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Abstract
Nowadays, early cancer identification and surveillance have become vital problems. This research paper explores the devel-
opment of a small, three-band sensor harnessing the potential of terahertz (THz) technology and metamaterials (MTMs) to 
diagnose blood cancer. The proposed sensor holds the promise of a paradigm shift in the diagnosis of blood cancer by offering 
a non-invasive and highly accurate approach. Terahertz radiation, occupying the unique “THz gap” in the electromagnetic 
spectrum, is now accessible due to recent technological breakthroughs. This work simplifies the design of multiple-band 
metamaterial absorbers, enhancing their effectiveness and expanding their sensing capabilities. Through the integration of 
THz technology, metamaterial engineering, and cancer detection, the suggested sensor seeks to launch a new phase of rapid, 
precise, and non-invasive blood cancer diagnosis. The proposed structure is capable of distinguishing cancer and normal 
cell with 1 GHz sensitivity, which would be more pronounced when we consider the THz technology devices. This work 
represents a significant step forward in non-invasive, accurate diagnostics for blood cancer, promising to revolutionize the 
way this disease is diagnosed and treated. The proposed novel strategy has a lot of promise to advance medical diagnostics 
and enhance patients’ outcomes.
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Introduction

The field of medical diagnostics has experienced a vital 
transition due to the combination of advanced technology 
and a more profound comprehension of human physiology. 
The early detection and observation of cancer have become 
critical problems in this dynamic environment. The world 
of terahertz (THz) technology is a new field, which is 

distinguished by its special capacity to analyze biological 
materials at the molecular level. The current work seeks a 
comprehensive investigation into the design and develop-
ment of a small, triple-band sensor, utilizing the terahertz 
spectrum’s potential of metamaterials (MTMs). This sen-
sor has the potential to completely transform the way that 
human blood cancer is diagnosed. Through the combina-
tion of THz technology, metamaterial engineering, and 
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cancer detection, this work aims to bring in a new era of 
fast, highly accurate, non-invasive diagnostics that may 
completely change the way blood cancer is treated [1]. 
Since water is one of the primary components of tissue, 
terahertz radiation (100 GHz to 10 THz) has a shallow 
penetration depth. For tissues with a high water content, 
this penetration range typically reaches a few hundred 
microns, while for tissues with a high fat content, it would 
be in centimeter range [2, 3].

The terahertz radiation of electromagnetic spectrum is 
located between microwaves and infrared light, creating an 
interesting gap. This spectral region, often known as the 
“THz gap,” spans from 0.1 to 10 THz. Historically, tech-
nological constraints have made it difficult to utilize THz 
gap. However, new developments in THz sources, detectors, 
and imaging methods have brought this technology into the 
front of biomedical research and opened up a wide range of 
possible uses. THz technology’s non-ionizing characteris-
tic, which makes THz radiation safe for biological samples 
and human tissues, is one of its main advantages. There is 
no intrinsic risk of DNA damage or ionization from THz 
waves, unlike ionizing radiation modes of X-rays. This cru-
cial feature establishes THz technology as a feasible path 
for non-invasive medical diagnostics, with a multitude of 
applications ranging from tracking wound healing processes 
to cancer detection [4].

Terahertz (THz) waves have many uses in wireless com-
munications [5, 6], THz imaging [7, 8], and energy harvest-
ing [9–12]. In 2021, Muhammad et al. developed a polari-
zation-insensitive dual-wideband fractal meta-absorber for 
terahertz applications, achieving 90% absorption in two 
bands [13].

In 2023, Muhammad et al. presented a wideband, polari-
zation-insensitive tunable graphene-supported terahertz met-
amaterial absorber. It exhibits over 90% absorption from 2.3 
to 6.4 THz, offering potential for high-speed optical switches 
and THz detectors [14].

Metamaterials are artificial structures with micrometer-
scale sub-wavelength designs that are either non-periodic 
or periodic. They enable the control and manipulation of 
electromagnetic waves, including THz waves. Metamaterials 
are particularly useful in a variety of applications because 
they can absorb THz radiation. Modern THz metamaterial 
absorbers exhibit several resonance responses, a large and 
narrow bandwidth [15, 16]. Combining sub-unit cells [17, 
18], piling metal-dielectric-metal layers [19], or employing 
composite materials like graphene or doped silicon [20, 21] 
can all result in an enhancement in the bandwidth. With vari-
ous metal-dielectric-metal combinations, fractal geometry 
is normally employed to achieve a broadband absorption 
[22]. In 2020, Rana et al. introduced a wideband terahertz 
metamaterial absorber based on Pythagorean-tree fractal 
geometry, demonstrating absorptivity from 7.5 to 10 THz. 

