell, either by 
surface roughness or by topological singularities [73, 92]. Nucleation at rough 
boundaries has been argued to fit the data of Hakonen et  al. [67, 76], where 
nucleation occurred close to a “catastrophe” line in the (T, P) plane with a char-
acteristically peaked temperature distribution. The catastrophe line would be dif-
ferent for each experiment, as it would depend on the details of the boundaries, 
particularly in the heat exchanger, where complex surfaces of many square metres 
in area are found. Recently, it has been shown that the position of the catastrophe 
line also depends on the path in the (T,  P) plane taken when cooling through 
the A phase into the metastability region [71]. This was explained in terms of 
a model of complex order parameter configurations acting as B-phase seeds in 
small cavities, principally the heat exchanger.

More exotic explanations have been put forward. Non-topological order param-
eter configurations known as Q-balls [93] have been proposed as an alternative to 
the critical bubble as the route from the A phase to the B phase [72]. Such objects 
have been experimentally detected and studied [94]. It has also been proposed 
that resonant tunnelling, a quantum-mechanical phenomenon where quantum 
tunnelling can proceed via a classically allowed intermediate state of the same 
energy, could be at play in superfluid 3 He as well [77]. However, such classically 
allowed states were shown not to exist in the quantum field theory of a single 
scalar field [95], so the existence of resonant tunnelling for the multicomponent 
order parameter of 3 He is not clear.
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5  New Experiments on A‑B Nucleation

In order to study nucleation in the bulk superfluid, one would like to eliminate 
or control the effect of the container walls. The first imperative is to isolate the 
metastable superfluid from the heat exchanger, which contains a large rough 
area in contact with the superfluid. This can be done in two ways. One method 
is to utilize the Zeeman energy of the ESP A phase in which case its equilibrium 
bulk free energy is reduced in a magnetic field. Above about 0.6 T, the A phase 
is the stable superfluid phase over the whole (T,  P) plane [96, 97]. By placing 
two opposing magnets close to each other, it is possible to create a region of low 
magnetic field, where the superfluid is in the metastable A phase, surrounded by 
higher field, where the A phase is stable [98]. In this configuration the phase tran-
sition happens in the low-field region, well away from the walls of the container.

A new set of experiments use engineered cells and surfaces to confine 3 He into 
multiple chambers of different heights within a single experimental cell to study 
A-B nucleation. Container walls generally lead to pair breaking and distortion of 
the order parameter near the wall. The magnitude of pair-breaking depends on 
the atomic scale properties of the wall [99–101]. In general pairing of states with 
orbital angular momentum in the plane of a surface are suppressed. If the wall is 
smooth, e.g. by pre-plating with superfluid 4He, quasiparticles reflect specularly, 
and the in-plane orbital states are unaffected. This is the case for the A phase 
with the chiral axis aligned normal to the wall; pair-breaking is suppressed and 
thus the A-phase order parameter survives all the way to the wall. The B phase, 
on the other hand, is modified by pair-breaking of the orbital component normal 
to the wall. Its order parameter is distorted towards the planar phase at the wall. 
The planar distorted B phase extends into the bulk over a distance of a few coher-
ence lengths. In the case of an atomically rough surface pair-breaking occurs for 
all orbital components, in which case both the A and B phase are suppressed near 
the wall by diffuse scattering. Thus, the ideal geometry is a slab that stabilizes 
the A phase with minimal pair-breaking, i.e. by 4 He pre-plating, below Tc , but is 
thick enough to support the B-phase at lower temperatures as shown for example 
in Fig. 3 of Ref. [101]. Indeed, experiments in thin nanofabricated cavities show 
that A phase can be stabilised at any pressure over a range of temperatures [102, 
103], and is the stable superfluid phase that onsets at the critical temperature.

