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How do I know what I think until I see what I say?
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Abstract

Mixture of experts (MoE), introduced over 20 years ago, is the simplest gated modular neural

network architecture. The gate in the MoE architecture learns task decompositions and indi-

vidual experts (modules) learn simpler functions appropriate to the gate’s task decomposition.

This could inherently make MoE interpretable as errors can be attributed either to gating or

to individual experts thereby providing either a gate or expert level diagnosis. Due to the

specialization of experts they could modularly be transfered to other tasks.

However, our initial experiments showed that the original MoE architecture and its end-to-end

expert and gate training method does not guarantee intuitive task decompositions and expert

utilization, indeed it can fail spectacularly even for simple data such as MNIST.

This thesis therefore explores task decompositions among experts by the gate in existing MoE

architectures and training methods and demonstrates how they can fail for even simple datasets

without additional regularizations. We then propose five novel MoE training algorithms and

MoE architectures: (1) Dual temperature gate and expert training that uses a softer gate

distribution for training experts and a harder gate distribution to train the gate; (2) Two no-

gate expert training algorithms where the experts are trained without a gate: (a) loudest expert

method which selects the expert with the lowest estimate of its own loss for the sample both

during training and inference; and (b) peeking expert algorithm that selects and trains the expert

with the best prediction probability for the target class of a sample during training. A gate is

then reverse distilled from the pre-trained experts for conditional computation during inference;

(3) Attentive gating MoE architecture that computes the gate probabilities by attending to the

expert outputs with additional attention weights during training. We then distill the trained

attentive gate model to a simpler original MoE model for conditional computation during

inference; and (4) Expert loss gating MoE architecture where the gate output is not the expert

distribution but the expert log loss.

We also propose a novel flexible data driven soft constraint, Ls, that uses similarity between

samples to regulate the gate’s expert distribution. We empirically validate our methods on

MNIST, FashionMNIST and CIFAR-10 datasets. The empirical results show that our novel

training and regularization algorithms outperform benchmark MoE training methods.
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Notational Conventions

We will follow the notational conventions given below.

• Calligraphic letters (A,B, . . .) denote sets or particular spaces:

– X is an instance space,

– Y is a label set,

– D is a set of samples.

• Capital letters (A,B, ...) denote matrices or numbers:

– Q is a query matrix,

– K is a key matrix,

– W is a weight matrix,

– M is number of experts,

– N is number of samples.

• Bold letters denote vectors

• Lowercase letters (a, b, ...) denote vectors, elements of some set, or functions:

– x a single instance, and

– y a single label

• Symbols:

– f : X → Y denotes a function from X to Y .

– f(·) is for the function whereas f(x) is only for the value of the function f(·) applied

to x.

1
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– AT denotes the transpose of the matrix A.

• Other notational conventions and exceptions:

– Am×n denotes a matrix A with dimension m× n

– h1×n denotes a vector h with dimension 1× n

– R is the set of all real numbers.

– N is the set of all natural numbers 1, 2, 3, . . .



Chapter 1

Introduction

1.1 Motivation

Deep neural networks are currently the de facto machine learning models in diverse domains

with large scale data especially image recognition, natural language processing and speech

recognition. Processing image, text and speech data requires large deep learning models with

billions of parameters. Training these models is computationally expensive as one has to evalu-

ate the whole model for each sample during feedforward and backpropagation. Hence typically

the models are pre-trained on large datasets and then fine-tuned for downstream tasks. But

these new tasks may be subsets of the tasks on which the large model was trained on, so,

using the entire pre-trained model is inefficient. In continual learning settings and when there

are distribution shifts one has to re-train the whole model to prevent catastrophic forgetting.

This is again computationally expensive. Large monolithic models are also complex and hence

difficult to interpret.

Modular Neural Networks (MNN) are a promising solution to these challenges. They are

composed of simple modules that can specialise in subtasks. Specialised modules can then be

reused for other tasks. When new tasks arrive or there is a distribution shift, the network

can be grown dynamically to add and train new modules to specialize in them. This prevents

catastrophic forgetting.

Recently, there is a renewed interest in a class of MNNs called Gated Modular Neural Networks

3



4 Chapter 1. Introduction

(GMNN). GMNNs are MNNs with an addtional routing module called the gate. The gate typi-

cally learns the module distribution over data samples that decides which samples get routed to

which module. This facilitates conditonal computation which is what makes GMNNs attractive

for building large scale models. Conditional computation is when the gate introduces spar-

sity by using only some modules during training and inference per sample. This substantially

reduces computational time and facilitates extremely large modular networks.

Since GMNNs are composed of simpler neural networks and the task is distributed among

the individual modules, it seems intuitive that they should inherently be more interpretable.

Individual modules can learn simpler functions appropriate to the decomposition and errors can

be attributed to individual modules or the gate. Hence, it is imperative to look more closely

at how the tasks are decomposed between modules in the existing GMNN architectures.

Mixture of Experts (MoE) introduced by Jacobs et al. (1991b) over 20 years ago is the simplest

and most used GMNN. It consists of experts (modules) that are simple neural networks and

another simple gate gate network. The gate is a soft switch that learns to route samples to

the experts. Different MoE architectures can be realized based on how the expert outputs

are aggregated and gating decisions computed. Typically the gate and the experts are trained

end-to-end but they can also be trained separately.

Research in MoE has concentrated on improving computation time and successively building

outrageously large networks (Shazeer et al., 2017; Rajbhandari et al., 2022; He et al., 2021)

leveraging conditional computation and massively parallelizing expert computations. More

recent works involve scaling transformers by replacing the single Feed Forward Network (FFN)

with MoE (Lepikhin et al., 2021; Fedus et al., 2022). The goal here is distribute the input tokens

across different hardware accelerators. Hence, by replacing a single FFN with multiple experts,

each expert can run on a dedicated hardware accelerator. The gate then is required to equally

distribute the samples across the experts, for optimal use of each expert, that also improves

performance. Hence, the focus here is scaling the models and not what the experts are learning

and how the task is distributed among the experts. That is, if each sub task of the task is

learnt by just one module or is distributed among multiple models. A clear task decomposition

is desirable for interpretability and transferability. In my research I have attempted to improve

performance while also ensuring true modularity that would allow interpretability and modular

transferability. By true modularity we mean a clear separation of tasks between the experts.
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1.2 Contributions

The first step towards achieving true task modularity was to understand how the tasks are

decomposed in existing MoE methods. Our initial systematic experiment showed that original

MoE end-to-end training of experts and gate fails to find an optimal task decomposition,

in terms of performance and expert usage, even for simple datasets such as MNIST. When

instead we pre-trained the experts with specific subtasks and we saw that it improves the

performance and results in equitable expert usage. The experiment thus showed that the end-

to-end combined training of experts and gate leads to suboptimal results.

This encouraged me to look into alternate training algorithms and architectures for MoE to

improve both performance and expert usage which results in true modularity. I started by

decoupling the training of experts and the gate using a dual temperature training algorithm.

In this method the expert was trained with a soft gate distribution and the gate was trained

with a hard gate distribution. This allowed a fair distribution of the samples to the experts

during the inital part of the training which gave each expert an opportunity to learn the tasks.

Since the gate fails to learn an optimal task decomposition but is required for conditional

computation, could we instead train the experts without the gate and then train the gate

to just route to the optimal expert? This lead me to trying two no-gate methods: (a) the

loudest expert algorithm where the experts are trained using their own estimation of loss for

the sample, choosing the one with the lowest loss during training and inference; and (b) the

peeking expert algorithm where the expert with the highest prediction probability for the sample

target is chosen during training. A gate is later trained with the pre-trained experts to enable

conditional computation. The peeking method outperformed benchmark MoE architectures

both in terms of performance and expert usage.

When training the gate and expert end-to-end, for each batch, the gate makes the routing

decision on its own without looking at how the experts perform on the current batch. This

leads to the gate and expert learning from the input distribution separately. So we designed a

novel attentive gate architecture where the gate’s expert distribution computation for the batch

depends on the expert’s predictions on the same batch. We achieved this by adding attention

weights and computing the gate distribution using scoring mechanism similar to that proposed

by Bahdanau et al. (2015). The attentive gate architecture again outperformed benchmark
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MoE architectures.

Yet another completely novel approach was to train the gate to learn each expert’s log loss

instead of just the distribution. This seemed a more useful quantity for the gate to learn. Also,

small improvements in expert performance requires a large shift in gate probability for that

expert to subsequently select that expert. Instead when learning log losses it is much faster to

learn their small increments or decrements. This approach performed better than some of the

benchmark MoE architectures.

Besides novel MoE training algorithms and architectures we also developed a novel soft con-

straint to distribute the samples based on their similarity. It is reasonable to assume that

samples of the same task has similar feature distributions and hence are similar. Similarity

can be measured using any reasonable distance function. Euclidean distance is one such simple

distance function. We saw that this soft-constraint performed as well as or better than the

benchmark Limportance soft-constraint by Shazeer et al. (2017) that aims at equal distribution

of samples across all available experts while using less experts. Table 1.1 provides a summary

of how each of the methods introduced in this thesis is trained. Distilled gate is explained in

Section 2.3.

Table 1.1: Comparing and summarizing the training methods introduced in the thesis

Training Method End-to-End Training
Distilled Regularization
Gate Limportance Ls

Decoupling training
of experts and gate

softmax without temperature for
gate, softmax with temperature for
experts

No Yes Yes

Loudest expert only experts trained without a gate No No No

Peeking expert only experts trained without a gate Yes No No

Attentive gating
no softmax for experts or gate,
softmax only for attentive score

Yes No No

Expert loss gating
softmax for experts, no softmax
for gate as it predicts expert log loss

No No No

To summarize, the main contributions of the thesis are:

• Our finding and clear presentation of two crucial problems in training MoE models: (1)

that original MoE training methods lead to inequitable and unintuitive task decomposi-

tions that have both poor error and loss; and (2) how the tasks are distributed among

the experts is relevant to both their performance and scalability.
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• Five novel MoE training algorithms and architectures that outperform benchmark MoE

architectures

• A novel soft-constraint that provides a flexible data-driven approach to regulate gate

sample distribution to the experts that uses less experts than the benchmark Limportance

regularization.

Let us now deep dive into the state of the art in modular neural networks, understand how the

tasks are currently distributed among the modules and go into the details of our novel MoE

training algorithms, architectures and soft-constraint.



Chapter 2

Background of Gated Modular Neural

Networks

There are many different modular neural network architectures inspired by modularity in biolog-

ical systems (Ballard, 1987) or creating natural abstractions of concepts or actions (Knoblock,

1990; Sutton et al., 1999). Gated modular neural networks (GMNN) are currently the most

successful MNNs. GMNNs are inherently more interpretable since the gate can learn insight-

ful problem decomposition, individual modules can learn simpler functions appropriate to the

decomposition and errors can be attributed either to gating or to individual modules.

The modules of GMNN are commonly referred to as experts as each module learns a specific

subtask well. Mixture of Experts (MoE) is the simplest of the wider class of gated architectures,

introduced by Jacobs et al. (1991b,a), where data-flow is dynamically configured among the

experts, according to the input, by the gate. Different MoE architectures can be realized by

different combinations of expert outputs described in Section 2.1.

Hinton (1999) alternatively proposed a product of experts architecture which combines the

outputs of experts multiplicatively.

Since I am interested in interpretable results I decided to look more closely at what the MoE

architecture learns, as it linearly combines the outputs of the individual experts. To the best

of our knowledege there is no existing work that delves into the potential for interpretability

and transferability in GMNNs.

8
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2.1 Mixture of Experts (MoE)

The MoE architecture, shown in Figure 2.1, was introduced by Jacobs et al. (1991b) over 20

years ago. It has since been successfully applied to learning problems such as reinforcement

learning (Gimelfarb et al., 2018), transfer learning (Mihai and Lascarides, 2017), building large

computationally efficient neural networks for language models and machine translation (Shazeer

et al., 2017; Rajbhandari et al., 2022), continual learning (Veniat et al., 2021; Hihn and Braun,

2022) and learning multiple domains, such as image classification, machine translation, and

image captioning, concurrently (Kaiser et al., 2017).

MoE is a gated modular neural network architecture. It consists of modules, called experts, and

a gate. The experts and the gate are simple neural networks. The experts compute functions

that are useful in different regions of the input space. The output of an expert, for each sample,

is either the learnt class distribution for a classification problem or the learnt regression function

output for a regression problem.

The output of the gate is a vector of weights, one for each expert. The weights determine how

much an expert contributes towards an MoE’s prediction for a sample. This is called condi-

tional computation as only some experts are computed conditioned on the gate probabilities.

Conditional computation is an important feature of an MoE as it makes training and inference

faster. The gate learns a sample based expert selection policy. It allocates samples to experts,

decomposing the task between experts. Ideally we want the gating network to learn a mean-

ingful decomposition of the state space and the experts to learn simpler functions in different

parts of the state space that results in better performance of the MoE model.

The MoE model output is some combination or selection of the outputs, weighted or other-

wise, of the individual experts. The experts and gate are usually trained together end-to-end.

Many different MoE architectures can be realized with different combinations of expert outputs

mediated by the gate with different loss functions. The basic architectures are presented here.

2.1.1 Output Mixture Model

Jacobs et al. (1991b) introduced the architecture in Figure 2.1 where the expert networks

compete to learn the training patterns, and the gating network mediates this competition.
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After training, expert networks 1, 2 and 3 compute different functions that are useful in different

regions of the input space.

Figure 2.1: Architecture of mixture of networks

Let the vectors o1,o2 and o3 denote the outputs of the three expert networks. The gating

network decides whether expert 1, 2 or 3 is currently applicable. Scalars p1, p2 and p3 denote

the 3 output units of the gating network. In general, the architecture may contain any number

of expert networks. If there are M expert networks, then the gating network has M output

units. The output of the entire architecture, ŷ, is the expected sum of the outputs of the

individual experts:

ŷ =
M∑
i=1

pi · oi (2.1)

and the loss L is:

L = l(y, ŷ) (2.2)

where y is the desired output and l is a loss function.

Since the output is a sum of proportions of the outputs of the experts, the experts are tightly

coupled. Change in weights of one expert changes the residual error and hence affects the

weights of all other experts. The output mixture model could seem to be not truly realizing

conditional computation. In practice, however, the probabilities for some experts are small

enough to be neglected. Those expert outputs need not be computed and so indeed does

enable conditional computation.
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2.1.2 Gate Choice or Stochastic Model

In their subsequent work, Jacobs et al. (1991a), introduced a gating network that makes a

stochastic decision of which expert output should be selected during training. The output

of the entire architecture, y is therefore one of o1 to oM expert outputs sampled according

to the distribution learnt by the gate network. The sampling during training allows for a

more exploratory selection of the experts. The loss L is computed as the expected sum of the

individual expert losses as shown in Equation 2.5.

During inference the MoE prediction, ŷ, is one of o1, . . . ,oM expert outputs corresponding to

the expert that has the highest gate probability as shown in Equation 2.4.

I = argmax
i→M

p (2.3)

ŷ = oI (2.4)

L =
M∑
i=1

pi · l(y,oi) (2.5)

where p is the gate probability output for a sample, y is the desired output and l is a loss

function. Notice that in this loss function, each expert is required to produce the whole of the

output vector rather than a residual. As a result, the goal of a local expert on a given training

case is not directly affected by the weights within other local experts. Since only one expert

output is used for MoE prediction this architecture provides true conditional computation.

2.1.3 Top-k Model

Shazeer et al. (2017) introduced the top-k gating where only the top-k values of the gate pre-

softmax output, z, are kept and all the rest are set to −∞. When we compute the softmax

of z, to get the gate output, p, then all the values of z set to −∞ become 0. This is because

pi = softmax(zi) =
exp(zi)∑
j exp(zj)

, i ∈ {1, . . . ,M} where M is the number of experts. When zi is

−∞ then we have exp(zi) = exp(−∞) which is 0. This results in softmax(zi) = 0,∀zi = −∞.



12 Chapter 2. Background of Gated Modular Neural Networks

Hence, the derivatives corresponding to the gate output, p, whose values are 0 are also 0

during back propagation. This implies that for a given sample only k experts will be selected

and trained, which results in good sparsity due to conditional computation. Equation 2.6

defines the top-k gating selection. The most common k values used in current literature are

top-1 and top-2.

KeepTopK(z, k) =

zi if zi is in the top k elements of z

−∞ otherwise

(2.6)

The output of the entire architecture, ŷ, is the expected sum of the outputs of the top-k experts

as shown in Equation 2.7.

ŷ =
k∑

i=1

pi · oi (2.7)

and the loss L is computed as in Equation 2.8, where y is the target class. This is similar to

the output mixture model, except that only k experts are selected for each sample.

L = l(y, ŷ) (2.8)

2.1.4 Pre-Softmax Model

We designed another architecture which is also similar to output mixture model but where the

gate smoothly combines the outputs of each expert network before applying the softmax to

compute the MoE output ŷ. The softmax is then applied to the resulting expected sum of the

pre-softmax layers as shown in Equation 2.9, where M is the number of experts, p is the gate

probabilities for the sample and oi is the output of expert i.

ŷ = softmax

(
M∑
i=1

pi · oi

)
(2.9)

The loss L is computed as shown in Equation 2.10 where l is a loss function and y is the target.
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L = l(y, ŷ) (2.10)

2.1.5 Hierarchical and Multilevel Models

Some problems require multi-level architectures. Jordan and Jacobs (1993) proposed a hierar-

chical mixture of experts, in which the experts and gate are generalized linear models. Learning

is treated as a maximum likelihood problem and the parameters of the architecture are adjusted

using Expectation-Maximization (EM) algorithm.

Another composition of multi-level architecture of experts and gates was proposed by Kirsch

et al. (2018). They too propose an EM algorithm to learn the parameters of the architecture.

The difference between (Jordan and Jacobs, 1993) and (Kirsch et al., 2018) is that while the

former has experts only in the first level, the latter is a composition of experts at each level

where the choice of the experts at each level is determined by the gate at that level.

2.2 Recent Mixture of Experts Research

Recently, there has been renewed interest in MoE architectures for scaling it to large models

leveraging its modularity and conditional computaion. Combining experts has been applied to

learning problems like reinforcement learning (Gimelfarb et al., 2018; Vasic et al., 2020), transfer

learning (Mihai and Lascarides, 2017), and to build outrageously large computationally efficient

neural networks (Shazeer et al., 2017; Wang et al., 2018; Rajbhandari et al., 2022). We will

discuss some of the main problems being tackled in MoE.

Expert specialization in MoE: Much of the MoE research so far has concentrated on the

performance of the MoE model and not on how the task is decomposed between the experts.

Mittal et al. (2022) and Krishnamurthy and Watkins (2021) arrived at the same conclusion

that the original MoE training methods indeed lead to poor expert specialization and that a

good task decomposition results in better expert specialization and better performance. In

Mittal et al. (2022) the authors use synthetic data distributions to analyse module collapse and

expert specialization in modular neural networks. They use four different modular architectures
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with different degrees of expert specializations and compare them. The least specialized is the

modular architecture where the experts learn the specialization through end-to-end training

and the most specialized is the one where the experts are assigned specific tasks and do not

learn the expert task assignment. They also propose different metrics to measure collapse and

expert specialization. Their experiments show that end-to-end training of modular networks

is prone to module collapse and has poor expert utilization. They however did not investigate

the problem in real datasets.

Chen et al. (2022) have presented the theoretical aspects of learning in an MoE architecture

which is valuable to understanding how the MoE can learn to decompose the input space, but

they did this using the top-1 training method and a regularization. In the we show that we

can achieve a good input space partition without regularization and load balancing techniques.

Optimal task decomposition among the experts by the gate has been a pesky problem as we

will discover in Chapter 3. Makkuva et al. (2019) designed an algorithm to train the MoE

with global consistency guarantees to avoid local minimas. However, their method requires

preprocessing and/or transforming the input/outputs which may not work for all data types.

