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 Abstract—The operating wavelength and modulation 

frequencies are critical components of every communication 

system. Here, we present a Speckle Pattern (SP) fibre-based 

spectrometer using a nominally fixed 852 nm laser to measure 

and calibrate the wavelength and modulation frequencies of the 

SP produced in Multimode Fibre (MMF). The laser wavelength is 

finely tuned within the 100 GHz range and at a resolution of 2 

pm (picometers) by appropriately varying the laser injection 

currents. The wavelength-dependent SP is calibrated by varying 

the laser current over a pre-set range, and a series of wavelength-

dependent speckle pattern data is recorded. The laser is tuned to 

the middle of the recorded wavelength range for the modulation 

frequency calibration, and a standard lithium niobate (LiNbO3) 

electro-optic modulator (Mach–Zehnder Modulator) is applied. 

With ten metres of MMF, the incoming Radio Frequency (RF) is 

modulated in 5 GHz steps up to 40 GHz at a constant wavelength 

of 852.555 nm, and the generated SPs are stored separately for 

spectral processing and training. The wavelength-dependent SPs 

are trained using Artificial Intelligence (AI), with a reported 

prediction accuracy of 98.7% at 2 pm wavelength resolution. To 

the best of our knowledge, this is the first proof-of-concept of a 

high-resolution, low-cost SP Artificial Intelligence-based 

Spectrometer (SPAIS) that has been experimentally reported to 

predict the exact values of modulated frequencies from the 

modulated SPs. 

 
Index Terms—Convolutional neural network (CNN), 

microwave communications, microwave photonic, optical 

communications, radio Frequency (RF), radio over fibre, speckle 

pattern, wavelength-dependent speckle pattern. 

 

I. INTRODUCTION 

HE increasing demand for advanced and efficient 

communication systems is driven by technological 

innovations and the necessity for high data rates. Due to the 

various limitations of traditional microwave communication 

technologies, microwave photonics has emerged as a 

promising technology. The implementation of Radio over 

Fibre (RoF) technology offers the potential to reduce the size 

and power consumption of radio terminals, including 

microwave photonics, which plays a significant role in the 
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generation and processing of radio signals with low-phase 

noise, particularly in the expansion of the radio spectrum to 

millimetre-wave or terahertz frequencies. Additionally, 

microwave photonics facilitates the development of low-loss 

distribution circuits for RF or timing reference signals and the 

distribution of antenna signals for optical beamforming.  Over 

the past few years, microwave and RF interferometry have 

been applied to a wide range of applications, including 

material characterisation [1], spatial displacement, noise, and 

temperature measurements [2], [3]. Hence, developing high-

resolution optical spectrometers is of utmost significance to 

detect, quantify, and analyse RF-modulated signals across 

various applications. Optical spectrometers traditionally use 

diffraction gratings as the dispersive element, which ensures a 

one-to-one linear spectral-to-spatial match by diffracting the 

components of the spectrum of light waves to different spots 

on the Photodetector (PD) array [4], [5], [6]. This 

configuration, however, influences the resolution of the 

traditional grating-based spectrometer, as its resolution 

depends on the total number of grating lines on the rigid slab 

of material and the distance between the dispersive element 

and the PD [7]. Such spectrometers, such as the Optical 

Spectrum Analysers (OSA), are cumbersome in many 

measurement working environments that fibre 

telecommunication engineers encounter, such as buried cables, 

cramped data centres, etc. As a result, the grating-based 

spectrometer becomes cumbersome to attain a more excellent 

resolution, reducing the device's compactness for usage in 

remote areas; hence, a speckle pattern-based spectrometer is 

used.  

On the other hand, a speckle pattern is a random intensity 

pattern created by the mutual interference of a collection of 

wavefronts with various phase ratios. In this case, the 

wavefronts combine to produce a wave whose amplitude and 

intensity fluctuate arbitrarily. [4], [7], and [23]. Although an 

optical system is frequently thought to suffer from the speckle 

pattern that emerges from repeated scattering and interference. 

However, despite being extremely complex, multiple 

scattering is still a reversible, linear, and repeatable process 

[23]. The specific speckle pattern produced by a coherent 

beam moving through disordered material depends on the 

spatial and temporal properties of the incident light field. The 

temporal changes of the speckle pattern can be employed, 

particularly as a spectrometer, in a time-invariant complex 

T 

mailto:shyqyri.haxha@rhul.ac.uk
mailto:kassim.mustapha.uk@gmail.com
mailto:i_flint@hotmail.com


2 

 

medium to determine features of the incident light [23]. As the 

demand for optical spectrometers with ultra-high resolution 

and minimal losses continues to grow, there is a need for a 

more reliable technology that can mitigate the trade-off 

between the size and resolution of conventional optical 

spectrometers. Fortunately, using multimode fibre (MMF) as a 

dispersive element in spectrometer design has significantly 

advanced efforts to realise high-resolution and low-loss 

systems [3]. MMF offers several advantages over prisms or 

gratings, including relatively low cost, less weight, and the 

ability to propagate over a longer length while maintaining the 

desired spectral resolution. This technology has been explored 

in several studies [8]-[14] and is quickly becoming a popular 

solution for developing next-generation optical spectrometers. 

