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D2/D3 dopamine supports the precision of 
mental state inferences and self-relevance of 
joint social outcomes

J. M. Barnby    1,2  , V. Bell3, Q. Deeley2, M. A. Mehta2 & M. Moutoussis    4,5

Striatal dopamine is important in paranoid attributions, although its 
computational role in social inference remains elusive. We employed a 
simple game-theoretic paradigm and computational model of intentional 
attributions to investigate the effects of dopamine D2/D3 antagonism on 
ongoing mental state inference following social outcomes. Haloperidol, 
compared with the placebo, enhanced the impact of partner behaviour on 
beliefs about the harmful intent of partners, and increased learning from 
recent encounters. These alterations caused substantial changes to model 
covariation and negative correlations between self-interest and harmful 
intent attributions. Our findings suggest that haloperidol improves belief 
flexibility about others and simultaneously reduces the self-relevance of 
social observations. Our results may reflect the role of D2/D3 dopamine 
in supporting self-relevant mentalising. Our data and model bridge 
theory between general and social accounts of value representation. We 
demonstrate initial evidence for the sensitivity of our model and short 
social paradigm to drug intervention and clinical dimensions, allowing 
distinctions between mechanisms that operate across traits and states.

Dysregulated striatal dopamine has been identified as a key causal 
component in psychosis. Influential work proposed that striatal dopa-
mine mediates aberrant salience leading to atypical perceptual experi-
ences1–3. More recent social-developmental models have highlighted 
the role of dopamine as a key point of convergence for a number of 
causal social and developmental factors, such as trauma, genetic vul-
nerability and cannabis use4. This has been supported by molecular 
and neuroimaging studies suggesting that developmental adversities 
(for example, refs. 5,6) increases pre-synaptic turnover of dopamine 
in striatal regions that may fuel the onset7–9 and exacerbation10,11 of 
psychosis symptoms.

Antipsychotics are the first-line treatment for psychosis and have 
good evidence for their efficacy12. Although they are thought to enact 
their therapeutic efficacy via D2/D3 dopamine antagonism, the exact 

mechanism by which their pharmacological effect reduces symptoms 
through the modulation of neurocognitive processes is still poorly 
understood. Although recent investigations into the links between 
striatal hyperdopaminergia and psychosis have been important in iden-
tifying important risk factors, and have offered important hypotheses 
for the causes of psychosis and psychotic symptoms at the neurobio-
logical level, they have not been able to explain how they alter cogni-
tion beyond citing salience as a key mechanism. The end point of such 
causal pathways in psychiatry is likely to be dynamic, multidimensional, 
context-sensitive cognitive processes13. Computational modelling 
is an approach that allows these dynamic cognitive processes to be 
mathematically implemented and has the potential to more effectively 
connect mechanisms with psychiatric phenomenology14,15, offering 
precise accounts of complex behaviour that are more amenable to 
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personal causes25 and overly complex mentalising26,27. Developing 
computational theories to bridge the gap between the phenomenology 
and the neurocognitive mechanisms of paranoia requires particular 
considerations. Computational approaches in the social domain must 
sufficiently account for large—and often recursive—action spaces28. 
These structural principles are appropriate for psychiatric symptoms, 
which inherently involve alterations to interpersonal beliefs concern-
ing the self and others29.

formal testing, refutation and refinement. Within this framework, 
dopaminergic alterations have been linked to computational processes 
such as belief updating16,17, expectations of belief volatility18–20 and 
model-based control21.

One particularly disabling core symptom of psychosis is paranoia, 
the unfounded belief that others are trying to cause you harm22,23. 
Psychologically, paranoia is characterized by heightened sensitivities 
to interpersonal threat24, attributing negative outcomes to external, 
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Fig. 1 | Experimental design and model space. a, Participants were entered 
into a double-blind, placebo-controlled, within-subject experimental design. 
ECG, electrocardiogram. b, Participants engaged in a three-partner version of 
the sharing game (inset). Here, partners were assigned the role of Dictator and, 
on each trial, could either take £0.10 for themselves (unfair outcome), or take 
£0.05 and give the participant £0.05 (fair outcome). Participant reported two 
types of attributional intent concerning the motivations of the partner after 

each outcome. These included harmful intent attributions and self-interest 
attributions. Partner order was randomized, and partner change was signalled.  
c, Model space used to test whether dopamine manipulations were best 
explained by the full model (M1), a model that constrained policy updating 
to a single sensitivity parameter for each attribution (M2), or a model that 
constrained prior uncertainty to a single parameter (M3; Table 1). Although filled 
objects are free parameters. Grey shaded objects are probability distributions.
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Models of intentional attributions—explicit inferences about the 
mental state of others—allow for analyses that are theoretically related 
to ongoing paranoia. Current models include mechanistic explana-
tions for perceived changes in the harmful intent and self-interest that 
might motivate the actions of another. Past work suggests that high 
trait paranoia is associated with rigid priors about the harmful intent 
of partners, and a belief that a partner’s actions are not consistent with 
their true intentions30,31. Several predictions can be made concerning 
the influence of dopamine D2/D3 antagonism on paranoia. Synthetic 
in silico models32, neuroimaging evidence33, prior predictions31 and 
psychopharmacological work21,34 predict that D2/D3 antagonism will 
increase belief flexibility and improve consistency of the self’s model of 
others, which in turn should reduce self-relevant attributions of harm-
ful intent following social outcomes; however, this has yet to be tested.