It holds promise for bolometers, THz detection, and com-
munication [23].

The achievement of a wideband terahertz absorption 
between 7.5 and 10 THz was demonstrated by Bilal et al. 
[24]. In 2022, Subhan et al. introduced a broadband, tunable 
terahertz absorber using slotted-square graphene meta-rings, 
aiming to efficiently absorb THz radiation (2.2 to 4.6 THz). 
The absorber, a graphene meta-square ring with various 
slots, induces multiple plasmonic resonances for potential 
applications like switching and cloaking [25].

Recently, high-sensitivity THz sensors based on metama-
terial absorbers have received considerable attention [26]. 
A highly sensitive THz sensor can be made using the reso-
nance peak frequency, which is sensitive to the test analyte’s 
refractive index. By increasing the overlap of THz biosensor, 
Zhou et al. dramatically increased its sensitivity [27]. A met-
amaterial THz sensor with a flexible substrate was proposed 
by Yao et al. [28]. Their simulation demonstrated refractive 
index sensitivity at two distinct resonance peaks of 60 and 
100 GHz/RIU, respectively. Wang et al. produced a dual-
band terahertz metamaterial absorber made of two identical 
square metallic patches. With a high sensing sensitivity of 
1.9 THz/RIU, resonance peaks of nearly unity absorption 
were also obtained. However, there are yet some issues to 
be solved such as complex design and limited bandwidth, 
despite the fact that several structures have been proposed 
to accomplish multiband or wideband absorption for sensor 
applications [27].

In general, by scaling the structure size of the metal-
lic patterns, the resonance frequency of the metamaterial 
absorber can be effectively tuned or altered from optical to 
microwave regimes [29, 30]. For instance, Qian et al. dem-
onstrated a total visible band meta-surface perfect absorber 
based on coupled Mie resonance. Using an electric split-
ring resonator with a side length of 39 mm, nearly complete 
absorption at 0.70 THz was demonstrated [31]. A microwave 
metamaterial absorber operating at 8.96 GHz was created by 
enlarging an array pattern of 1.8-mm dielectric cube mate-
rial [32]. These light absorbers have yielded a very narrow 
absorption bandwidth (usually less than 20% of the reso-
nance frequency), making them particularly interesting in 
domains connected to sensing, such as the detection of envi-
ronmental changes and the assessment of analyses’ refractive 
indices.

The high application prospects for multiple-band meta-
material absorbers in material detection and analysis, ther-
mal imaging, and sensing have led to a recent shift in the 
focus of metamaterial absorber research to multiple-band 
light absorption. In general, the superposition effect of vari-
ous single-band resonance absorption peaks can be used to 
generate the multiple-band metamaterial absorbers. For mul-
tiple-band metamaterial absorbers, stacking and super-unit  
coplanar structures are the two most common fabrication 
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methods. For instance, a triple-band metamaterial absorber 
can be made by cascading three metallic layers [1, 33]. Three 
different sizes of metallic patterns were integrated in a super-
unit coplanar structure to provide a triple-band of nearly 
perfect absorption response [34]. The tendency toward mini-
malism, compactness, and simplicity are particularly pre-
dominant in modern technology design. However, it is obvi-
ous that none of the methods mentioned above fit with the 
predominant styles. Although several different approaches 
have been reported to create a multiple-band absorption 
response, the absorption strength and sensing capabilities 
of the multiple-band absorbers are far from satisfactory. 
Here, the two main aspects of the originality of this work 
are highlighted. First, what matters is how easy and effi-
cient the multiple-band metamaterial absorbers’ structural 
design is. Second, by enhancing the multiple-band metama-
terial absorbers’ sensing capabilities, the design’s application  
scope was expanded.

Layout of the Unit Cell Model

Different structural models were designed to serve as a per-
fect absorber, as shown in Fig. 1. The models were made 
of polyethylene terephthalate (PET) dielectric intermediate 
layer sandwiched between two aluminum (Al) layers. The 
Al metallic layers have a conductivity of 3.56 ×  107 S/m and 

thickness of 0.2 μm, while the PET substrate thickness was 
set to be 0.2 μm.