A typical example of an SP produced through a disordered 

medium such as MMF is shown in Fig. 1 below. 

 

 

 
Fig. 1. SP generated from a laser source through an MMF. 

 

In an MMF-based spectrometer, light that travels through a 

multimode optical fibre can take several paths, each 

representing a different mode. These modes create variations 

in the phase and amplitude of the light, resulting in 

interference effects causing a granular and random intensity 

distribution of bright and dark spots known as a speckle 

pattern. This speckle pattern changes over time as the optical 

path length of each mode fluctuates due to factors such as 

fibre imperfections, modal dispersion, and external 

disturbances. The SP arises due to the superposition of these 

modes when they exit the fibre after multiple reflections and 

refractions at the core-cladding interface [14], [15]. Such SPs 

have distinct features at different wavelengths of light, and 

these provide the required spectral-to-spatial mapping [16], 

[17], [18], [19]. To reconstruct the input spectrum 

(wavelength) from the generated SP in this configuration, the 

transmission matrix of the input signal is experimentally 

calibrated [5] with a fixed spatial polarization and profile. This 

reconstruction method has significant flaws, as transfer 

matrices on multimode fibre are susceptible to environmental 

perturbation and mechanical instability [20]. Therefore, 

complex algorithms are required to reconstruct the input 

spectrum from SPs in the presence of noise, as these processes 

are only sometimes straightforward or satisfactory [21]. 

Recently, artificial intelligence (AI) based algorithms 

(deep learning) have proven to be better at recovering the 

spectrum from SPs with the ability to reject noise [20]–[22]. In 

this research, we develop and optimise a speckled-patterned 

fibre-based spectrometer device using a laser with a nominally 

fixed wavelength of 852 nm to calibrate wavelength and 

modulation frequencies. We demonstrate that the wavelength 

and the modulation sidebands in the proposed SPs 

spectrometer can be determined using AI. During modulation, 

there is only one optical frequency at any moment. It should 

be noted that, from a physical perspective, it was unclear how 

such telecom sidebands would behave in an SP spectrometer, 

given the different sideband light beams that arrive at the input 

to the speckle interferometer at other times. The MMF's 

temporal dispersion will influence the speckle pattern 

generated by this modulation. Still, this exciting issue is not 

explored here since we decided to focus on the applied aspects 

of design. 

The portability of our proposed system enables its potential 

for real-life application in areas such as cramped data centres 

and underground cables, where wavelength and frequency 

measurements appear challenging to achieve with 

conventional spectrometers. The SPs of the wavelengths or 

frequencies measured from these areas would then be sent to a 

remote station for processing. 

Using deep learning, we can realise a 2 pm resolution 

(approximately 0.8 GHz) between two laser lines compared to 

the 7 pm resolution of a standard Anritsu optical spectrum 

analyser. Our experimental work is compared with a standard 

Anritsu spectrometer using a MATLAB simulation of the 

Anritsu resolution in a model to the results obtained from AI. 

As far as we know, we have developed a novel technique for 

AI-based RF frequency detection from modulated SPs from 10 

GHz to 40 GHz, clearly showing sidebands and carrier 

suppression. In contrast to the existing detection methods 

mentioned in [36], [37], and [38], we can accurately detect the 

frequencies of the carrier and sidebands of modulated signals 

up to 40 GHz using the AI algorithm. 
 

II. EXPERIMENTAL SET-UP & OPERATING PRINCIPLE 

The experimental setup employs an 852 nm grating-

stabilized, single-frequency laser diode with a narrow 15 MHz 

typical linewidth continuous wave (CW). The output is 

transmitted through a polarization-maintaining single-mode 

fibre of 4.5 µm core diameter, facilitated by a compact 

butterfly laser driver (CLD1015). The random medium 

utilised in this setup is a commercially available step-index 

multimode fibre (M15L01) with a numerical aperture of 0.22 

NA and 105 µm core diameter. The connectors used in the 

configuration are Ferrule Connector/Angled Physical Contact 

(FC/APC) mating sleeves. In addition, the setup consists of a 

40 GHz (LNX8540F) Intensity Mach–Zehnder Modulator 

(MZM) for RF modulation, an 850 ± 100 nm, 50:50 Splitter 

(TW850R5A1), a vector analyser (R&S ZNA67) used as the 

RF source, a fibre inspection scope (FS201-FC) acting as the 

objective lens, a 1.6 MP monochrome camera (CS165MU/M), 

an optical spectrum analyser (Anritsu), and a personal 
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computer (PC) for SP analysis. Involve.  

To conduct the experiment shown in Fig. 2, the output of 

the laser SMF is transmitted into a 10-meter-long MMF by 

using a mating sleeve as a connector. The RF is switched off 

from the signal generator to calibrate the wavelength speckle 

pattern. As the light passes through the MMF, interference 

occurs due to the guided mode in the fibre. This phenomenon 

generates a distinct SP for every wavelength by sweeping the 

current from the laser driver. Our experiment did not involve 

the grating stabilisation process. The manufacturer had already 

performed this task as specified in the product package. The 

laser diode manufacturer uses Volume-Holographic-Grating- 

(VHG) to achieve stabilisation and houses the VHG-stabilized 

laser in a compact 14-pin type 1 butterfly package. This 

process provides a narrow-linewidth, single-frequency 

operation, enabling the laser to acquire 15 MHz typical 

linewidths. It is important to note that the laser linewidth 

affects the coherence length of laser light, affecting the 

speckle contrast. If the linewidth is highly narrowed, the 

speckle contrast and resolution will improve, but the 

susceptibility to frequency noise will increase. Therefore, 

balancing achieving the desired spectral resolution and 

managing noise levels is necessary. In this experiment, a laser 

with a linewidth of 15 MHz was selected based on the 

considerations above. 