These facts motivated the construction of the experimental cell used in the 
QUEST-DMC experiments which consists of 5 superfluid “lakes” of 3He, each 
being approximately 7 μ m in depth, surrounded by shallower regions of ∼70 nm, 
in which the 3 He is forced to be either in the normal phase (diffuse scattering) 
or only the A phase (specular scattering). This design allows for the study of the 
A-B transition in multiple regions of metastable A phase in lakes of various vol-
umes. The results of the initial studies in this geometry are reported elsewhere 
[104]. The ultimate goal is study intrinsic A-B nucleation by understanding, con-
trolling and potentially eliminating extrinsic nucleation related to boundaries, 
defects, and particles depositing energy in 3He.
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6  Simulations of Non‑equilibrium Phase Transitions

In order to develop a deeper understanding of nucleation mechanisms for phase tran-
sitions, the QUEST-DMC theory effort is developing computational tools to simu-
late non-equilibrium dynamics for the A-B transition of metastable 3He-A. This is a 
technically challenging problem involving the dynamics of a bosonic field defined 
on a multi-dimensional order parameter space coupled to excitations of the underly-
ing fermionic vacuum. In many cases the dynamics occurs under conditions that are 
far from equilibrium, particularly for nucleation generated by localized energy depo-
sition. Here we discuss simulations based on dynamics described by TDGL theory 
based on the extension of the strong-coupling GL functional by Wiman and Sauls 
[64, 105] that captures the A-B transition and extends the GL theory to temperatures 
below TAB [106].

6.1  Time‑Dependent Ginzburg‑Landau Theory

Time-dependent Ginzburg-Landau (TDGL) equations have long been studied in the 
context of the non-equilibrium dynamics of superconductors, particularly for super-
conductors in the “dirty” limit, �∕𝜏 ≫ Δ , where � is the mean scattering time for 
unbound fermionic quasiparticles (see e.g. Kopnin’s review [107]). These equations 
have been also been studied in the context of Kibble-Zurek quench dynamics and 
normal-superfluid boundary propagation for U(1) superfluids by several authors 
[108–110]. TDGL equations for superconductors and superfluids in the clean limit 
were developed early on by Abrahams and Tsuneto for a U(1) superconductor start-
ing from an expansion of the non-equilibrium mean-field equations for the order 
parameter [111] (see also Ref. [112]) and for superfluid 3 He by Kleinert [113]. 
Below we formulate the dynamics as a bosonic field theory for superfluid 3 He with 
dissipation from the excitations of the underlying fermionic vacuum.

The space-time evolution of the bosonic field describing Cooper pairs in bulk  
3He, A�i(r, t) , is governed by field equations obtained from the TDGL Lagrangian, 
L = K − U , where

is the kinetic energy associated with temporal fluctuations of the field A(r, t) with 
Ȧ = 𝜕A∕𝜕t and �0 the inertia of the field which determines the dispersion of the bos-
onic modes of the superfluid phases [12]. The potential energy functional is defined 
by the GL free energy functional, which includes a second-order invariant,

that controls the phase transition to the broken symmetry phase. For 𝛼 > 0 the equi-
librium state is the symmetric normal Fermi-liquid, while for 𝛼 < 0 the equilibrium 

(13)K = ∫ dV 𝜏0 Tr
(
ȦȦ†

)
,

(14)U2[A] = ∫ dV � Tr
(
AA†

)
,
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state spontaneously breaks the symmetry, with a finite bosonic amplitude A. The 
broken symmetry equilibrium state is determined by the fourth-order interactions of 
the bosonic field,

where the five linearly independent fourth-order invariants of the maximal symme-
try group G for 3 He in Eq. (3) are

Spatial gradients of the bosonic field also play a central role in the dynamics and 
contribute to the effective potential in the form of supercurrents, textural bending 
energies and deformations of the order parameter near the cores of singular topo-
logical defects and boundaries,

where the three linearly independent leading-order gradient energies are

Thus, the Lagrangian density for the bosonic fields respecting the maximal symme-
try group G of 3 He in Eq. (3) takes the form,

where �0 is the effective inertia for Cooper pair fluctuations. Weak violation of parti-
cle-hole (C) symmetry by the parent Fermi-liquid allows for an additional invariant 
in the Lagrangian that is first-order in �tA,

However, this C-violating term is expected to be small; thus we neglect it in the 
dynamical simulations that follow. In contrast we retain the dissipative term that is 
first order in �tA that arises from coupling of the thermal bath of fermionic excita-
tions to non-equilibrium states of the bosonic field as discussed in Sect. 6.2.