The intricate design of our sensor was pivotal in achiev-
ing three unique resonance points, significantly enhancing 
sensitivity for precise blood cancer detection. By leveraging 
terahertz (THz) technology and metamaterials (MTMs), our 
aim was to develop a sensor with unparalleled accuracy. Our 
investigations demonstrated excellent responses in two bands 
concerning incident and polarization angles, crucial for 
reducing signal-to-noise ratio issues and improving image 
reconstruction. These high-resolution images are trusted by 
medical professionals, aiding in accurate diagnosis and treat-
ment planning. The complexity of our design is justified by 
its ability to achieve multiple resonance points, enhancing 
sensitivity and ensuring robust performance across various 
angles and polarizations, thus advancing blood cancer diag-
nostics and improving patient outcomes.

The proposed MTM absorber-based sensor was designed 
using full-wave finite integration technique (FIT)-based 
commercial electromagnetic solver. Due to the high effi-
ciency of CST microwave studio, MTM characteristics can 
be extracted, considering different boundary conditions 
such as PEC/PEC, PEC/PMC, and unit cell. To obtain the 
best design parameters, PEC/PEC was applied in the x/y 
directions with an open space boundary in the z-direction. 
Furthermore, it could be useful to find out the effect of 
square patches shown in Fig. 2a, b. The proposed operation’s 

Fig. 1  Various structural 
designs for a perfect absorber: 
a model 1, b model 2, and c 
model 3 (the proposed one)

Fig. 2  The proposed structural 
design of a perfect absorber: a 
model 4, b model 5 (proposed 
design), and c proposed design 
with ports
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boundary conditions are shown in Fig. 2c. Due to limita-
tions in fabrication resources and time constraints, we were 
unable to conduct physical measurements of the proposed 
sensor. The high fabrication costs and lengthy manufacturing 
process posed significant challenges for our research team.

This work demonstrates the realization of an MTM 
absorber-based sensor by presenting five distinct configura-
tions (referred to as model 1 to 5) for the diagnosis of human 
cancer. The dielectric constant (ϵr) and the loss tangent (tan 
(δ)) of the PET substrate are 2.9 and 0.019, respectively. The 
optimized dimensions were obtained by evaluating the five 
aforementioned models, while the value of the parameters 
presented in Fig. 2a is tabulated in Table 1.

Results and Discussion

The absorption coefficient (A) was calculated using the fol-
lowing equation:

Here, S12 is the transmission coefficient (T), and S11 is 
the reflection coefficient (R). A strong absorption mecha-
nism can be obtained through capturing the travelling waves, 

(1)A = 1 −
[

S
11

]2
−
[

S
12

]2

which leads to a high electrical and/or magnetic loss. These 
losses are related to the imaginary parts of the relative per-
mittivity (ε = ε′ − jε″) and/or permeability (µ = µ′ − jµ″). 
These are two important parameters used to determine the 
wave absorption performance of the EM wave absorbers and 
transmitters. A material’s ability to store electrostatic energy 
and to be polarized by an electric field, as well as its ability 
to aid in signal propagation, are measured by its relative 
dielectric constant (εr). As the frequency changes, so does 
the relative dielectric constant. The measurement of signal 
loss during transmission line propagation is called the loss 
tangent, or tan (δ)). Since the metallic layer at the bottom 
prevents the transmission of the waves, transmission coef-
ficient can be neglected. In order to investigate the effects of 
split ring resonators and complementary star-shaped resona-
tor, five different simulations were performed and the results 
are presented without sensor layer. In order to reveal the 
absorption characteristics between 100 MHz and 1 THz, the 
backside of PET substrate was covered with aluminum.