Shazeer et al. (2017) proposed the top-k expert selection algorithm which has been the domi-

nating method in recent works (Riquelme et al., 2021; Fedus et al., 2022; Rajbhandari et al.,

2022; Lepikhin et al., 2021). It provides high gate sparsity as for each sample only k experts are

used. k is normally set to 1 or 2. Hence it is computationally very effcient and allows scaling

to large number of experts.

Expert specialization with regularization: Since the end-to-end MoE training provides

no incentive for an equitable sample distribution to the experts, auxiliary losses were added as

regularizations by Lewis et al. (2021); Shazeer et al. (2017). However, both their methods simply

use all available experts even when it may not be required for the task. In our experiments

we compare our algorithms’s performance to MoE model trained with Shazeer et al. (2017)’s

Limportance regularization as it is a more generic regularization than that proposed by Lewis

et al. (2021) which uses tokenized inputs.

Many load balancing methods for distributing the batch across the experts have been introduced

(Shazeer et al., 2017; Fedus et al., 2022). But they aim to equally distribute the samples across

the experts. This may not always be desirable. For example, when the dataset is unbalanced.
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Token based routing: There have been quite a few token based routing approaches recently

(Fedus et al., 2022; Kudugunta et al., 2021; Lepikhin et al., 2021; Lewis et al., 2021; Riquelme

et al., 2021; Zhou et al., 2022; Zuo et al., 2022). Kudugunta et al. (2021) proposed a task

aware routing. This requires knowledge of how to distribute the tasks which may not always

be available. (Fedus et al., 2022; Lepikhin et al., 2021; Riquelme et al., 2021; Zhou et al., 2022;

Zuo et al., 2022) have added sparsity to transformer architectures by replacing the dense feed

forward layer with MoE for vision and language problems. They propose different token routing

strategies. But they each aim to distribute the tokens equally among the experts which may

not be suitable for all problems. (Fedus et al., 2022; Lepikhin et al., 2021; Riquelme et al., 2021;

Zuo et al., 2022) use the top-k algorithm to route to the experts, while Zhou et al. (2022) let

each expert choose k tokens. Since these methods use transformers they may not be suitable

for all problems. They use only a few experts in the transformer dense layer which are simple

one or two feed forward layers. All their approaches are based on the inputs to the MoE being

either text or image tokens. Most of the learning in these methods is done in the transformer

attention layers which are not part of the MoE.

Attentive gating: To the best of our knowledge our attentive gate architecture is novel.

Pfeiffer et al. (2021) have used attention like mechanism to combine adapters learnt from a pre-

trained model for multi-task learning. Their architecture is different from an MoE as there is

no gate. Another related work we found was by Liu et al. (2020), who have used the attention

mechanism in the MoE gate to focus the gate on different aspects of the input and target

images. The gate then learns good segmentation of the input images and assigns the different

segments to different experts. Their approach is similar to the original MoE where the gate

independently decides the tasks to be assigned to the experts by attending to the data. Our

approach learns the gate’s expert distribution by attending to the experts.

No-gate MoE: There has been some work recently (Lewis et al., 2021; Roller et al., 2021;

Zuo et al., 2022) that have realized the problem with end-to-end expert and gate training

and have proposed no-gate MoE training alternatives. Lewis et al. (2021) propose an MoE

architecture without gates. They instead formulate and solve the optimal equal assignment

of tokens of text data to the experts as a linear assignment problem. They too aim at equal

assignment of tokens to experts. Their work is the closest to our work on no-gate training.

But unlike their approach we aim for an optimal task dependent distribution of samples and
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not an equal sample distribution. Roller et al. (2021) changed the transformer’s feedforward

layer to hash to different weights for different tokens in the sequence. They showed that their

method outperforms BASE Layers (Lewis et al., 2021) and Switch transformers (Fedus et al.,

2022). Zuo et al. (2022) have removed the gate and shown that randomly selecting the experts

actually works, but with two forward passes per batch and a consistency regularization. They

also have a larger variance in their inference due to the stochasticity without the gate. However

all these methods use transformers with tokenized inputs and replace the dense feed forward

layer with MoE which may not be suitable for all problems as discussed earlier. Our no-gate

method does not make any assumption about the inputs or architectures of the experts and the

gate. It however currently is limited to supervised learning tasks with single (not hierarchical)

layer of experts and gate. We hope to extend this later to more complex MoE architectures.

Other: Hazimeh et al. (2021) propose an alternate differentiable method to compute gate ex-

pert selection weighting using a differentiable selection of experts using a novel binary encoding

formulaiton. Their method is best suited for problems like multi-task learning where usually

we want to share expert parameters. They have shown that their method outperforms top-k.

But since top-k is the more dominant strategy currently used we chose it as our benchmark.

Also, in our Step 2 we can use any existing method to train the gate. So we should be able to

use their method in our Step 2.

2.3 Model Distillation

The concept of model distillation was introduced by Hinton et al. (2015). Hinton referred to

the idea of transfering the knowledge in a large ensemble model to a single model as distillation.

It has since been used in the literature more broadly as the process of going from a larger model

with more parameters to a smaller model with lesser parameters (not necessarily to a single

model). We use this interpretation of model distillation. We also use reverse distillation in

this thesis, which is the process of going from a smaller model with less parameters to a bigger

model with more parameters.



Chapter 3

Understanding Mixture of Experts

Architectures

All the MoE research so far, however, only show performance results of the overall architecture

and not what each expert learns. It is important to learn what each expert learns in order

to assess the interpretability and transferability of the MoE architectures. The intuition is,

the better the expert specialization the easier it is to attribute errors to the expert and the

gate, and experts should be better suited for transferability. In order to learn how the tasks are

distributed among the experts in the various architectures, we performed a suite of experiments

to better understand what each expert is learning. The goal of the experiments was to answer

the following questions:

1. How are tasks divided into sub tasks by each architecture?

2. Does original MoE training find intuitive task decompositions?

3. Do intuitive task decompositions have better performance?

4. What are the pathological cases?

The results and analysis of the experiments are presented in the following sections.

17
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3.1 How are tasks divided into sub tasks by the gate in

the MoE architecture?

A good task decomposition, is one in which either: (1) the gating network learns a meaningful

decomposition of the input space into regions with natural ’rules’. For example, for a classifi-

cation task it would use different experts to predict different classes; or (2) each expert learns

non-intersecting functions or subsets of the task which implicitly satisfies case (1). Hence, it is

important to see how the task is allocated to the experts by the gate and what the experts and

the gate are learning in order to analyze interpretability.

So, we implemented the different MoE architectures outlined in Section 2.11. Since it is always

best to start simple, we started with a toy classification problem and a toy regression problem

from Kirsch et. al. Kirsch et al. (2018).

3.1.1 Toy classification problem

The dataset for the toy classification problem is a 2D mixture of Gaussians with 6 components,

shown in Figure 3.1.

Figure 3.1: Toy classification dataset with simple 2D 6 classes Gaussian mixture

Each component corresponds to a class and so we have a 6 class classification problem. There

are 2, 400 training samples and 600 test samples. The MoE model consists of simple linear

1we did not implement the multi-level experts and gates but used the EM algorithm from Kirsch et. al.
Kirsch et al. (2018) to train a single level of experts and one gate to compare it to training with the other
architectures that use back propagation.
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(a) 2 experts

(b) 3 experts

(c) 4 experts

(d) 5 experts

Figure 3.2: Toy classification test data class predictions by the trained output mixture model. The
shaded regions are the decision boundaries of the individual experts for the samples sent to them by
the gate. Red ‘x’ are the mis-classified samples.

experts and gate networks. We used RMSProp optimizer for updating the parameters. The

inputs to all the expert and gate networks are the same. Each of the models was run for

different number of experts ranging from 2 to 5.

We did not try 6 experts for the simple toy classification problem as that is the same number

as the classes. We want to use less experts than the classes and still get good performance.

Having 6 experts would just increase the number of overall parameters of the MoE models and

result in each expert learning a single class and hence underutilizing the expert. This however
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(a) 2 experts

(b) 3 experts

(c) 4 experts

(d) 5 experts

Figure 3.3: Toy classification test data class predictions by the trained stochastic model. The shaded
regions are the decision boundaries of the individual experts for the samples sent to them by the gate.
Red ‘x’ are the mis-classified samples.

may not be the case for more complex datasets where the data of each class could have distinct

sub-clusters or sub-problems. In such cases having experts ≥ the number of classes may result

in better task decomposition and performance. The experts and the gate are jointly trained on

the loss for the corresponding architectures.

Figures 3.2, 3.3, 3.4, 3.5, 3.6 and 3.7 show the test class predictions of the toy dataset with the

learnt output mixture, stochastic, top-1, top-2, pre-softmax and EM models for different number

of experts. The first column of each of these figures is the output of the MoE model. The
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(a) 2 experts

(b) 3 experts

(c) 4 experts

(d) 5 experts

Figure 3.4: Toy classification test data class predictions by the trained top-1 model. The shaded
regions are the decision boundaries of the individual experts for the samples sent to them by the gate.
Red ‘x’ are the mis-classified samples.

subsequent columns are the test class predictions of the toy dataset for each of the individual

experts. Mis-classfications are marked as red ‘x’. The shaded regions are the input space to

which the samples sent to expert by the gate belong.

Figures 3.2, 3.3 and 3.5 show that the output mixture, stochastic and top-2 models, consistently

partition the data cleanly for the toy classification dataset. The test class predictions by the

selected experts shows that the classification task of 6 classes is divided among the experts.

That is, each expert, if selected, learns to classify a subset of the classes as expected.
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(a) 2 experts

(b) 3 experts

(c) 4 experts

(d) 5 experts

Figure 3.5: Toy classification test data class predictions by the trained top-2 model. The shaded
regions are the decision boundaries of the individual experts for the samples sent to them by the gate.
Red ‘x’ are the mis-classified samples.

Figures 3.4, 3.6 and 3.7 show that top-1, pre-softmax and EM models do not necessarily result

in a good task decomposition even for the easily classifiable toy dataset. We see cases of module

collapse, such as for 2 and 4 experts with top-1 method, where all classes are learnt by just one

expert and hence there is no task decomposition.

Let us now look at the performance of the models with 3 and 5 experts. Tables 3.1 and

3.2 compare the different models using the benchmarking metrics (discussed in Chapter 4)

test accuracy, mutual information between experts and MoE output, I(E;Y ), gating sparsity
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(a) 2 experts

(b) 3 experts

(c) 4 experts

(d) 5 experts

Figure 3.6: Toy classification test data class predictions by the trained pre-softmax model. The shaded
regions are the decision boundaries of the individual experts for the samples sent to them by the gate.
Red ‘x’ are the mis-classified samples.

Hs, and expert usage on the test set for the toy classification dataset. The tables show that

output mixture, stochastic, top-2 and pre-softmax models perform consistently well. EM model

performance depends on the number of experts. top-1 model performs the worst. Though the

pre-softmax and EM model perform well, they do not result in a clean decomposition as seen

in Figures 3.6 and 3.7. The EM model has the slowest training time compared to the other

architectures.

We choose output mixture, stochastic and top-2 models as the benchmark models as they have

both good performance and good task decompositions. We also included top-1 for completion

of the top-k model.
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(a) 2 experts

(b) 3 experts

(c) 4 experts

(d) 5 experts

Figure 3.7: Toy classification test data class predictions by the trained EM model. The shaded regions
are the decision boundaries of the individual experts for the samples sent to them by the gate. Red
‘x’ are the mis-classified samples.

Table 3.1: Performance of the models on the test set for the toy classification dataset with 3 experts.
Best result is highlighted.

Experiment
Test
Accuracy

I(E;Y) Hs Hu

output mixture 96.83 1.271 0.166 1.269

stochastic 96.66 1.000 0 1.000

top-1 82.00 0.751 0.160 0.792

top-2 96.33 1.000 0.004 1.000

pre-softmax 94.50 1.518 0.997 1.560

EM 72.16 0 0.019 0.023

3.1.2 Toy regression problem

The toy regression problem was used as an example by Kirsch et al. (2018). The data D

contains samples (xn, yn). xn are generated from a mixture of Gaussians with two compo-
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Table 3.2: Performance of the models on the test set for the toy classification dataset with 5 experts.
Best result is highlighted.

Experiment
Test
Accuracy

I(E;Y) Hs Hu

output mixture 96.83 1.459 0.093 1.457

stochastic 96.83 0.830 0 0.999

top-1 80.50 0.984 0.133 0.983

top-2 97.00 0.933 0.130 0.932

pre-softmax 96.16 1.527 0.831 1.539

EM 97.66 0 0.008 0.009

nents with uniform latent mixture probabilities, p(sn = 1) = p(sn = 2) = 1/2 such that

xn|sn ≈ N (xn|µsn ,
∑

sn
). Depending on the component sn, the target yn is generated by lin-

early transforming the input xn according to:

yn =

Rxn if sn = 1

Sxn otherwise

(3.1)

Figure 3.8: Toy regression data. Left plot shows the x data and the right plot shows the y data which
is the rotated and translated x data

R is a rotation matrix and S is a scaling matrix. Figure 3.8 shows xn and yn data using the

following R and S matrices:

R =

 0.9081 0.4188

−0.4188 0.9081


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S =

0.0603 0.0000

0.0000 0.9340


Each modular network consists of 2 experts each with experts having one hidden layer with 2

inputs and 2 outputs. This corresponds to a 2× 2 weight matrix corresponding to the rotation

and scaling matrices. The goal of the experiment was to see how well each type of modular

network model learns the rotation and scaling matrices. The biases are set to zero and their

gradient is not computed. Only the weights are learnt. The gate has the same architecture

as the expert but both weights and biases are learnt. After training we see that one expert’s

weights are similar to R and the other to S. So the gate decomposes the task using the experts.

The learnt weights of the experts for the EM, output mixture (in the regression problem the

output mixture and pre-softmax models are the same) and stochastic models are:

Expectation Maximization Model

Expert 1 weights

W1 ≈ R =

 0.9081 0.4188

−0.4188 0.9081


Expert 2 weights

W2 ≈ S =

0.0603 −0.0000
0.0000 0.9340


Output Mixture Model

Expert 1 weights

W1 ≈ R =

 0.9136 0.4152

−0.4201 0.9089


Expert 2 weights

W2 ≈ S =

0.0588 −0.0005
0.0002 0.9340


Stochastic Model

Expert 1 weights

W1 ≈ R =

 0.9235 0.4045

−0.4213 0.9104


Expert 2 weights

W2 ≈ S =

 0.0625 0.0019

−0.0003 0.9337


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Figure 3.9 shows that each expert learns one of the two task parameters.

(a) MoE output mixture model

(b) MoE stochastic model

(c) MoE EM model

Figure 3.9: Comparison of original/predicted data and experts used for subtasks
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3.1.3 MNIST and FashionMNIST Datasets

Let us proceed to the more complex problem of MNIST (LeCun and Cortes, 2010) digits

classification and again check if the cases are satisfied. We used ≈ 10, 000 training samples and

2, 000 test samples containing all the digits. Each expert and the gate is a simple convolutional

network with a single convolutional layer and 2 hidden layers with ReLU activation. From

Figure 3.10a, the confusion matrix of the predictions by the MoE output mixture model, we see

that the model accuracy is good. However, from the expert utilization table in Figure 3.10b,

we see that only 3 of 5 experts are used with expert 5 used for most of the samples. For some

digits, such as, 7 and 9, both experts 4 and 5 are selected. So, for the more complex problem,

the gate task decomposition is not interpretable as it does not achieve either case (1) or (2).

In Figures 3.10a and 3.10b the legend on the right shows the color gradient corresponding to

the number of samples per class in the test dataset approximately. For the MNIST dataset we

selected 2, 000 test samples of 10 digits and each digit has ≈ 200 samples.

(a) (b)

Figure 3.10: (a) Confusion matrix of predictions of the MNIST test data by MoE output mixture model
(b) Experts used by the gate for classification of each digit.

Since the MNIST dataset is homogeneous, as it contains only digits images, we thought we

should try with a dataset that contains clearly very different sets of images, and see if the gate

can better decompose the task between the experts. We created such a dataset by combining

the FashionMNIST (FMNIST) Xiao et al. (2017) and MNIST datasets. We chose 6 classes,

[t−shirt, trouser, pullover, dress, coat, sandal], from FMNIST and 6 classes,[4, 5, 6, 7, 8, 9],

from MNIST and combined the data to create one dataset of 12 classes. For combined MNIST

and FMNIST data we selected 2, 000 test samples of 12 classes and we have ≈ 166 samples per

class. This is reflected in the legend on the right of the Figures 3.11a and 3.11b.



3.2. Does an intuitive task decomposition actually exist and can the gate learn it? 29

(a) (b)

Figure 3.11: (a) Confusion matrix of predictions of the combined FMNIST and MNIST test data by
MoE output mixture model (b) Experts used by the gate for classification of each image.

Figures 3.11b shows that the gate is still not able to do a good task decomposition as it uses

expert 5 to learn class sandal from FMNIST and digit 4 from MNIST and expert 1 to learn

a mix of classes from FMNIST and MNIST. Hence, we see that a good task decomposition in

MoEs is not always guaranteed even in a seemingly trivial case where the images of FMNIST

and MNIST are clearly quite different from each other. Let us now analyse the possible reasons

for bad task decompositions.

3.2 Does an intuitive task decomposition actually exist

and can the gate learn it?

The simplest method to train an MoE is to train the gate and experts at the same time,

‘end-to-end’, by gradient descent. During training the gating probabilities, for each sample,

determine which experts get trained on that sample. That is, gating interacts with training and

in effect experts are trained only when they are chosen by the gating network. Existing MoE

architectures trained ‘end-to-end’ do not decompose the task intuitively among the experts as

we saw in Section 3.1.3. The question we are trying to answer is: does the ‘end-to-end’ MoE

training find a gating decomposition that performs well for the task, even though it seems

surprisingly counter-intuitive? Or, is the search for gating decomposition simply bad?

We designed an experiment, summarized in Figure 3.12, to answer these questions. What we

need for this is: (1) a gate trained with un-trained experts, using the original MoE model,

resulting in unintuitive task decomposiiton as in Section 3.1.3; and (2) a gate trained with

experts pre-trained with custom intuitively plausible partitions of the dataset. We then use
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Figure 3.12: Experiment designed to analyse if intuitive task decompositions have better performance.
Refer to the Table 3.3b for results of the experiment.

each of these two pre-trained gates to train a new set of experts with the same decomposition of

the task as the experts the gates were trained with. This enables us to check the performance

of the gate task decompositions for an unintuitive partition vs an intuitive partition.

Firstly, let us define a more intuitive task decomposition for the MNIST dataset and determine

if the gate can learn this decomposition. We split the 10 digits into 5 sets of 5 pairs of digits,

such as {[0, 7], [1, 9], [2, 4], [3, 8], [5, 6]}. We used 5 experts, each of which was trained with only

data samples of one of the 5 pairs of digits. So the pairs of digits are distributed equally among

the experts.

(a) MNIST (b) FMNIST and MNIST

Figure 3.13: Expert selection table of models trained with experts pre-trained on custom splits of
the classes: (a) MNIST: {[0,7], [1,9], [2,4], [3,8], [5,6]} and (b) combined FMNIST and MNIST: {[t-
shirt,Trouser], [Pullover,Dress],[Coat,Sandal],[4,5],[6,7],[8,9]}

We then fixed the parameters of these pre-trained experts and trained the gate with them.
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From the gate expert selection table in Figure 3.13a, we see that the gate can indeed learn to

select the correct expert for each digit and hence learn an intuitive task decomposition. Figure

3.13b shows the gate expert selection table for one split of the combined FMNIST and MNIST

dataset, trained in the same way as with the MNIST dataset. We again see that the gate can

learn to select the correct expert for each class in the combined dataset.