Although key binding sites of most antipsychotics are thought 
to work through their action at D2/D3 dopamine receptors, how they 
influence the cognitive processes of paranoia is unknown. Given the 
experimental evidence and synthetic predictions on the role of D2/D3 
dopamine antagonism on improvements in belief updating, reduc-
tions in harmful intent, increases in prosocial behaviours, and the 
impact of high trait paranoia on the consistency of a self’s model of 
others, it follows that the mechanism of action of D2/D3 antagonism 
on harmful intent attributions may occur through an increase in belief 
flexibility and the consistency of a self’s model of others. Following 
from our preregistered behavioural experiment35, we further exam-
ine the causal influence of D2/D3 dopamine receptor antagonism on 
computational mechanisms governing intentional attributions within 
a simple game-theoretic context. Using a formal model of intentional 
attributions and an iterative Dictator game30,31, we test the impact of 
haloperidol, a D2/D3 antagonist and l-3,4-dihydroxyphenylalanine 
(l-DOPA, a presynaptic dopamine potentiator) on paranoid beliefs 
using past data35.

Primarily we assessed whether haloperidol alters key compu-
tational processes involved in mental state inferences, allowing 
distinctions between trait representational changes (priors) and state-
learning processes (policy flexibility, uncertainty) along each attribu-
tional dimension (harmful intent and self-interest). Given the absence 
of any consistent descriptive effects of l-DOPA in this experiment, we 
modelled the data under an assumption that there would be no oppos-
ing effects on model parameters under l-DOPA versus haloperidol.

Results
Participants (n = 28) played a within-subjects, multi-trial modification 
on the Dictator game (hereafter called The Sharing Game) designed 
to assess paranoia35,36, following administration of haloperidol (3 mg), 
l-DOPA (150 mg) or placebo in a within-subject design (Fig. 1; see  
Methods for more details). After each trial of The Sharing Game, par-
ticipants were asked to rate on a scale of 1–100 (initialized at 50) to what 
degree they believed that their partner was motivated by a desire to: (1) 
earn more (self-interest), and (2) reduce the participant’s bonus in the 
trial (harmful intent). From the participant’s perspective, the actions 
of the partner can be framed as either arising from motivations that 

concern the gain of value for the partner irrespective of the participant 
(other-relevant) or arising from motivations that concern the loss of 
value for the participant (self-relevant).

Behavioural results
Behavioural results were published previously35. To summarise, when 
averaged over all Dictators, haloperidol caused a reduction in harmful 
intent attributions versus placebo (−0.17, 95% CI: −0.28, −0.05), whereas 
l-DOPA did not. Haloperidol also increased self-interest attributions 
versus placebo (0.16, 95% CI: 0.05, 0.27), whereas l-DOPA did not. Unfair 
and partially fair Dictators both elicited higher harmful intent (par-
tially fair = 0.28, 95% CI: 0.16, 0.40; unfair = 0.75, 95% CI: 0.63, 0.87) 
and self-interest attributions (partially fair = 0.59, 95% CI: 0.63, 0.87; 
unfair = 1.16, 95% CI: 1.05, 1.27) versus fair Dictators.

Model comparison and recovery
Bayesian hierarchical fitting and comparison identified that, at the 
group level (Fig. 2a), participants under placebo and haloperidol were 
best fitted by model 3. This model assumed that agents use a single 
uncertainty over both attributional priors, but used separate likelihood 
weights to update their beliefs about their partners’ policy. In con-
trast, participants under l-DOPA were best fit by model 2. This model 
assumes participants hold individual uncertainties over their prior 
beliefs, although use the same likelihood weight to update both attri-
butional dimensions. Importantly, model parameters under l-DOPA 
were not opposing haloperidol changes versus placebo, supporting 
behavioural analyses (Supplementary Fig. 10).

We examined model generative performance and reliability for 
each condition. We extracted parameters for each individual under 
each condition according to the model that bore the most responsibil-
ity for their behaviour (Fig. 2b). We then simulated data for each par-
ticipant, with their individual-level parameters for each condition and 
model, and re-estimated model comparison, recovered each model, 
generated attributions for each trial and dictator condition, and fitted 
regression models for main effects. Bayesian hierarchical fitting and 
comparisons on simulated data demonstrated excellent similarity 
with group- and individual-level model responsibility and exceedance 
probabilities from real data (Supplementary Fig. 1a). Likewise, individ-
ual-level parameters demonstrated excellent recovery (all Pearson’s  
r values > 0.71, P-values ≈ 0; Supplementary Fig. 1b,c,d). Simulated and 
real attributions demonstrated excellent recovery across all drug and 
dictator conditions (all Pearson’s r values > 0.62, P-values ≈ 0; Sup-
plementary Fig. 1e). Simulated attributions also recovered the main 
effects of drug and dictator conditions on attributional dynamics: 
haloperidol demonstrated reductions in harmful intent versus the 
placebo (−0.26, 95% CI: −0.36, −0.16), whereas l-DOPA did not, and 
haloperidol increased self-interest attributions versus the placebo 
(0.26, 95% CI: 0.15, 0.37), whereas l-DOPA did not.