Figures 3 and 4 show the evaluated proposed design 
with a single square split ring resonator (model 1), and 
its effect on absorption is given in Fig. 3a. It can be seen 
from the figure that a single resonance with 90% absorp-
tion has occurred around 0.9 THz. Another simulation was 
performed on a wider split ring resonator (model 2), where a 

Table 1  The complete list of 
the optimized parameters of the 
proposed sensor

Parameter Value (µm) Parameter Value (µm) Parameter Value (µm)

A 148.5 K 86.27 U 32.28
B 24.25 L 15.55 V 12.42
C 102.84 M 117.38 W 150
D 85.46 N 18.69 X 4.24
E 12.73 O 17.96 Y 64
F 135.7 P 37.84 Z 50
G 49.34 Q 31.11 PET thick (T1) 10
H 59.37 R 84.85 Coverslip thick (T2) 2
I 80.34 S 150 Jurkat cell thick (T3) 5
J 46.38 T 55.9 Aluminum (Al) thick 0.2

Fig. 3  The absorption char-
acteristics of the two designs: 
models 1 and 2
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small shift in frequency was seen at nearly 0.02 THz, which 
led to lowering the absorption about 12% in comparison to 
that of model 1.

Figure 4 shows the absorption spectra of three additional 
models, namely, 3, 4, and 5. The models were designed 
based on a combination of an asterisk shape with square split 
resonators. It is noticeable that the asterisk plays a vital role 
in producing a perfect absorption resonance peak at about 
0.55 THz, as shown in Fig. 4a. Therefore, the addition of 
square split resonators around the asterisk is to broaden and 
increase the number of perfect absorption peaks, as shown 
in Fig. 4b.

Complementary star resonators (model 3) as well as the 
square split ring resonator, which is placed at the edges of 
substrate (model 4), were analyzed and the absorption vari-
ation with frequency is shown in Fig. 4a. The complemen-
tary star creates a resonance peak around 0.55 THz with 
absorption of 100%, while the square split ring (model 4) did 
not create any resonance peak within the studied frequency 
band.

Model 5 was created by assembling all the mentioned 
models in order to achieve the proposed work design. Results 
showed three absorption peaks at around 0.55, 0.8, and 0.9 
THz (see Fig. 4b). The resonance peaks are mainly attrib-
uted to the effect of metallic elements. Hence, the tuning 
process gives us the flexibility of creating resonances and 
hence increasing the absorption by manipulating a proper 
design and placement of resonators.

The triple-band biosensor excels over single-band biosen-
sors in the terahertz band due to its expanded spectral cov-
erage, enabling simultaneous detection of multiple biomo-
lecular resonances and providing redundancy for enhanced 
reliability. Conversely, single-band biosensors may be lim-
ited in detecting multiple biomarkers simultaneously, lead-
ing to increased false positives or negatives. Yet, they may 
lack specificity and be more susceptible to noise and errors, 
posing a single point of failure if the resonant frequency 
shifts. The triple-band terahertz metamaterial biosensor 
offers increased specificity and multiplexing capability, 

allowing for simultaneous detection of various analytes 
with minimized measurement errors. While it may present 
challenges like fabrication complexity, single-band biosen-
sors offer simplicity and cost-effectiveness. However, they 
may lack sensitivity and specificity compared to triple-band 
counterparts. The choice between the two depends on factors 
such as biomarker range and desired precision. Triple-band 
biosensors hold promise for increased sensitivity, leveraging 
multiple resonant frequencies for improved cancer detection, 
while single-band biosensors offer simplicity but may sacri-
fice sensitivity for targeted detection. Ultimately, the selec-
tion should align with the specific application’s requirements 
and constraints. Figures 1, 2, 3, and 4 remained unchanged 
for a clear and step-by-step presentation of our research 
findings.

With the aim of obtaining the best resonance character-
istics, it would be useful to show the effect of substrate and 
metal type by simulating five different materials and five 
different metals. The PET dielectric layer was used as a 
substrate due to its ease of implementation in the terahertz 
frequency regions. The selection of PET for THz applica-
tion can be made possible due to its relatively small dielec-
tric constant compared to the common substrates. This is 
because the low dielectric constant of the PET guarantees 
minimizing the parasitic capacitances that are developed 
between traces and conductive structures at terahertz fre-
quency. Noteworthy, for the PET to be plugged into the CST, 
a custom substrate resembling the PET properties was cre-
ated within the CST software.