We then fixed the parameters of the pre-trained gate and trained the MoE model with the

pre-trained gate and new experts. Both the pre-trained gates decomposed the tasks exactly as

in Figures 3.10b and 3.13a respectively for the MNIST dataset and similarly as Figures 3.11b

and 3.13b for the combined FMNIST and MNIST dataset. Hence we see that a gate can learn

an intuitive task decomposition.

Let us now check the training loss and test error of the models with intuitive and unintuitive

task decompoitions. Tables 3.3a and 3.3b show the average training loss and average test error,

both averaged over 5 runs of the experiment for MNIST and combined FMNIST and MNIST

datasets. We see that the model trained with pre-trained experts has a lower training loss than

the model trained with un-trained experts and has a lower error rate for both datasets.

Table 3.3: Comparison of average training loss and test error for MoE models: (a) with inequitable
task decompositions; and (b) with equitable task decompositions, from the experiment detailed in
Figure 3.12, for MNIST and combined MNIST and FMNIST datasets.

Models
Test
Error

Train
Loss

(a) 0.12 0.19

(b) 0.08 0.05

(a) MNIST

Models
Test
Error

Train
Loss

(a) 0.15 0.28

(b) 0.10 0.13

(b) MNIST and FMNIST

The experiment shows that intuitive task decompositions do exist with much better perfor-

mance. The gate, however, does not learn them when both experts and the gate are jointly

trained ‘end-to-end’. The gate initially finds a poorly performing and unintuitve task decom-

position and reinforces that throughout the training. If we have prior knowledge of a good task

decomposition then it would be best to pre-train the experts on these sub-tasks and then train

the gate. Typically we do not know a plausible task decomposition and it is what we wish to

find, but ‘end-to-end’ MoE training fails to do so, even in this simple case.
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3.3 What are the pathological cases of task decomposi-

tion?

3.3.1 Only some experts are used

We have already seen this case in Figures 3.10b and 3.11b where only a few experts are used.

In end-to-end expert and gate training we saw in Section 3.1.3 that there is no incentive for the

gate to distribute samples equitably to all the experts. Hence, some experts could be starved.

This could also occur when more experts than subtasks are used.

3.3.2 One expert learns all the classes

This is a known problem and Kirsch et al. (2018) refer to it as module collapse. This occurs

when the gate selects the same expert for all the samples. In this case the MoE output does

not depend on the gate. There is no true modularity as this is the same as the single model.

Module collapse is observed when: (1) a single expert is complex enough to solve the task, the

gate sends all the samples to a single expert. Simpler experts encourage the gate to choose

different experts for the different subtasks as shown by Chen et al. (2022); (2) one expert is

better initialised than the other experts and learns faster and hence is assigned all the samples

by the gate.

3.3.3 One expert learns only one class

This case has not been previously explicitly reported and occurs when an expert classifies all

inputs as the same class. In this case the gate does all the classification and it is not really

modular as the experts are trivial.

All these cases suggest poor allocation of data samples to the experts, by the gate, subsequently

leading to either over use or starvation of experts. For interpretability and transferability we

need to avoid all these cases.
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3.4 Summarizing the Issues with MoE Training

The simplest way to train a MoE is to train the gate and experts at the same time, ‘end to end’,

by gradient descent, but this can lead to poor results. This is because gating interacts with

training. Hence, poor gating decisions lead to two issues that significantly affect interpretability

and the ability to perform transfer learning: (1) Poor allocation of training examples leading

to poor expert utilization and starvation; and (2) unpredictable task decomposition.

Ideally we want the gating network to learn a meaningful decomposition of the state space, and

the experts to learn simpler functions adapted for particular circumstances. During training

the gating probabilities on each example determine which experts get trained on that example:

in effect experts are trained only when they are chosen by the gating network. Unfortunately

this leads to the simplest expert learning early and grabbing the training data, starving more

complex expert models of training data.

In recent work, Shazeer et al. (2017) proposed a soft constraint approach by adding a regular-

ization term to the loss that measures the batch-wise coefficient of variation of the gate output

probabilities to avoid module collapse. They define an importance factor, I, over all samples

X in a batch, computed in Equation 3.2, that measures the relative importance of the expert

to the batch.

I = Importance(X) =
∑
x∈X

px (3.2)

where px is the gate probability distribution for sample x ∈ X. X is the number of samples in

the batch.

The goal was to assign equal importance to all experts for a batch which is achieved by enforcing

a low coefficient of variation (CV) of the importance, I, values by minimizing the loss term in

Equation 3.3. wimportance is a hand tuned parameter. CV = σ/µ, where σ is the standard

deviation (std) and µ is the mean computed on I .
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Limportance(X) = wimportance · CV (I)

= wimportance ·
std(I)

mean(I)
(3.3)

Figure 3.14a shows that original MoE model suffers from module collapse where expert 1 very

quickly gets all the samples while the other experts starve. Figure 3.14b shows that with

Limportance regularization, we have an equitable distribution of samples to the experts. Both

models have the same architecture and were trained with 10,000 samples of MNIST data.

(a) (b)

Figure 3.14: Distribution of 10,000 MNIST samples by the gate to the experts during training: (a)
without regularization and (b) with Limportance.

The Limportance regularization however simply distributes the samples equally over all available

experts. This may not always be desirable. For example, this method will try to use all experts

while just a few experts may be sufficient for the task. We further discuss this in Chapter 9.

In this thesis we propose novel MoE training algorithms and architectures that improve expert

usage. We use the Limportance as a benchmark regularization.



Chapter 4

Performance Metrics for MoE

Accuracy or error is not sufficient to measure the performance of an MoE as we are also

interested in measuring gating sparsity and expert usage. We will here define the information

theoretic performance metrics we use to analyse the training of the MoE. These metrics measure

how well the gate distributes the samples to the experts and how well it utilizes the experts.

4.1 Measuring Gating Sparsity

Conditional computation is an important feature of the MoE. Sparser gating probabilities are

desirable because they result in better conditional computation. The sparsity per sample can

be measured by the average per sample expert selection entropy, Hs, in Equation 4.1, over a

batch. N is the number of samples in a batch and pi = [pi1, . . . , piM ] are the gate probabilities

for M experts, for each sample i, i ∈ {1, ldots,N}. A low value of Hs indicates sparse gating

probabilites and hence better conditional computation.

Hs =
1

N

N∑
i=1

H(pi) (4.1)

35
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4.2 Measuring Expert Utilization

Ideally we want the sub-tasks of the task to be distributed equitably between the experts to

avoid module collapse. This will require the average gate probabilities for each of the experts,

over all the samples, to be equal. The distribution of the experts over the samples can be

measured by the entropy of the average gate probabilities over all samples in a batch, Hu, as

in Equation 4.2. A high Hu indicates a more equitable gate probability distribution and hence

better utilization of experts. A low Hu indicates unequal utilization of experts. For example,

in the case of module collapse, when all samples get sent to the same expert, that expert’s

average gate probability is 1.0. The probabilities of all the other experts will be zero. This will

result in Hu = 0.

Hu = H

(
1

N

N∑
i=1

pi

)
(4.2)

4.3 Measuring model output dependency on expert se-

lection

We also introduce a new metric to measure the dependency of the class distribution Y on the

gate’s expert selection distribution E. An equitable gate task decomposition among experts

results in a high mutual dependence between Y and E.

In the case of module collapse, one expert does all the work and the gate does not contribute to

solving the task. There is then no dependency between E and Y . In the case where each expert

is assigned just one sub-task, the gate does all the work. There is then a higher dependency

between E and Y . Hence, the more equitable the task distribution between the experts the

higher the dependence between E and Y .

The mutual dependency between E and Y can be measured by computing their mutual informa-

tion, I(E;Y), as shown in Equation 4.3, where H(E) is the marginal entropy of E, H(Y ) is the

marginal entropy of Y and H(E, Y ) is the joint entropy of E, Y . Higher I(E;Y ) values indicate

better dependence between E and Y and subsequently more equitable task decomposition.
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I(E;Y ) ≡ H(E) +H(Y )−H(E, Y ) (4.3)

Since we do not have the true marginal and joint probabilities of E and Y , we compute them

empirically. The sample sizes are large enough to not introduce significant estimation bias.

Mutual information, I(E;Y ), between the class distribution Y and the gate expert distribution

E, can be computed by first computing the count cij, where i ∈ {1 . . . ,M} and j ∈ {1, . . . , K},

M is the number of experts and K is the number of classes in the task. cij is the number of

times expert Ei is selected for samples of class Yj. cij is computed for each expert, for each

class and hence we have an M ×K count matrix C.

Table 4.1: Matrix C of count of number of times Ei is selected for class Yj
Count(E,Y) Y1 . . . YK

E1 c11 . . . c1K
...

...
. . .

...
EM cM1 . . . cMK

From C, we can compute the batchwise joint and marginal probabilities of E, Y in Table 4.2

using Equations 4.4, 4.5 and 4.6, where N is the total number of samples in a batch:

Joint Probabilty P (E, Y ):

P (E=Ei, Y=Yj) = p(Ei, Yj) = cij/N (4.4)

Marginal Probability P (E):

P (E=Ei) = p(Ei) =
K∑
j=1

p(Ei, Yj) (4.5)

Marginal Probability P (Y ):

P (Y=Yj) = p(Yj) =
M∑
i=1

p(Ei, Yj) (4.6)

We can now compute the required entropies in Equation 4.3 from quantities computed in Table

4.2 using Equations 4.7, 4.8, 4.9. Subsequently we can compute the mutual information I(E;Y )
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Table 4.2: Joint and marginal probabilities of E and Y

P (E, Y ) Y1 . . . YK P (Ei)

E1 p(E1, Y1) . . . p(E1, YK)) p(E1)
...

...
. . .

...
...

EM p(EM , Y1) . . . p(EM , YK) p(EM )

P (Yj) p(Y1) . . . p(YK) 1

as in Equation 4.3.

H(E) =
M∑
i=1

−p(Ei) log2 p(Ei) (4.7)

H(Y ) =
K∑
j=1

−p(Yj) log2 p(Yj) (4.8)

H(E, Y ) =
M∑
i=1

K∑
j=1

−p(Ei, Yj) log2 p(Ei, Yj) (4.9)
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Decoupling Training of Experts and

Gating

5.1 Motivation

Module collapse, where only one expert is used, is a result of bad batch distribution by the

gate. The gate’s output, p(ei|xj), is the probability of the sample xj being sent to the expert ei.

The gate quickly starts preferring one well performing expert and starving the other experts.

This prevents a more fair learning opportunity for the experts as we saw in Section 3.3.

The reason for this is that when experts and gate are trained together end-to-end, the gate’s

softmax output of the expert probabilities converges to high probabilities for the preferred

expert and very low probablities for the other experts. This leads to data starvation of the

experts with low gate probabilities, which then results in them not learning anymore.

In order to prevent this hard distribution of samples we propose decoupling the gate and expert

learning by smoothing the gate’s expert probability distribution for learning the experts, but

use the harder distribution to learn the gate. What are hard and soft distributions? We can

illustrate this with an example. Say we have a classification problem with 3 classes. A hard

probability distribution for them would be [0.97, 0.01, 0.02] where the model is very confident

that the class is 1. A soft distribution, on the other hand would be [0.65, 0.15, 0.25]. While

a hard distribution may be desirable for classification, it is not always desirable for the gate’s

39
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expert distribution, especially during initial training when experts are beginning to learn. A

softer gate distribution would provide experts a more equitable initial learning opportunity.

A softer distribution can be achieved by regulating the softmax by applying a temperature T

to its logit input (Hinton et al., 2015). If zi is the logit for class i then the softmax converts it

into a probability pi, using Equation 5.1:

pi =
exp(zi/T )∑
j exp(zj/T )

(5.1)

Normally T is set to 1. Higher value of T produces a softer probability distribution. The

softmax distribution depends on the differences between the logit values. By dividing the logit

with T , we reduce this difference and hence make the distribution softer. For example, let the

logit values be z = [0.7, 0.2, 0.1], then for T = 1, softmax(z/T ) = [0.4640, 0.2814, 0.2546] and

for T = 3, z/T = [0.2333, 0.0667, 0.0333] and softmax(z/T ) = [0.3752, 0.3176, 0.3072]. We see

that with T = 3 the softmax distribution is softer and more equitable than with T = 1.

5.2 Training experts and gate with dual temperature

We will describe the dual temperature training using the output mixture MoE. In Section 2.1.1,

we saw that for the output mixture method, the loss L on which both the gate and experts are

trained end-to-end is computed as in Equation 2.2 when the output of the model is computed

as in Equation 2.1, repeated here again in Equations 5.2 and 5.3 where oi is the output of

expert i, M is the number of experts, pi is the probability of the gate choosing expert i for the

corresponding sample, computed as in Equation 5.1, and y is the target label.

ŷ =
M∑
i=1

pi · oi (5.2)

L = l(y, ŷ) (5.3)

In the dual temperature training we decouple the end-to-end expert and gate training by: (1)

defining a different loss Lg for the gate and Le for the expert using gate probabilities computed
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Algorithm 5.1.1: Dual Temperature Training for Output Mixture Model

Input: D = {(xi, yi) ∈ X × Y}Ni=1,X ∈ Ru

1 epochs ∈ N
2 M ∈ N /* number of experts */

3 K ∈ N /* number of classes */

4 fi : X → RK , i ∈ {1, . . . ,M} /* expert neural network */

5 g : X → RM /* gate neural network */

6 l : Y × R→ R /* loss function */

7 expert optimizer Oe

8 gate optimizer Og

9 T > 1.0
10 Tdecay < 1.0
11 Tdecay start < epochs

Output: g(·), fi(·), i ∈ {1, . . . ,M}, ŷ ∈ RK

12 for epoch = {1, . . . , epochs} do
13 for (x, y) ∈ D do
14 oi ← fi(x), i ∈ {1, . . . ,M} /* expert outputs */

15 z ← g(x) /* gate logit output */

16 p
′
i ←

exp(zi/T )∑
j exp(zj/T )

/* gate softmax output with temperature */

17 pi ← exp(zi)∑
j exp(zj)

/* gate softmax output without temperature */

18 ŷ
′ ←

∑M
i=1 p

′
i · oi /* predicted output for expert loss computation */

19 ŷ ←
∑M

i=1 pi · oi /* MoE predicted output */

20 Le ← l
(
y, ŷ

′)
/* expert loss */

21 Lg ← l (y, ŷ) /* gate loss */

22 compute expert gradients with Le

23 compute gate gradients with Lg

24 update Oe

25 update Og

26 if epoch ≥ Tdecay start then

27 D ←
(

1

(1+Tdecay)

)
· (epoch− Tdecay start)

28 T ← T ∗D
29 end

30 end

31 end

with high and low temperatures as in Equations 5.4 and 5.5 respectively; and (2) have different

optimizers for experts and gate. The expert optimizer only optimizes the expert parameters

and the gate optimizer only optimizes the gate parameters.
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Lg = l(y,
M∑
i=1

pi · oi) where pi =
exp(zi)∑
j exp(zj)

(5.4)

Le = l(y,
M∑
i=1

p
′

i · oi) where p
′

i =
exp(zi/T )∑
j exp(zj/T )

for T > 1 (5.5)

zi is the logit input to the gate’s softmax layer corresponding to the selection of expert i. During

inference the output of the MoE model, ŷ, is computed using T = 1 as in Equation 5.2. The

dual temperature training with output mixture model is summarized in Algorithm 5.1.1.

5.3 Experiments

We evaluate the dual temperature training method on the MNIST LeCun and Cortes (2010)

dataset. We ran the experiments with 5 experts. Details of expert and gate architectures for

MNIST are in Appendix A.1.

All models were trained with Adam optimizer with 0.001 learning rate and 100 epochs. Tem-

peratures used were T = [1.1, 1.2, 1.3, 1.4, 1.5, 2, 4, 6]. Each experimnent was run 10 times.

We first tried with the same temperature for all epochs. Then we tried with temperature decay

after 25 epochs. The temperature decay factor, D, was computed as D = (1/(1 + Tdecay)) ·

(epoch − Tdecay start) where Tdecay is the factor by which we want to decay the temperature.

We used Tdecay = [0.001, 0.01, 0.1]. Tdecay start is the epoch from which the temperature decay

should be applied. The temperature of the next epoch Ti+1 is updated as Ti+1 = Ti ·D, where

Ti is the temperature at the current epoch i,

Figures 5.1 and 5.2 show gate probability distribution per expert over all the samples for the

output mixture model (OMM) and stochastic (STO) model respectively. They show how the

samples are distributed among the experts by the gate while training the model with MNIST

data with different temperatures. We see that as we increase the temperature there is a more

equitable distribution of samples and hence a better expert utilisation. Since the expert and the

gate are training simultaneously, and for each epoch the gate and expert weights are updated

the gate probability distribution is different for T = 1 when training with different temperatures
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for the expert. Hence we see a difference in the top and bottom left figures in Figures 5.1 and

5.2 for T = 1.

(a) T=2

(b) T=6

Figure 5.1: Gate probability distribution during training for output mixture model for MNIST dataset.
The figure on the left is the gate probability distribution using softmax computed with T = 1 with
which the gate is trained. The figure on the right is the gate probability distribution using softmax
computed with T > 1 on which the experts are trained.

We compared the performance of the dual temperature training method on output mixture model

and stochastic model with the output mixture model with Limportance regularization. Figures 5.3

and 5.4 compare the training and validation errors for single model, output mixture model,

stochastic model, output mixture model with Limportance regularization and MoE with dual temp

training with and without decay for output mixture model and stochastic model. For Limportance

we used wimportance = [0.2, 0.4, 0.6, 0.8, 1.0].

We see that dual temperature training and validation errors with temperature decay are better

than without decay. Dual temperature training with decay for output mixture model and

stochastic model outperforms single model and output mixture model without regularization for

all T > 1. Output mixture model and stochastic model with dual temperature training with

decay have comparable performance to output mixture model with Limportance regularization for

higher values of T .

We now compare the expert usage with dual temperature training. Figure 5.5 shows the
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(a) T=2

(b) T=6

Figure 5.2: Gate probability distribution during training for stochastic model for MNIST dataset.
The figure on the left is the gate probability distribution using softmax computed with T = 1 with
which the gate is trained. The figure on the right is the gate probability distribution using softmax
computed with T > 1 on which the experts are trained.

Figure 5.3: Comparing training error for MoE without regularization, MoE with Limportance regu-
larization for wimportance I = 0.2 − 1.0 and dual temperature training with and without decay for
temperature T = 1.1− 6 and Tdecay = [0.001, 0.01, 0.1] for output mixture model and stochastic model
with MNIST dataset.

expert usage entropy, computed using Equation 4.2, over 10 runs for output mixture model,

output mixture model with Limportance regularization and training output mixture model and

stochastic model with dual temperature. We can see that output mixture model with Limportance

regularization has the best expert usage. We do see that with dual temperature training the
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Figure 5.4: Comparing validation error for MoE without regularization, MoE with Limportance reg-
ularization for wimportance I = 0.2 − 1.0 and dual temperature training with and without decay for
temperature T = 1.1− 6 and Tdecay = [0.001, 0.01, 0.1] for output mixture model) and stochastic model
with MNIST dataset.

expert usage does improve over output mixture model especially for higher temperatures and

there is no module collapse.

Figure 5.5: Comparing expert usage entropy for MoE without regularization, MoE with Limportance

regularization for wimportance I = 0.2− 1.0 and dual temperature training with and without decay for
temperature T = 1.1 − 6 and Tdecay = [0.001, 0.01, 0.1] for the output mixture model and stochastic
model with MNIST dataset.