The Lagrangian (19) generates the dynamical equations for the bosonic excita-
tions of superfluid 3 He [12]. The bosonic field theory is significant as it provides 
an understanding of fundamental dynamical features resulting from spontane-
ous symmetry breaking in condensed matter and quantum field theories. A good 
example is Nambu’s fermion-boson mass relations [114] for the broad class of 

(15)U4[A] = ∫ dV

5∑

p=1

�p up(A),

(16)
u1 =| Tr

(
AAT

)
|2, u2 = Tr

(
AA†

)2

u3 = Tr
(
AATA∗A†

)
, u4 = Tr

(
AA†AA†

)
, u5 = Tr

(
AA†A∗AT

)
.

(17)U�[A] = ∫ dV

3∑

m=1

Km vm(�A),

(18)v1 =�kA�j�kA
∗
�j
, v2 = �jA�j�kA

∗
�k
, v3 = �kA�j�jA

∗
�k
.

(19)L =𝜏0 Tr
(
ȦȦ†

)
− 𝛼 Tr

(
AA†

)
−

5∑

p=1

𝛽p up(A) −

3∑

m=1

Km vm(𝜕A),

(20)KΓ = iΓ
[
Tr

(
ȦA†

)
− Tr

(
AȦ†

)]
.
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Nambu/Jona-Lasinio field theories [115, 116], which includes 3He, for mass gen-
eration by spontaneous symmetry breaking [12, 117].

The parameters � , �p and Km that define the effective potential are temperature- 
and pressure-dependent, and can be calculated from the microscopic theory of 
superfluid 3 He [105, 118–121], have the values

where the �p parameters in the weak-coupling limit are determined by pressure-inde-
pendent ratios and an overall scale set by

The strong-coupling corrections to the �p parameters, bsc
p

 , are calculated based on the 
leading-order corrections to weak-coupling BCS theory as formulated by Rainer and 
Serene [118]. A key result is that the strong-coupling corrections to the GL func-
tional are determined by the scattering amplitude for normal-state quasiparticles 
with energies and momenta confined to the Fermi surface. This scattering ampli-
tude also determines the normal-state thermodynamic and transport properties of 
the normal Fermi liquid phase of 3He. This allows us to solve the inverse problem to 
determine the scattering amplitude from the experimental data for the normal Fermi 
liquid phase of 3 He and the heat capacity jumps for the A- and B-phases at Tc . This 
program was carried out and shown to predict the stability of the A-phase above the 
polycritical pressure as well as the temperature dependence of the gap, thermody-
namic potential and heat capacity of the B-phase at low temperatures [119–121]. 
The calculated A-B transition line is in excellent agreement with experimental 
results as shown in Fig. 8.6 of Ref. [121].

The other development in strong-coupling theory for 3 He is the recognition of the 
importance of the temperature-dependent scaling of the strong-coupling � parameters 
below Tc shown in Eq. (22). This scaling is based on the microscopic strong-coupling 
theory and developed in Refs. [64, 105]. The temperature and pressure dependence of 
the strong-coupling corrections captures the A-B transition transition line to good accu-
racy and extends the predictive capabilities of the GL theory to temperatures below 
TAB [106] for pressures above the polycritical pressure. This is essential for developing 
TDGL theory to study order parameter dynamics in the metastable A phase. In what 
follows we use the results for bsc

i
(p) tabulated in Ref. [106]; these values are slightly 

different than the more accurate results reported in Ref. [121], but both sets are compa-
rable in their magnitude and pressure dependences (Fig. 2).3

(21)�(T) =
1

3
N(0)(T∕Tc − 1),

(22)�p = �0

(
bwc
p

+
T

Tc
bsc
p

)
, p ∈ {1,… , 5}

(23)�0 =
7� (3)

80�2

N(0)

3(kBTc)
2
, {bwc

p
} = (−1, 2, 2, 2,−2).