At the exit face of the MMF, the SP is focused on the 

camera with the aid of the objective lens. The objective lens 

helps to adjust the camera's focus to capture the SPs 

accurately. These SPs are then transferred to the PC via 

ThorCam, a camera control software used for scientific and 

industrial applications. To generate additional speckle 

patterns, the wavelength of the laser diode is tuned by 

sweeping the laser current within the stabilised region. This is 

done by adjusting the current in the laser diode, which causes 

a shift in the wavelength of the laser light. As the wavelength 

changes, new SPs are generated, which provides more data for 

analysis. For a better understanding of the process, the 

schematic diagram is depicted in Fig. 3. The diagram shows 

how the laser diode, MMF, objective lens, and camera are 

positioned together. 

 

 
Fig. 2. Experimental setup of the proposed SP-based 

Spectrometer 

 

 
 

Fig. 3. Schematic diagram of the SP-based spectrometer 

 

 

The intensity distribution of the SPs captured by the camera 

across the face of the MMF is shown using the relation in (1) 

below [4]: 

 

∫ 𝑆(𝜆) 𝐹(𝑟, 𝜆) 𝐴(𝜆)𝑑𝜆    (1) 

 

Where 𝑆(𝜆)  represents the spectral flux density of the laser, 

𝐹(𝑟, 𝜆) depicts the fibre’s position-dependent transmission 

function, and 𝐴(𝜆) is the camera’s spectral sensitivity. 

 

A. Wavelength Calibration 

The laser injection current was varied using the laser driver 

over a set value to calibrate the wavelength-dependent SP. 

Then, a series of wavelength-dependent SP data were 

recorded. During the calibration, the injection current from the 

laser driver in Fig. 2 was varied at a step of 10 mA to record a 

series of wavelengths with minimum division corresponding 

to 0.002 nm (2 pm). This minimum shift corresponds to the 

minimum change with a visible de-correlation between two 

successive speckle patterns. These sets of wavelengths 

generated are plotted against their corresponding currents, and 

it can be observed from the graph in Fig. 4 that there are 

instances where some of the wavelengths hop mode after a 

series of steady readings. However, this is insignificant since it 

provides a straightforward means to change the central carrier 

frequency and the actual wavelength associated with a speckle 

pattern, which will subsequently be assigned to the various AI 

classes. 

A change in the speckle pattern could be seen visually in 

real-time from the camera for a change in wavelength of 2 pm, 

which can also be reconstructed using AI. The resolution 

achieved at 2 pm can compete with most classical optical 

spectrometers on the market. The calibrated wavelengths are 

utilised as the input signal into the MMF to record the SPs. 

While sweeping the laser current from the laser driver, the 

camera is triggered to generate frames of wavelength-

dependent SPs. It should be noted that the frames exhibit a 

minimum correlation difference of 0.002 nm. All necessary 

precautions, such as avoiding vibration on the measurement 

table and ensuring no mechanical movement of the 

components, were carefully preserved to obtain these results. 

The SP frame images are recorded over 2 minutes because of 

the risk that vibrations from MMF could alter the modes. A 
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total of 4160 SPs, corresponding to sixteen classes, are 

registered and stored to train the AI. 

 

 
 

Fig. 4. Wavelength calibration of nominally fixed laser using a 

10 m length of MMF 

 

B. Speckle Pattern Modulation 

The modulation speckle pattern calibration was performed 

using the same experimental setup shown in Fig. 2. In this 

scenario, the RF was turned on, and the MZM was biased 

from the biasing source to suppress the carrier. This makes the 

speckles generated by the sidebands more visible. The RF 

power is set at 15 dBm and made to sweep between 10 GHz 

and 40 GHz at a step of 5 GHz for 40 seconds at a constant 

carrier wavelength of 852.555 nm. A video of the SP 

generated at the MMF's output, captured by the camera via the 

microscope objective as the input RF varies from 10 GHz to 

40 GHz in 5 GHz steps, is recorded. This clip demonstrates 

how the SPs de-correlate quickly as the RF changes, 

demonstrating high spectral diversity. The video is converted 

to frames for training and classified based on the 

corresponding input RF values. 

The carrier wavelength is converted to carrier frequency 

equivalence using the following relation: 

 

𝑓𝐶 =  𝑣  λ⁄     (2) 

 

Where 𝑓𝐶 represents the carrier frequency, v, the velocity of 

light (299 792 458 m s-1) and 𝜆 the carrier wavelength. 