As can be seen from Fig. 5a, Arlon 410, Arlon 430, FR4, 
and Roger 5870 materials were utilized as a substrate. The 
resonance frequency is inversely proportional to the capaci-
tance (C), which means the value of C decreases with the 
increase in resonance frequency. Since capacitance value 
increases as the dielectric constant increases, the resonance 
frequency is therefore decreased according to the formula 
of 1∕

√

LC , as shown in Fig. 5a. Resonance peaks are also 
related to the loss tangent of the materials. Hence, one can 
see that the absorption level decreased when materials with 

Fig. 4  The three designs of 
absorption traits: a models 3 
and 4 and b model 5
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more loss tangent than PET were used. Furthermore, gold, 
iron, silver, and copper were compared with aluminum as a 
selected resonator material, as shown in Fig. 5b. The conduc-
tivity of these materials are 4.56 ×  107, 1.04 ×  107, 6.30 ×  107, 
5.8 ×  107, and 3.56 ×  107 S/m, respectively according to the 
material library in the CST software. Therefore, different 
resonance characteristics would be expected in accord-
ance with the conductivity variation. Figure 5b shows the 
impacts of resonance materials on the absorption. It is easily 
noticeable that resonance materials do not have an effect on 
resonance shift compared to that of the dielectric substrates. 
However, it is affecting the absorption intensity value due to 
the effect of plasmonic resonance response.

Figure  6 shows the effect of incident angle on the 
absorption response of the proposed metamaterial 
absorber. It was observed that with the change of inci-
dent angle along the y-axis, the same positions for the 
resonance peaks were retained on the x-axis, implying 
that the proposed absorber is independent on the incident 
angle of the electromagnetic waves. Noteworthy, each 
vertically aligned strip of the resonance peaks presented 
the same color, which indicates the consistency of the 
absorption value throughout the incident angle variation. 
Furthermore, when we look at the polarization angle plot 
(Fig. 6b), similar result is observed which is due to the 

symmetric design of the proposed work. Hence, it is con-
cluded that the proposed design is important for specific 
sensing applications.

Figures 7 and 8 show the electric (E) and magnetic (H) 
fields’ distribution along the proposed MTM absorber at 
the main three resonance frequencies. We observed that the 
E-field is densely distributed across the upper and lower 
diagonal of the resonator, while the H-field is mainly dis-
tributed at the edges of the split resonators.

Figures 9 and 10 show the surface current and power loss 
distribution within the proposed MTM absorber at three dif-
ferent resonance frequencies. One can see that the surface 
current is distributed in the clockwise direction at the two 
low resonance frequencies, which leads to produce magnetic 
fields that are of the same direction as the incident magnetic 
fields. This has led to reinforce the H-field on the asterisk 
resonator, as shown in Fig. 8. However, the high resonance 
frequency contributes to weakening the H-field distribution 
around the asterisk due to the anticlockwise circulation of 
the surface current.

Noticeably, the power loss is more prominent around the 
square resonators in the low frequency range. This can be 
related to the electric field intensity, shown in Fig. 7, which 
is responsible to originate the electric power loss. At high-
frequency resonance, the electric field became denser above 

Fig. 5  The recommended 
design’s absorption spectra 
under varied a substrate mate-
rial and b resonator material 
circumstances

Fig. 6  The effect of angle 
change on absorption rate is 
investigated: a angle of incident 
and b polarization angle
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Fig. 7  Distributions of the metamaterial structure field are shown on a color map: a E-field at 0.548 THz, b E-field at 0.804 THz, and c E-field at 
0.9 THz

Fig. 8  The field distributions of the proposed metamaterial structure are depicted on a color map: a H-field at 0.548 THz, b H-field at 0.804 
THz, and c H-field at 0.9 THz

Fig. 9  The surface current distribution of the recommended metamaterial design: a at 0.548 THz, b at 0.804 THz, and c at 0.9 THz
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and below the diagonal of the MTM absorber, and hence, the 
power loss was more pronounced accordingly.

Diagnosis of Blood Cancer

Because of its special characteristics that aid in the diagnosis 
of blood malignancies, terahertz radiation is sensitive to the 
bonding mechanisms found in the whole blood. Cancer cells 
exhibit distinct refractive indices, absorption coefficients, 
and dielectric properties, which enable THz metamaterial-
based absorption spectrum and THz metamaterial-based 
imaging to reveal subtle cell changes. THz metamaterial 
absorber-based sensors leverage resonance peaks in the THz 
absorption spectrum to distinguish abnormal cells/tissues 
from healthy ones. When blood cells are placed on top of the 
absorber, the absorption spectrum varies depending on the 
presence of cancer. The setup for diagnosis of cancer using 
the proposed absorber is shown in Fig. 11. The components 
of blood cells, which normally consist of 45% red blood 
cells, 55% plasma, and a very little quantity of white blood 
cells, have an increase in absorption coefficient and a drop in 
refractive index. Plasma is mostly made up of water (92%), 
dissolved proteins, and salts (8%).