We were most interested in examining the effect of haloperidol 
versus the placebo to understand the mechanism behind the observed 
descriptive behavioural results. As model 3 achieved group-level domi-
nance across both placebo and haloperidol conditions, we were able 

Fig. 2 | Model comparison, recovery and generative performance. a, Model 
responsibility across all three drug conditions. Greater model responsibility 
at the group and individual levels indicates the most likely generative model 
to explain the data. Ex. prob. = exceedance probability that a single model best 
defines group behaviour; freq = model frequency that each model is the best 
fitting model for participants. b, Model recovery. All recovery analyses used 
n = 28 synthetic participants—one for each real parameter set approximated from 
the data. The Hierarchical Bayesian Inference (HBI) algorithm correctly identified 
the correct model for most participants with trivial differences between model 
frequencies. c, Parameter recovery. Pearson correlation matrix of common 
parameters across all drug conditions for simulated (y-axis) and real (x-axis) 
data. All correlations were over 0.71 (P-values < 0.001). Crosses indicate non-

significant associations. d, Parameter recovery. Individual Pearson correlations 
between common parameters across haloperidol and placebo conditions 
for simulated (y-axis) and real (x-axis) data. All correlations were over 0.71 
(P-values < 0.001). Black lines indicate the linear model of perfect association 
(r = 1). e, Parameter recovery. Individual Pearson correlations between common 
parameters across all drug conditions for simulated (y-axis) and real (x-axis) 
data. Black lines indicate the linear model of perfect association (r = 1). f, Top 
panel: Pearson correlation (±s.e.m.) between simulated and real harmful intent 
(left) and self-interest (right) attributions across all Dictator policies (n = 28; 
P-values < 0.001). Bottom panel: simulated harmful intent (left) and self-interest 
(right) mean attributions (±s.e.m.) for each drug condition and Dictator policy.
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to directly compare all individual-level, winning model parameters 
between conditions {pHI0, pSI0, uPri, uπ, η,w0, wHI, wSI} (Table 1).

Haloperidol reduces harmful intent priors and precision
We examined the differences between individual-level param-
eters within subjects for haloperidol versus placebo (Fig. 3a; see 

Supplementary Fig. 4 for effect sizes). This suggested that haloperi-
dol increased reliance on learning about a partner just encountered, 
relative to pre-existing prior beliefs about partners in general (η; mean 
diff. = 0.15, 95% HDI: 0.03, 0.26; effect size = 0.66, 95% HDI: 0.22, 1.10). 
Haloperidol did not influence the consistency with which partners were 
believed to act in accordance with their character (uπ).
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Haloperidol increased learning flexibility over harmful intent attri-
butions only. Haloperidol increased the impact of partner behaviour 
on harmful intent attributions (wHI; mean diff. = 0.10, 95% HDI: 0.06, 
0.13; effect size = 1.20, 95% HDI: 0.64, 1.75), but not over self-interest 
(wSI)—a partner’s actions had more impact on a participant’s beliefs 
about their true motivations of intentional harm. Haloperidol also 
caused the intercept of the policy matrix to be drawn towards 0, allow-
ing greater updating parity for each unfair or fair partner action (w0; 
mean diff. = 0.58, 95% HDI: 0.01, 1.10; effect size = 0.43, 95% HDI: 0.02, 
0.82). The w0 effect size should be treated with caution; the posterior 
distribution is within the region of practical equivalence (Supplemen-
tary Fig. 4).

We sought to further probe the model-based implications of drug 
differences on attributional flexibility in detail. Simulations on the 
marginal effect of wHI on attributional dynamics are suggestive of its 
role in modulating the precision (1/σ2; inverse variance) of attributions 
over all trials, irrespective of Dictator policy (Fig. 3b). To establish this 
we used a regression model including wHI as a linear term and w0 as a 
quadratic term—this was most parsimonious compared to using w0 as 
a linear term (Akaike Information Criterion [AIC] = 568 versus 1,123). 
There was a main effect of wHI on the precision of harmful intent attri-
butions (−6.13, 95% CI: −6.28, −5.97; effect size = −0.88, 95% CI: −0.92, 
−0.85). There was a small effect of w0 within the same model (−0.06, 
95% CI: −0.064, −0.056, effect size = −0.11, 95% CI: −0.14, −0.08). There 
was a significant but small interaction of w0 and wHI on the precision of 
harmful intent (−0.22, 95% CI: −0.25, −0.20; effect size = −0.05, −0.08, 
−0.02). Importantly, increased wHI reduced harmful intent attributions 
(−0.93, 95% CI: −0.95, −0.92; effect size = −0.13, 95% CI: −0.14, −0.13) 
through reductions in the precision of harmful intent.

We found evidence that a greater wHI (compare with effect of halop-
eridol) may reduce precision most under conditions of ambiguity. Spe-
cifically, the precision of harmful intent attributions is lower in partially 
fair versus fair Dictators (−0.24, −0.33, −0.15; effect size = −0.24, 95% 
CI: −0.33, −0.15), but unfair versus fair Dictators produced equivalent 
precision. Dictator policy interacts with wHI: higher wHI is associated 
with lower precision under partially fair versus fair dictators (−0.77, 
95% CI: −1.42, −0.42; effect size = −0.11, 95% CI: −0.21, −0.02). Thus, 
higher wHI accentuates flexibility within and between partners, but 
most in ambiguous social contexts in which paranoia often flourishes. 
There was no interaction for unfair dictators versus fair dictators (Sup-
plementary Fig. 5).