Figure 5.6 shows the per sample expert usage entropy as computed in Equation 4.1. The lower

the entropy the better as it shows higher conditional computation. We see that per sample

entropy for training with dual temperature is lower than training with Limportance regularization.

But this could be because training with dual temperature has a lower expert usage.
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Figure 5.6: Comparing per sample expert usage entropy for MoE without regularization, MoE with
Limportance regularization for wimportance I = 0.2−1.0 and dual temperature training with and without
decay for temperature T = 1.1 − 6 and Tdecay = [0.001, 0.01, 0.1] for the output mixture model and
stochastic model with MNIST dataset.

Figure 5.5 shows the expert selection and model output joint distribution mutual information

computed as in Equation 4.3. Higher mutual information is better as indicates a dependency

between expert and model output implying a better task distribution between the experts. We

see that Limportance regularization has higher expert and output mutual information than train-

ing with dual temperature. But both output mixture model and stochastic model have higher

mutual information than output mixture model without regularization for higher temperatures.

Figure 5.7: Comparing mutual information for MoE without regularization, MoE with Limportance

regularization for wimportance I = 0.2− 1.0 and dual temperature training with and without decay for
temperature T = 1.1− 6 and Tdecay = [0.001, 0.01, 0.1] for output mixture model and stochastic model
with MNIST dataset.

We compared the performance of: (1) single model which has the same architecture as one
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expert; (2) original output mixture MoE; (3) stochastic MoE; (4) top-1 MoE; (5) top-2 MoE;

(6) output mixture MoE with Limportance regularization for different values of wimportance; (7)

output mixture MoE with dual temperature training with decay; and (8) stochastic MoE with

dual temperature training with decay.

Table 5.1: Performance on the MNIST test set of the models with the minimum validation error with
5 experts. Best result is highlighted.

Experiment
Test
Accuracy

I(E;Y) Hs Hu

single model 92.43 ± 0.031 NA NA NA

output mixture MoE 95.83 ± 0.039 1.568 0.034 1.570

stochastic MoE 96.13 ± 0.021 1.569 0 1.569

top-1 MoE 94.29 ± 0.039 1.000 0 1.000

top-2 MoE 96.67 ± 0.017 1.552 0.029 1.570

output mixture MoE with Limportance 96.87 ± 0.008 2.280 0.053 2.322

dual temp output mixture model with decay 96.31 ± 0.020 1.937 0.089 1.937

dual temp stochastic model with decay 96.39 ± 0.006 1.919 0.017 1.513

Table 5.1 shows that dual temperature training outperforms single and output mixture MoE

without regularization and is comparable to stochastic, top-1 and top-2 MoEs. It results in

better batch distribution between the experts. But the Limportance regularization outperforms

the dual temperature training method.

Let us now see what the gate and the experts are learning. Figure 5.8a shows the gate expert

selection table per class for MNIST test dataset with 5 experts using the output mixture model

with temperature decay. We use the model with the best validation error. We see that experts

2, 4 and 5 were selected by the gate for respective classes. The table shows the samples of the

digits on which each expert was mostly trained on and has specialized for. For example, expert

2 was trained on samples of digits 1, 4, 6, 7, 8. This is further reiterated by the predictions for

each test sample by expert 2 in its confusion matrix shown in Figure 5.8c. The figure shows

that for the digits 1, 4, 6, 7 and 8, expert 2 predicts the samples correctly with few errors. But

for the other digits, that it is not trained on, it predicts one of the digits it has specialized in.

Hence, it fails on digits it is not trained on as expected.

Figures 5.8c, 5.8e and 5.8f show that experts 2, 4 and 5 are all trained on samples of digit 7.

The gate chooses each of them for different samples of digit 7. Figures 5.8b and 5.8d show

that experts 1 and 3 have been trained on only samples of digit 0. This indicates that the gate

stopped selecting them after a few epochs of training or never.
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(a) Expert selection table per class with 5 experts

(b) Confusion matrix of expert 1
predictions on all data

(c) Confusion matrix of expert 2
predictions on all data

(d) Confusion matrix of expert 3
predictions on all data

(e) Confusion matrix of expert 4
predictions on all data

(f) Confusion matrix of expert 5
predictions on all data

Figure 5.8: (a) Expert selection table showing the experts selected per class during inference
with MNIST test data with output mixture model with dual temperature training with decay.
(b),(c),(d),(e),(f) Confusion matrix of predictions of each of the 5 experts for the MNIST test data.

Figure 5.9a shows the gate expert selection table per class for MNIST test dataset with 5

experts using the Stochastic Model with temperature decay. We use the model with the best

validation error. Figures 5.9b, 5.9c, 5.9d, 5.9e and 5.9f show the confusion matrix of predictions

for the test samples for the corresponding experts. We see similar results as we saw for output

mixture model in Figure 5.9.
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(a) Expert selection table per class with 5 experts

(b) Confusion matrix of expert 1
predictions on all data

(c) Confusion matrix of expert 2
predictions on all data

(d) Confusion matrix of expert 3
predictions on all data

(e) Confusion matrix of expert 4
predictions on all data

(f) Confusion matrix of expert 5
predictions on all data

Figure 5.9: (a) Expert selection table showing the experts selected per class during inference with
MNIST test data with stochastic model with dual temperature training with decay. (b),(c),(d),(e),(f)
Confusion matrix of predictions of each of the 5 experts for the MNIST test data.

5.4 Discussion

The results show that dual temperature training improves expert utilization, performance and

prevents module collapse compared to the original MoE models. Dual temperature training

however, does not have a significant performance improvement over MoE with Limportance reg-

ularization and top-2 models. A better temperature decay schedule could potentially improve

performance. We also see that the experts are trained on samples of a subset of classes and

specialize in them.
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No-Gate Expert Training

6.1 Motivation

We have thus far seen that end-to-end gate and expert training results in poor and unintuitive

distribution of the input space among the experts without additional regularization. Decoupling

the gate and expert training, in Chapter 5, clearly improved the expert utilization. It also

resulted in experts getting a fair distribution of samples during initial rounds of training.

However, it still left some experts unused and was outperformed by the efficient Limportancee

regularization. This is because we are using the gate to learn both a good task distribution to

train the expert during training and to select the best expert for a sample during inference.

The gate is crucial for conditional computation during training and inference. However, during

training, if the gate made a mistake and selected a poorly performing expert for the sample,

that expert will be trained on that sample instead of the expert that actually performed better

on the sample. What if we removed the gate altogether when training the experts? What if we

just select the expert that performs best on a sample and train that expert during training?

We can then use reverse distillation to add a gate and train it with the pre-trained experts.

This ensures conditional computation during inference. Hence, we could completely separate

the expert and gate training.

We introduce two algorithms for no-gate expert training called loudest expert in Section 6.2

and peeking expert in Section 6.3. In the loudest expert algorithm we select the expert with

50
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the lowest prediction entropy for a sample. This is its estimate of its expected loss for that

sample. If oiy is the predicted probability for the correct class y by expert i, then log(oiy) is

the loss of the expert. Hence, prediction entropy is the expected sum of the loss. We call it the

loudest expert method because the expert with the lowest prediction entropy wins, that is, the

one that is most confident or loudest, but not necessarily correct.

In the peeking expert algorithm we select the expert with the lowest surprisal. Surprisal of

an expert is − log2(oiy), where oiy is the prediction probablity of the expert i for the correct

target class y for a sample. Lower surprisal implies a high probability of the correct class. It

is called the peeking expert method as we peek at the correct predictions for the sample during

training. Since we do not have the correct class during inference we could train a gate with

these pre-trained peeking experts. In effect we then use the gate for soft switching between the

trained experts during inference for conditional computation and not for task decomposition

among the experts during training.

Our experiments, in Section 6.4 show that the peeking expert method outperforms benchmark

methods for classification problems on all metrics. For the experiments we ran it results in

the cleanest task decomposition of all methods we have tried. Both the no-gate methods we

instroduced are best suited for classification tasks and is what we have tested them for. But

with some modifications we should be able to apply them for regression tasks.

6.2 Loudest expert algorithm

In this method we both train the experts and do inference without a gate. During training,

we compute the prediction entropy, H(oi), from the expert prediction oi = [oi1 . . . oiK ] for each

expert i, per sample, as shown in Equation 6.1. K is the number of classes. We compute the

distribution of the entropies over all the experts for the sample to get a weight vector w using

softmin, as shown in Equation 6.2, where softmin(x) = softmax(−x). M is the number of

experts. We use softmin because H(oi) is the expected loss and hence lower the H(oi) the

better. We use w to weigh the gradient contribution of each expert when computing the loss,

L, shown in Equation 6.3. Gradient is not computed with respect to the weight vector itself. y

is the target class.
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H(oi) = −
K∑
k=1

oik · log(oik) (6.1)

w = softmin( [H(o1), . . . , H(oM)]/T ) (6.2)

L =
M∑
i=1

wi · l(y,oi) (6.3)

T in Equation 6.2 is the temperature factor that smooths the softmin, as we discussed in

Section 5.1. A high T , especially at the beginning of the training, makes the weights more

equal, allowing all experts to be trained on the samples. This prevents module collapse. A low

T , during the later part of the training, ensures a high weight for only one expert. For each

sample we select the expert that has the lowest prediction entropy for that sample. This results

in only that expert getting trained, specializing it for the sample.

Inference is done by selecting the output of the expert with the lowest prediction entropy, H(oi),

for the sample as in Equations 6.4 and 6.5, where ŷ is the MoE model output.

I = argmin
i→M

[H(o1), . . . , H(oM)] (6.4)

ŷ = oI (6.5)

Experiments in Section 6.4.1 show that the test accuracy for loudest expert method is higher

than the output mixture and top-1 MoE methods but lower than that of stochastic and top-K

models. Though there is a good expert usage with high Hu, the task distribution to the experts

is not intuitive or clean as indicated by the low mutual information I(E;Y ). This motivated

us to try the second no-gate expert training method described in the following Section 6.3.

Algorithm 6.2.1 provides the pseudocode for training loudest expert model.
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Algorithm 6.2.1: Training Loudest Expert Model

Input: D = {(xi, yi) ∈ X × Y}Ni=1,X ∈ Ru

1 epochs ∈ N
2 M ∈ N /* number of experts */

3 K ∈ N /* number of classes */

4 fi : X → RK , i ∈ {1, . . . ,M} /* expert neural network */

5 l : Y × R→ R /* loss function */

6 expert optimizer Oe

7 T ≥ 1.0
Output: fi(·), i ∈ {1, . . . ,M}, ŷ ∈ RK

8 for epoch = {1, . . . , epochs} do
9 for (x, y) ∈ D do

10 oi ← fi(x), i ∈ {1, . . . ,M} /* expert outputs */

11 H(oi)← −
∑K

k=1 oik · log(oik), i ∈ {1, . . . ,M} /* expert prediction entropy */

12 w ← softmin( [H(o1), . . . , H(oM)]/T ) /* expert entropy distribution */

13 L←
∑M

i=1wi · l(y, oi), y ∈ Y /* MoE loss, also expected expert loss */

14 I ← argmin
i→M

[H(o1), . . . , H(oM)] /* expert with min prediction entropy */

15 ŷ ← oI /* MoE predicted output */

16 compute expert gradients with L

17 update Oe

18 end

19 end

6.3 Peeking expert algorithm

The loudest expert is the most confident and specialized expert for the sample. But its prediction

may be incorrect. So, instead of computing the prediction entropy, why not just compute the

per sample surprisal using the correct prediction for the sample, since we have the correct

predictions during training? Surprisal, S, is − log2(oiy), where oiy is the prediction probablity

of an expert i, for a sample, for the correct target class y. We then select the expert with the

lowest surprisal and train only that expert for that sample thereby specialising the expert for

the sample.

During inference, however, we do not have the correct predictions. But we have the pre-trained

experts that are already specialized for corresponding samples. We need a gate that can select

the right expert for a sample during inference. So, we train a gate, with the same data and the

pre-trained specialized experts. Hence this is a two-step training method. In the first step, we

train the experts without the gate using per sample surprisal. In the second step, we train the
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gate using the experts trained in the first step, which is then used as the inference model. The

steps are as follows:

Step 1 Training experts without a gate using surprisal: We first train the experts without

a gate. To train the experts we compute the per sample surprisal, Si, corresponding to

the target class y, for that sample, for expert i. M is the number of experts. The MoE

output for a sample, ŷ, is then the output of the expert with the lowest surprisal for the

correct prediction of the sample as computed in Equations 6.6 to 6.8.

Si = − log2(oiy), i ∈ {1, . . . ,M} (6.6)

I = argmin
i=1→M

[S1, . . . , SM ] (6.7)

ŷ = oI (6.8)

L = l(y, ŷ) (6.9)

The MoE is trained using loss L computed with the MoE predicted output ŷ as in

Equation 6.9. Hence, gradient is computed only for the selected expert for the selected

sample. This results in each expert specializing for some samples and hence some classes.

Our experiments in Section 6.4.2 show that experts specialize to specific samples very

quickly. For the CIFAR-10 dataset the experts specialize in less than 20 epochs. Hence,

the first step of training is very quick.

Step 2 Training a gate with pre-trained experts from Step 1: Since during inference

we do not have the target class we cannot use Equations 6.6, 6.7 and 6.8 for inference.

Instead we train a gate with the experts trained in Step 1, that is, we train an MoE model

with a gate and the pre-trained experts from Step 1 using the same data on which the

experts were trained in Step 1. The expert parameters are fixed for some epochs in the

beginning so the gate learns to switch to the expert which specialises in the corresponding

sample. After this initial training the expert parameters are no longer fixed so the gate

and experts are trained end-to-end for the rest of the epochs. We used the output mixture,

stochastic and top-k MoE architectures to train the gate to compare the performances.

Our experiments in Section 6.4.2 show that the gate learns to select the correct expert
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when trained with the output mixture, stochastic and top-k and performs better than all

the benchmark models.

Algorithms 6.3.1 and 6.3.2 provide the pseudocode for the two-step training.

Algorithm 6.3.1: Step 1: Training peeking experts without a gate using surprisal

Input: D = {(xi, yi) ∈ X × Y}Ni=1,X ∈ Ru, yi ∈ {yi1, . . . , yiK}
1 epochs ∈ N
2 M ∈ N /* number of experts */

3 K ∈ N /* number of classes */

4 fi : X → RK , i ∈ {1, . . . ,M} /* expert neural network */

5 l : Y × R→ R /* loss function */

6 expert optimizer Oe

Output: fi(·), i ∈ {1, . . . ,M}, ŷ ⊂ RK

7 for epoch = {1, . . . , epochs} do
8 for (x, y) ∈ D do
9 oi ← fi(x), i ∈ {1, . . . ,M} /* expert outputs */

10 Si ← − log2(oiy), i ∈ {1, . . . ,M} /* correct prediction surprisal */

11 I ← argmin
i=1→M

[S1, . . . , SM ] /* expert with min surprisal */

12 ŷ ← oI /* MoE predicted output */

13 L← l(y, ŷ) /* MoE loss that is also the selected expert loss */

14 compute expert gradients with L

15 update Oe

16 end

17 end

6.4 Experiments

We evaluate our methods on the MNIST (LeCun and Cortes, 2010) and CIFAR-10 (Krizhevsky,

2009) datasets. For both datasets we ran the experiments with 5 and 10 experts. For the loudest

expert method we used only the experts. For the peeking expert method we first trained the

experts and then trained one gate with the pre-trained experts. Details of expert and gate

architectures for MNIST and CIFAR-10 are at Appendix A.1 and A.3.

All models were trained with Adam optimizer with 0.001 learning rate. We used 100 epochs

for the MNIST dataset and 200 epochs for the CIFAR-10 dataset. Each experiment was run

10 times for both datasets.
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Algorithm 6.3.2: Step 2: Training a gate with pre-trained peeking experts from Step
1 using output mixture model

Input: D = {(xi, yi) ∈ X × Y}Ni=1,X ∈ Ru, yi ∈ {yi1, . . . , yiK}
1 epochs ∈ N
2 epochssplit ∈ N /* epochs at which to split the step 2 training */

3 M ∈ N /* number of experts */

4 K ∈ N /* number of classes */

5 fi : X → RK , i ∈ {1, . . . ,M} /* experts trained in Step 1 */

6 g : X → RM /* gate neural network */

7 l : Y × R→ R /* loss function */

8 optimizer O
Output: fi(·), g(·), i ∈ {1, . . . ,M}, ŷ ∈ RK

9 for epoch = {1, . . . , epochs} do
10 for (x, y) ∈ D do
11 oi ← fi(x), i ∈ {1, . . . ,M} /* expert outputs */

12 if epoch < epochssplit then
13 Freeze the weights of the experts /* Do not train experts */

14 end
15 else
16 Unfreeze the weights of the experts /* Train experts */

17 end
18 p← g(x) /* gate output */

19 ŷ ←
∑M

i=1 pi · oi /* MoE predicted output */

20 L← l(y, ŷ) /* MoE loss */

21 if epoch > epochssplit then
22 compute expert gradients with L /* start training experts */

23 end
24 compute gate gradients with L

25 update O

26 end

27 end

6.4.1 Results for loudest expert method

We compared: (1) single model equivalent to a single expert; (2) output mixture MoE; (3)

stocastic MoE; (4) top-1 MoE; (5) top-2 MoE; (6) output mixture MoE with Limportance regu-

larization; (7) top-2 MoE with Limportance regularization; and (8) loudest expert method.

The experiment results for MNIST dataset with 5 experts are in Table 6.1. The experiment

results for CIFAR-10 dataset with 5 experts are in Table 6.2. The results with 10 experts for

MNIST and CIFAR-10 datasets are in Tables B.1 and B.2 in Appendix .

The smoothing temperature for MNIST was varied over the 100 epochs with the schedule
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T = [10.0 ∗ 25, 1.0 ∗ 25, 0.01 ∗ 25, 0.001 ∗ 25], that is, the temperature was changed at 25

epoch intervals. For CIFAR-10 the smoothing temperature T was varied at intervals of 50 as

T = [10.0 ∗ 50, 1.0 ∗ 50, 0.01 ∗ 50, 0.001 ∗ 50] over 200 epochs. The results for each method of

training, in the tables, are performance metrics computed on the model with the best validation

error for the corresponding model type. The standard deviation of the test accuracy over the

10 runs of the selected model is also reported.

Table 6.1: Performance of the loudest expert model. Results are inference on MNIST test data with
models with minimum validation error with 5 experts. Best result is highlighted.

Experiment
Test
Accuracy

I(E;Y) Hs Hu

single model 92.43 ± 0.031 NA NA NA

output mixture MoE 95.83 ± 0.039 1.568 0.034 1.570

stochastic MoE 96.13 ± 0.021 1.569 0 1.569

top-1 MoE 94.29 ± 0.039 1.000 0 1.000

top-2 MoE 96.67 ± 0.017 1.552 0.029 1.570

output mixture MoE with Limportance 96.87 ± 0.008 2.280 0.053 2.322

top-2 MoE with Limportance 97.26 ± 0.004 2.022 0.071 2.322

loudest expert method 94.98 ± 0.003 1.284 0 2.314

Table 6.2: Performance of the loudest expert model. Results are inference on CIFAR-10 test data with
models with minimum validation error with 5 experts. Best result is highlighted.

Experiment
Test
Accuracy

I(E;Y) Hs Hu

single model 42.74 ± 0.011 NA NA NA

output mixture MoE 70.44 ± 0.016 1.381 0.066 1.392

stochastic MoE 73.63 ± 0.021 1.889 0 1.960

top-1 MoE 67.46 ± 0.015 0.961 0 0.977

top-2 MoE 78.89 ± 0.025 1.845 0.259 1.957

output mixture MoE with Limportance 77.61 ± 0.024 2.315 0.195 2.314

top-2 MoE with Limportance 79.90 ± 0.029 2.317 0.296 2.316

loudest expert method 72.82 ± 0.006 0.699 0 2.303

Tables 6.1 and 6.2 show that the test accuracy of loudest expert method is better than the

single model and top-1 method but not as well as the output mixture, stochastic and top-2

methods. The top-2 method with Limportance regularization outperforms all the models. But

we see that the loudest expert method has a high Hu which indicates good expert usage. This

is also reiterated by the equitable test sample distribution in Figures 6.1b and 6.1d for MNIST

dataset and Figures 6.2b and 6.2d for CIFAR-10 dataset.