3 A review of strong-coupling theory, including the effective interactions in liquid 3 He that give rise to 
the stability of 3He-A and deviations from weak-coupling BCS theory for the thermodynamic properties, 
will be published in a separate report.
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The spatial derivative terms in Eq.  (17) determine the energy cost of deforma-
tions of the order parameter from its homogenous equilibrium value. All three stiff-
ness coefficients are positive and can be calculated to good approximation in weak-
coupling theory,

where �0 = ℏvF∕2�kBTc is the zero-temperature Cooper pair correlation length.
The counterpart to the space derivative terms given in Eq.  (13) is the kinetic 

energy which is second order in time derivatives. The stiffness to temporal fluctua-
tions of the order parameter in the weak-coupling limit is given by

This result is equal in magnitude to the fourth-order contribution to the linear com-
bination of � parameters that determine the gap amplitude for the B-phase, i.e. 
�0 = �B = �12 + �345∕3 in weak-coupling theory. This result guarantees that the 
J = 0+ Higgs mode has the mass of two fermions at the continuum edge, M0+ = 2ΔB . 
Furthermore, TDGL theory with weak-coupling parameters predicts the masses of 
the J = 2− and J = 2+ Higgs modes as M2− =

√
12∕5ΔB and M2+ =

√
8∕5ΔB , in 

agreement with the underlying quasiclassical weak-coupling theory. Based on sym-
metry grounds it is argued that the relation �0 = �B is preserved in leading-order 
strong-coupling GL theory [12].

(24)K1 = K2 = K3 =
7� (3)

60
N(0)�2

0
,

(25)�0 = ℏ2 7� (3)

48

N(0)

�2k2
B
T2
c

.

Fig. 2  Phase diagram of bulk 3 He showing the experimental superfluid critical temperature Tc (black 
solid line), the A-B equilibrium line TAB (black dashed line) [122] and the theoretical result for TAB (blue 
dashed line) based on the linear temperature scaling and pressure-dependence of the strong-coupling � 
parameters below Tc [106]
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For static, but in general inhomogeneous superfluid phases, the effective potential, 
U2 + U4 + U� , defines the GL free energy functional, FGL[A] = ∫ dV fs[A] , with

The GL functional is supplemented by boundary conditions for the order parameter 
A that depend on the geometry and atomic scale properties of the boundary.

The strong-coupling GL functional has strong experimental support. It accurately 
predicts the phase diagram of superfluid 3 He [121] and the surface energy of the A-B 
phase boundary [59, 60] and accounts for the temperature and pressure dependence of 
the structure of B-phase vortices [106]. The time-dependent terms also have experi-
mental support: acoustic absorption resonances are observed consistent with resonant 
excitation of the J = 2+ and J = 2− Higgs modes [123–125].

It is worth noting that our formulation of TDGL theory for the space-time dynamics 
of pure spin-triplet, p-wave superfluid 3 He can be extended to include attractive, but 
sub-dominant, spin-triplet, f-wave Bosonic excitations, including the predicted S = 1 , 
L = 3 , J = 4− Higgs mode [126] for which there is experimental evidence from anom-
alous sound absorption near Tc [125] and acoustic Faraday rotation of transverse sound 
[127].

The general form of the S = 1 , L = 3 order parameter is F�;ijk(r, t) which transforms 
as a vector under SO(3)S for the index � and as a rank 3 symmetric, traceless tensor 
under orbital rotations ( SO(3)L ) for the indices i, j, k. The leading-order contribution to 
the effective potential is then �f (T)F�;ijkF

∗
�;ijk

 , where �f (T) =
1

3
N(0)

(
T∕Tcf − 1

)
 

where Tcf is the f-wave pairing instability temperature which is a direct measure of the 
f-wave pairing interaction. For sub-dominant f-wave pairing we have 0 < Tcf < Tc . 
There are many new invariants that contribute the extended TDGL functional which 
can be enumerated using group representation theory. Whether or not there is an f-wave 
condensate depends on the material parameters of the new invariants. It may be possi-
ble that such a condensate exists in the cores of o-vortices in the B phase, analogous to 
the p-wave condensate in the core of an Abrikosov (s-wave) vortex [57].