Haloperidol had no net significant influence on pHI0, uPri or pSI0 
(Supplementary Table 1). Individual parameter analysis suggests 
that haloperidol has a predominant net influence on the flexibility of 
belief updating about a specific context (here, that of our task). Under 
the influence of haloperidol, participants’ assumptions of each new 
encounter are more amenable to change under the influence of recent 
encounters.

Model covariation differentiates haloperidol from the placebo
From our analysis we can conclude that the model is accounting for the 
true observed data relatively well. Isolated parameter changes between 
conditions suggest this effect is primarily driven by increases in the 
impact of partner behaviour on beliefs about harmful intent, wHI and 
increased learning from experience, η. Considered separately, these 
key parameters did not fully explain how the model accounted for 
behaviour changes induced by haloperidol (Supplementary Fig. 4). 
We therefore sought to identify, through exploratory factor analysis, 
meaningful patterns over the covariation induced by haloperidol.

We found that three factors best accounted for the data (Supple-
mentary Fig. 9), with the first demonstrating the greatest eigenvalue 
(factor 1 = 2.82; factor 2 = 1.36; factor 3 = 1.13). K-fold cross-valida-
tion within a logistic model demonstrated that a two-factor solution 
provided the best median accuracy to discriminate between drug 
conditions (mean accuracy = 0.86) and had the lowest AIC (40.3; 

Table 1 | Winning model parameters and their role in the 
model

Parameter Generative purpose

pHI0 Magnitude of the prior that the actions of others are 
generally motivated by harmful intent (HI) towards the 
self, p(HI)t=0. Increasing this parameter increases the 
belief that a partner is motived by harmful intent before 
any actions are observed.

pSI0 Magnitude of the prior that the actions of others are 
generally motivated by self-interest (SI) irrespective of 
the self, p(SI)t=0. Increasing this parameter increases the 
belief that a partner is motived by self-interest before 
any actions are observed.

uPri Uncertainty over priors. Increasing this parameter 
broadens the prior distribution of both p(HI)t=0 and 
p(SI)t=0.

Prior p(HI)t=0 ≈ Bin(HI; pHI0, uPri, NB)
p(SI)t=0 ≈ Bin(SI; pSI0, uPri, NB)
p(HI,SI)t=0 = p(HI)t=0 p(SI)t=0

NB = 9

w0 Intercept of the likelihood matrix, πgen, which calibrates 
the magnitude of attributional change when a fair or 
unfair action is made by a partner.

wHI Impact on beliefs that an outcome (rew) is motivated 
by harmful intent. Increasing this parameter leads 
to greater influence of a partner’s behaviour on 
attributions of harmful intent (belief flexibility).

wSI Impact on beliefs that an outcome (rew) is motivated 
by self-interest. Increasing this parameter leads 
to greater influence of a partner’s behaviour on 
attributions of self-interest (belief flexibility).

Likelihood πgen(rew = 0; HI, SI) = σ(w0 + [wHI × HI-δ] + [wSI × SI-δ])
πgen (rew = 0.5; HI, SI) = 1 − πgen (rew = 0;HI, SI)

δ = NB + 1
2

σ(x) = 1
1+e−x

Update

uπ The consistency with which partners were believed to 
act in accordance with their character. Higher values 
reduce consistency, causing a partner’s behaviour to 
have less impact on beliefs.

Consistency rule

η Controls the mixture of prior and posterior beliefs used 
as a starting point for each new encounter. Higher 
values indicate more reliance on information gathered 
from the last encounter, rather than reverting to prior 
beliefs. The product from the below equation, 
p(HI,SI)

t=C
 replaces p(HI,SI)t−1 when beginning a new 

encounter.

Change point

C = final action of an other in an interaction

By using model fitting procedures modellers can invert the model to approximate the 
parameter values that may give rise to the observed data. This includes the hidden, prior 
beliefs of each participant given the variance and magnitude of observed attributions. 
Using fitted parameter values to simulate each participant allows for generation of pseudo-
experimental data—in this case, an agent’s reported intentional attributions, which we can 
directly compare with the real data. This also approximates the prior beliefs of each 
participant given the variance and magnitude of observed attributions. NB, number of bins 
discretizing the variable represents each attribution (in this case each distribution 
comprises nine bins); Bin, binomial distribution with an added precision parameter, that is, 
in the case of HI: p(HI)t=0 ≈ Bin(HI; pHI0, uPri, NB) = p(HI)t=0 ≈ B(HI; pHI0, NB) 1/uPri. The bold text 
indicates the free parameters of interest that contribute to the equations.