 

𝑓𝐶 = (2.9979 𝑥 108)  (852.555 x 10−9)⁄  

 

𝑓𝐶  ≈ 351.64 𝑇𝐻𝑧 

 

C. Deep Learning Spectral Reconstruction Algorithm 

The uniqueness of the speckle pattern-based spectrometer 

lies in the algorithm used to reconstruct the input spectrum 

from the generated speckle pattern [23]. Unlike conventional 

spectral reconstruction algorithms that are sensitive to noise 

and thus cannot reliably recover the spectrum, the 

convolutional neural network has been proven to isolate noise 

due to its data-driven nature [24], [25]. Hence, a supervised 

deep learning pre-trained convolutional neural network (CNN) 

in MATLAB 2021a was used to reconstruct the spectrum of 

the generated speckle patterns. 

Resnet 50 architecture (a pre-trained network) was adopted 

for this system configuration due to its depth of layers and 

reach features over a wide range of image classifications [26]. 

The network has an input image size of 224 by 224 pixels, a 

50-layer depth of neurons, 177 layers, and an output 

classification of up to a thousand. This pre-trained network 

can avoid gradient exploding and vanishing while performing 

overly complex image clustering tasks [27].  

Transfer Learning: The structures and the different layers of 

the Resnet-50 were used. However, a few modifications were 

made to the fully connected layer and the classification layer 

of the pre-trained network. The output size of the fully 

connected layer was modified to sixteen to match the total 

class required by the experiment. The weight factor and the 

bias learning rate were also adjusted. 

Data Augmentation: sixteen classes of datasets are created, 

each containing 260 SPs captured at distinct wavelengths 

tuned by the laser current. A total of 4160 SP images were 

loaded on the network, and with the augmentation option, 

random reflection was enabled, and a 360-degree random 

rotation of the SP images was also enabled. The maximum 

horizontal rotation of the pixel was set between 0 and 1, while 

the random vertical translation was set between 0 and 1. The 

datasets are divided by the network into three categories. 70% 

of the data was assigned for training, 15% for validation, and 

15% for testing. 

Training parameters: The algorithm was trained with an 

initial learning rate of 10e-4, a validation frequency of fifty 

iterations with a mini-batch size, and a maximum epoch of 30 

and 100, respectively. The stochastic gradient descent with 

momentum (sgdm) was selected as the solver while the 

training was executed in a graphics processing unit (GPU) 

environment.  

To be able to detect the modulated frequencies, the SP 

frames grabbed from the sweep video explained earlier in 

section B above were grouped in RF steps of 5 GHz from 10 

GHz to 40 GHz. A total of 200 SP frames for each class were 

recorded and trained. Data augmentation, a technique that 

modifies the initial SPs to increase the size of the training 

dataset artificially, was performed on the data set to guarantee 

a robust network. 

While the training is initiated, the network automatically 

resizes the SPs to their input size of 224 by 224 by 3. The SPs 

were also batch normalised to minimise errors due to intensity 

fluctuations and ensure an even distribution of training data 

[28]–[30]. The network learns to classify the wavelength and 

dependent SPs with an accuracy of approximately 99%, 

ensuring minimal loss. With the augmented data, the trained 

CNN can identify the input light wavelengths with a minimal 

interval of 2 pm in the presence of minimal vibration and 
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temperature fluctuation. This is accomplished, although the 

conditions under which the input light is received are highly 

variable. This provides further evidence that a trained network 

(AI) can assist in developing a spectrometer that is 

exceptionally resistant to the effects of influences such as 

changes in temperature [20]. A graphical user interface also 

displays the frequency spectrum of the signals identified by 

the algorithm. 

 

 

III. RESULT  

A. Experimental Results 

The schematic diagram in Fig. 3 illustrates the process of 

generating SP data, dependent on both wavelength and RF 

modulation. A laser beam is first pumped through an SMF with a 

polarization-maintained output to capture the wavelength-

dependent SPs. The beam is then coupled to an MMF using a 

mating sleeve while the MZM is isolated. The output face of the 

MMF is then focused on a camera using an objective lens, which 

captures the SP images for viewing. The camera is connected to a 

PC, enabling the captured SP images to be analysed and 

processed. The SP generated correlates with the corresponding 

input wavelength. It's worth noting that the MZM modulates the 

RF signal applied to the device. The RF-modulation-dependent 

SPs are generated by varying the RF modulation frequency while 

keeping the wavelength constant. This process enables the SP 

data to be obtained under different RF modulation conditions, 

providing valuable information for further analysis and 

interpretation. 

In Fig. 5 (a), a single laser line input with a wavelength of 

852.505 nm was captured by the OSA. The laser input generates 

the SP, shown in Figure 5 (b). Similarly, Fig. 6 (a) shows a laser 

wavelength of 852.507 nm on the OSA. The corresponding SP 

for this wavelength is displayed in Figure 6(b). The 

reconstruction algorithm, developed to reproduce these input 

spectra from the speckle patterns, is discussed in the sub-

discussion heading below. 

 

 
Fig. 5. (a) Wavelength of 852.505 nm as measured from 

Anritsu (OSA) and (b) the corresponding SP recorded at 

852.505nm. 

 

 
Fig. 6. (a) Wavelength of 852.507 nm as measured from 

Anritsu OSA and (b) the corresponding SP recorded at 

852.507nm. 