Finally we note that symmetry breaking perturbations from the nuclear Zeeman 
energy in an external magnetic field and the nuclear magnetic dipole-dipole energy 
can be included in this framework, c.f. Refs.   [105, 128], but here we focus on A-B 
transition in the absence of magnetic field and neglect the weak nuclear dipole-dipole 
energy. These effects of these perturbations on A-B transition will be discussed in a 
future work.

In the simulations discussed later in this report we compare energy densities relative 
to that of the homogeneous B-phase, fB = −�2∕4�B and we normalize to the energy 
density scale

(26)fs[A] = � Tr
(
AA†

)
+

5∑

p=1

�p up(A) +

3∑

m=1

Km vm(�A).

(27)f0 =
1

3
N(0)(kBTc)

2.
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6.2  TDGL Equations with Dissipation by the Fermionic Bath

The Euler-Lagrange equations obtained from Eq. (19) generate the non-dissipative 
coupled dynamical equations for the 3 × 3 complex matrix order parameter, A�i(r, t) , 
for superfluid 3He,

These coupled equations involve only the bosonic degrees of freedom with param-
eters corresponding to the fermionic vacuum in local equilibrium. We include ther-
mal fluctuations of the fermionic vacuum via a Langevin source term that couples 
the thermal fluctuations locally to the bosonic field. Several authors have formulated 
the dynamics of a bosonic field theory coupled to a thermal bath in terms of a sto-
chastic Langevin source [108, 129]. We add to the right-hand side of Eq.  (28) a 
Gaussian noise source ��i(r, t) with intermediate-time averages ⟨��i(r, t)⟩ = 0 and 4 

The parameter � plays an important role as it leads, via the fluctuation-dissipation 
theorem, to damping of space-time fluctuations of the bosonic field via an additional 
dissipative time-derivative term, 𝛾Ȧ𝛼i , on the left side of Eq. (28) that is characteris-
tic of Langevin dynamics. Thus, the set of dynamical equations including the damp-
ing and Langevin noise source terms are,

For temperatures very close to Tc , i.e. the “gapless region” where |Δ(T)| ≪ 𝜋kBTc , 
the damping by the fermionic bath is given by [130]

However, � decreases rapidly below Tc as the mean field order parameter, and excita-
tion gap, become established. At low temperatures the temporal dynamics is domi-
nated by the inertial term defined by Eq.  (13). However, at intermediate tempera-
tures we retain both the inertial and damping terms. On dimensional grounds it is 
convenient to express 𝛾 = �2�̃�(

√
35𝜁 (3)∕60)N(0)∕6𝜋(kBTc)

2 , where �̃� has dimen-
sions of frequency.

The dynamical Eqs. (30) should be understood as an approximate description of 
the non-equilibrium dynamics of the 3 He order parameter, which extends the typical 

(28)
𝜏0Ä𝛼i + 𝛼A𝛼i − K1𝜕

2A𝛼i − (K2 + K3)𝜕i𝜕jA𝛼j

+ 2
[
𝛽1A

∗
𝛼i
Tr

(
AAT

)
+ 𝛽2A𝛼i Tr

(
AA†

)

+ 𝛽3(AA
TA∗)𝛼i + 𝛽4(AA

†A)𝛼i + 𝛽5(A
∗ATA)𝛼i

]
= 0.

(29)⟨��i(r, t)��j(r�, t�)⟩ = 2� kBT ����ij�(r − r�)�(t − t�).

(30)

𝜏0Ä𝛼i + 𝛾Ȧ𝛼i + 𝛼A𝛼i − K1𝜕
2A𝛼i − (K2 + K3)𝜕i𝜕jA𝛼j

+ 2
[
𝛽1A

∗
𝛼i
Tr

(
AAT

)
+ 𝛽2A𝛼i Tr

(
AA†

)

+ 𝛽3(AA
TA∗)𝛼i + 𝛽4(AA

†A)𝛼i + 𝛽5(A
∗ATA)𝛼i

]
= 𝜁𝛼i(r, t).

(31)� = ℏ
�N(0)

48kBTc
.