However, the expert selection tables for test samples in Figures 6.1a and 6.1c for MNIST

dataset and Figures 6.2a and 6.2c for CIFAR-10 show that the distribution of the samples
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(a) Expert selection table per class with 5 experts
(b) Test sample distribution with 5 ex-
perts

(c) Expert selection table per class with 10 experts
(d) Test sample distribution with 10 ex-
perts

Figure 6.1: (a), (c) Expert selection tables showing the experts selected per class during inference
with MNIST test data with loudest expert method. (b),(d) MNIST test sample distribution per
expert during inference.

to the experts is not an intuitive and clean decomposition. This is also indicated by the low

mutual information, I(E;Y ). Hence, though we improve the expert usage, the resulting sample

distribution is not optimal.

Figure 6.3 shows the sample distribution during training for MNIST and CIFAR-10 datasets

using loudest expert method with 10 experts. We can clearly see the effect of the temperature

schedule, T , on the sample distribution during training. During the initial epochs when T is

high all experts get equal number of samples as they are all equally likely to be selected. As

the temperature is decreased the experts start specialising for different samples. This explains

the high expert usage of this method.

6.4.2 Results for peeking expert method

We trained the MoE model in two steps. In Step 1 we trained the experts using surprisal for 20

epochs. In Step 2 we reverse distilled a gated MoE with the pre-trained experts from Step 1.
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(a) Expert selection table per class with 5 experts
(b) Test sample distribution with 5 ex-
perts

(c) Expert selection table per class with 10 experts
(d) Test sample distribution with 10 ex-
perts

Figure 6.2: (a), (c) Expert selection tables showing the experts selected per class during inference
with CIFAR-10 test data with loudest expert method. (b),(d) CIFAR-10 test sample distribution per
expert during inference

(a) (b)

Figure 6.3: Sample distribution during training with loudest expert model with 10 experts: (a) for
MNIST dataset with temperature schedule T = [10.0∗25, 1.0∗25, 0.01∗25, 0.001∗25] over 100 epochs
and (b) CIFAR-10 dataset with with temperature schedule T = [10.0 ∗ 50, 1.0 ∗ 50, 0.01 ∗ 50, 0.001 ∗ 50]
over 200 epochs.

The gate was trained for 100 epochs for MNIST dataset and 200 epochs for CIFAR-10 dataset.

We report the performance results of the resulting reverse distilled gated MoE models.
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We compared: (1) single model equivalent to a single expert; (2) output mixture MoE; (3)

stochastic MoE; (4) top-1 MoE; (5) top-2 MoE; (6) output mixture MoE with Limportance regu-

larization; (7) top-2 MoE with Limportance regularization; (8) reverse distilled gated MoE, using

pre-trained peeking experts, trained with output mixture; (9) reverse distilled gated MoE, using

pre-trained peeking experts, trained with stochastic MoE ; (10) reverse distilled gated MoE, using

pre-trained peeking experts, trained with top-1 model ; (11) reverse distilled gated MoE, using

pre-trained peeking experts, trained with top-2 model.

The experiment results for MNIST dataset with 5 experts are in Table 6.3. MNIST results with

10 experts are in Table B.3 in Appendix B.1.3. The results for each method of training, in the

table, are performance metrics computed using the model with the best validation error for the

corresponding model type. The standard deviation of the test accuracy over the 10 runs of the

selected model is also reported.

Table 6.3: Performance of the peeking expert model. Results are inference on MNIST test data with
models with minimum validation error with 5 experts. Best result is highlighted.

Experiment
Test
Accuracy

I(E;Y) Hs Hu

single model 92.43 ± 0.031 NA NA NA

output mixture MoE 95.38 ± 0.021 1.488 0.031 1.490

stochastic MoE 96.20 ± 0.028 1.405 0 1.516

top-1 MoE 94.83 ± 0.335 1.357 0 1.357

top-2 MoE 96.25 ± 0.007 1.663 0.074 1.912

output mixture MoE with Limportance 96.87 ± 0.008 2.280 0.053 2.322

top-2 MoE with Limportance 97.26 ± 0.004 2.022 0.071 2.322

reverse distilled gate, with peeking experts, trained with
output mixture MoE

97.09 ± 0.002 2.237 0.013 2.237

reverse distilled gate, with peeking experts,
trained with stochastic MoE

97.34 ± 0.002 2.175 0 2.176

reverse distilled gate, with peeking experts, trained with
top-1 MoE

96.58 ± 0.011 2.231 0 2.231

reverse distilled gate, with peeking experts, trained with
top-2 MoE

97.19 ± 0.015 2.235 0.015 2.239

The experiment results for CIFAR-10 dataset with 5 experts are in Table 6.4. CIFAR-10 results

with 10 experts are in Table B.4 in Appendix B.1.4.

Tables 6.3 and 6.4 show that the peeking expert method for both datasets outperforms all

the benchmark methods, including Limportance regularization, in terms of test accuracy, expert

usage Hu and gate sparsity Hs. The performance improvement for the MNIST dataset is not

significantly high. But the performance for the CIFAR-10 dataset was improved significantly by
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Table 6.4: Performance of the peeking expert model. Results are inference on CIFAR-10 test data
with models with minimum validation error with 5 experts. Best result is highlighted.

Experiment
Test
Accuracy

I(E;Y) Hs Hu

single model 42.74 ± 0.011 NA NA NA

original MoE 70.44 ± 0.016 1.381 0.066 1.392

stochastic MoE 73.63 ± 0.021 1.889 0 1.960

top-1 MoE 67.46 ± 0.015 0.961 0.044 0.977

top-2 MoE 78.89 ± 0.025 1.845 0.259 1.957

output mixture MoE with Limportance 77.61 ± 0.024 2.315 0.195 2.314

top-2 MoE with Limportance 79.90 ± 0.029 2.317 0.296 2.316

reverse distilled gate, with peeking experts, trained with
output mixture MoE

83.60 ± 0.012 2.249 0.028 2.249

reverse distilled gate, with peeking experts,
trained with stochastic MoE

84.80 ± 0.013 2.243 0 2.243

reverse distilled gate, with peeking experts, trained with
top-1 MoE

66.21 ± 0.039 0 0 0

reverse distilled gate, with peeking experts, trained with
top-2 MoE

85.33 ± 0.010 2.245 0.118 2.245

≈ 5% from the best performing benchmark method of top-2 MoE with Limportance regularization.

(a) 5 experts (b) 10 experts

Figure 6.4: Expert selection table per class for MNIST test data using peeking experts after Step 1
training with 5 and 10 experts.

(a) 5 experts (b) 10 experts

Figure 6.5: Expert selection table per class for CIFAR-10 test data using peeking experts after Step 1
training with 5 and 10 experts.

Let us now see what each expert learns after each step of training. Figures 6.4 and 6.5 show the

experts selected per class, using peeking experts after Step 1 training, for MNIST and CIFAR-

10 test samples respectively. We see that there is a clean task specific distribution of samples

across the experts.
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Figure 6.6 shows the validation performance during Step 1 of peeking expert training. It shows

that the peeking experts specialize in < 20 epochs for both MNIST and CIFAR-10 datasets.

Hence, Step 1 training is very quick.

(a) MNIST (b) CIFAR-10

Figure 6.6: Validation accuracy over 20 epochs of Step 1 training for (a) MNIST and (2) CIFAR-10
datasets during Step 1 no-gate training of peeking experts for 10 experts.

We now look at what the gate learns after Step 2, the reverse distillation of the gate with the

pre-trained peeking experts from Step 1, with different methods of MoE training. We use the

CIFAR-10 dataset for our analysis. Appendix B.1 has similar results for MNIST dataset.

Figures 6.8, 6.12, 6.9 and 6.10 show the experts selected by the gate, in the reverse distilled

gated MoE models trained with the pre-trained peeking experts using output mixture model,

stochastic, top-1 and top-2 models respectively with 5 experts. We can see that the gate does

learn to select the correct experts for the samples with output mixture, stochastic and the top-2

methods. We see module collapse with top-1 method. The model trained with output mixture,

stochastic and top-2 methods outperforms top-1 method.

(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure 6.7: Gate expert selection table of the reverse distilled gated MoE model trained in Step 2 of
the peeking expert method from the pre-trained experts in Step 1, shown in Figure 6.5a for CIFAR-10
dataset. Gate is trained using output mixture model.

Figures 6.11, 6.12, 6.13 and 6.14 show that with 10 experts all 4 MoE training methods, used to
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(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure 6.8: Gate expert selection table of the reverse distilled gated MoE model trained in Step 2 of
the peeking expert method from the pre-trained experts in Step 1, shown in Figure 6.5a for CIFAR-10
dataset. Gate is trained using stochastic model.

(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure 6.9: Gate expert selection table of the reverse distilled gated MoE model trained in Step 2 of
the peeking expert method from the pre-trained experts in Step 1, shown in Figure 6.5a for CIFAR-10
dataset. Gate is trained using output top-1 model.

(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure 6.10: Gate expert selection table of the reverse distilled gated MoE model trained in Step 2 of
the peeking expert method from the pre-trained experts in Step 1, shown in Figure 6.5a for CIFAR-10
dataset. Gate is trained using output top-2 model.

reverse distill the gated MoE, perform well. But output mixture and stochastic methods have

the best test accuracy, use the experts equitably, and result in a cleaner decomposition.
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(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure 6.11: Gate expert selection table of the reverse distilled gated MoE model trained in Step 2 of
the peeking expert method from the pre-trained experts in Step 1, shown in Figure 6.5b for CIFAR-10
dataset. Gate is trained using output mixture model.

(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure 6.12: Gate expert selection table of the reverse distilled gated MoE model trained in Step 2 of
the peeking expert method from the pre-trained experts in Step 1, shown in Figure 6.5b for CIFAR-10
dataset. Gate is trained using stochastic model.

(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure 6.13: Gate expert selection table of the reverse distilled gated MoE model trained in Step 2 of
the peeking expert method from the pre-trained experts in Step 1, shown in Figure 6.5b for CIFAR-10
dataset. Gate is trained using top-1.
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(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure 6.14: Gate expert selection table of the reverse distilled gated MoE model trained in Step 2 of
the peeking expert method from the pre-trained experts in Step 1, shown in Figure 6.5b for CIFAR-10
dataset. Gate is trained using top-2.

6.5 Discussion

We introduced two no-gate expert training algorithms: (1) loudest expert algorithm; and (2)

peeking expert algorithm. Both algorithms avoid module collapse and result in equitable sample

distribution to the experts. However, the loudest expert method does not result in a clean task

decomposition, while the peeking expert method does result in a clean task decomposition.

Scaling the temperature for loudest expert, that is, finding the correct schedule is difficult. It

is possible that with a good schedule we can improve its performance.

The peeking expert method outperforms the loudest expert method and all the benchmark MoE

methods with regularization. It is a more intuitive method of training an MoE model that

completely separates the training of the experts and the gate by using the domain knowledge

of the target labels for training the experts. We see that the reverse distillation of the gate

with the pre-trained peeking experts results in the gate learning to use the correct experts for

samples that are specialised for those samples. The current limitation for both these methods

are that they are best suited for classification problems. We believe that it can be adapted

for regression and unsupervised datasets by designing the appropriate loss. For example, for

regression problem we can simply select the expert that has the least mean squared error for

the sample.
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Attentive Gating MoE Architecture

7.1 Motivation

In the current MoE architectures, gate computations are entirely separate from the expert and

hence may be duplicating the effort. Both the gate and the expert are trained together end-to-

end. The expert distribution predicted by the gate for a batch does not depend on the expert

predictions on that batch. This is to allow conditional computation during training. Both the

expert and gate learn sample classification and expert distribution, respectively, based on the

same input distribution. It then seems reasonable not to duplicate this learning.

We designed a novel intuitively plausible MoE architecture, shown in Figure 7.1, that uses the

expert’s computations to compute the gating distribution. The proposed algorithm computes

the gate’s expert distribution using a scoring method similar to that proposed by Bahdanau

et al. (2015), from the gate and expert hidden layer outputs. Hidden layers are the pre-output

layers. This is effectively asking the question, which experts should the gate attend to

for a given sample?

In the attentive gating architecture the experts have the same architecture as in other MoE

architectures. But we also have access to the expert’s logit layer before applying the softmax

layer. The gate also has the same architecture except that the output is just the logit layer,

that is the pre-softmax layer. During training we add the additional weights Wk and Wq shown

in Figure 7.1. Hence, there are additional parameters in the attentive gating architecture. The

66
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Figure 7.1: Attentive gating MoE architecture with 2 experts and a gate. The hidden layer outputs
of the experts, he1 and he2, are used to compute the keys, K. The hidden layer output of the
gate, hg, is used to compute the query Q. The gate probability, p, is computed from Q and K as
softmax(Q1×h ·KT

M×h/
√
h).

gate’s expert distribution for a given sample is computed as the attention score from the gate

and experts hidden layer outputs for the given batch. Once the gate expert distribution is

computed we can use any existing expert aggregation method to compute the MoE output.

Since the computation of the gate distribution depends on the experts hidden layer outputs on

the batch, the output of all experts needs to be computed during training. Gradient is still

only computed for those experts that are selected by the gate. Since this is expensive during

inference, when we desire conditional computation, we can learn a new gated MoE model,

through distillation, from the trained attentive gate model. The resulting distilled gated MoE

model is then used for inference and allows conditional computation. During distillation we

use the same output aggregation method used while training the attentive gate model. Hence,

though attentive gate model has addtional weights added during training, they can be removed

for inference. It is also convenient that we can use all the existing MoE methods to train the

attentive gate model.

Our experiments, in Section 7.3, show that the attentive gate model performs better than the

benchmark models without regularizations. It also results in more equitable expert usage and

cleaner task decomposition.
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7.2 Training the attentive gate MoE architecture

Let us now dive into the details of the attentive gate architecture. During training, the gate’s

output is the current query or token of interest and the expert hidden layer outputs are the

sequence of tokens that are attended to. The gate’s hidden output, hg1×h
(subscripts are the

dimensions of the vectors and matrices just for clarity), is used to compute the Query, Q1×h,

as in Equation 7.1 and the expert hidden outputs, hei1×h
, are used to compute the Keys, Ki1×h

,

as in Equation 7.2, for expert i where i = [1, . . . ,M ]. M is the number of experts. h is the

size of the hidden layers of the experts and the gate. Wqh×h
and Wkh×h

are the query and key

weight matrices.

The gate probability distribution, p, is then computed as in Equation 7.3:

Q1×h = hg1×h
·Wqh×h

(7.1)

Ki1×h
= hei1×h

·Wkh×h
, i ∈ 1, . . . ,M (7.2)

p = softmax

(
Q1×h ·KT

M×h√
h

)
(7.3)

ŷ =
M∑
i=1

pi · oi (7.4)

L = l(y, ŷ) (7.5)

The gate probabilities p = [p1, . . . , pM ] are used to select the corresponding expert and to

compute the MoE output and loss while training. We can use any of the existing methods to

compute the MoE output such as output mixture model, stochastic model or top-k model. If

for example, we choose the output mixture model then the MoE output ŷ and loss L, during

training, will be computed as in Equations 7.4 and 7.5, where oi is the prediction output of

expert i. Algorithm 7.2.1 provides pseudocode for training the attentive gate model.
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Algorithm 7.2.1: Attentive Gate Training with Output Mixture Model

Input: D = (xi, yi) ∈ X × Y}Ni=1,X ∈ Ru

1 epochs ∈ N
2 M ∈ N /* number of experts */

3 K ∈ N /* number of classes */

4 h ∈ N /* hidden layer size */

5 fi : X → Rh, i ∈ {1, . . . ,M} /* expert neural network */

6 di : fi(x)→ RK , x ∈ X , i ∈ {1, . . . ,M} /* dense layer of expert */

7 g : X → Rh /* gate neural network */

8 Wk ⊂ Rh×h /* key weight matrix */

9 Wq ⊂ Rh×h /* query weight matrix */

10 l : Y × R→ R /* loss function */

11 optimizer O /* gate, expert, Wk and Wq optimizer */

Output: g(·), fi(·), di(·), i ∈ {1, . . . ,M},Wk,Wq, ŷ ⊂ RK

12 for epoch = {1, . . . , epochs} do
13 for (x, y) ∈ D do
14 hei1×h

← fi(x), i ∈ {1, . . . ,M} /* expert hidden outputs */

15 oi ← softmax
(
di
(
hei1×h

))
, i ∈ {1, . . . ,M} /* expert outputs */

16 hg1×h
← g(x) /* gate hidden layer output */

17 Ki1×h
← hei1×h

·Wkh×h
, i ∈ {1, . . . ,M} /* key */

18 Q1×h ← hg1×h
·Wqh×h

/* query */

19 p← softmax

(
Q1×h·KT

M×h√
h

)
/* gate probability distribution */

20 ŷ ←
∑M

i=1 pi · oi /* MoE predicted output */

21 L← l(y, ŷ) /* MoE loss */

22 compute expert, gate, Wk and Wq gradients with L

23 update O

24 end

25 end

7.2.1 Distilling attentive gating MoE model for conditional compu-

tation

In the attentive gate architecture expert computations are used by the gate during feed forward.

This does not allow for conditional computation during inference. To address this we distill

the attentive gate model, trained as above, into one of the MoE models such as output mixture

model, stochastic model or top-k models. We remove the weightsWk andWq and add additional

output and softmax layers to the gate to predict the expert distribution. We fix the parameters

of the experts learnt using the attentive gate, initialise the gate of the new MoE model with the

trained gate parameters of the attentive gate model and proceed to train the new MoE model
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and gate. Our experiments, in Section 7.3, show that the distilled models perform as well as

the attentive gate models they are distilled from, for all the training methods.

7.3 Experiments

We evaluate our methods on the MNIST (LeCun and Cortes, 2010) and CIFAR-10 (Krizhevsky,

2009) datasets. For both datasets we ran the experiments with 5 and 10 experts. Details of

expert and gate architectures for MNIST and CIFAR-10 are at Appendix A.1 and A.3.

All models were trained with Adam optimizer with 0.001 learning rate. We used 100 epochs

for MNIST dataset and 200 epochs for CIFAR-10 dataset. Each experiment was run 10 times

for both datasets.

We compared: (1) single model which has the same architecture as one expert; (2) output

mixture MoE; (3) stochastic MoE; (4) top-1 MoE; (5) top-2 MoE; (6) output mixture MoE with

attentive gating; (7) stochastic MoE with attentive gating MoE; (8) top-1 MoE with attentive

gating MoE; (9) top-2 MoE with attentive gating MoE; (10) distilled MoE with output mixture

MoE; (11) distilled MoE with stochastic MoE; (12) distilled MoE with top-1 MoE; and (13)

distilled MoE with top-2 MoE.

Table 7.1: Performance of the model with minimum validation error, for attentive gate and distilled
attentive gate models, on the test set for MNIST dataset with 5 experts. Best result for benchmark
models, attentive gate models and distilled attentive gate models are highlighted.