 

 
 

Fig. 7. (a) 10 GHz RF Modulated spectra measured by OSA 

and (b) the corresponding SP recorded from the modulated RF 

 

Section II (B) above explained that SPs were generated 

using a modulated carrier laser RF wavelength. The RF signal 

was swept from 10 GHz to 40 GHz in steps of 5 GHz to obtain 

the desired SPs. The experimentally recorded SPs were then 

correlated with these RF variations, and the results are shown 

in Fig. 7, 8, 9, and 10. Fig. 7 (a) illustrates the experimental 

measurement of the modulation of 10 GHz at a constant 

wavelength of 852.555 nm (351.64 THz). The upper and 

lower sidebands of the modulated 10 GHz RF signal were 

recorded by the OSA at 351.65 THz and 351.63 THz, 

respectively. These sidebands result from the RF modulation 

of the carrier laser wavelength. Fig. 7 (b) shows the 

corresponding SP generated by the RF modulation of the 

carrier laser wavelength. The SP is essentially the RF signal 

carried by the carrier laser wavelength. The carrier laser and 

the RF signal combine to produce the SP that the OSA 

records. In other words, RF modulation of the carrier laser 

wavelength produces sidebands, and the resulting SPs can be 

correlated with the RF variations and recorded. The OSA is 

used to measure and record these sidebands and SPs. 
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Fig. 8. (a) 20 GHz RF Modulated spectra measured by OSA 

and (b) the corresponding SP recorded from the modulated RF 

 

 

 
Fig. 9. (a) 30 GHz RF Modulated spectra measured by OSA 

and (b) the corresponding SP recorded from the modulated RF   

                                                                                                                                                                                                                                                                                

 
Fig. 10.  (a) 40 GHz RF Modulated spectra measured by OSA 

and (b) the corresponding SP recorded from the modulated RF 

 

It can also be observed that the upper and lower sidebands 

of the 20 GHz RF signal modulation of Fig. 8 (a) are 351.66 

GHz and 351.62 GHz, respectively, while the corresponding 

SP is also shown in Fig. 8 (b). The same applies to Fig. 9 and 

10. The recorded spectra and SPs for modulated 30 and 40 

GHz are shown, respectively. 

 

B. Simulation Results 

Using the developed MATLAB Simulink, the modulation 

model of the Anritsu results was simulated with its limited 

resolution. This aided the analysis of the acquired findings by 

comparing the experimental simulation with the AI algorithm 

results. 

The foundation of the modulation process relies on 

fundamental mathematical principles, as elucidated in the 

following explanation. Assuming the baseband message signal is 

denoted as 𝑚(𝑡), the carrier signal waveform is represented as 

𝑚𝑐(𝑡), and 𝐴𝑐 is the amplitude of the carrier signal. The 

mathematical representation of these signals can be expressed as 

[39]. 

𝑚𝑐(𝑡) =  𝐴𝑐𝑐𝑜𝑠𝜔𝑐𝑡  (3) 

When the carrier signal mc(t) is multiplied by the baseband 

signal 𝑚(𝑡), the modulated signal 𝑠(𝑡) will have the following 

relationship [39]: 

𝑠(𝑡) =  𝐴𝑐𝑚(𝑡)𝑐𝑜𝑠𝜔𝑐𝑡   (4) 

Therefore, the parametric values used during the experiment 

are replicated for the simulation. These are summarised in 

table 1 below: 

 

TABLE I 

 SIMULATION PARAMETERS 

Parameters Values 

Carrier Frequency 351.64 THz 

RF Power 18 dBm 

Vπ (at null condition) 6.8 V (DC) 

With the mathematical model and the parameters above, 

simulations of 10 GHz, 20 GHz, 30 GHz, and 40 GHz RF 

modulation using a carrier wavelength of 852.555 nm are 

performed, and the results are shown in Fig. 11 to 14 below. 

The MATLAB simulation in Fig. 11 to 14 presents a smoother 

shape for the sideband compared to the experimental ones 

obtained from the OSA in Fig. 7 (a), 8 (a), 9 (a), and 10 (a). 

This discrepancy is due to the limited resolution of the OSA. 

However, despite this limitation, we could still train the AI to 

predict the modulated spectrum's exact frequencies accurately. 

It is important to note that no simulation of the Anritsu 

resolution was applied to Fig. 7 to 10. The Anritsu resolution 

refers to the minimum resolution bandwidth of the OSA, 

which can vary depending on the instrument's specifications. 

We used a resolution simulation solely for the reconstruction 

algorithm, which allowed us to improve the accuracy of the 

predictions. Overall, while the experimental data may not be 

as smooth as the simulation, our approach still enabled us to 

achieve accurate predictions of the modulated spectrum. This 

demonstrates the effectiveness of using AI-powered 

algorithms to enhance the accuracy of measurements and help 

more precise predictions in various fields of study. 
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Fig. 11.  Simulation result of 30 GHz of RF modulated at a 

carrier wavelength of 852.555nm. 

 

 
Fig. 12. Simulation result of 20 GHz of RF modulated at a 

carrier wavelength of 852.555nm. 

 

 
Fig. 13. Simulation result of 30 GHz of RF modulated at a 

carrier wavelength of 852.555nm. 

 

 
Fig. 14. Simulation result of 40 GHz of RF modulated at a 

carrier wavelength of 852.555nm. 

