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Abstract We propose an experiment based on a Bose–
Einstein condensate interferometer for strongly constrain-
ing fifth-force models. Additional scalar fields from mod-
ified gravity or higher dimensional theories may account
for dark energy and the accelerating expansion of the Uni-
verse. These theories have led to proposed screening mech-
anisms to fit within the tight experimental bounds on fifth-
force searches. We show that our proposed experiment would
greatly improve the existing constraints on these screening
models by many orders of magnitude.

1 Introduction

General relativity (GR) has remained a tremendously suc-
cessful theory, producing accurate physical predictions con-
sistent with the barrage of experiments and observations con-
ducted over the last century. Despite this success, there are
still many open problems within GR and apparent limita-
tions of the theory itself. Amongst modified theories of grav-
ity aiming to address these problems, scalar-tensor theories
(e.g. Brans-Dicke theory [1], see also [2]) are some of the
most widely studied. Modified theories of gravity like f (R)-
gravity can additionally be shown to be equivalent to scalar-
tensor theories, and higher dimensional theories (e.g. string
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theory) predict the existence of effective scalar field modes
in 4-dimensional spacetime due to compactifications of the
extra dimensions [3].

Modifications of gravity gained even greater attention
after the accelerated expansion of the Universe was discov-
ered [4,5] and the puzzle of dark energy (DE) - the energy
that supposedly drives this expansion - arose. Consequently,
there have been several proposed explanations for the nature
of DE based on scalar-tensor theories (see e.g. [6,7] for an
overview of models). Some of these models are predicted to
cause a fifth force, which, at first glance, seems to be in con-
tradiction with observations and experiments [8–10]. While,
consequently, some of these models have already been ruled
out by observations [11], those with a so-called screening
mechanism [12] have features that suppress the effects of
the additional scalar fields in regions of high matter den-
sity, such that they may contribute to dark energy while the
coupling to matter as a fifth force still evades experimental
constraints. What constitutes a high or low matter density is
strongly dependent on the scalar field model parameters. As
a rule of thumb, it is sensible to say that, for a given set of
model parameters, a mass density is high/low if it leads to
the considered scalar field model being screened/unscreened.
Certainly, in order to avoid the abovementioned constraints,
the average density of our Solar System must be assumed to
be high.

Cold atom systems have proven to be invaluable tools
in precision metrology. From practical applications such as
ultra-high precision clocks [13] to more fundamental experi-
ments searching e.g. for deviation from the equivalence prin-

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-023-12360-7&domain=pdf
http://orcid.org/0000-0001-5091-9830
http://orcid.org/0000-0002-1781-2609
http://orcid.org/0000-0002-9428-5355
http://orcid.org/0000-0002-7941-7815
mailto:danielhartley0@yahoo.com.au
mailto:christian.kaeding@tuwien.ac.at
mailto:richard.howl@rhul.ac.uk
mailto:I.Fuentes-Guridi@soton.ac.uk


49 Page 2 of 11 Eur. Phys. J. C (2024) 84 :49

ciple [14–16], the high degree of control and low internal
noise afforded by cold atom systems makes them an ideal
testing ground. Many scalar-tensor theories assume a confor-
mal coupling between the metric tensor and the scalar field,
and cold atom systems have been found to be well suited
to studying these particular models in experiments (e.g. in
atom interferometers [17,18]) and analogue gravity simula-
tions [19]. In addition, there have even been proposals for
testing the open quantum dynamics induced by such scalar
fields in superposed cold atoms [20,21].

In this article, we propose using a guided Bose–Einstein
condensate1 (BEC) interferometer scheme to further con-
strain these conformally coupled screened scalar field mod-
els. Guided is used in this context to refer to atoms held in a
trap for all or most of the interferometer scheme, rather than
being in free fall. For this scheme, we consider a guided BEC
interferometer as currently demonstrated in experiments. The
main advantage of this scheme is a longer integration time:
a trapped BEC can be held near a source object for much
longer than atoms in a ballistic trajectory. We show that the
constraints on the above screened scalar field models could
be improved by many orders of magnitude.