Experiment
Test
Accuracy

I(E;Y) Hs Hu

single model 92.43 ± 0.031 NA NA NA

original MoE 95.83 ± 0.039 1.568 0.034 1.570

stochastic MoE 96.13 ± 0.021 1.569 0 1.569

top-1 MoE 94.29 ± 0.039 1.000 0 1.000

top-2 MoE 96.67 ± 0.017 1.552 0.029 1.570

attentive output mixture gate MoE 96.51 ± 0.010 2.119 0.006 2.173

attentive stochastic gate MoE 96.80 ± 0.008 1.970 0 2.119

top-1 with attentive gate MoE 95.92 ± 0.038 1.966 0 1.969

top-2 with attentive gate MoE 96.43 ± 0.005 2.000 0.026 2.173

distilled MoE with output mixture MoE 96.42 ± 0.012 2.165 0.008 2.182

distilled MoE with stochastic MoE 96.55 ± 0.009 2.164 0 2.190

distilled MoE with top-1 MoE 96.05 ± 0.153 2.130 0 2.130

distilled MoE with top-2 MoE 96.74 ± 0.007 1.770 0.017 1.870
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Table 7.2: Performance of the model with minimum validation error, for attentive gate and distilled
attentive gate models, on the test set for CIFAR-10 dataset with 5 experts. Best result for benchmark
models, attentive gate models and distilled attentive gate models are highlighted.

Experiment
Test
Accuracy

I(E;Y) Hs Hu

single model 42.74 ± 0.011 NA NA NA

output mixture MoE 70.44 ± 0.015 1.381 0.066 1.392

stochastic MoE 73.63 ± 0.021 1.889 0 1.960

top-1 MoE 67.46 ± 0.015 0.961 0.044 0.977

top-2 MoE 78.89 ± 0.025 1.845 0.26 1.957

attentive output mixture gate MoE 65.29 ± 0.061 0 0 0

attentive stochastic gate MoE 81.26 ± 0.032 2.141 0 2.270

top-1 with attentive gate MoE 66.46 ± 0.038 0 0 0

top-2 with attentive gate MoE 83.35 ± 0.005 2.222 0.108 2.321

distilled MoE with output mixture MoE 65.43 ± 0.235 0 0 0

distilled MoE with stochastic MoE 81.38 ± 0.035 2.153 0 2.277

distilled MoE with top-1 MoE 64.42 ± 0.277 0 0 0

distilled MoE with top-2 MoE 82.87 ± 0.004 2.269 0.081 2.321

The experiment results for MNIST dataset are in Table 7.1. The experiment results for CIFAR-

10 dataset are in Table 7.2. The results for each method of training, in the tables, are the

performance metrics computed on the test set, with the the model that has the minimum

validation error for the corresponding model type. The standard deviation of the test accuracy

over the 10 runs of the selected model is also reported.

Tables 7.1 and 7.2 show that the attentive gating model performs better than the benchmark

MoE models for both MNIST and CIFAR-10 datasets. They also show that the distilled models

perform as well as the attentive gate models they are distilled from with better expert usage.

From Tables 7.1 and B.5 (Appendix B.2.3) we see that for MNIST dataset the MoE model with

10 experts performs better than with 5 experts. From Tables 7.2 and B.6 (Appendix B.2.8)

we see that for CIFAR-10 dataset the MoE model with 10 experts performs better than with 5

experts for some methods of training.

The performance improvement for the MNIST dataset is not significantly high. But the per-

formance for the CIFAR-10 dataset was improved significantly by 4% from the best performing

benchmark method of top-2 MoE.

Let us now look at the task decomposition over the experts by the gate after training using the

attentive gate model. Figure 7.2 shows the experts used during inference, on the test set, using

attentive gate model trained with stochastic method for MNIST dataset with 5 experts. It is
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the best performing model for MNIST dataset in Table 7.1. Results with 5 and 10 experts with

different methods of training the attentive gating model are in Appendix B.2.1 and B.2.3. Note

that this is the model with the attention weights. We see that attentive gate model results in

clean task decompositions with good expert usage, without regularizations, for MNIST dataset

for all methods of training with both 5 and 10 experts.

(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure 7.2: Gate expert selection table of the attentive gate model trained with 5 experts using
stochastic MoE on MNIST test dataset. It is the best performing attentive gate model for MNIST
dataset.

Figure 7.3 shows the experts used during inference, on the test set, using attentive gate model

trained with top-2 method for CIFAR-10 dataset with 5 experts. It is the best performing

attentive gate model for CIFAR-10 in Table 7.2. Results with 5 and 10 experts for all methods

of training the attentive gate model are in Appendix B.2.5 and B.2.8. We see that there is

equitable and clean task decomposition when trained with stochastic method but not with

output mixure and top-1 methods.

(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure 7.3: Gate expert selection table of the attentive gate model trained with 5 experts using top-2
MoE on CIFAR-10 test dataset. It is the best performing attentive gate model for CIFAR-10 dataset.

Figure 7.4 shows the experts used during inference, on the test set, using the distilled gate

model trained from the attentive gate model with stochastic method for MNIST dataset with
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5 experts. It is the model distilled from the best performing attentive gate model for MNIST

dataset in Table 7.1. Results with 5 and 10 experts with different methods of training the

distilled model are in Appendix B.2.2 and B.2.4. We see that the distilled model also results

in equitable and clean task decompositions without regularizations for MNIST dataset for all

methods of training.

(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure 7.4: Gate expert selection table of the distilled model trained with 5 experts using stochastic
MoE on MNIST test dataset. It is the model distilled from the best performing attentive gate model
for MNIST dataset.

Figure 7.5 shows the experts used during inference, on the test set, using the distilled gate

model trained from the attentive gate model with top-2 method for CIFAR-10 dataset with

5 experts. It is the model distilled from the best performing attentive gate for CIFAR-10 in

Table 7.2. Results with 5 and 10 experts for all methods of training the distilled model are in

Appendix B.2.5 and B.2.8. We see that the distilled model also results in equitable and clean

task decompositions without regularizations for CIFAR-10 dataset for all methods except of

training except for the top-1 method.

(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure 7.5: Gate expert selection table of the distilled model trained with 5 experts using top-2 MoE
on CIFAR-10 test dataset. It is the model distilled from the best performing attentive gate model for
CIFAR-10 dataset.
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7.4 Discussion

The above experiments show that training with attention results in both cleaner task decom-

positions to the experts and a more equitable expert usage without additional regularizations.

We also see that the performance with the attentive gate model is better than the benchmark

MoE methods. Attentive gating mechanism does not replace the benchmark methods and reg-

ularizations. It only changes how the gate probablities are computed. Hence the attentive gate

model can be trained with any of the benchmark methods.

While there is no conditional computation during feedforward during attentive gate MoE train-

ing. There is still conditional weight updates during training depending on the method of com-

puting loss. Hence, the method is still computationally efficient. Distilling the attentive gate

model enables conditional computation during inference.



Chapter 8

Expert Loss Gating MoE Architecture

8.1 Motivation

Yet another criterion to train MoE is for the gate to predict the log loss of the experts for a

given sample instead of just predicting probabilities of selecting an expert. We can then use

these predicted losses as a measure by which to select the expert. This will allow us to train

the expert and gate separately.

When the gate just predicts probabilities for expert selection, it can have very large values for

some experts. If there is a small increase in the expert performance, a large change in gate

probabilities is required to select that expert. But if the gate predicts the expert losses then

it can easily learn the change in expert performance quickly. This is the reason why it is not

difficult to learn the expert loss. The gate now predicts a more meaningful quantity, the expert

loss, than just the expert distribution over the samples which we have seen does not lead to a

globally optimal solution.

The experts have the same architecture as that of the previous models. The gate also has the

same architecture except for the last layer where we do not apply a softmax layer as the gate

predicts log loss and not expert distribution. Our experiments show that the expert loss gate

MoE performs better than all benchmark MoE architectures for some datasets.
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8.2 Training the gate to predict expert log loss

In expert loss gate MoE we separate training of the experts and the gate. The output of the

gate, g, is the log loss, ogi , of the corresponding expert i. During training and inference, the

MoE output, ŷ, is the output, oeI, of the expert I with the maximum predicted log loss, as in

Equation 8.2. Note that the gate predicts log loss and not negative log log loss. Hence, the

best expert is the one with maximum log loss (which is also the minimum negative log loss).

I = argmax
i=1→M

ogi (8.1)

ŷ = oeI (8.2)

The selected experts are trained with loss, L as shown in Equation 8.5, where y is the target

class. For each expert output, oei, we also compute its per sample log loss, Lei, as shown in

Equation 8.3 for the ith expert and true class y. oiy is the predicted probability for the true

label y by expert i. The gate is trained with loss Lg, shown in Equation 8.4, to minimise the

sum of the absolute difference between the predicted log loss, ogi, for the ith expert and the

true computed log loss for that expert, Lei.

Lei = log(oiy), i ∈ {1, . . . ,M} (8.3)

Lg =
M∑
i=1

|ogi − Lei| (8.4)

L = l(y, ŷ) (8.5)

(8.6)

During training we need to compute the loss of each expert to train the gate. Hence there is

no conditional computation during feed forward during training. But since only the selected

expert’s gradient is computed there is conditional computation in back propagation. There is

conditional computation during inference as we select only one expert, that has the least loss,

as predicted by the gate. Algorithm 8.2.1 summarizes the training with expert loss gate.
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Algorithm 8.2.1: Training with expert loss gate

Input: D = {(xi, yi) ∈ X × Y}Ni=1,X ∈ Ru}
1 epochs ∈ N
2 M ∈ N /* number of experts */

3 K ∈ N /* number of classes */

4 fi : X → RK , i ∈ {1, . . . ,M} /* expert neural network */

5 g : X → RM /* gate neural network */

6 l : Y × R→ R /* loss function */

7 gate optimizer Og

8 MoE optimizer O
Output: g(·), fi(·), i ∈ {1, . . . ,M}, ŷ ⊂ RK

9 for epoch = {1, . . . , epochs} do
10 for (x, y) ∈ D do
11 oei ← fi(x), i ∈ {1, . . . ,M} /* expert outputs */

12 og ← g(x) /* gate output */

13 I ← argmax
i=1→M

ogi /* expert with min loss */

14 ŷ ← oeI /* MoE predicted output */

15 Lei ← log(oiy), y ∈ Y , i ∈ {1, . . . ,M} /* expert log loss */

16 Lg ←
∑M

i=1 |ogi − Lei| /* gate loss */

17 L← l(y, ŷ), y ∈ Y /* MoE loss and also expert loss */

18 compute gate gradients with Lg

19 compute expert gradients witj L

20 update O
21 update Og

22 end

23 end

8.3 Experiments

We evaluate our methods on the MNIST LeCun and Cortes (2010) and CIFAR-10 Krizhevsky

(2009) datasets. For both datasets we ran the experiments with 5 and 10 experts. Details of

expert and gate architectures for MNIST and CIFAR-10 are in Appendix A.1 and A.3.

All models were trained with Adam optimizer with 0.001 learning rate. We used 100 epochs

for MNIST dataset and 200 epochs for CIFAR-10 dataset. Each experiment was run 10 times

for both datasets.

We compared: (1) single model which has the same architecture as one expert; (2) original

MoE output mixture MoE; (3) stochastic MoE; (4) top-1 MoE; (5) top-2 MoE; (6) expert loss

gating MoE.
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Tables 8.1 and 8.2 show results for MNIST and CIFAR-10 datasets with 5 experts. Results for

both datasets with 10 experts are in Tables B.7 and B.8 in Appendix B.3.

Table 8.1: Performance on the test set by the expert loss gate model with the minimum validation
error for MNIST dataset with 5 experts. Best result is highlighted.

Experiment
Test
Accuracy

I(E;Y) Hs Hu

single model 92.43 ± 0.031 NA NA NA

output mixture MoE 95.83 ± 0.039 1.568 0.034 1.570

stochastic MoE 96.13 ± 0.021 1.569 0 1.569

top-1 MoE 94.29 ± 0.039 1.000 0 1.000

top-2 MoE 96.67 ± 0.017 1.552 0.029 1.570

expert loss gate MoE 93.87 ± 0.0120 .673 0 0.998

Table 8.2: Performance on the test set by the expert loss gate model with the minimum validation
error for CIFAR-10 dataset with 5 experts. Best result is highlighted.

Experiment
Test
Accuracy

I(E;Y) Hs Hu

single model 42.74 ± 0.011 NA NA NA

output mixture MoE 70.44 ± 0.016 1.381 0.066 1.392

stochastic MoE 73.63 ± 0.021 1.889 0 1.960

top-1 MoE 67.46 ± 0.015 0.961 0 0.977

top-2 MoE 78.89 ± 0.025 1.845 0.259 1.957

expert loss gate MoE 76.68 ± 0.052 1.611 0 1.666

Tables 8.1 and 8.2 show that for both datasets with 5 experts the expert loss gate MoE performs

better than some of the benchmark MoEs but not as well as the top-2 MoE. However, Table

B.8 shows that for CIFAR-10 dataset with 10 experts the expert loss gate MoE performs better

than all the bechmark models. Hence the expert loss gate MoE could potentially work very

well for some datasets.

(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure 8.1: Gate expert selection table of the expert loss gate model on MNIST test dataset. Model
is trained with 5 experts.

Let us now see how the task is distributed across the experts by the gate using expert gate
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(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure 8.2: Gate expert selection table of the expert loss gate model on CIFAR-10 test dataset. Model
is trained with 5 experts.

(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure 8.3: Gate expert selection table of the expert loss gate model on MNIST test dataset. Model
is trained with 10 experts.

(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure 8.4: Gate expert selection table of the expert loss gate model on CIFAR-10 test dataset. Model
is trained with 10 experts.

loss MoE. Figures 8.1 and 8.2 show the gate expert selection table when the expert loss gate,

trained with 5 experts, is used to perform inference on the corresponding test dataset. We see

that, for both datasets, very few experts are used. We could potentially improve the expert

usage with a soft constraint which we will look into in the future.
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Figures 8.3 and 8.4 show the gate expert selection table when the expert loss gate model, trained

with 10 experts, is used to do inference on the corresponding test dataset. We see that for both

datasets the expert usage has improved. But some experts are favored more than the others.

8.4 Discussion

The results from the experiments show that the performance of the expert loss gate MoE

varies over datasets and the number of experts. It beats all the benchmark models without

regularizations for some datasets. The expert loss gate MoE does not use the experts optimally.

As observed earlier, we could increase expert usage through carefully crafted soft contrains. We

hope to look into this in the future.
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Gating with Sample Similarity

9.1 Motivation

Previous results have shown that end-to-end training, of gate and experts, does not distribute

the samples equitably among the experts. Hence, there is a need for soft constraints to guide

the gate to optimally distribute samples to the experts. In Section 3.4 we saw that the soft

constraint, Limportance proposed by Shazeer et al. (2017), just aims at an equal sample distribu-

tion to all the available experts. This is not necessarily always desirable. For example, we may

not want an equal distribution of samples to the experts for an imbalanced dataset.

We propose an intuitive data-driven soft regulatization, Ls, based on the properties of the

samples in the dataset. It is reasonable to assume that similar samples have similar feature

distributions. Our hypothesis here is that, routing similar samples to the same expert and dis-

similar samples to different experts will ensure cleaner and more equitable task decomposition.

It provides flexibility to incorporate domain knowledge into the training. Similarity measures

are however task and sample dependent. The simplest measure to use is the Euclidean distance

between the samples.

Our experiments, detailed in Section 9.3, show that Ls regularization performs as well as or

better than Limportance regularization, and additionally uses less experts for similar performance.
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9.2 Sample similarity based soft regularization Ls

We describe our Ls approach using a distance measure d(x, x′), for pairs of samples x, x′ ∈ X,

where X is a batch of size N . Any reasonable similarity measure d(·) might work.

We compute a same expert allocation term, S(x, x′), for each pair of samples, which is a measure

of similar samples x and x′ being sent to the same expert, as shown in Equation 9.2. We also

compute a different experts allocation term,D(x, x′), for each pair of samples, which is a measure

of dissimilar samples x and x′ being sent to different experts, as shown in Equation 9.3.

Ls is the combined optimization of the similar and dissimilar expert allocation terms S(x, x′)

and D(x, x′), as shown in Equation 9.1, such that, S(x, x′) is minimised and D(x, x′) is max-

imised as the sample distance, d(x, x′), increases as shown in Equations 9.2 and 9.3 respectively.

M is the number of experts in the model, e, e′ ∈ EM are the experts assigned to samples x, x′

respectively and βs, βd are tunable hyperparameters.

Ls(X) =
1

(N2 −N)

[ ∑
x,x′∈X

βs · S(x, x′)− βd ·D(x, x′)
]

(9.1)

S(x, x′) =
1

M

∑
e

p(e|x) · p(e|x′) · d(x, x′) (9.2)

D(x, x′) =
1

(M2 −M)

∑
e ̸=e′

p(e|x) · p(e′|x′) · d(x, x′) (9.3)

Hence, Ls allows the gate to learn expert selection probabilities, p(e|x), based on sample simi-

larity. As sample similarity between samples x, x′ decreases, we want the probablity that they

be allocated to the same expert to also decrease, that is, p(e|x) · p(e|x′) should be small, while

the probablity that they be allocated to different experts should increase, that is, p(e|x)·p(e′|x′)

should be large.

9.3 Experiments

We evaluate our methods on the MNIST LeCun and Cortes (2010) and CIFAR-10 Krizhevsky

(2009) datasets. For both datasets we ran the experiments with 5 and 10 experts. Details of
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expert and gate architectures for MNIST and CIFAR-10 are at Appendix A.1 and A.3.

All models were trained with Adam optimizer with 0.001 learning rate. We used 100 epochs

for MNIST dataset and 200 epochs for CIFAR-10 dataset. Each experiment was run 10 times

for both datasets.

For the MNIST dataset theLs was computed using Euclidean distance between the original

MNIST images after flattening them into 1-D from original 2-D images. For CIFAR-10 dataset

the Euclidean distance between the original images leads to poor performance. So we first

trained a WideResNet (WRN)1 (Zagoruyko and Komodakis, 2017) model with the full CIFAR-

10 training data to learn the representations for the samples. WRN is a much faster training

and more accurate residual network. We then compute the Euclidean distance between the

representations of the samples produced by the trained WRN model. We found that the

performance results improved significantly with the WRN representations of the CIFAR-10

training samples. Note that the representations were used only to compute Ls and not as an

input to the experts or gate.

Table 9.1: Performance with Limportance and Ls regularizations of models with minimum validation
error on the test set for MNIST dataset with 5 experts. Best performance with Limportance and Ls are
highlighted.

Experiment
Test
Accuracy

I(E;Y) Hs Hu

output mixture MoE with Limportance 96.87 ± 0.008 2.280 0.053 2.322

top-2 MoE with Limportance 97.26 ± 0.004 2.022 0.071 2.322

output mixture MoE with Ls 96.74 ± 0.009 1.877 0.048 1.986

top-2 MoE with Ls 97.06 ± 0.007 1.828 0.034 1.838

output mixture with attentive gate MoE with
Limportance

96.73 ± 0.005 2.321 0.006 2.321

top-2 with attentive gate MoE with Limportance 97.00 ± 0.003 2.183 0.020 2.322

attentive gate MoE with Ls 96.76 ± 0.004 2.249 0.004 2.249

top-2 with attentive gate MoE with Ls 96.80 ± 0.005 2.156 0.022 2.313

distilled MoE with output mixture MoE with
Limportance

96.77 ± 0.005 2.310 0.009 2.320

distilled MoE with top-2 MoE with Limportance 96.93 ± 0.025 2.244 0.019 2.321

distilled MoE with output mixture MoE with Ls 97.09 ± 0.005 2.251 0.007 2.250

distilled MoE with top-2 MoE with Ls 96.80 ± 0.020 2.148 0.023 2.312

We compared: (1) output mixture MoE with Limportance regularization for different values of

wimportance; (2) top-2 MoE with Limportance regularization for different values of wimportance; (3)

output mixture MoE with Ls regularization for different values of βs and βd; (4) top-2 with Ls

1https://github.com/xternalz/WideResNet-pytorch

https://github.com/xternalz/WideResNet-pytorch
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regularization for different values of βs and βd; (5) attentive gating with output mixture MoE

and Limportance regularization for different values of wimportance; (6) top-2 with attentive gating

MoE and Limportance regularization for different values of wimportance; (7) attentive gating output

mixture method and Ls regularization for different combinations of values of βs and βd; (8)

top-2 with attentive gating and Ls regularization for different combinations of values of βs, βd;

The experiment results for MNIST dataset with 5 experts are in Table 9.1. The results with 10

experts are in Table B.9. Table 9.1 shows that Limportance and Ls regularization perform almost

equally well with almost the same accuracies for each model type.