The THz MTM absorber is covered by a cover slip of 
thickness T2, on top of which the blood sample is placed 
having thickness T3. The absorption spectrum varies both 
in terms of resonance frequencies and in terms of absorp-
tion coefficient for normal and for cancer blood cells, as 
shown in Figs. 12, 13, and 14. The absorption coefficients 
and the resonance frequencies for both normal and cancer 
blood cells are shown in Table 2.

Thus, based on the variations in the resonance fre-
quency and the absorption coefficient, the diagnosis of 
cancer in the blood can be achieved accurately. Another 
important observation is that the presence of cancer cells 
increases the absorption coefficient, which can be clearly 
seen at the second and third resonance peaks. The can-
cer cells absorb more incident THz radiation compared to 
the normal cells. This may be due to difference in dielec-
tric properties and refractive index of the cancer cells, 
refractive indices of 1.376 for normal blood and 1.390 for 
blood cancer [35–39]. Thus, THz imaging can be utilized 
as another method to diagnose the blood cancer, as shown 
in Fig. 15.

In this setup, the Jurkat cells from the blood are placed 
on the THz MTM absorber. When THz radiation is inci-
dent on it, depending on the presence of cancer, the electric 

Fig. 10  Investigation of power loss at a 0.548 THz, b 0.804 THz, and c 0.9 THz

Fig. 11  Diagnosing blood can-
cer with the proposed sensor
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Fig. 12  The suggested sensor 
measures the blood’s normal 
and malignant absorption coef-
ficients; the frequency range 
is between a 0–1 THz and b 
0.40–0.55 THz

Fig. 13  The suggested sensor measures the blood’s normal and malignant absorption coefficients; the frequency range is between a 0–1 THz and 
b 0.66–0.75 THz

Fig. 14  The suggested sensor 
measures the blood’s normal 
and malignant absorption coef-
ficients; the frequency range 
is between a 0–1 THz and b 
0.75–0.85 THz

Table 2  Resonance frequencies 
of normal versus cancerous 
blood cells by employing the 
proposed structure

Normal blood cells Cancer blood cells

Resonance frequency 
(THz)

Absorption 
coefficient

Resonance 
frequency

Absorption 
coefficient

First resonance (f1) 0.4728 99% 0.48589 99.3%
Second resonance (f2) 0.69826 90.5% 0.7211 96.7%
Third resonance (f3) 0.7901 92% 0.82562 98.6%
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field, and magnetic field distribution will vary as shown in 
Figs. 16, 17, 18, and 19, for different resonance frequencies.

The electric field and magnetic field intensity is meas-
ured by the color, with blue being low and red being high. 
The figure shows that the electric field intensity is higher 
in the presence of cancer cells, as indicated by the red color 
in the right image (Fig. 17b). This suggests that cancer cells 
absorb radiation more than normal cells. This difference in 
absorption is due to the unique properties of cancer cells, 
such as their higher water content and increased blood sup-
ply, which affects their refractive index, absorption coef-
ficient, and dielectric properties. These properties result 
in a higher absorption of terahertz radiation by cancerous 
tissue compared to that of normal tissue. Thus, the reso-
nance mode at 0.548 THz is sensitive to the presence of 
cancerous cells in blood, which can be detected by magnetic 
field imaging.

Thus, it can be seen clearly from the imaging techniques 
that the electric and magnetic field densities vary depending Fig. 15  The use of THz imaging technique in the diagnosis of blood 

cancer

Fig. 16  The E-field THz imag-
ing technique results at 0.548 
THz: a normal blood and b 
blood cancer

Fig. 17  The H-field using THz 
imaging technique results at 
0.548 THz: a normal blood and 
b blood cancer
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on the presence of cancer cells. For normal blood cells, the 
electric and magnetic fields were less concentrated com-
pared to the Jurkat cells with cancer. Thus, when the cells 
are affected with cancer, they tend to absorb the THz radia-
tion, and hence based on the intensity of these fields, the 
presence of cancer can be diagnosed effectively, where the 

proposed design structure shows 3 resonance peaks between 
100 MHz and 1 THz, as summarized in Table 3 and com-
pared with the previous works. The minimum sensitivity 
was found to be 930 GHz/RIU between 0.45 and 0.5 THz, 
while the maximum sensitivity was obtained for other peaks 
between 0.75 and 0.85 THz with a value of 2540 GHz/RIU. 