2 Scalar field models

The models we consider here come from scalar-tensor theo-
ries of gravity [2]. As stated above, an additional scalar field
ϕ may be coupled to the metric tensor conformally in these
theories, such that ordinary matter fields evolve according to
the conformal metric

g̃μν = A2 (ϕ) gμν (1)

for some conformal factor A2 (ϕ), where gμν is the normal
GR metric. The equilibrium state of the ϕ field is determined
by minimising an effective potential [7,12,22]

Veff (ϕ) = V (ϕ) + A (ϕ) ρ, (2)

where V (ϕ) is the self-interaction potential of the model and
ρ is the ordinary matter density.

We specifically consider two prominent examples of
fifth force models with screening mechanism, namely the
chameleon field [22,23] and the symmetron field (first
described in [24–29] and introduced with its current name
in [30,31]). These models have been investigated in atom
interferometry experiments since, as is also the case with
any other experiment performed in a vacuum chamber, a
sufficiently thick wall of a vacuum chamber can shield the

1 We consider BECs as they admit the simplest theoretical analysis, but
are still widely experimentally implemented. It is possible that thermal
states or Fermi gases could also yield promising results, but we leave
these investigations to future work.

interior chameleon or symmetron scalar field from outside
effects [17,32]. More precisely, the scalar field is screened
within the chamber walls, such that it creates a boundary
separating the field outside and inside the chamber, which
in turn leads to an evasion of any communication between
both separated parts. As a consequence, the field inside the
chamber is not affected by any mass densities outside the
vacuum chamber. This allows the chamber’s ultra-high vac-
uum to simulate the low density conditions of empty space
resulting in long range (and thus measurable) chameleon or
symmetron forces. Note that by a long-ranged force we mean
one that falls off around a spherical source with 1/rn for the
radial component r and some real number n [33], and whose
magnitude close to the source is comparable to or larger than
gravity. In contrast, a short-ranged force falls off significantly
faster than 1/rn or is extremely weak even close to its source.

2.1 Chameleons

The chameleon field model is described by the conformal
coupling [22]

A2 (ϕ) = exp [ϕ/Mc] , (3)

and the potential

V (ϕ) = �4 exp
[
�n/ϕn] . (4)

The parameter Mc determines the strength of the chameleon-
matter coupling. This parameter is essentially unconstrained
but is plausibly below the reduced Planck mass MPl ≈
2.4 × 1018 GeV/c2. The self-interaction strength � deter-
mines the contribution of the chameleon field to the energy
density of the Universe, as the potential can be expanded
as V ≈ �4 + �4+n/ϕn . This energy density can drive
the accelerated expansion of the Universe observed today
if � = �DE ≈ 2.4 meV. Finally, different choices of
the parameter n define different models, where n ∈ Z

+ ∪
{x : −1 < x < 0} ∪ 2Z−\ {−2} produces valid models with
screening mechanisms. The two most commonly studied
chameleon models are those where n = 1 or −4 [12].

Following Eq. (2), the conformal coupling in Eq. (3) and
the potential in Eq. (4) give rise to an effective chameleon
potential, which is given to lowest order by

Veff (ϕ) = �4+n

ϕn
+ ρ

2Mc
ϕ + O

(
ϕ2

M2
c

)
. (5)

Figure 1 compares this effective potential (in green) in high
and low density environments for the n = 1 chameleon.
In addition, it depicts its two components in blue and orange
respectively for low (Fig. 1a) and high (Fig. 1b) values of ρ. It
is reasonable to ignore higher order terms in ϕ/Mc in Eq. (5)
as any fifth force effect measured on or near the Earth must be
perturbative to be consistent with experimental observations.
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Fig. 1 n = 1 chameleon effective potential, see Eq. (5), for high (left) and low (right) ordinary matter densities plotted in green with its components:
self-interaction (blue) and matter coupling (orange)

The effective mass of the chameleon field in equilibrium
is determined by the minimum of its effective potential,
i.e. m2

c = ∣∣∂2Veff/∂ϕ2
∣∣
ϕ=ϕmin

. The position of the effective
potential minimum (and thus effective mass) depends on the
ordinary matter density ρ. For example, the effective mass
of excitations for the n = 1 chameleon field is given by

m2
c =

∣∣∣∣
∂2Veff

∂ϕ2

∣∣∣∣
ϕ=ϕmin

= 2�5
(

ρ

2Mc�5

)3/2

, (6)

which clearly scales with ρ. In regions of low density, e.g. the
intergalactic vacuum, the chameleon is light, which means
it mediates a long range force. In regions of high density,
e.g. in a laboratory, the chameleon becomes massive, which
means the force becomes short-ranged, making it challenging
to detect with fifth force tests.