C. Algorithm Results 

To evaluate how well the trained network discussed in the last 

section works, SPs from the test sets of the dataset are loaded into 

the algorithm. These SPs were sampled from the test sets 

generated from the wavelength calibration at 852.505 nm and 

852.507 nm. Fig. 16 and 17 show that the trained network can 

recover spectral intervals of up to 2 pm of the wavelength from 

the speckle pattern and this can be visualised with the developed 

algorithm. 

Similarly, the modulated SPs generated are also trained to 

detect the frequency spectrum of the RF. Fig. 18 to 21 show the 

spectrum reconstruction of the 10 GHz, 20 GHz, 30 GHz, and 40 

GHz from the modulated SPs in Fig. 7 (b), 8 (b), 9 (b), and 10 (b). 

Detailed explanations of the recovered spectra in Fig. 16 to 21 are 

provided under the discussion sub-heading. 

A confusion matrix (CM) is also plotted in Fig. 15 to visualise 

how the CNN network classified the speckle pattern. The graph is 

plotted from the 15% test data, showing that 98.7% of the test 

data are correctly classified, as shown in the bottom right corner 

of the figure. From the CM, a maximum of 6.2% is required for a 

perfect classification of the test data per class along the diagonal 

of the chart. However, 3 SP images of the test data recorded at a 

wavelength of 852.482 nm are misclassified with those recorded 

at 852.630 nm, representing 0.5% test data error and 7.7% total 

class error. Similarly, the network misclassified 5 SP images 

recorded at a wavelength of 852.630 nm as 852.482 nm, 

representing 0.8% error of the test data in this category and 12.8% 

total class error. In summary, an absolute error of 1.3% resulted 

from the network's misclassification of some of the test data, and 

an overall accuracy of 98.7% was recorded by the CM (this is 

indicated at the bottom right corner of the CM). 

 

 

 
Fig. 15. Confusion matrix: Illustrating the prediction 

distribution from the test data. 

 

Similarly, fig. 18 to 21 demonstrate the AI algorithm's 

capacity for reconstruction when experimentally generated 

modulated SPs are input to the network. The discussion 

section below goes into more detail about this. 
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Fig. 16. A single laser line reconstruction of 852.505 nm from 

its SP by the convolutional neural network (AI) 

 
 

Fig. 17. A single laser line reconstruction of 852.507 nm from 

its SP by the convolutional neural network (AI). 

 

 
Fig. 18. AI reconstruction of the spectrum of the modulated 

SP at an RF of 10 GHz and a carrier frequency of 351.64 THz 

 

 
Fig. 19. AI reconstruction of the spectrum of the modulated 

SP at an RF of 20 GHz and a carrier frequency of 351.64 THz 

 

 

 
Fig. 20. AI reconstruction Spectrum of the modulated SP at an 

RF of 30 GHz and a carrier frequency of 351.64 THz 

 

 

 
Fig. 21. AI reconstruction spectra of the modulated SP at an 

RF of 40 GHz and a carrier frequency of 351.64 THz 
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IV. DISCUSSION  

Experimentally, an AI-based spectrometer (SPAIS) with a 

resolution of up to 2 pm and the ability to reconstruct 

wavelengths and modulated frequencies is presented. The 

research aims to create a high-resolution SP-based spectrometer 

using a non-tuneable laser. This spectrometer can analyse 

wideband RF and wavelengths (a wavemeter) from 

corresponding SPs.  

A.  Effect of Laser Diode, MMF and Camera on the 

Reconstruction Accuracy. 

Laser Diode: The selection of a laser diode substantially 

impacts the speckle pattern, significantly affecting spectral 

reconstruction. Some of the properties of lasers that could directly 

influence spectral reconstruction include polarisation 

characteristics. The laser diode's polarisation properties can 

influence the light's polarisation state, potentially affecting the 

speckle pattern [3]. A laser diode with a linearly polarised output 

can be particularly useful in such cases, as it can help to reduce 

the variability of the speckle pattern and improve the quality and 

accuracy of the output. For this work, we ensure a laser with 

polarisation maintaining out was chosen, as mentioned in section 

II above. It is also essential to consider the laser linewidth as it 

influences the coherence length. A narrower linewidth leads to a 

longer coherence length, which ensures a more stable speckle. As 

also stated in section II above, a narrow 15 MHz Typical 

Linewidth (CW) was selected for this purpose. 

Multimode fibre: The core size in an MMF is a crucial factor 

that significantly impacts the spectral reconstruction process. A 

larger core size allows for more spatial channels in a speckle 

pattern. This ultimately leads to better spectral reconstruction 

results. This is because the spatial channels contribute to the 

overall spectral response of the fibre, and an increased number of 

channels provides more information about the spectral 

components of the input signal. Maintaining a balance between 

achieving higher spatial channels and reduced speckle pattern 

resolution is also essential [3]. For this reason, we opted for step-

index multimode fibre (M15L01) with a numerical aperture of 

0.22 NA and 105 µm core diameter. 

Camera: Similarly, camera choice significantly impacts CNN 

spectral reconstruction from speckle patterns as, at higher 

resolutions, the camera can capture more detailed information, 

which can help CNN learn and reconstruct spectral features more 

accurately.  For example, higher-resolution cameras can provide 

more detailed information, potentially improving the CNN's 

ability to learn and reconstruct spectral features. The camera's 

frame rate becomes crucial in dynamic scenarios where the 

speckle patterns change rapidly, which can be particularly 

relevant to spectral reconstruction tasks. A higher frame rate 

camera can capture speckle pattern frames faster, reducing the 

influence of environmental factors such as vibration and 

temperature change. One of our goals for this project was to keep 

the cost of components relatively low while still achieving our 

design objectives. The camera employed in this experiment has a 

1440 x 1080-pixel resolution (1.6 MP) sensor with 3.45 µm 

square pixels and a frame rate of 34.8 fps at the full sensor. 