4 Our formulation is similar that of Ref. [129].
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domain of applicability of Ginzburg-Landau theory to temperatures below TAB by 
the inclusion of temperature-dependent strong-coupling corrections to the � param-
eters. Our modelling of the thermal bath of quasiparticles via Langevin noise and 
damping is widely used to simulate non-equilibrium phase transitions in quantum 
field theories and can be shown to generate topological defect densities that obey 
Kibble-Zurek scaling [131, 132]. On the other hand, a simplified TDGL with a sin-
gle complex order parameter and only a first-order time derivative has been used 
[108, 109] to model vortex formation in neutron-irradiated rotating superfluid 3 He 
[87] and did not reproduce the observed dependence of the number of vortices with 
rotation speed. The simplicity of the particular TDGL model used may be one rea-
son for the failure; another may be the simplified modelling of the energy injection, 
which is assumed to create a normal region which immediately corotates with the 
superfluid. The lack of a model for energy transport by quasiparticles has also been 
highlighted in Ref. [133].

Modelling energy transport by quasiparticles will require inclusion of the micro-
scopic treatment of non-equilibrium dynamics of the fermionic bath coupled to the 
bosonic degrees of freedom, envisioned for the next generation of simulations of 
superfluid 3He. This direction will greatly increase the computational complexity 
and requires substantial development of new computational codes and methods. In 
the meantime we can gain important insight into the order parameter dynamics with 
the bosonic theory coupled to the thermal bath described by Langevin noise and dis-
sipation, with the caveats outlined above.

6.3  Dynamic Lattice Field Theory Simulations

Simulating order parameters living on a high-dimensional manifold in 3+1 dimen-
sions requires high-performance computational resources, both in terms of parallel 
floating point performance and effective input and output (I/O) for visualisation of 
the results. In the last two decades, high-performance computing (HPC) technol-
ogies have improved remarkably both in hardware and software branches. One of 
goals of QUEST-DMC project is developing libraries to solve and analyse static and 
time-dependent GL equations easily, in the way of distributed parallelism and par-
allel I/O. We solve the TDGL equations in Eq.  (30) with finite difference discre-
tization and explicit time discretization [134]. In order to write Eq. (30) in dimen-
sionless form, the order parameter A�i is expressed in units of kBTc , the length unit 
is the zero-temperature limit of the GL coherence length �GL =

√
7� (3)∕20 �0 , and 

the time unit is tGL =
√
5∕3 (�GL∕vF) . Then, the discretized equations are evolved in 

time for each point on a Cartesian grid in three space dimensions. To utilize HPC 
systems with distributed memory, we use the lattice field theory library HILA as our 
framework [135, 136]. HILA offers a uniform grid, on which the number of sites 
along each Cartesian direction can be chosen separately, and a series of pre-defined 
class templates to easily handle scalars, vectors and matrices as physical fields on 
the lattice. It also has excellent scaling with number of lattice sites.
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Another significant aspect of simulating dynamics with TDGL theory is the 
boundary conditions and initial conditions. We adopt periodic boundary conditions 
and surface scattering boundary conditions to model different experimental situa-
tions [64, 99, 121]. When we test scenarios, e.g. Baked Alaska or the cosmological 
scenario, which rely on physical processes in the bulk of sample periodic bound-
ary conditions can be used. On the other hand, for heterogeneous environments e.g. 
order parameter distortion or textural singularities near physical boundaries, a wide 
range of boundary conditions that take into account different levels of atomic scale 
roughness have been developed [101, 137–139].

We set the initial conditions for the order parameter configuration on the 3-dimen-
sional spatial lattice for various homogeneous equilibrium states such as A, B or 
normal phase. Different levels of noise can be introduced to simulate the fluctuating 
forces from the thermal excitations. In the rest of Sect. 6, we discuss our simulation 
results with these types of initial states and let those generated from other situations 
to be discussed in future works.

6.4  Preliminary Results for a Highly Disordered Initial State

Here we discuss a test of the cosmological scenario using the numerical technology 
which we introduced in Sect. 6.3. In order to gain a general understanding of our 
numerical tool kit, as well as the features of physical system built upon it, we set up 
a statistically homogeneous noisy initial state, with material parameters, �(T) and 
�p(T) , with uniform and fixed temperature and pressure. This can be thought of as 
modelling a quench with cooling rate 1∕�Q → ∞ over the simulation grid with non-
equilibrium order parameter configuration [74, 82].