2.2 Symmetrons

The symmetron model has a conformal coupling and a poten-
tial given by [30]

A2 (ϕ) = exp
[
ϕ2/2M2

s

]
, (7)

and

V (ϕ) = −μ2

2
ϕ2 + λs

4
ϕ4, (8)

respectively. As for the chameleon, Ms gives the symmetron-
matter coupling and λs determines the self-interaction
strength. Unlike the chameleon, the symmetron effective
potential

Veff (ϕ) = 1

2

(
ρ

M2
s

− μ2
s

)
ϕ2 + λs

4
ϕ4 (9)

has a Z2 symmetry (ϕ → −ϕ) which can be spontaneously
broken in environments of low matter density, i.e. when the
coefficient of the quadratic term in ϕ is negative. This allows

Fig. 2 Symmetron effective potential, see Eq. (9), for matter densities
higher (blue) and lower (orange) than the critical density

the symmetron to obtain a non-vanishing effective mass in
regions where the ambient matter density is below the critical
density ρ∗ = μ2M2

s . The symmetron field has a vanishing
vacuum expectation value in high density regions (ρ > ρ∗)
and thus a vanishing force. Consequently, the parameter μ

determines the scale of the symmetron-matter decoupling.
Figure 2 compares the symmetron effective potential for

high (orange) and low (blue) density environments. Above
the critical density ρ∗ (Fig. 2, orange curve), the minima of
Veff are degenerate at ϕ = 0, and so there is no fifth force.
Below this density (Fig. 2, blue curve), the minima become
non-degenerate and non-zero at an effective mass of

m2
s = 2

(
μ2
s − ρ

M2
s

)
. (10)

3 BEC interferometer

We propose to use a BEC interferometer held near some
source mass to constrain the chameleon and symmetron mod-
els (Fig. 3). Such a scheme would involve trapping bosonic
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Fig. 3 A schematic diagram of the vacuum chamber overlaid on the
field profile of a chameleon field around a spherical source object; the
separation of the BEC components is greatly exaggerated

atoms cold enough to form a BEC near a source mass, coher-
ently splitting this cloud into two positions at different radial
distances from this source mass, and then interfering the
split BEC to extract a phase difference. This phase differ-
ence would be used to estimate the potential difference at
these two positions, due both to gravity and a potential fifth
force. How this might be achieved in practice is discussed in
Sects. 3.3 and 4.3.

The lowest order gravitational effect of the source mass is
a gravitational redshift, which manifests as a position depen-
dent global phase, while the lowest order potential fifth force
effect is a modification of this global phase by a position
dependent value. This total global phase θ (derived below)
is given by

θ (r) = mc2T

2h̄

[rs
r

− 2 log A (ϕ (r))
]
, (11)

where rs is the Schwarzschild radius of the source object, m
is the mass of each atom in the BEC, T is the time and A is
the conformal factor defined as in Sect. 2.

3.1 Global phase

In what follows, we will motivate the expression of the global
phase in Eq. (11). For this, we begin by modelling our BEC as
an interacting massive scalar Bose field 	̂ (x, t) in a covari-
ant formalism to introduce the background metric in a nat-
ural way, following the approach of Refs. [19,34,35]. Note
that we do not assume that the BEC has relativistic proper-
ties such as large excitation energies (i.e. mass energy), high
flow velocities (i.e. speed of light) or a strong interaction
strength etc., and will later explicitly make non-relativistic
restrictions.

Following the above references, we describe the evolution
of the field operator 	̂ with the Lagrangian density

L = −√−g

{
∂μ	̂†∂μ	̂ +

(
m2c2

h̄2 + V

)
	̂†	̂ +U

}
,

(12)

where V is the external potential, U is the interaction poten-
tial and gμν is the metric of the background (in general
curved) spacetime with determinant g. As is standard in
BEC literature [36,37], we consider only the leading order 2-
particle contact interactions and approximate the interaction
strength as

U = λ

2
	̂†	̂†	̂	̂. (13)

The interaction strength λ can be related to the s-wave scat-
tering length as by

λ = 8πas . (14)

We can rewrite the field operator 	̂ as

	̂ = φ̂eimc2t/h̄ . (15)

Later we will make the assumption that time derivatives of
φ̂ are small, i.e. the excitations described by φ̂ have non-
relativistic energies.