From Fig. 16 to 21 above, it can be observed that the AI 

successfully predicted and reconstructed the input spectra at the 

correct positions from the SPs generated. In Fig. 16 and 17, the 

AI correctly reconstructed 852.505 nm and 852.507 nm 

wavelengths when the SPs for these wavelengths were loaded 

into the network. Furthermore, the SPs in the (b) parts of Fig. 5 

and 6 are captured at a resolution of 0.002 nm (2 pm) and are 

accurately reconstructed with the algorithm. 

In Fig. 18 to 21, the algorithm also successfully predicted the 

carrier and the sidebands of the 10 GHz, 20 GHz, 30 GHz, and 40 

GHz modulated RFs. Here, one can see that the sidebands and 

carriers that the AI predicted lined up at the  

correct frequency values, just like in the experiments in Fig. 8 to 

11 and the simulation plots in Fig. 12 to 15. 

Also, qualitative observations were made with the MZM in a 

pie (null) bias condition. The SP was even more sensitive to the 

RF modulation. This is unsurprising since the carrier is 

suppressed, and only the sideband exists. The algorithm for 

spectral reconstruction is designed using a convolutional neural 

network (RESNET 50). The pre-trained network is customised to 

train our dataset and intended to visualise the reconstructed 

spectrum graphically, as shown in Fig. 16 to 21. 

The pioneering study that proposed using MMF as a dispersive 

element in spectrometer design is presented in [14]. This study 

achieved a design resolution of 0.15 nm over 25 nm bandwidth 

using a one-metre-long fibre and a 0.03 nm resolution over 5 nm 

bandwidth with a 5 m-long fibre. However, one of the drawbacks 

was spectra recovery from the generated SPs, as multiple 

algorithms had to be used to reduce the speckle noise and 

reconstruction errors. However, in [4], a better resolution of 8 pm 

of an MMF-based spectrometer was achieved. Yet, multiple 

algorithms, which include the transmission matrix truncated 

invasion technique and simulated annealing, were deployed for 

spectra recovery. Also, in [21], a multimode fibre 100 m long and 

a wavelength of 1500 nm was used to get a resolution of 1 pm at 

a wavelength of 1500 nm. This was done using a combination of 

matrix pseudo-inversion and non-linear optimisation for spectra 

reconstruction. In the recent advancement of this technology, a 

notable body of research has focused on utilising machine-

learning techniques for spectral reconstruction due to their ability 

to denoise SPs. Notably, these studies primarily focused on 

reconstructing wavelengths from the generated SPs. An example 

of such a study is presented in [27], where a theoretical resolution 

of 0.1 pm is achieved. Our research aims to improve on this 

recent development by utilising AI to detect modulated radio 

frequency (RF) signals from SPs. This is different from the 

current detection methods, which are based on modulation 

classification schemes [32], [33], [34], [35] or constellation 

diagrams [36], [37], [38].  

Furthermore, the developed AI architecture displays the 

reconstructed spectrum in a user-friendly graphical interface. The 

proposed SPAIS has a unique wavelength reconstruction 

resolution of 2 pm, which can be improved to sub-femtometre 

and attometre resolutions using a more advanced, innovative laser 

diode that can be finely tuned. 
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TABLE II 

QUANTITATIVE COMPARISON OF SPECTRAL RECONSTRUCTION ALGORITHM 

 

Aspect Resolution Power 

Density 

Estimation 

Accuracy 

Computational 

Cost 

Time/ Space 

Complexity 

Notes 

This work  

(Machine Learning 

Algorithm) CNN. 

2 pm 

High, 

adaptive 

resolution 

Enhanced 

accuracy can 

be achieved 

through 

adaptable 

data 

processing, 

effective 

feature 

extraction, 

generalised 

analysis, and 

pattern 

recognition. 

Generally, 

machine 

learning models 

have a higher 

computational 

cost due to the 

requirements of 

model training 

and inference. 

Relatively 

higher, although 

it depends on 

model 

complexity, 

size, and type of 

memory used 

for training. 

The CNN algorithm 

requires more time 

and space than 

conventional 

algorithms due to its 

complexity and 

computation.  

Nonetheless, it is 

preferred in this 

project due to its 

capability to identify 

multiple frequencies 

[6] and eliminate 

speckle noise during 

training [21].  

CNN can achieve an 

incredibly high level 

of resolution up to the 

attometre (am) scale. 

However, the 

resolution of the 

tuneable laser used for 

generating reference 

speckles can act as a 

limiting factor [6]. 