p(HI,SI)
t
= πgen(rew; HI,SI)p(HI,SI)t−1

(rew; HI ,SI )p(HI ,SI )t−1HI ,SI πgen

p(HI,SI)t p(HI,SI)
t 1
uπ + ξ

ξ = 0.02/NB2

p(HI,SI)
t = C

= p(HI,SI)t = 0 × [1 − η] + p (HI,SI)t = C × η
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Supplementary Fig. 9). Each factor was able to predict drug condition 
independently (factor 1 = 1.52, 95% CI: 0.50, 2.91; factor 2 = 3.08, 95% 
CI: 1.72, 5.03), and there was a large effect found between conditions 

using Bayesian paired t-tests (factor 1: mean diff. = 0.76, 95% HDI = 0.37, 
1.17; effect size = 0.94, 95% HDI = 0.35, 1.59; factor 2: mean diff. = 1.34, 
95% HDI = 0.87, 1.85; effect size = 1.23, 95% HDI = 0.64, 1.84; Fig. 3f).
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Fig. 3 | Influence of haloperidol on the winning model. a, Bayesian t-test results 
(n = 28) assessing the difference and uncertainty (median ± 95% HDI) of the 
change in mean parameter estimates (∆μ; difference in mean) between placebo 
and haloperidol. Red distributions indicate that the 95% high-density interval 
(HDI) does not cross 0, suggesting reasonable certainty that the mean difference 
is not an artefact of statistical noise. The d values indicate the median effect size 
(Cohen’s d; Supplementary Fig. 4). The red box indicates the parameters where 
the effect size distributions were most robust, where the 95% HDI lay outside 
of the region of probable equivalence with the null hypothesis. b, Simulations 
(±s.e.m.) of the marginal effect of likelihood parameters on the precision (1/σ2; 
inverse variance) of harmful intent (red) and self-interest (black) attributions 
over all trials, controlling for Dictator style. Vertical lines are indicative of the 
median individual parameter estimates from both haloperidol and placebo 
groups. The blue arrow indicates the difference from placebo to haloperidol 
(see Supplementary Fig. 3 for trial-wise and within-Dictator precision changes). 
Simulations are consistent with the notion that wHI increases flexibility within 

and between contexts, accentuating smooth learning. Note that there was no 
significant correlation between w0, wSI and wHI in our parameter estimation from 
our real data (all P-values > 0.05; Supplementary Fig. 2), suggesting independent 
contributions from each to the attributional dynamics. c, Factor loading of 
each parameter on flexibility (factor 1) and learning (factor 2) dimensions. 
A loading filter of |0.4| was applied. Both of these factors can discriminate 
effectively between drug conditions. The wSI term is not featured in this plot as 
it was not meaningfully loaded onto either factor. d, Factor scores (absolute 
value) for each individual participant (n = 28) for both haloperidol (red) and 
placebo (blue) conditions ordered from low to high. The panels on the right 
demonstrate the marginal loading across participants. e, Candyfloss plot factor 
scores for each individual participant. The grey lines indicate that the same 
participant was responsible for each connected point under placebo (blue) and 
haloperidol (red). f, Receiver operating characteristic describing the sensitivity 
and specificity of factors to differentiate drug conditions. Area under the 
curve = 0.91; sensitivity = 0.8; specificity = 0.78.
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Factor 1 (flexibility; Fig. 3c) was typified by high values of wHI, 
and greater consistency between beliefs that a partner’s actions are 
indicative of their true motivations, uπ. Factor 2 (learning; Fig. 3c) 
comprised high values of η, larger intercepts over the policy matrix, w0, 
and higher values over priors pSI0; pHI0 and uPri were oppositely loaded 
onto each factor and were likely to nullify each other in scenarios in 
which participants scored strongly on both (Fig. 3e). We note that pHI0 
and uPri load with slightly more absolute value on the flexibility factor. 
For completeness, the third factor exclusively comprised wSI above a 
cut-off of |0.4| (loading = 0.99), but it was not found to be a meaningful 
factor in differentiating drug scores following cross-validation and 
logistic model comparisons.

Haloperidol compresses the dimensionality of partner policy
Finally, we explored the impact of haloperidol on attributional coupling: 
the dependency between intentional attributions over time. This allows 
analysis into the dependency of different intentional components. To 
calculate this we estimated Spearman correlations between harmful 
intent and self-interest for each trial across the sample, controlling for 
the type of Dictator policy affiliated. This revealed that although harm-
ful intent and self-interest are attributed independently of one another 
under the placebo (mean ρ[s.d.] = 0.03 [0.07]; replicating ref. 35), under 
haloperidol they are negatively associated (mean ρ[s.d.] = −0.22 [0.08]), 
and this difference is significant (mean diff. = −0.26, 95% CI: −0.32, 
−0.20; effect size = 2.22, 95% HDI: 1.22, 3.24). This relationship was 

replicated using simulated model predictions (mean diff. = −0.25, 95% 
CI: −0.34, −0.17; effect size = −1.53, 95% HDI: −2.28, −0.78; Fig. 4a). There 
was evidence that the negative association induced under haloperidol 
decays over time (Pearson’s r = 0.52, P = 0.029). The same is not true 
under placebo (Fig. 4a). This interaction was not significant (regression 
coeff. = −0.06, 95% CI: −0.12, 0.03). In summary, haloperidol causes 
harmful intent and self-interest attributions to become less independ-
ent. This means that under haloperidol participants are more likely to 
believe someone must be more self-interested if they are perceived to 
be less intentionally harmful.