The appropriate background metric near a sphere of radius
R and mass M sourcing screening for the assumed screened
scalar field has the line element

ds2 = eζ 2(r)
[
− f (r) dt2 + f −1 (r) dr2 + r2d2

]
,

(16)

where f (r) = 1−rs/r , rs = 2GM/c2 is the Schwarzschild
radius of the object and the conformal factor A has been
rewritten as A2 (ϕ) = exp

[
ζ 2 (ϕ)

]
for notational conve-

nience. Equation (16) reduces to the Schwarzschild metric
when ζ 2 → 0. The gravitational effect of the Earth is ignored;
it is assumed that this can be accounted for either with differ-
ential measurements with and without the mass, or through a
dual interferometer scheme, or simply by splitting the inter-
ferometer horizontally.

We now convert this Lagrangian to a Hamiltonian den-
sity (for readability and ease of interpretation) and make the
following assumptions:

1.
∣∣ζ 2

∣∣ � 1,

2. rs � r ,

3.
∣∣∣∂t φ̂

∣∣∣ /c �
∣∣∣∂i φ̂

∣∣∣, and

4. h̄2
∣∣∣∂i φ̂†∂i φ̂

∣∣∣ � m2c2 ˆ
φ†φ̂,
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where i runs over spatial indices. To lowest order in ζ 2 and
rs/r , the resulting Hamiltonian density is

H = h̄2

2m

∑

i

∂i φ̂
†∂i φ̂ + Vef f φ̂

†φ̂ + 1

2
λN R φ̂†φ̂†φ̂φ̂, (17)

where

Vef f = VNR + 1

2
mc2

[
ζ 2 − rs

ravg

]
. (18)

The potentials have been rescaled in the form

VNR = V

2m
, λN R = λ

2m
(19)

as these are the forms of the external potential and interaction
strength that usually appear in the Gross–Pitaevskii equation
(GPE) [36,37]. The interaction strength λN R is usually writ-
ten as g (e.g. in Ref. [36]), but we avoid this notation here to
avoid confusion with the background spacetime metric.

We have defined ravg as the mean distance of the BEC
from the center of the source mass, and expanded rs/r as

rs
r

= rs
ravg + r ′ = rs

ravg

(
1 − r ′

ravg
+ · · ·

)
. (20)

Note that we can neglect all terms except the first if the BEC
trap geometry confines the atom cloud to a region of space
where the distance rp from any point p to the center of the
source mass fulfills

∣∣rp − ravg
∣∣ � ravg . If this condition is

not met, then different areas of the same cloud of atoms expe-
rience a different total phase, adding blur to the final measure-
ment. This condition admits more freedom in the directions
perpendicular to the source mass field gradient; for exam-
ple, the BEC could be trapped with a cigar-shaped trapping
potential oriented perpendicularly to the source mass and be
brought closer to the source mass than an equivalent homo-
geneous trap.

The total field φ̂ can be written in terms of momentum
eigenmodes as [36]

φ̂ (r, t) =
[
	0 (r) + ϑ̂ (r, t)

]
e−iμt/h̄, (21)

where 	0 corresponds to the momentum ground state, μ is
the chemical potential and ϑ̂ contains all higher order modes.
We make the Bogoliubov approximation and also assume that
the excited modes of the field are negligibly occupied. If the
potentials VNR and λN R are stationary, then the equation of
motion for 	0 derived from the above Hamiltonian density
is
[
− h̄2

2m
∇2 + Vef f − μ + λN R |	0 (r)|2

]
	0 (r) = 0. (22)

This is the time-independent GPE with the potential replaced
by the effective potential Vef f . Since the screened scalar
field contribution to Vef f is approximately constant across
the width of the BEC, this GPE can be solved by splitting

the chemical potential into μ = μ0 + μI where μ0 is the
chemical potential when Vef f → VNR . The extra term is
then given by

μI = 1

2
mc2

[
ζ 2 − rs

ravg

]
. (23)

Thus, the lowest order effect on the BEC ground state is a shift
in the chemical potential, i.e. a phase shift. Physically, this
phase is the gravitational red-shift due to the source mass, and
the lowest order contribution of the screened scalar field is a
modification of this red-shift. It is also worth noting that this
phase shift appears in both the ground state and all excited
modes of the BEC in a basis independent way.