Let us now look at the task decompositions with Limportance and Ls for MNIST dataset. We

select the best performing model with Limportance and the best performing model with Ls for

MNIST dataset with 5 and 10 experts.

(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure 9.1: Gate expert selection table of the best performing model with Limportance with 5 experts,
which is the top-2 model trained with Limportance for MNIST test dataset.

(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure 9.2: Gate expert selection table of the best performing model with Ls with 5 experts, which is
the distilled MoE with output mixture model trained with Ls for MNIST test dataset.

The best performing model with Limportance and Ls for MNIST with 5 experts are the top-2

MoE with Limportance, shown in Figure 9.1, and distilled MoE with output mixture MoE with
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Ls, shown in Figure 9.2, respectively. We see that the best performing Ls model with a test

accuracy of 97.09% performs as well as the best performing Limportance model with test accuracy

of 97.26% on the MNIST test dataset with 5 experts.

The gate per class expert selection table and sample distribution plots for Ls in Figure 9.2

show that LS has a high expert usage as is also indicated by a high expert usage entropy, Hu,

in Table 9.1.

(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure 9.3: Gate expert selection table of the best performing model with Limportance with 10 experts,
which is the top-2 model trained with Limportance for MNIST test dataset.

(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure 9.4: Gate expert selection table of the best performing model with Ls with 10 experts, which
is the top-2 attentive gate MoE model trained with Ls for MNIST test dataset.

The best performing model with Limportance and Ls for MNIST with 10 experts are the top-2

MoE with Limportance, shown in Figure 9.3, and top-2 with attentive gate MoE with Ls, shown

in Figure 9.4, respectively. We see that the best performing Ls model with a test accuracy of

97.24% performs as well as the best performing Limportance with test accuracy of 97.83% on the

MNIST test dataset with 10 experts.

The sample distribution plot for Ls in Figure 9.4b also shows that we do not need an equal

sample distribution to the experts to achieve good performance. While the Limportance model
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in Figure 9.3b uses all 10 experts to achieve 97.83% (refer to Table B.9 in Appendix B.4.1) test

accuracy, the Ls model achieves 97.79% (refer to Table B.9 in Appendix B.4.1) test accuracy

with just 8 experts.

The experiment results for CIFAR-10 dataset with 5 experts are in Table 9.2. The results with

10 experts are in Table B.10. Table 9.2 shows that Limportance and Ls regularization perform

almost equally well with almost the same accuracies for each model type.

Table 9.2: Performance with Limportance and Ls regularizations of models with minimum validation
error on the test set for CIFAR-10 dataset with 5 experts. Best performance with Limportance and Ls

are highlighted.

Experiment
Test
Accuracy

I(E;Y) Hs Hu

output mixture MoE with Limportance 77.61 ± 0.024 2.315 0.195 2.314

top-2 MoE with Limportance 79.90 ± 0.029 2.317 0.296 2.316

output mixture MoE with Ls 79.00 ± 0.033 2.320 0.167 2.320

top-2 MoE with Ls 80.27 ± 0.026 2.319 0.240 2.319

output mixture with attentive gate MoE with
Limportance

75.81 ± 0.041 2.225 0.020 2.317

top-2 with attentive gate MoE with Limportance 84.38 ± 0.007 2.206 0.154 2.319

output mixture with attentive gate MoE with Ls 72.60 ± 0.125 2.314 0.021 2.314

top-2 with attentive gate MoE with Ls 84.24 ± 0.015 2.091 0.134 2.312

distilled MoE with output mixture MoE with
Limportance

81.05 ± 0.018 2.320 0.028 2.322

distilled MoE with top-2 MoE with Limportance 83.97 ± 0.048 2.228 0.101 2.321

distilled MoE with output mixture MoE with Ls 77.28 ± 0.216 2.309 0.039 2.319

distilled MoE with top-2 MoE with Ls 84.38 ± 0.040 2.063 0.128 2.307

Let us now look at the task decompositions with Limportance and Ls for CIFAR-10 dataset. We

select the best performing model with Limportance and the best performing model with Ls for

CIFAR-10 dataset with 5 and 10 experts.

(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure 9.5: Gate expert selection table of the best performing model with Limportance with 5 experts,
which is the top-2 attentive gate model trained with Limportance for CIFAR-10 test dataset.
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(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure 9.6: Gate expert selection table of the best performing model with Ls with 5 experts, which is
the distilled MoE with top-2 model trained with Ls for CIFAR-10 test dataset.

The best performing model with Limportance and Ls for CIFAR-10 with 5 experts are the distilled

MoE with top-2 MoE with Limportance, shown in Figure 9.5, and distilled MoE with top-2 with

Ls, shown in Figure 9.6, respectively. We see that the best performing Ls model with a test

accuracy of 84.38% performs as well as the best performing Limportance model with test accuracy

of 84.38% on the CIFAR-10 test dataset.

The sample distribution plots in Figures 9.5b and 9.6b show that we do not need an equal

sample distribution to the experts to achieve good performance.

(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure 9.7: Gate expert selection table of the best performing model with Limportance with 10 experts,
which is the distilled MoE with top-2 attentive gate model trained with Limportance for CIFAR-10 test
dataset.

The best performing model with Limportance and Ls for CIFAR-10 with 10 experts are the

distilled MoE with top-2 MoE with Limportance, shown in Figure 9.7, and attentive MoE with

top-2 MoE with Ls, shown in Figure 9.8, respectively. We see that the best performing Ls

model with a test accuracy of 87.46% performs as well as the best performing Limportance model

with test accuracy of 87.20% on the CIFAR-10 test dataset. The sample distribution plot for
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(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure 9.8: Gate expert selection table of the best performing model with Ls with 10 experts, which
is the top-2 with attentive gate model trained with Ls for CIFAR-10 test dataset.

Ls, in Figure 9.8b, shows that Ls achieves good expert usage as is also evident from its high

expert usage entropy, Hu, in Table B.10 in Appendix B.4.2.

9.4 Discussion

The results from the experiments show that Ls regularization performs as well as or better than

Limportance with good expert usage as indicated by high expert usage entropy. It also achieves

high expert sparsity as indicated by the low sample entropy, Hs. Additionally Ls uses less

experts than Limportance for the same performance. Ls is a flexible method that allows using

different similarity or other measures based on sample properties for task decomposition. Ls is

hence a more data driven approach to distributing the samples than just an equal distribution

of samples to experts like Limportance.



Chapter 10

Conclusion

Gated modular deep neural networks are a promising solution towards achieving interpretability

and transferability in deep neural networks. The gate’s task decomposition among the simple

experts allows error attribution to the experts or the gate. Specialized experts can be transfered

to other similar tasks. In Chapter 3 of this thesis we saw how the existing MoE architectures and

training algorithms distribute the tasks to the experts. While the output mixture (Jacobs et al.,

1991b), stochastic (Jacobs et al., 1991a) and top-k (Shazeer et al., 2017) MoE showed good

task decomposition on toy classification datasets, the EM (Kirsch et al., 2018) MoE failed

even on toy classification dataset and was computationally few orders of magnitude slower.

In Section 3.2 we showed through a careful experiment that the end-to-end expert and gate

training fails spectacularly even for simple datasets like MNIST. The gate does not find an

optimal decomposition that separates the tasks into the experts and results in pathological

cases where only a few or just one expert is used. Hand chosen decompositions were vastly

better. We have also seen through all the experiments in the thesis that when expert usage

entropy, Hu, is high and the gate sparsity, Hs, is low then the MoE model generalizes well and

results in specialized experts. To achieve high expert usage and gate sparsity we require soft

constraints in addition to the loss while training with existing MoE training methods.

Current MoE research has concentrated more on load balancing for equal expert usage and

increase conditional computation and performance and not on task specific expert specializa-

tion. In this line of research the experiments are on web scale and they do not report simple

experimemts to show what the expert learns. We are more interested in a good separation of

89
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tasks in the experts as we believe that it can facilitate interpretability and transferability. As

far as we know ours is the first work that not only looks at performance of the MoE model but

also carefully investigates what each expert learns and how the gate distributes the tasks to

the experts.

We systematically developed a suite of novel multi-stage MoE training algorithms and ar-

chitectures that separate the training of experts and gates, outperforming existing methods

without regularizations and result in cleaner task decompositions as indicated by the high ex-

pert usage entropy, Hu, and high gate sparsity with low per sample entropy, Hs. Our no-gate

no-regularization peeking expert method is the best performing method of our proposed ap-

proaches, outperforming existing methods even with regularizations. Our methods show that

multi-stage expert and gate training works well along with distillation.

We proposed a novel data driven soft constraint, Ls, based on the similarity of samples, that

performs as well as or better than the existing soft constraint, Limportance by Shazeer et al.

(2017). Limportance is a simple and very effective soft constraint. But unlike Limportance and

other exisiting soft constraints and load balancing methods in current literature, that aim at

equal sample distribution to experts, Ls distributes the samples based on the subtask they

belong to. Ls is also flexible as we can use different similarity functions for task decomposition.

We have empirically tested our methods on MNIST, FMNIST and CIFAR-10 datasets.

In the immediate future we would like to explore the peeking expert algorithm for regression

and unsupervised data. This would require exploring measures we can use to evaluate the best

expert for a given sample. We evaluated our methods on image classification datasets. We

would like to evaluate them with other regression and unsupervised datasets and see how our

methods scale with large datasets. We would also like to explore how we can attribute errors

to experts and gate and also evaluate transferability of the MoE models.
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Appendix A

Neural Network Architecture and

Parameter Details for MoE Models in

Experiments

The number of experts in the MoE model chosen, for the MNIST, FMNINST, CIFAR-10

datasets, is 5 and 10 experts. 5 is half the number of classes in these datasets. 10 is the same

number of experts are the classes. We chose experts to be half the number of classes for the

dataset as this allows for an equitable distribution of 2 classes per expert (all datasets used in

the paper have even number of classes). And with 10 experts we can see how the tasks are

distributed when there is potentially an expert for each class. All the MoE models used in the

paper have one 1 gate.

For each dataset we tried different expert and gate architectures and parameters for the original

MoE model. We then chose the MoE model with minimum validation error,for the given

dataset. We used the same expert and gate architectures and parameters of the selected MoE

model for all the training methods on that dataset.

We used PyTorch for our implementation. All experiments were run on a single GPU.
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A.1 MoE model for MNIST dataset

MoE model for MNIST dataset has 5 experts and 1 gate. The training set has 60, 000 samples

which was split into 50, 000 training samples and 10, 000 validation samples. The test set has

10, 000 samples. There are 10 classes.

Expert: Each expert of all the MoE models has 1 convolutional layer, 2 hidden layers and 1

output layer. The details of the layers are as follows:

• 1 convolutional layer with 1 input channel, 1 output channel and a kernel size of 3,

with ReLU activation and max pooling with kernel size 2 and stride 2,

• 2 hidden layers with ReLU activation. First hidden layer has input of 1 ∗ 13 ∗ 13

and output of 5. Second hidden layer has input of 5 and output of 32,

• 1 output layer with input 32 and output 10, which is the number of classes, with

ReLU activation and

• softmax layer

Original Gate: The gate for the original MoE model has 1 convolutional layer, 2 hidden layers

and 1 output layer. The details of the layers are as follows:

• 1 convolutional layer with 1 input channel, 1 output channel and a kernel size of 3,

with ReLU activation and max pooling with kernel size 2 and stride 2,

• 2 hidden layers with ReLU activation. First hidden layer has input of 1 ∗ 13 ∗ 13

and output of 128. Second hidden layer has input of 128 and output of 32,

• 1 output layer with input 32 and output 5, which is the number of experts, with

ReLU activation

• softmax layer

Attentive Gate: The attentive gate has 1 convolutional layer and 2 hidden layers. The details

of the layers are as follows:

• 1 convolutional layer with 1 input channel, 1 output channel and a kernel size of 3,

with ReLU activation and max pooling with kernel size 2 and stride 2. This is the

same as the original gate,
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• 2 hidden layers. First hidden layer has input of 1 ∗ 13 ∗ 13 and output of 128 with

ReLU activation, this is the same as the orginal gate for the first hidden layer.

Second hidden layer has input of 128 and output of 32 and no activation. This is

the output of the attentive gate used to compute the query and attention score.

• There are no output and softmax layers.

Expert Loss Gate: The expert loss gate has:

• The same number of convolutional layers with the same number of parameters and

structure as the original gate,

• 2 hidden layers with ReLU activation. First hidden layer has input of 1 ∗ 13 ∗ 13

and output of 128. Second hidden layer has input of 128 and output of 32,

• 1 output layer with input 32 and output 5, which is the number of experts, with

ReLU activation

• There is no softmax layer as we want to learn expert log loss and not a distribution.

A.2 MoE model for combined FashionMNIST (FMNIST)

and MNIST dataset

MoE model for combined FNIST and MNIST dataset has 6 experts and 1 gate. The training

set has 10, 000 samples and the test set has 2, 000 samples. We chose the first 6 classes, [t-shirt,

trouser, pullover, dress, coat, sandal], from FMNIST and last 6 classes,[4, 5, 6, 7, 8, 9], from

MNIST and combined the data to create one dataset of 12 classes.

Expert: Each expert, of all the MoE models for the combined FMNIST and MNIST dataset,

has the same architecture and parameters as that for the MNIST dataset in Appendix

A.1. Only the output layer output is 12 as the combined FMNIST and MNIST dataset

has 12 classes.

Original Gate: The gate for the MoE model has the same architecture as that for the MNIST

dataset in Appendix A.1, but with different parameters.



A.3. MoE model for CIFAR-10 dataset 99

• 1 convolutional layer with 1 input channel, 1 output channel and a kernel size of 5,

with ReLU activation and max pooling with kernel size 2 and stride 2,

• 2 hidden layers with ReLU activation. First hidden layer has input of 1 ∗ 12 ∗ 12

and output of 128. Second hidden layer has input of 128 and output of 32,

• 1 output layer with input 32 and output 6, which is the number of experts, with

ReLU activation

• softmax layer

A.3 MoE model for CIFAR-10 dataset

MoE model for CIFAR-10 dataset has 5 experts and 1 gate. The training set has 50, 000 samples

which was split into 40, 000 training samples and 10, 000 validation samples. The test set has

10, 000 samples. There are 10 classes.

Expert: Each expert of all the MoE models for the CIFAR-10 dataset has:

• 4 convolutional layers. All the convolutional layers have a kernel size of 3. All the

max pooling layers have kernel size 2 and stride 2. The following are parameter

details of each convolutional layer.

– First convolutional layer has 3 input channels, 3 output channels with ReLU

activation and max pooling,

– Second convolutional layer has 3 input channels, 6 output channels with batch

normalization, ReLU activation and max pooling,

– Third convolutional layer has 6 input channels, 12 output channels with ReLU

activation and max pooling,

– Fourth convolutional layer has 12 input channels, 12 output channels with batch

normalization, ReLU activation and max pooling,

• 2 hidden layers with ReLU activation. First hidden layer has input of 12 ∗ 4 ∗ 4 and

output of 64. Second hidden layer has input of 64 and output of 32,

• 1 output layer with input 32 and output 10, which is the number of classes, with

ReLU activation and
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• softmax layer

Original Gate: The gate for the original MoE model has:

• 4 convolutional layers. All the convolutional layers have a kernel size of 3. All the

max pooling layers have kernel size 2 and stride 2. The following are the parameter

details of each convolutional layer.

– First convolutional layer has 3 input channels, 64 output channels with ReLU

activation and max pooling,

– Second convolutional layer has 64 input channels, 128 output channels with

batch normalization, ReLU activation and max pooling,

– Third convolutional layer has 128 input channels, 256 output channels with

ReLU activation and max pooling,

– Fourth convolutional layer has 256 input channels, 256 output channels with

batch normalization, ReLU activation and max pooling,

• 2 hidden layers with ReLU activation. First hidden layer has input of 256 ∗ 4 ∗ 4

and output of 512. Second hidden layer has input of 512 and output of 32,

• 1 output layer with input 32 and output 5, which is the number of experts, with

ReLU activation and

• softmax layer

Attentive Gate: The attentive gate has:

• The same number of convolutional layers with the same number of parameters and

structure as the original gate,

• 2 hidden layers. First hidden layer has input of 256 ∗ 4 ∗ 4 and output of 512 with

ReLU activation, this is the same as the orginal gate for the first hidden layer.

Second hidden layer has input of 512 and output of 32 and no activation. This is

the output of the attentive gate used to compute the query and attention score.

• There are no output and softmax layers.

Expert Loss Gate: The expert loss gate has:

• The same number of convolutional layers with the same number of parameters and

structure as the original gate,
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• 2 hidden layers with ReLU activation. First hidden layer has input of 256 ∗ 4 ∗ 4

and output of 512. Second hidden layer has input of 512 and output of 32,

• 1 output layer with input 32 and output 5, which is the number of experts, with

ReLU activation

• There is no softmax layer as we want to learn expert log loss and not a distribution.

Table A.1: Values of hyperparameters (H) βs and βd for datasets (D).

D/H βs βd

MNIST {1e-6, 1e-5} {10−i | i ∈
{1, . . . , 6}}

CIFAR-10 {1e-7, 1e-3} {10−i | i ∈
{1, . . . , 7}}

A.4 Hyperparameter Values Used for Experiments

In our experiments we trained each model with different values of the corresponding hyper-

parameters. We then chose the model with the lowest training error for each category of the

model and training methods. The hyperparameters we tuned are wimportance for Limportance

regularization and βs and βd for Ls regularization.

The values used for the wimportance hyperparameter of the Limportance regularization, for all

datasets, are wimportance={0.2, 0.4, 0.6, 0.8, 1.0}.

The values used for βs and βd hyperparameters of the Ls regularization, for different datasets

are summarized in Table A.1
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Additional Experiment Results

B.1 Results for no-gate MoE experiments

B.1.1 MNIST inference with loudest expert with 10 experts

Table B.1: Performance of the loudest expert model. Results are inference on MNIST test data with
models with minimum validation error with 10 experts. Best result is highlighted.

Experiment
Test
Accuracy

I(E;Y) Hs Hu

output mixture MoE 95.38 ± 0.021 1.488 0.031 1.490

stochastic MoE 96.20 ± 0.028 1.405 0 1.516

top-1 MoE 94.83 ± 0.335 1.357 0 1.357

top-2 MoE 96.25 ± 0.007 1.663 0.074 1.912

output mixture MoE with Limportance 96.87 ± 0.008 2.280 0.053 2.322

top-2 MoE with Limportance 97.26 ± 0.004 2.022 0.071 2.322

loudest expert method 95.98 ± 0.003 1.864 0 3.273
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B.1.2 CIFAR-10 inference with loudest expert with 10 experts

Table B.2: Performance of the loudest expert model. Results are inference on CIFAR-10 test data
with models with minimum validation error with 10 experts. Best result is highlighted.