The spatial grid was 512 × 256 × 256 sites, periodic in all directions, with 
a lattice spacing 0.5 �GL . We chose to simulate dynamics at p = 25 bar and 
T = 1.228 mK, for which �GL = 12.0 nm , making the larger side length 6.2 μ m. The 
temperature-dependent Ginzburg-Landau coherence length at the given temperature 
is �GL(T) = 17.6 nm . The damping parameter was set to �̃� = 0.02t−1

GL
= 30.05 MHz. 

This choice is somewhat larger than the value inferred from the absorption of sound 
near the J = 2− Higgs mode in 3He-B [48, 140]; the values based on experimental 
measurements are order 0.1 − 5  MHz. The total simulation time was 103tGL , cor-
responding to 665 ns based on tGL = 0.65 ns at this pressure and temperature. The 
typical run time on 2 64-core AMD Rome 7H12 CPUs was around 7500 s, including 
the time for parallel I/O and in situ visualisation using the Ascent library [141].

The periodic boundary conditions allow us to focus on the possible nucleation 
of B-phase during a simulation in the absence of confining boundaries. The initial 
configuration of A�i was chosen from a Gaussian distribution at every site without 
spatial correlations, but with mean order parameter corresponding to the equilibrium 
A phase.

With the sufficient onsite noise, which creates a “glass-like" order parameter, we 
obtain B-phase bubbles that appear after a run time tn ≃ 50 ns, which is significantly 
longer than the characteristic pair formation time ℏ∕

√
Tr

(
AA†

)
 ∼ 1  ns. Interest-

ingly, increasing the onsite noise amplitude does not necessarily lead to an increased 
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likelihood of the nucleation of B-phase. We found that only noise amplitudes in the 
range 0.4ΔA − 0.5ΔA , where ΔA is equilibrium A-phase gap, triggered nucleation of 

Fig. 3  Snapshots of distributions of stationary free energy fs in Eq. (26) and 
√

Tr
(
AA

†
)
 at running time 

t = 91.7 ns. a Distribution of stationary free energy f
s
 over simulation grid as described in Sect. 6.3. We 

calibrated fs against bulk free energy fB of equilibrium B-phase, then the dark blue corresponds of bulk 
B-phase, while cyan corresponds to bulk A-phase. The domain wall has higher stationary energy because 

of the gradient energy. b Profiles of 
√

Tr
(
AA

†
)
 between 3.4 and 3.6, corresponding to the range found 

in domain wall structures at the temperature and pressure of the simulation (1.228  mK, 25 bar). The 
domain walls visible are either between A- and B-phases or between different B-phases. The latter are 
non-topological domain walls, which require specific symmetry between two domains [89]. The coex-
istence of A-B domain wall and B-B domain walls can be understood as defects nucleated during fast 
quench, which is a natural and expected result in cosmological scenario [74]
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B-phase in this particular simulation. Figure 3 shows the B-phase bubble (dark blue) 
that have nucleated in the surrounding metastable A-phase (cyan) and the corre-
sponding A-B domain walls (red) after time t = 91.7 ns. Specifically, Fig. 3a shows 
the distribution of locally stationary free energy density fs defined in Eq. (26), which 
is calibrated against the magnitude of the bulk free energy density fB of B-phase. 
The metastable A-phase free energy density is depicted in cyan, while A-B domain 
walls, which appear in light yellow and red, have much higher energy density con-
tributed in part by gradient energy.

In addition to B-phase bubbles and A-B domain walls, we also find domain walls 
separating degenerate, but symmetry inequivalent, B-phases, as shown in Fig.  3a 
and b. Such walls and their relevance to cosmology have been first considered in 
Ref. [89]. In isotropic pure 3 He [142] these domain walls are non-topological, but 
can exist when a certain symmetry is present between two different B-phase domains 
[89, 143]. The specific symmetry group involved in this situation consists of �-rota-
tion of global U(1) phase and global �-rotations of SO(3)S in spin space. This inter-
esting coexistence of A-B domain walls and B-B domain walls is to be expected in 
the cosmological scenario based on the degeneracy space of the bulk B-phase.