3.2 Phase estimation

The mean squared error in a specific measurement is bounded
from below by the Cramér–Rao bound

(�κ)2 ≥ 1

NF
(
κ, M̂

) , (24)

where �κ is the absolute error in estimating the parameter κ

with some measurement operator M̂ , and N is the number of

measurements performed. The Fisher information F
(
κ, M̂

)

can be thought of as the amount of information about κ which
can be extracted with the measurement M̂ . The quantum
Fisher information (QFI) can be defined as the supremum
over all possible measurements

H (κ) = supM̂ F
(
κ, M̂

)
(25)

from which the quantum Cramér–Rao bound (QCRB) triv-
ially follows as

(�κ)2 ≥ 1

NH (κ)
, (26)

where H (κ) is the QFI for estimating the parameter κ . For
a full derivation, see [38–40]. While the calculation of the
Fisher information is generally well defined, it is often dif-
ficult to show that a particular measurement is optimal and
thus calculate the QFI. Fortunately, this problem has been
solved for Gaussian states [41–43].

Gaussian states cover the majority of easily experimen-
tally accessible states such as coherent states, thermal states
and squeezed states. Calculating the QFI for Gaussian states
is simple as Gaussian states have a straightforward descrip-
tion in terms of their first and second moments [41–43].

Let θ− be the accumulated phase difference between two
arms of a BEC interferometer. The QFI for estimating θ−
with a fully condensed N0-atom BEC is given by

H (θ−) = N0, (27)

which scales with the standard quantum limit (SQL) [44].
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3.3 Implementation

A BEC coherently split into parts would measure the gra-
dient of the phase in Eq. (11) and thus the field gradient in
an interference measurement. The other contributions from
the environment (e.g. the gravity of the Earth) could be sub-
tracted with differential measurements or a dual interferom-
eter scheme where measurements are performed near to and
far from the source object.

BEC-based interferometers are not a new concept, and
have already been proposed and demonstrated (see, e.g.
Refs. [45–49], also Ref. [50] and references therein). Coher-
ent splitting of a BEC into spatially separated clouds has
been implemented both with atom chips [47,51,52] (chips
printed with an electrode structure allowing for the genera-
tion of magnetic and radio-frequency fields very close to an
atom cloud) and in various free space arrangements includ-
ing spatially varying optical dipole traps and optical lattices
[45,49,53,54]. Recombination and interference of the sep-
arated clouds of a guided atom interferometer is typically
achieved by turning the trapping potential off and letting the
clouds expand into each other as they fall [50]. Note that this
is a similar recombination strategy to launched or dropped
atom interferometry such as in [18,55]; a guided interfer-
ometer confers the additional benefit of potentially greatly
extending the interaction time (and thus accumulated phase
difference) before recombination. An alternative scheme has
been recently realised, where the two condensate parts are
brought into contact via Josephson tunnelling through a low
potential barrier [56]. This acts as a beam splitting operation,
and the interference contrast is projected onto a mean atom
number difference between the two wells.

4 Expected bounds

The expected new bounds on the chameleon and symmetron
models from an implementation of our proposed schemes are
presented in Figs. 4, 5, 6. They are derived from the QCRB
for estimating the phase difference in an interferometer. This
bound is given by (cf. Eq. (26))

(�θ−)2 ≥ 1√
NH (θ−)

. (28)

Assuming a null measurement, the bounds on the screening
models are given by

1√
NH (θ−)

≥ mc2T

2h̄

(
ζ 2 (r1) − ζ 2 (r0)

)
(29)

for phases measured at r0 and r1.
We initially give the general form of the relevant bounds

for each model in Sects. 4.1 and 4.2, and then present the

bounds with some specific numbers from experimental liter-
ature in Sect. 4.3.

We note that the analysis we present here is somewhat
simplified, for the sake of producing analytic results with
straightforward transparent physical justification. Proper
analysis of a specific implementation will require numerical
analysis including the exact shape of the vacuum chamber,
mounting system for the source mass, any additional appa-
ratus required inside the vacuum chamber for trapping the
BEC etc. which may enhance or diminish the bounds pre-
sented here.

