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Abstract

This thesis reports on the development of a novel device, called PlomBOX, employing a CMOS
sensor and lead-sensing bacteria to assay lead in drinking water, up to the World Health Organisa-
tion (WHO)’s upper limit of 10 ppb. As a first step, a scientific CMOS was used to demonstrate the
capability of detecting gamma energies in an Si detector from a lead-210 (2!°Pb) sample through
calorimetry methods. While this technique is promising for dosimetry applications, it is not able to
reach the WHO level in sensitivity. A second step was to explore how the sensitivity range of any
device could be improved by increasing the concentration of the substance of interest in a sample.
Lead doped water samples were boiled to explore if an increase in heavy metal concentration was
observed. This technique was able to retain 99 + 9% of 21°Pb, allowing for an increase of its
concentration. The third step involved the development of the PlomBOX. The project followed
three development paths: a) Certain bacteria can change colour when in the presence of lead. A
genetically modified strain of Escherichia coli sensitive to lead concentrations up to 10 ppb was
developed together with a team of biologists. This constitutes the biosensor that emits colour in
proportion to the presence of lead. b) Bacteria response is imaged using a microprocessor (ESP32)
with a camera module. This constitutes the optical metrology component of the PlomBOX. c)
Data acquisition and control of the PlomBOX is achieved through a Bluetooth connection with the
PlomApp, a custom-developed mobile phone application. Data are sent from the PlomApp to a
database where a bespoke automated analysis software provides a result of the lead concentration
in a sample of water. A full description of the experimental set up and analysis software is provided

and results of the first in situ assay are discussed.
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Chapter 1

Introduction

Rare event searches in particle physics address some of the most fundamental open questions in
science today, such as the search for Dark Matter (DM) particles. Due to the low probability
of DM interactions, these detectors require high sensitivities and an understanding of the back-
ground signal is necessary. Lead-210, an unstable radioactive isotope of lead, is an example of an
isotope whose presence can affect background measurements. Techniques have been developed to
detect it at high sensitivities. These techniques could in principal be applied for lead detection in
fields unrelated to particle physics. Lead is toxic for human consumption and the development of
environmental detection techniques should be explored.

This chapter details the motivations and state of the art methods for lead monitoring and

proposes a new innovative detector to measure quantities of lead in drinking water.

1.1 Motivation

Lead is a heavy metal that has been used by humans since at least 7000-6500 BCE [1]. Throughout
history, lead has been utilised by many civilisations for different purposes: Ancient Egyptians used
lead in fishing, by applying sinkers to fishing nets, enamels, glasses [2]; in the Fertile Crescent
region, civilisations used lead as coins [3] and construction material [2]; and in Ancient China lead
was used in royal courts as currency [4] and as a stimulant [2]. It was with the Roman Empire
and its development of lead mining that lead usage increased, as it became the greatest producer
of lead during this period, reaching an output peak of 80000t per year [5]. Lead was used in
medicine, currency, warfare, roofing [6] and chiefly in water utility infrastructure [1], due to a low
melting point of 600.71K [7], ductility and inertness to oxidation [1].

The first time lead production rates exceeded those of the Roman Empire occurred during the

Industrial Revolution, beginning in the second half on the 18th century [5]. During this period,
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lead was necessary for plumbing and lead paints [8].

With the increase of lead usage and mining came reports of the health hazards associated with
lead. In the 2nd century BC, people who had acute effects associated with high-dose exposure were
described as suffering from colic and paralysis by the Greek botanist Nicander of Colophon [8, 9.
During the Renaissance period, it is postulated that the greatest exposure to lead was experienced
by painters, due to their use of lead-based colours [8]. In the 17th century, many physicians
advised on the hazards of handling lead: "Transactions of the Royal Society of England" published
several articles regarding the risks of the manufacturing of white lead and glass [8] and physician
Bernardino Ramazzini inferred that all the lead processing techniques used by craftsmen were

dangerous [10].

In this period, several outbreaks of saturnine colic appeared in some European areas. During
this time, wine preservatives derived from the Ancient Rome’s sapa (lead acetate used to sweeten
wine [11]) were still in use. Doctor Eberhard Gockel deduced that the lead levels in wine were
responsible for the saturnine colic outbreaks observed. This was the first instance in which expo-
sure to lead was presumed to happen across the general population and not just craftsmen and

manufacturers [12].

In the 19th century, the mechanisms of lead poisoning through dietary intake became under-
stood [8]. During the Industrial Revolution, there was an increase of workers suffering from lead
poisoning, due to its intensive use in manufacturing systems [8]. Several physicians took an inter-
est in these workers’ symptoms: Louis Tanquerel des Planches detailed the signs and symptoms
of chronic lead intoxication [13] and Sir Alfred Baring Garrod postulated a direct link between
lead poisoning and gout [14]. With this knowledge, attempts began to replace or remove harmful

agents, like lead, from the manufacturing cycle [15].

In the beginning of the 20th century, some governments began to produce legislation to reduce
the concentration of lead in paint [8]. This happened after it was identified that Australian children
presented high blood lead levels (BLL) and lead poisoning and it was deduced that this was caused
by lead paint present in their houses [16]. In the mid 20th century, the first preventative strategies
were introduced in factories, which involved the use of personal protective equipment, ventilation,
wetting of dusty processes and the abolition of the use of lead [8]. In late 20th century it was
understood that the tetraethylene lead (TEL) that was added to gasoline, to create more powerful
engines, caused environmental pollution and was hazardous to the general population [8]. In the
last two decades of the 20th century TEL was replaced with benzene and a reduction of BLLs by

half was reported in the general population [11].

To date, there is no confirmed biological role for lead [17]. Lead produces nefarious effects

on the human body: it interferes with enzymes that help produce vitamin D and maintain the
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