By contrast, symmetry-breaking fields, such as that imposed on 3 He by nematic 
aerogel, lead to topological protection [144–148], analogous to cosmological 
Lazarides-Shafi domain walls. In 3 He confined to slab geometry, such domain walls 
are at the heart of the putative crystalline superfluid phase with spontaneously bro-
ken translation symmetry [64, 149–151] (see also [152–154] for transport experi-
ments with stepped confinement). Here the mechanism of nucleation of the domain 
walls is a major outstanding question that may be related to the A-B transition puz-
zle. In addition to the “hard” [143] domain walls discussed above, “soft” textural 
domain walls can be stabilised and manipulated by a combination of confinement, 
magnetic field and nuclear dipolar energy [155].

These preliminary studies with a homogeneous quench and infinite cooling rate 
do not allow us yet to draw firm conclusions about the nucleation of B phase bubbles 
in metastable A-phase. However, we note that the order parameter remains nonzero 
everywhere throughout the evolution, suggesting that the bubbles of B phase can 
appear without the system entering the normal phase following energy injection. 
Simulations based on more realistic temperature profiles, together with physically 
realistic cooling dynamics, are ongoing and will be discussed in future reports.

7  Summary and Outlook

In the construction of models of fundamental physics beyond the Standard Model to 
account for dark matter and the baryon asymmetry, amongst other puzzles, a com-
mon prediction is a first-order phase transition in the early universe. Such phase 
transitions would produce an isotropic stochastic background of gravitational waves. 
If the phase transition took place at temperatures at or above the electroweak sym-
metry breaking scale—where many models predict new particles and interactions—
the gravitational waves would be potentially observable at future space-based gravi-
tational wave observatories such as LISA [34].
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Computations of the expected signal depend, amongst other things, on a rela-
tivistic version of the homogeneous nucleation theory of Cahn and Hilliard [4] 
and Langer [5]. It is therefore important to test the theory in the laboratory. 
Superfluid 3 He has a first-order phase transition between the A and B phases, 
for which the theory predicts that at pressures, temperatures and magnetic fields 
where the A phase is metastable, the system should remain in the A phase in the 
course of any conceivable experiment. Yet the transition usually happens within 
in a few hours [68]. In contrast, recent experiments with metastable atomic super-
fluids show agreement with theory [11]. The QUEST-DMC collaboration aims 
to resolve this puzzle, and to decide whether the experimental observations point 
to a new rapid bulk nucleation mechanism, or to explanations based on external 
sources of excitation energy such as high energy cosmic ray particles or radioac-
tive decay products from laboratory materials [65, 75].

The QUEST-DMC collaboration involves new experiments to control and 
eliminate boundary effects in two ways: nanofabricated cells taking advantage of 
confinement stabilization of phases, and utilizing magnetic fields to isolate meta-
stable A-phase from experimental boundaries. Careful choice of nanotechnology 
makes walls atomically smooth, while shaped magnetic field distributions ensure 
that the A phase is metastable only in a portion of the experiment not in contact 
with the walls. In this way surface nucleation sites are eliminated. Future experi-
ments will use the advances in a parallel strand of work on superfluid 3 He as a 
dark matter detector to understand fluxes of energetic particles and to eliminate 
them by building experimental facilities underground [156, 157].

At the same time we are building simulation algorithms and numerical codes 
to investigate the space-time dynamics of the 18-component order parameter of 
the simulation system, superfluid 3He, using a formulation of TDGL theory which 
accounts for known static and dynamic properties of the order parameter in the 
Ginzburg-Landau regime. We can simulate the evolution of this system disturbed 
by energy injection, or investigate the distortion of the order parameter around 
boundaries in complex geometries. In our first set of numerical experiments using 
the new code, we have shown that regions of B-phase are nucleated following 
a spatially uniform random disturbance of the metastable A phase. Sufficiently 
large fluctuations can produce sufficiently large regions of B phase to overcome 
the surface tension of the phase boundary and thus grow into a stable B-phase. 
We plan more detailed simulations of existing nucleation scenarios, including the 
Baked Alaska model and the cosmological nucleation scenario, where the distur-
bance in the order parameter is localised.
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