4.1 Chameleon constraints

Figure 4 shows the predicted new constraints for one of the
most popular screening models - the chameleon with n = 1.
There it can be seen that the BEC interferometry scheme
would be able to improve existing constraints for this model
by up to 3 orders of magnitude and confirm a recent mea-
surement [57] closing the gap between former interferome-
try and Eöt–Wash experiment constraints on the DE scale
� = 2.4 meV. This amounts to ruling out the simplest
chameleon model as a model of dark energy.

There are four important bounds contributing to the con-
strained region of the chameleon model parameter space;
where the source mass, BEC and residual gas in the vacuum
are all screened, where they are all unscreened, where the
BEC becomes screened, and where the Compton wavelength
of the equilibrium chameleon is larger than the diameter of
the vacuum chamber.

In the limit of an infinitely wide vacuum chamber, the
n = 1 chameleon field in the (non-perfect) vacuum has an
effective mass

m2∞ = 2�5
(

ρ∞
2Mc�5

)3/2

, (30)

where ρ∞ is the matter density of the vacuum. When the
chameleon field is screened within the source mass, the con-
straint resulting from a null measurement is given by

1√
NH (θ−)

>
mc2T

2h̄

√
2�5

Mc

(
1√
ρ∞

− 1√
ρobj

)

Rem∞R/h̄

×
∣∣∣∣
e−m∞r1/h̄

r1
− e−m∞r0/h̄

r0

∣∣∣∣ , (31)

where ρobj is the density of the source object. This expression
is only valid if the atoms in the BEC are test particles and
do not significantly affect the evolution of the chameleon
field profile. However, this is not true for the entire parameter
space. As an overly conservative upper bound, we can replace
the vacuum matter density ρ∞ in (31) with the BEC average
matter density ρBEC . The true constraint will lie somewhere
between these two, and will require numerical analysis with
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the specific experimental geometry of any implementation,
as in [17,18].

For larger values of Mc, the infinite vacuum chamber
approximation does not hold as the Compton wavelength
of the equilibrium chameleon becomes larger than the size
of the vacuum chamber. In this case, the field equilibrium
inside the vacuum chamber is instead described by [58]

ϕ∞ → ξ
(
n(n + 1)�4+n R2

) 1
n+2

, (32)

where ξ = 0.55 is a fudge factor given by the chamber’s
spherical geometry and vacuum density. The effective mass
is set to the radius of the vacuum chamber m∞ → h̄/Rvac

and the relevant constraint from a null measurement is

1√
NH (θ−)

>
mc2T

2h̄

⎛

⎝ξ

[
2�5R2

vac

M3
c

]1/3

−
√

2�5

Mcρobj

⎞

⎠

ReR/Rvac

∣∣∣∣
e−r1/Rvac

r1
− e−r0/Rvac

r0

∣∣∣∣ . (33)

When everything in the vacuum chamber is unscreened,
the field profile becomes �-independent and we have

1√
NH (θ−)

>
mc2T

2h̄

(
ρobj R3

3M2
c

)

eR/Rvac

∣∣
∣∣
e−r1/Rvac

r1
− e−r0/Rvac

r0

∣∣
∣∣ . (34)

4.2 Symmetron constraints

The predicted constraints on the parameter space of the sym-
metron model are shown in Fig. 6. We expect that our pro-
posed experiment would improve the existing constraints by
between 16 and 26 orders of magnitude in λ across the entire
accessible range of Ms .

The value of μs to which these constraints apply is limited
by the geometry of the proposed experiment, as the Compton
wavelength in low density regions is approximately 1/μs . For
the field to evolve to its vacuum minimum within the cham-
ber, the Compton wavelength must be smaller than the vac-
uum chamber radius. However, if the Compton wavelength
is too small then the field is Yukawa suppressed. We give a
numerical estimate for this constraint in Sect. 4.3.