Non-Machine 

Learning 

Algorithm 

a. Truncated 

Inversion 

Technique 

with a Least 

Squares 

Minimization 

Procedure 

 [3] 

b. Principal 

Component 

Analysis 

(PCA) [6] 

c. Sparse 

Optimisation 

[15] 

 

 

 

 

a. 8 pm 

 

 

 

 

 

 

b. 620 pm 

 

 

 

c. 0.03 nm 

 

 
 

 

 

 

 

N/A 

Generally 

lower 

Generally lower 

memory and 

time.  

It can 

significantly 

decrease the 

simulation time 

by employing 

the truncated 

inversion 

technique 

mentioned in 

(a), which can 

offer a reliable 

initial 

estimation [3]. 

On the contrary, 

unlike machine 

learning ones, 

conventional 

algorithms are 

relatively less 

expensive and have 

lower space 

complexity and 

computational cost, 

respectively. 

However, eliminating 

noise and detecting 

sparse signals can be 

challenging and 

require additional 

algorithms [3]. 
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TABLE III 

PHASE NOISE MEASUREMENT OF RF SIGNAL GENERATOR (R&SZNA67) 

 
 

It is essential to state that based on the RF phase noise 

data in Table III above, it has been observed that the phase 

noise increases as the frequency of interest approaches the 

carrier frequency. In our situation, we converted the modal 

dispersion period (time delay) into frequency drifts, which 

in turn caused fluctuations in the wavelength of the light 

used. This is shown in Equation 5 below. It is important to 

note that the drift in RF wavelength is equivalent to the drift 

in phase per unit time. To put this into perspective, a time 

delay of 0.5 nanoseconds roughly equals a frequency of 2 

GHz (2E9Hz). 

 

If the modal dispersion period is a multimode fibre 

represented by Td, then, 

 

Td =  
𝐿

𝐶∗Ƞ2
∗ (Ƞ1^2) ∗ (Ƞ1 − Ƞ2)          (5) 

 

Where L is the length of the fibre used, C is the speed of 

light in a vacuum, Ƞ1  1.5 refractive index of core and 

Ƞ2 1.49 refractive index of the cladding. 

When L = 10 m 

 

Td =  
10

3𝐸8∗1.49
∗ (1.5^2) ∗ (1.5 − 1.49)                 

 

0.5 ns                                                                     (6)  

 

Considering the specification of our VNA R&SZNA67 

shown in Table III above, we confirm that when the RF 

source is 5MHz away, it produces an output of -130dBc/Hz 

at 10GHz. This implies that the phase noise of the RF 

source is 30dB below the RF carrier frequency. The +100 

comes from the conversion of 10GHz to dB. It should be 

noted that 5MHz converts to a time delay of 1/5MHz = 2E-

7 = 200ns. Therefore, this would equate to a time delay 400 

times longer than the 10m we used, i.e., 4km of fibre. Even 

for this length of fibre, the RF frequency drift is trivial. 

As previously established, the measurement appears to be 

off the charts at 0.5 ns, equivalent to 2 GHz. However, the 

dBc/Hz remains constant at this point. This results in a 

value of -150dBc +100 = -50dB at a source frequency of 

10GHz. At the end of the fibre, the noise power is 

insignificant at any given moment, even though the lens and 

path differences may affect the speckle on the camera. 

Therefore, we observe the optical frequency interference of 

the modulated laser, which is possible because the phase 

noise is so low at this 0.5ns time delay.  

 

IV. CONCLUSION 

A speckle pattern-based spectrometer based on a fixed laser 

diode carefully tuned to a frequency range of about 100 

GHz has been designed and demonstrated experimentally. 

The resolution of the speckle pattern-based spectrometer is 

determined experimentally by the SPs decorrelation when 

the wavelength is adjusted by varying the laser injection 

current. To the best of our knowledge, this research 

experimentally presents proof of concept of a high-

resolution 2 pm and low-cost spectrometer that can 

precisely measure the values of RF modulated frequencies. 

The incoming RF signal is modulated in 5 GHz steps up to 

40 GHz using MZM, which includes a standard tuneable 

laser light and the Speckle Patterns (SPs) generated by the 

MMF, which are stored separately for spectral processing. 

Artificial Intelligence (AI) is used to train the wavelength-

dependent produced SPs, which have a prediction accuracy 

of 98.7% at 2 pm wavelength resolution. In addition, we 

demonstrate, for the first time, a novel method for detecting 

modulation frequencies using Convolutional Neural 

Networks (CNN). The algorithm determines the carrier's 

exact frequency values and modulated signal sidebands.  

However, a more excellent resolution can be accomplished 

with a longer fibre. Furthermore, the resolution of the 

system is also contingent upon the resolution of the laser 

employed for calibration. Higher resolution can also be 

attained at the sub-femtometre and attometre levels by this 

proposed work if a more advanced, cutting-edge, and finely 

tuneable laser diode is deployed. This research work can 

potentially advance the miniaturisation of bulky RF 

spectrometers significantly. The reported low-cost,  robust, 

and high-resolution SP spectrometer would significantly 

impact advanced measurement and instrumentation in the 

telecommunications sector since it can deliver high-

resolution RF detection and measurements and can be 

implemented in any robust environment. Meanwhile, future 

studies using AI to model and predict the power level of 
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modulated frequencies would be an exciting prospect, 

building upon the valuable insights provided by this study. 
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