Discussion
We sought to identify the computational mechanisms that explain 
how pharmacological alteration of dopamine function alters attribu-
tions of harmful intent—an important feature of paranoia—given our 
previous findings that haloperidol reduced harmful intent attribu-
tions and increased self-interest attributions in healthy participants 
(see ref. 35 for a previously published behavioural analysis). Here we 
tested different computational hypotheses to account more mecha-
nistically for these effects. The data were best fit by a model utilizing 
a common uncertainty parameter over priors, but separate likelihood 
weights for updating attributions. Using this model, we found evi-
dence that haloperidol reduced the precision of harmful intent (but 
not self-interest) attributions allowing more belief flexibility between 
partners. Haloperidol also increased the impact of learning from each 
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Fig. 4 | Association of mental state attributions between drug condition.  
a, In both real and simulated data (n = 28), haloperidol (red) versus placebo (blue) 
induced a trial-wise negative Pearson association (±s.e.m.) between harmful 
intent and self-interest, which decayed over time for both real (R = 0.52, P = 0.029) 
and simulated (R = 0.65, P = 0.0046) data. The right-most panel shows the 
marginal effect (box plots demonstrate minimum, interquartile range, median 
and maximum values) of trial-wise correlations between conditions. Using linear 
regression, we show that the difference between Pearson correlations between 
haloperidol and placebo was significant for both real (estimate = 2.26, SE = 0.33, 
P = 9.29 × 10−8) and simulated (estimate = 2.23, SE = 0.44, P = 1.84 × 10−5) data. 
*** = P < 0.001. b, There was a general negative Pearson association (±s.e.m.) 

between harmful intent and self-interest found under haloperidol for mean 
attributions across all 18 trials; this was not true for the placebo. c, Summary 
of main effects between drug conditions on self and other oriented intentional 
attributions following social outcomes. Both trial-wise and averaged associative 
analyses indicate that other-oriented attributions concerning self-interest 
of others (black), and self-oriented attributions concerning the harmful 
intent of others (red), are independent under the placebo (PLAC) but coupled 
under haloperidol (HALO). Under haloperidol this coupling is biased towards 
exaggeration of other-oriented attributions and diminishment of self-oriented 
attributions.
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encounter; participants relied less on their prior beliefs about the popu-
lation as a whole. These individual parameter effects were embedded 
within covariational model alterations that together accounted for 
attributional change under haloperidol. These changes also caused 
self-interest and harmful-intent attributions to become negatively 
associated, suggesting a compression of attributions into a single 
interpersonal dimension under haloperidol. Together, our findings 
indicate haloperidol promotes flexibility regarding attributions of 
harmful intent to others by reducing the perceived relevance of the 
actions of others to the self (Fig. 5). In clinical environments this may 
allow space to reframe beliefs.

Our findings indicate a reduction in the influence of priors and 
more flexible beliefs under haloperidol. Past research links tonic dopa-
mine at D2/D3 receptors to efficient encoding of meaningful stimuli, 
and Bayes optimality33, cognitive control37 and sustained attention38. 
Under the model-based, model-free control framework39, recent work 
showed that a D2/D3 antagonism increased model-based control and 
decision flexibility21, and increased belief flexibility during a trust 
game34. This may be particularly useful in ‘climbing out’ of paranoia, 
where one is reluctant to take in positive information about others 
for fear of false reassurance. At face value our results conform with 
previous work: under haloperidol, posteriors are more flexible and 
less influenced by priors, suggesting more confidence in beliefs about 
the motivation of partners. However, this general account does not 
explain why our data show asymmetric decreases in harmful intent 
and increases in self-interest.

One hypothesis is that haloperidol reduces the perceived self-
relevance of outcomes under uncertainty. Social interaction rapidly 
increases the complexity of possible actions that may be taken. Humans 
try to reduce this uncertainty by relying on available heuristics, such 
as using self-preferences as an easily accessible prior belief about 
others40–42. When ambiguity increases, greater uncertainty about 
others19,30,31 and environments20 can increase the perception of social 
threat. Our analysis suggests that haloperidol may attenuate the rela-
tionship between uncertainty and attributions of harmful intent by 
reducing the perceived self-relevance of others’ actions; attributions 
of harmful intent, by definition, are inferences about the relevance 
of threat to the self from another. Given the role of the striatum and 
medial prefrontal cortex in regulating threat evaluation under stress43, 
this reduction in self-relevance may also interact with common neural 
implementations of self-other modelling44; haloperidol may modulate 
the degree to which information is modelled as self- or other-relevant. 
The degree to which D2/D3 dopamine receptor function is specific 
to harmful intent or all attributions that are relevant to the self (for 
example, altruistic intent of another) can be tested by including an 
extra dimension within our model; there are a number of hypotheses 
that can be made with such a modification (see Supplementary Fig. 7).