An object is screened from the symmetron force when its
density is above the critical density ρ∗. The region in Ms

that our proposed experiment would constrain is the region
where this critical density is between the densities of the
source object and the surrounding vacuum, so

ρ∞ < μ2M2
s < ρobj . (35)

Finally, the full bound is given by

1√
NH (θ−)

>
mc2T

2h̄

μ2
s

λM2
s

(
1 − ρ∞

μ2
s M

2
s

)

Fig. 4 Constraints for the parameter space of the chameleon modeln =
1: The brown area corresponds to constraints from atom interferometry,
the green area to those from Eöt–Wash experiments and the red area
to recent levitated force sensor results [12,57,59]. The straight dotted
line indicates the DE scale � = 2.4 meV. New constraints predicted
in this work are coloured in blue, where dark blue corresponds to 1000
runs and light blue corresponds to 10,000 runs. The dashed constraints
are derived under the assumption that the BEC atoms do not screen
the chameleon fifth force, which is implemented by using the vacuum
matter density to derive the effective chameleon mass. As the opposite
extreme scenario, the solid blue constraints use the average BEC matter
density for deriving the chameleon’s mass, i.e., as if the entire vacuum
chamber were filled with the BEC. The former case results in too strong
constraints, while the latter leads to too weak ones. Consequently, the
physically realistic constraints, whose accurate prediction would require
the numerical determination of the chameleon effective mass taking into
account each single BEC atom, will lie between the solid blue and the
dashed regions

×
(

2�

[
e−m∞r0

r0
− e−m∞r1

r1

]

+�2

[
e−2m∞r1

r2
1

− e−2m∞r0

r2
0

])

, (36)

where

� = R em∞R mobj R − tanh
(
mobj R

)

mobj R + m∞R tanh
(
mobj R

) , (37)

and

m2
obj/∞ = 2

(
μ2
s − ρobj/∞

M2
s

)
. (38)

4.3 Numerical constraint estimates

We now consider some experimental limitations to the
schemes proposed in this article and use these to calculate
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Fig. 5 Constraints for the value of Mc for positive n chameleon models
at � = 2.4 meV: The brown area corresponds to constraints from atom
interferometry, the green area to those from Eöt–Wash experiments, the
violet area represents constraints from astrophysics and the red area
corresponds to recent levitated force sensor results [12,57,59]. New
constraints predicted in this work are coloured in blue, where dark blue
corresponds to 1000 runs and light blue corresponds to 10,000 runs

the expected sensitivity of our schemes to constraining the
chameleon and symmetron models. In this section, we con-
sider realistic experimental parameters to demonstrate that
a measurement would result in an extension of previously
excluded regions of parameter space, but leave a specific
implementation to future work.

To numerically estimate the above bounds, we consider the
same experimental dimensions as in [55] for ease of compar-
ison. Specifically, we consider a spherical vacuum chamber
of radius L = 5 cm and vacuum pressure 6 × 10−10 Torr.
The source object is an aluminium sphere with a radius of
R = 9.5 mm, the effective distance between the object and
the BEC is 8.8 mm, and we assume that the two parts of
the BEC are split by 100 μm. With clever trap positioning,
the distance between the object and the BEC may eventually
be limited by the strength of the van der Waals or Casimir–
Polder forces, but these are not relevant at the 10 mm scale.

Typical BEC experiments condense clouds consisting of
104 − 106 atoms, although condensates of up to 108 atoms
have been demonstrated with sodium [62], and up to 109

atoms has been demonstrated with hydrogen [63,64]. For
estimating the sensitivity of this detector, we assume an initial
BEC with 106 atoms, constrained to a quasi-1D trap of length
50 μm.

The maximum integration time of our proposed detector
is set by the mutual coherence time of the components of the
split BEC. Mutual coherence times up to 500 ms have been

Fig. 6 Constraints for the parameter space of the symmetron model:
The brown area corresponds to constraints from atom interferometry,
the green area to those from Eöt–Wash experiments, and the violet area
represents constraints from exoplanet astrophysics [12,59]. In addition,
the yellow area represents combined constraints from ultracold neutrons
for micron- and fermi-screening for μ = 10−4 and 10−5 eV [60,61].
New constraints predicted in this work for a BEC interferometer are
coloured in blue. Differently outlined regions correspond to μ = 10−4

(dots), 10−4.5 (dashes), 10−5 (mixed dots and dashes) and 10−5.5 eV
(solid) in natural units respectively

demonstrated with atom chips [51,52], and up to 70 s in free
space [65] so we will estimate the integration time of our
detector to be 500 ms.

With these numbers, a null measurement would produce
the bounds on chameleon models given in Fig. 4 for n = 1
with variable �, and Fig. 5 for � = 2.4 meV for variable n.