Fig. 18  The H-field THz imag-
ing technique results at 0.9 THz: 
a normal blood and b blood 
cancer

Fig. 19  The electric energy 
density THz imaging technique 
results at 0.804 THz: a normal 
blood and b blood cancer

Table 3  Bio-sensing performance comparisons of various sensor applications based on THz metamaterial

Ref Q S (THz/RIU) FOM  (RIU−1) Bio-application Year published

[42] 5.58 0.02432 0.1216 Detection of penicillin 2014
[43] - 0.0242, 0.02438 - Detection of virus 2017
[44] 6.6 0.285 1.88 Sensor 2020
[45] - 0.960 - Biosensor, collagen 2020
[46] - 0.2833 - Polystyrene particle 2021
[47] 2.43 1.21 2.75 Cancer diagnosis, biosensor 2022
[48] 8.21, 6.05 0.203 1.81, 1.57 Sensor 2022
[49] - 1.06 0.166 Detection of avian influenza virus 2022
This work 24.86, 24.83, 34.74 0.93, 1.63, 2.54 42.6, 50.6, 98.6 Blood cancer diagnostics -
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Noteworthy, in spite of the simplicity of the designed struc-
ture, it has a high sensitivity, which makes it a promising 
candidate for future medical applications and advances in 
cancer diagnosis.

The figure of merit (FOM), quality factor (Q-factor), 
and sensitivity (S) are critical attributes defining a sensor’s 
performance. The FOM quantifies selectivity, expressed as 
the ratio of sensitivity to the full-width at half-maximum 
(FWHM) of the resonant dip:

The quality factor (Q-factor) measures resonance sharp-
ness, determined by the ratio of the resonant wavelength (λ) 
to the FWHM:

Terahertz (THz) sensing benefits from metamaterial-
based biosensors, enhancing sensitivity. Two sensitivity 
definitions prevail: frequency sensitivity:

where Δf signifies the resonance peak’s frequency shift and 
Δn denotes refractive index (RI) change, typically in refrac-
tive index units (RIU) and intensity frequency:

where ΔI represents variation in resonant intensity [40, 41].

(2)FOM =
S

FWHM

(3)Q
factor

=
�

FWHM

(4)S =
Δf

Δn

(5)S =
ΔI

Δn

Conclusions

In conclusion, this work represents a significant advance-
ment in the field of medical diagnostics, specifically in the 
context of diagnosing blood cancers. Leveraging the unique 
capabilities of THz technology and metamaterial engineer-
ing, the proposed sensor offers a promising avenue for the 
fast, highly accurate, and non-invasive diagnosis of blood 
cancer. The proposed sensor’s effectiveness is further under-
scored by its ability to visualize the differences between 
normal and cancerous blood cells using THz imaging tech-
niques. The electric and magnetic field intensity distribu-
tions clearly indicate that cancer cells absorb THz radiation 
more than the normal cells. This difference in absorption, 
as depicted in the mentioned images, provides a powerful 
diagnostic tool for the presence of cancer in the blood. As 
summarized in Table 4, the proposed study compared with 
the current state of the art showed a large Q value, sensitiv-
ity, and FOM factor. The proposed work outperformed the 
previous published one in terms of Q factor, S value, FOM, 
and application. Although the proposed work suffers from 
difficulties during applications of metamaterial sensors, it 
is promising with this S value, unique design. and applica-
tion sides.
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Table 4  A comparison between the study on perfect metamaterials in the terahertz band and the suggested biosensor
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[51] 0.5 − 4.5 Graphene/topas//Au Ultra-broadband absorber Topas spacer 0.99, 0.98, 0.99
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broadband
SiO2 0.98

[56] 1.5–1.7 Gold/silicon dioxide/gold Biosensor for detecting coronaviruses Silicon dioxide 0.972, 0.991
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[59] 2 − 6 graphene/Au/SiO2/Au Refractive index sensor SiO2 0.99
This work 0 − 1 Al/PET/Al Biosensor, blood cancer diagnostics, 

and microwave imaging
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