Experiment
Test
Accuracy

I(E;Y) Hs Hu

single model 42.74 ± 0.011 NA NA NA

original MoE 71.70 ± 0.018 1.839 0.161 1.867

stochastic MoE 72.23 ± 0.013 1.367 0 1.395

top-1 MoE 66.45 ± 0.034 0.969 0 0.991

top-2 MoE 77.60 ± 0.021 1.710 0.146 1.731

output mixture MoE with Limportance 81.49 ± 0.026 3.304 0.262 3.304

top-2 MoE with Limportance 81.73 ± 0.132 3.311 0.376 3.310

output mixture MoE with Limportance 97.72 ± 0.010 3.319 0.053 3.319

top-2 MoE with Limportance 97.83 ± 0.005 3.283 0.054 3.320

loudest expert method 73.35 ± .006 0.659 0 3.163

B.1.3 MNIST inference with peeking expert with 10 experts

Table B.3: Performance of the peeking expert model. Results are inference on MNIST test data with
models with minimum validation error with 10 experts. Best result is highlighted.

Experiment
Test
Accuracy

I(E;Y) Hs Hu

original MoE 95.38 ± 0.021 1.488 0.031 1.490

stochastic MoE 96.20 ± 0.028 1.405 0 1.516

top-1 94.83 ± 0.335 1.357 0 1.357

top-2 96.25 ± 0.007 1.663 0.074 1.912

output mixture MoE with Limportance 97.72 ± 0.010 3.319 0.053 3.319

top-2 MoE with Limportance 97.83 ± 0.005 3.283 0.054 3.320

reverse distilled gate, with peeking experts, trained with
output mixture MoE

97.27 ± 0.006 3.252 0.010 2.257

reverse distilled gate, with peeking experts,
trained with stochastic MoE

97.72 ± 0.005 3.316 0 3.319

reverse distilled gate, with peeking experts, trained with
top-1

96.339 ± 0.008 3.185 0 2.212

reverse distilled gate, with peeking experts, trained with
top-2

96.502 ± 0.008 2.403 0.029 1.694
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(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure B.1: Gate expert selection table of the reverse distilled gated MoE model trained in Step 2 of
the peeking expert method from the pre-trained experts in Step 1, shown in Figure 6.4a for MNIST
dataset. Gate is trained using output mixture model.

(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure B.2: Gate expert selection table of the reverse distilled gated MoE model trained in Step 2 of
the peeking expert method from the pre-trained experts in Step 1, shown in Figure 6.4a for MNIST
dataset. Gate is trained using stochastic model.

(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure B.3: Gate expert selection table of the reverse distilled gated MoE model trained in Step 2 of
the peeking expert method from the pre-trained experts in Step 1, shown in Figure 6.4a for MNIST
dataset. Gate is trained using output top-1 model.
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(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure B.4: Gate expert selection table of the reverse distilled gated MoE model trained in Step 2 of
the peeking expert method from the pre-trained experts in Step 1, shown in Figure 6.4a for MNIST
dataset. Gate is trained using output top-2 model.

(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure B.5: Gate expert selection table of the reverse distilled gated MoE model trained in Step 2 of
the peeking expert method from the pre-trained experts in Step 1, shown in Figure 6.4b for MNIST
dataset. Gate is trained using output mixture model.

(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure B.6: Gate expert selection table of the reverse distilled gated MoE model trained in Step 2 of
the peeking expert method from the pre-trained experts in Step 1, shown in Figure 6.4b for MNIST
dataset. Gate is trained using stochastic model.
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(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure B.7: Gate expert selection table of the reverse distilled gated MoE model trained in Step 2 of
the peeking expert method from the pre-trained experts in Step 1, shown in Figure 6.4b for MNIST
dataset. Gate is trained using output top-1 model.

(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure B.8: Gate expert selection table of the reverse distilled gated MoE model trained in Step 2 of
the peeking expert method from the pre-trained experts in Step 1, shown in Figure 6.4b for MNIST
dataset. Gate is trained using output top-2 model.
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B.1.4 CIFAR-10 inference with peeking expert with 10 experts

Table B.4: Performance of the peeking expert model. Results are inference on CIFAR-10 test data
with models with minimum validation error with 10 experts. Best result is highlighted.

Experiment
Test
Accuracy

I(E;Y) Hs Hu

original MoE 71.70 ± 0.018 1.839 0.161 1.867

stochastic MoE 72.23 ± 0.013 1.367 0 1.395

top-1 MoE 66.45 ± 0.034 0.969 0 0.991

top-2 MoE 77.60 ± 0.021 1.710 0.146 1.731

output mixture MoE with Limportance 81.49 ± 0.026 3.304 0.262 3.304

top-2 MoE with Limportance 81.73 ± 0.132 3.311 0.376 3.310

reverse distilled gate, with peeking experts, trained with
original MoE

87.87 ± 0.003 3.320 0.1 3.320

reverse distilled gate, with peeking experts,
trained with stochastic MoE

88.00 ± 0.003 3.320 0 3.320

reverse distilled gate, with peeking experts, trained with
top-1

77.05 ± 0.018 3.309 0 3.309

reverse distilled gate, with peeking experts, trained with
top-2

86.29 ± 0.013 3.032 0.145 3.113
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B.2 Results for attentive gate architecture experiments

B.2.1 MNIST inference with attentive gate models with 5 experts

Figures B.9, B.10 and B.11 show the experts used during inference, on the test set, using

attentive gate model trained with output mixture, top-1 and top-2 methods for MNIST dataset

with 5 experts. We see that there is good expert usage and clean decompositions for all methods

of training.

(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure B.9: Gate expert selection table of the attentive gate model trained with 5 experts using output
mixture model on MNIST test dataset.

(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure B.10: Gate expert selection table of the attentive gate model trained with 5 experts using top-1
model on MNIST test dataset.
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(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure B.11: Gate expert selection table of the attentive gate model trained with 5 experts using top-2
model on MNIST test dataset.
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B.2.2 MNIST inference with distilled model with 5 experts

Figures B.12, B.13 and B.14 show the experts used during inference, on the test set, using

distilled model trained with output mixture, top-1 and top-2 methods for MNIST dataset with

5 experts. We see that there is good expert usage and clean decompositions for all methods of

training. The performance of the distilled models is comparable to the corresponding attentive

models they were distilled from.

(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure B.12: Gate expert selection table of the distilled model trained with 5 experts using output
mixture model on MNIST test dataset.

(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure B.13: Gate expert selection table of the distilled model trained with 5 experts using top-1
model on MNIST test dataset.

(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure B.14: Gate expert selection table of the distilled model trained with 5 experts using top-2
model on MNIST test dataset.
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B.2.3 MNIST inference with attentive gate model with 10 experts

Table B.5 shows that the attentive gating model also performs better than the benchmark MoE

models for MNIST dataset with 10 experts. It also shows that the distilled models perform

as well as the attentive gate models they are distilled from, with better expert usage, with 10

experts.

Table B.5: Performance of the model with minimum validation error, for attentive gate and distilled
attentive gate models, on the test set for MNIST dataset with 10 experts. Best result for benchmark
models, attentive gate models and distilled attentive gate models are highlighted.

Experiment
Test
Accuracy

I(E;Y) Hs Hu

single model 92.43 ± 0.031 NA NA NA

original MoE 95.38 ± 0.021 1.488 0.031 1.490

stochastic MoE 96.20 ± 0.028 1.405 0 1.516

top-1 MoE 94.83 ± 0.335 1.357 0 1.357

top-2 MoE 96.25 ± 0.007 1.663 0.074 1.912

attentive output mixture gate MoE 96.29 ± 0.013 2.456 0.006 2.504

attentive stochastic gate MoE 96.68 ± 0.006 2.436 0 2.669

top-1 with attentive gate MoE 95.55 ± 0.048 2.058 0 2.076

top-2 with attentive gate MoE 96.91 ± 0.005 2.131 0.028 2.399

distilled MoE with output mixture MoE 96.57 ± 0.013 2.447 0.009 2.447

distilled MoE with stochastic MoE 96.70 ± 0.008 2.415 0 2.674

distilled MoE with top-1 MoE 95.83 ± 0.270 2.050 0 2.084

distilled MoE with top-2 MoE 96.91 ± 0.078 2.553 0.034 2.736

Figures B.15, B.17 and B.18 show the experts used during inference, on the test set, using

attentive gate model trained with output mixture, top-1 and top-2 methods for MNIST dataset

with 10 experts. We see that not all experts are used but the decompositions are clean for all

methods of training. This shows that we do not have to use all the experts equitably for better

performance.

(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure B.15: Gate expert selection table of the attentive gate model trained with 10 experts using
output mixture model on MNIST test dataset.
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(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure B.16: Gate expert selection table of the attentive gate model trained with 10 experts using
stochastic model on MNIST test dataset.

(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure B.17: Gate expert selection table of the attentive gate model trained with 10 experts using
top-1 model on MNIST test dataset.

(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure B.18: Gate expert selection table of the attentive gate model trained with 10 experts using
top-2 model on MNIST test dataset.
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B.2.4 MNIST inference with distilled model with 10 experts

Figures B.19, B.21 and B.22 show the experts used during inference, on the test set, using

distilled model trained with output mixture, top-1 and top-2 methods for MNIST dataset with

10 experts. We see that there is good expert usage and clean decompositions for all methods of

training. The performance of the distilled models is comparable to the corresponding attentive

models they were distilled from.

(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure B.19: Gate expert selection table of the distilled model trained with 10 experts using output
mixture model on MNIST test dataset.

(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure B.20: Gate expert selection table of the distilled model trained with 10 experts using stochastic
model on MNIST test dataset.

(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure B.21: Gate expert selection table of the distilled model trained with 10 experts using top-1
model on MNIST test dataset.
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(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure B.22: Gate expert selection table of the distilled model trained with 10 experts using top-2
model on MNIST test dataset.
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B.2.5 CIFAR-10 inference with attentive gate model with 5 experts

Figures B.23, B.24 and B.25 show the experts used during inference, on the test set, using

attentive gate model trained with output mixture, stochastic and top-1 methods for CIFAR-10

dataset with 10 experts. We see that there is equitable and clean task decomposition when

trained with stochastic methods. With output mixture and top-1 methods we see module

collapse. Hence, for CIFAR-10 dataset not all methods of training are suitable.

(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure B.23: Gate expert selection table of the attentive gate model trained with 5 experts using
output mixture model on CIFAR-10 test dataset.

(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure B.24: Gate expert selection table of the attentive gate model trained with 5 experts using
stochastic model on CIFAR-10 test dataset.

(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure B.25: Gate expert selection table of the attentive gate model trained with 5 experts using top-1
model on CIFAR-10 test dataset.
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B.2.6 CIFAR-10 inference with distilled model with 5 experts

Figures B.26, B.27 and B.28 show the experts used during inference, on the test set, using the

distilled gate model trained from the attentive gate model with output mixture, stochastic and

top-1 methods for CIFAR-10 dataset with 5 experts. We see that the distilled model also results

in equitable and clean task decompositions without regularizations for CIFAR-10 dataset for

stochastic method. With output mixture and top-1 methods we see module collapse. Hence,

for CIFAR-10 dataset not all methods of training are suitable.

(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure B.26: Gate expert selection table of the distilled model trained with 5 experts using output
mixture model on CIFAR-10 test dataset.

(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure B.27: Gate expert selection table of the distilled model trained with 5 experts using stochastic
model on CIFAR-10 test dataset.
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(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure B.28: Gate expert selection table of the distilled model trained with 5 experts using top-1
model on CIFAR-10 test dataset.
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B.2.7 CIFAR-10 inference with attentive gate model with 10 experts

Table B.6 shows that the attentive gating model performs better than the benchmark MoE

models for CIFAR-10 datasets with 10 experts. They also show that the distilled models

perform as well as the attentive gate models they are distilled from with better expert usage.

Table B.6: Performance of the model with minimum validation error, for attentive gate and distilled
attentive gate models, on the test set for CIFAR-10 dataset with 10 experts. Best result for benchmark
models, attentive gate models and distilled attentive gate models are highlighted.

Experiment
Test
Accuracy

I(E;Y) Hs Hu

single model 64.944 ± 0.008 NA NA NA

original MoE 71.70 ± 0.018 1.839 0.161 1.867

stochastic MoE 72.23 ± 0.013 1.367 0 1.395

top-1 MoE 66.45 ± 0.034 0.969 0 0.991

top-2 MoE 77.60 ± 0.021 1.710 0.146 1.731

attentive output mixture gate MoE 64.85 ± 0.105 0 0 0

attentive stochastic gate MoE 85.91 ± 0.061 3.180 0 3.310

top-1 with attentive gate MoE 64.32 ± 0.076 0 0 0

top-2 with attentive gate MoE 86.57 ± 0.006 2.944 0.171 3.247

distilled MoE with output mixture MoE 63.74 ± 0.212 0 0 0

distilled MoE with stochastic MoE 87.44 ± 0.066 3.262 0 3.321

distilled MoE with top-1 MoE 64.26 ± 0.259 0 0 0

distilled MoE with top-2 MoE 82.62 ± 0.078 2.704 0.133 3.136

Figures B.29, B.30 and B.31 show the experts used during inference, on the test set, using

attentive gate model trained with output mixture, stochastic and top-1 methods for CIFAR-10

dataset with 10 experts. We see that there is equitable and clean task decomposition when

trained with stochastic and top-2 methods. With output mixture and top-1 methods we see

module collapse. Hence, for CIFAR-10 dataset not all methods of training are suitable.

(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure B.29: Gate expert selection table of the attentive gate model trained with 10 experts using
output mixture model on CIFAR-10 test dataset.
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(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure B.30: Gate expert selection table of the attentive gate model trained with 10 experts using
stochastic model on CIFAR-10 test dataset.

(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure B.31: Gate expert selection table of the attentive gate model trained with 10 experts using
top-1 model on CIFAR-10 test dataset.
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B.2.8 CIFAR-10 inference with distilled model with 10 experts

Figures B.32, B.33 and B.34 show the experts used during inference, on the test set, using

the distilled gate model trained from the attentive gate model with output mixture, stochastic

and top-1 methods for CIFAR-10 dataset with 10 experts. We see that the distilled model

also results in equitable and clean task decompositions without regularizations for CIFAR-10

dataset for stochastic and top-2 methods. With output mixture and top-1 methods we see

module collapse. Hence, for CIFAR-10 dataset not all methods of training are suitable.

(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure B.32: Gate expert selection table of the distilled model trained with 10 experts using output
mixture model on CIFAR-10 test dataset.

(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure B.33: Gate expert selection table of the distilled model trained with 10 experts using stochastic
model on CIFAR-10 test dataset.
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(a) Gate expert selection table
(b) Sample distribution to the ex-
perts by the gate

Figure B.34: Gate expert selection table of the distilled model trained with 10 experts using top-1
model on CIFAR-10 test dataset.
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B.3 Results for Expert Loss Gate Experiments

B.3.1 MNIST inference with expert loss gate MoE with 10 experts

Table B.7: Performance on the test set by the expert loss gate model with the minimum validation
error for MNIST dataset with 10 experts. Best result is highlighted.

Experiment
Test
Accuracy

I(E;Y) Hs Hu

single model 92.43 ± 0.031 NA NA NA

original MoE 95.38 ± 0.021 1.488 0.031 1.490

stochastic MoE 96.20 ± 0.028 1.405 0 1.516

top-1 MoE 94.83 ± 0.335 1.357 0 1.357

top-2 MoE 96.25 ± 0.007 1.663 0.074 1.912

expert loss gate MoE 94.41 ± 0.020 1.556 0 2.462

B.3.2 CIFAR-10 inference with expert loss gate MoE with 10 ex-

perts

Table B.8: Performance on the test set by the expert loss gate model with the minimum validation
error for CIFAR-10 dataset with 10 experts. Best result is highlighted.

Experiment
Test
Accuracy

I(E;Y) Hs Hu

single model 42.74 ± 0.011 NA NA NA

original MoE 71.85 ± 0.019 1.839 0.161 1.867

stochastic MoE 72.82 ± 0.061 1.46 0 1.505

top-1 MoE 67.18 ± 0.036 0.969 0 0.969

top-2 MoE 77.02 ± 0.017 1.710 0.148 1.731

expert loss gate MoE 78.4 ± 0.050 1.925 0 2.172
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B.4 Results for Sample Similarity Experiments

B.4.1 MNIST inference with sample similarity regularization with

10 experts

Table B.9: Performance with Limportance and Ls regularizations of models with minimum validation
error on the test set for MNIST dataset with 10 experts. Best performance with Limportance and Ls

are highlighted.

Experiment
Test
Accuracy

I(E;Y) Hs Hu

output mixture MoE with Limportance 97.72 ± 0.010 3.319 0.053 3.319

top-2 MoE with Limportance 97.83 ± 0.005 3.283 0.054 3.320

output mixture MoE with Ls 96.65 ± 0.023 2.384 0.060 2.476

top-2 MoE with Ls 97.20 ± 0.007 2.233 0.039 2.248

output mixture attentive gate MoE with Limportance 97.49 ± 0.005 3.320 0.007 3.320

top-2 attentive gate MoE with Limportance 97.59 ± 0.005 3.258 0.017 3.320

output mixture attentive gate MoE with Ls 97.00 ± 0.010 2.948 0.010 3.102

top-2 with attentive gate MoE with Ls 97.24 ± 0.005 2.632 0.045 2.921

distilled MoE with output mixture MoE with
Limportance

97.79 ± 0.044 3.318 0.008 3.319

distilled MoE with top-2 MoE with Limportance 97.04 ± 0.068 2.897 0.038 3.147

distilled MoE with output mixture MoE with Ls 97.08 ± 0.042 2.928 0.015 2.971

distilled MoE with top-2 MoE with Ls 96.91 ± 0.078 2.553 0.034 2.736
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B.4.2 CIFAR-10 inference on test data with sample similarity reg-

ularization with 10 experts

Table B.10: Performance with Limportance and Ls regularizations of models with minimum validation
error on the test set for CIFAR-10 dataset with 10 experts. Best performance with Limportance and Ls

are highlighted.

Experiment
Test
Accuracy

I(E;Y) Hs Hu

output mixture MoE with Limportance 81.49 ± 0.026 3.304 0.262 3.304

top-2 MoE with Limportance 81.73 ± 0.132 3.311 0.376 3.310

output mixture MoE with Ls 82.85 ± 0.053 3.309 0.166 3.310

top-2 MoE with Ls 83.50 ± 0.036 3.114 0.295 3.254

output mixture with attentive gate MoE with
Limportance

80.51 ± 0.032 3.319 0.031 3.319

top-2 with attentive gate MoE with Limportance 86.50 ± 0.009 3.229 0.148 3.317

output mixture with attentive gate MoE with Ls 74.73 ± 0.136 3.099 0.017 3.319

top-2 with attentive gate MoE with Ls 87.46 ± 0.007 3.077 0.155 3.310

distilled MoE with output mixture MoE with
Limportance

85.77 ± 0.006 3.317 0.034 3.317

distilled MoE with top-2 MoE with Limportance 87.20 ± 0.074 3.282 0.099 3.318

distilled MoE with output mixture MoE with Ls 84.51 ± 0.270 3.306 0.047 3.314

distilled MoE with top-2 MoE with Ls 87.17 ± 0.082 3.266 0.116 3.319
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B.4.3 Expert usage by Limportance and Ls for MNIST dataset

In Section 9.3 we showed that when we use 10 experts for 10 classes in the MNIST dataset,

the Limportance regularization uses all the experts whereas the Ls regularization uses only 8

experts for the same performance. We also increased the number of experts to 15 which is

the more number of experts than the number of classes in MNIST. Figure B.35 shows that Ls

regularization results in more optimal use of experts while Limportance uses all the experts.

(a) Ls (b) Limportance

Figure B.35: Expert selection table of MoE model trained with Ls and Limportance regularizations
with 15 experts.
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