In Fig. 4, the BEC density bound, i.e. where we replaced
the vacuum matter density ρ∞ in (31) with the BEC average
matter density ρBEC , defines the blue constraints and the
vacuum density bound defines the dashed constraints. We
note again that the actual constraint will lie between these two
regions, but determining exactly where requires numerical
analysis with a specific experimental geometry. With even
the most conservative bound, our proposed experiment would
cover the gap between former interferometry and Eöt–Wash
experimental constraints on the DE scale � = 2.4 meV.

Figure 5 shows constraints for the value of Mc over dif-
ferent values of positive n chameleon models and for � =
�DE = 2.4 meV. The horizontal boundaries in Fig. 5 for
early values of n result from the source and the vacuum both
being screened. For larger values of n, the background field
profile given in Eq. (32) is used. Our scheme would improve
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existing interferometry constraints by more than 2 orders of
magnitude and close the gap to Eöt–Wash for n ≤ 5.

The constraints on the symmetron model are shown in
Fig. 6. As explained in Sect. 4.2, given the vacuum chamber
width and distance between the source mass and interfer-
ometer, the value of μs that this proposed experiment can
constrain is restricted to

10−5.5 eV � μs � 10−4 eV (39)

in natural units. The restriction that the critical density must
be between the source mass and residual vacuum density
causes the sharp sides of the excluded regions in both our pre-
dicted excluded regions and the atom interferometry exclu-
sion regions. The curve in the high Ms section of the predicted
excluded regions is the area where the critical density and the
source object density become comparable, and the peak in
the low Ms section of the μs = 10−4 eV excluded region
is caused by a resonance where the Compton wavelength of
the symmetron field matches the distance from the object to
the BEC.

Wavefunctions of atoms in a BEC are (in the ideal case)
spread over the width of the BEC and all overlap. As a first
approximation, we consider the BEC to be a region of uni-
form density as opposed to a collection of discrete objects.
The density of the BEC is between that of the vacuum and
the source object. When the BEC density is below the criti-
cal density, it does not substantially modify the symmetron
field profile, but when the BEC density is above the critical
density, there should in principle be a dip in the symmetron
field profile. However, the Compton wavelength of the sym-
metron in our constrained region of parameter space given in
(39) is λC ∼ 10−100 mm. This is far greater than the width
of the BEC in this entire section of the parameter space, so
the BEC again does not substantially affect the symmetron
field profile. Hence, whether or not the BEC is screened does
not play a role in determining the region of parameter space
excluded by our proposed experiment.

In the above analysis, we have used experimental num-
bers, such as the number of atoms and the coherence time,
from different physical experiments. We have been conser-
vative with these numbers and expect such an experiment to
be achievable. However, to be sure of this, a full analysis of
experimental noise and decoherence would need to be taken
into account, which is beyond the scope of this work. Such
experimental noise would include fluctuations from the trap-
ping potential [66,67], three-body interactions leading to a
loss of atoms from the condensate [68], interactions with the
thermal cloud [69], and interactions of condensate atoms with
foreign atoms due to an imprecise vacuum [70,71]. These
sources of noise would also contribute to the achievable sen-
sitivity of the detector. For example, as atoms are lost from
the condensate over time, the sensitivity of the detector will
decrease. Furthermore, interactions with the environment,

such as interactions with the thermal cloud, will lead to a
loss of coherence in the condensate, also contributing to a
reduction in the sensitivity. We leave such detailed analysis
to future work.

5 Conclusions

Conformally coupled scalar fields like chameleons or sym-
metrons are popular means for explaining the nature of dark
energy. In recent years, various experiments have been per-
formed in order to constrain these models. Some of the most
successful experiments are based on cold atoms, e.g. atom
interferometry.

In this article we proposed a BEC interferometer as a novel
way of searching for screened scalar fields, which we expect
to lead to massively improved constraints for chameleon and
symmetron models. To bring this proposal into reality, future
work will focus on optimising the experimental implemen-
tation. Any subsequent implementation of our proposal will
either discover n = 1 chameleon fields at the cosmological
energy density or confirm completely ruling them out, along
with greatly improving the bounds on other screened scalar
models.

While we have only considered chameleon and sym-
metron screening models, it should be stressed that con-
straints for any other type of conformally coupled scalar
field could be obtained in a similar manner, e.g. for dilatons
[26,72].
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