This pattern leads to a further, complementary proposition: 
haloperidol may reduce self-relevance through reductions in the 
complexity or depth of recursive mentalizing (how a self thinks 
about another’s model of the self). In general, the ability to recur-
sively mentalize is computationally expensive45–47. Humans try to use 
cheaper strategies when possible. Recursive mentalizing is context 
dependent: simply, in competitive social scenarios humans are more 
likely to plan ahead more deeply and entertain recursive beliefs 
about another’s model of the self48. Mentalization gone awry has also 
been posited as a core driver of relationship difficulties in clinical 
populations: paranoias in borderline personality disorder and psy-
chosis are explained as hypermentalization: the inference of overly 
complex mental states based on sparse data26,27,49,50. An alteration in 
mechanisms that support self-relevant mentalizing may explain our 
findings. This notion is consistent with reported amotivation under 
haloperidol (individuals are less concerned by outcomes), the role of 
D2/D3 receptors in promoting cognitive control37,38 and prior work on 
the causal role of D2/D3 antagonism in trust behaviours34; reductions 
in the immediate value (and therefore relevance) for the self may 
facilitate longer-term reciprocal trust behaviours without any need 
to engage deliberate reasoning about future outcomes. A core test 
of the hypothesis that D2/D3 dopamine is crucial for self-relevant, 
recursive mentalization is to use models of hierarchical mentaliza-
tion in future experiments that allow estimation of recursive depth 
in joint social contexts.

The data presented here may be relevant beyond psychiatry. In 
behavioural economics, there have been several studies on the role of 
dopamine, reward and decision making in both social and non-social 
contexts51. Increasing dopamine availability has been shown to increase 
risky non-social decisions when self-gain is at stake52, suggesting that 
dopamine may inflate the attributed value of outcomes to the self. Our 
data imply that this role of dopamine in modulating monetary value 
to the self may reflect a broader role in representing the self-relevance 
of stimuli. The direction of this relationship (self-relevance precedes 
self-value, or vice versa) is a fruitful target for future research. Our 
data may also be relevant to the role of dopamine in moral behaviour. 
In one study, boosting D2/D3 dopamine with pramipexole reduced 
generosity, especially with close others53. Our data complement this 
work, suggesting that D2/D3 dopamine is involved in calibrating the 
valuation of self-gain in social decision-making.

On a theoretical level, our formal model distinguishes between 
computational changes that result from prior representational biases 
(for example, higher trait paranoia) and acute state changes during 
social interaction where potential harm from others is a possibility 
(Fig. 5). Previous modelling with the same task30—or a reversal vari-
ant of the task31—provided evidence that trait paranoia increases the 
magnitude of priors over harmful intent, the subsequent increase in the 
belief that the actions of others are not reflective of their true motiva-
tions and a reduced willingness to believe that changes to a partner’s 
behaviour are motivated by changes to their harmful intent. Naturally, 
this suggested that prior representations bias how social behaviour is 
interpreted. On the other hand, the present models suggest that halop-
eridol acts through increased reliance and impact of likelihoods on the 
formation of beliefs. Creating phenomenologically plausible formal 
models that are sensitive to different explanations of behavioural data 
has been a core aspiration of computational psychiatry13,14. Models 
such as ours may be useful in distinguishing between longer-term 
development and near-term alterations in learning that may explain 
paranoia. Model parameters are constant on the timescale of tasks 
while potentially evolving at the timescale of personal development, 
illness and recovery, whereas learning and inference can be dissected 
on the timescale of task conditions and trials. Much like prior work dis-
tinguishing interventions of representational change (psychotherapy) 
and emotion modulation (antidepressants54), our model may support 
similar distinctions following intervention. We thus hypothesize that 
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successful therapeutic use of haloperidol in paranoia will be associated 
with large changes in likelihood parameters described above but may 
leave intact, at least in the short term, prior beliefs about the harmful 
intent of others; D2/D3-independent processes may underpin ongo-
ing vulnerability and may require further psychosocial learning. Our 
task may only pick up long-term representational (prior) changes 
following extended pharmacological therapy, or in combination with 
psychological therapy.

We note some limitations. First, we did not use a patient popula-
tion, which means the extent to which the findings generalize to a 
population with persecutory delusions—rather than non-delusional 
paranoia—remains unclear. Likewise, in this first study we only 
included males to avoid hormonal heterogeneity, which might affect 
drug response and indeed the precise expression of dopaminergic 
mechanisms55. However, this important limitation must be addressed 
in future studies with studies powered to examine the computational 
structure of antipsychotic medication in people of different hormo-
nal status and gender. Second, we did not include any non-social 
comparator (for example, model-based decision making or volatile 
environments) when assessing the role of haloperidol on cognition. 
This leaves a divide between how dopamine influences non-social 
cognition and mental state inferences. Past work suggests some shared 
variance between more foundational computations (for example, 
decision temperature, belief updating) and paranoia20,31,33. Replicat-
ing the present work with non-social comparators of our social task 
(for example, using a slot machine partner) may help understand the 
relations between formal theories of general decision making, and 
how this is expressed at a recursive and intentional level in the same 
individuals. Third, we did not use a design that probes how dopamine 
may facilitate generalization of social knowledge outside of our game 
theory task. Prior work has demonstrated that representations about 
learned partners can pass on from one context to another45; once a 
representation is learned using computationally intensive resources, 
a cheaper, heuristic model can be used. This relates to the question of 
whether an associative model of updating may be more efficient once 
a policy is known, and given our findings, whether haloperidol causes 
a faster transition. Finally, despite the difference in model responsibil-
ity, we did not find any influence of l-DOPA on behaviour. This may 
be due to an insufficient dose or translation of l-DOPA leading to an 
increase in dopamine release, or the unspecific postsynaptic binding 
that may result from any successfully increased dopamine release as 
a consequence of l-DOPA.

Methods
Participants
This study was approved by KCL ethics board (HR-16/17-0603). All data 
were collected between August 2018 and August 2019. Participants 
were recruited through adverts in the local area, adverts on social 
media, in addition to adverts circulated via internal emails. Participants 
provided written informed consent to take part.

Eighty-six participants were preliminarily phone screened; 
35 participants were given a full medical screen; 30 healthy males 
were recruited to take part in the full procedure; 2 failed to com-
plete all experimental days, leaving 28 participants for analysis (age 
(mean[s.d.]) = 29.21[8.61]). Inclusion criteria were that participants 
were healthy males, between the ages of 18 and 55. Participants were 
excluded if they had any evidence or history of clinically significant 
medical or psychiatric illness; if their use of prescription or non-pre-
scription drugs was deemed unsuitable by the medical team; if they had 
any condition that may have inhibited drug absorption (for example 
gastrectomy); a history of harmful alcohol or drug use determined by 
clinical interview; use of tobacco or nicotine-containing products in 
excess of the equivalent of five cigarettes per day; a positive urine drug 
screen; or were unwilling or unable to comply with the lifestyle guide-
lines. Participants were excluded who, in the opinion of the medical 

team and investigator, had any medical or psychological condition, 
or social circumstance, that would impair their ability to participate 
reliably in the study, or who may increase the risk to themselves or oth-
ers by participating. Some of these criteria were determined through 
telephone check for non-sensitive information (age, gender, general 
understanding of the study and overall health) before their full screen-
ing visit. Participants were paid £100 for successful completion of all 
experimental days, and £20 if they failed screening and were subse-
quently excluded.

Procedure
This study was part of a larger study that assessed the role of dopamin-
ergic modulation on personality, beliefs and social interaction. Here we 
focus on the role of dopamine antagonism and pre-synaptic increases 
in the attribution of mental state inferences during a Dictator game 
(described below; see Fig. 1a).

The full procedure for participant screening is documented in a 
prior publication35. Briefly, participants who passed the brief phone 
screening were invited to attend an on-site screening day (see above). 
Participants were tested for drugs of abuse (SureScreen Diagnostics) 
and alcohol (breath test) prior to each experimental day and were 
excluded if any test was positive. Participants were given at least 7 
days, but no more than 2 months, in between experimental days to 
allow for drug washout.

On experimental days, participants were randomized to be initially 
administered either a placebo or 3 mg haloperidol in two capsules, 
and 10 mg of domperidone (to reduce known side effects of vomiting 
and nausea that can appear in some recipients) in one capsule (3 caps 
total). After 30 min, participants were dosed a second time with either 
150 mg of co-beneldopa (herein referred to as l-DOPA) or placebo in 
two capsules. Participants would never receive haloperidol and l-DOPA 
in the same day.

The Sharing Game
Participants were asked to play a within-subjects, multi-trial modifica-
tion on the Dictator game design used in previous studies to assess 
paranoia35,36, hereafter called ‘The Sharing Game’ (Fig. 1). In the game, 
participants played six trials against three different types of partner 
who are assigned the role of Dictator. In each trial, participants were 
told that they have a total of £0.10 and their partner (the Dictator) had 
the choice to take half (£0.05) or all (£0.10) the money from the partici-
pant. Partner policies were one of three types: always take half of the 
money, have a 50:50 chance to take half or all of the money, or always 
take all of the money. These policies were labelled as fair, partially fair 
and unfair, respectively. The order that participants were matched with 
partners was randomized. Each partner had a corresponding cartoon 
avatar with a neutral expression to support the notion that each of the 
six trials was with the same partner.

After each trial, participants were asked to rate on a scale of 1–100 
(initialized at 50) to what degree they believed that their partner was 
motivated (1) by a desire to earn more (self-interest), and (2) by a desire 
to reduce their bonus in the trial (harmful intent). From the partici-
pants perspective, the actions of the partner can be framed as either 
arising from motivations that concern the gain of value for the partner 
irrespective of the participant (other-relevant) or arising from motiva-
tions that concern the loss of value for the participant (self-relevant).

After making all 36 attributions (two trial attributions for each 
of the six trials over three partners), participants were put in the role 
of the Dictator for six trials—whether to make a fair or unfair split of 
£0.10. Participants were first asked to choose an avatar from nine 
different cartoon faces before deciding on their six different splits. 
These Dictator decisions were not used for analysis but were collected 
to match subsequent participants with decisions from real partners. 
Participants were paid a baseline payment for their completion, plus 
any bonus they won from the game.
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Analysis
Behavioural data have been previously published35. Here, we apply 
three computational hypotheses which could explain the data, centred 
around a Bayesian model31 developed to explain mental state inference 
dynamics during social observation, where recursive, strategic social 
action is not a process of interest29. We note that previous work showed 
a Bayesian instantiation of this attributional model outperformed 
associative model variants31. Model 1 allowed separate uncertainties 
and likelihood weights for each attribution, identical to our prior 
work31; this model demonstrated that trait paranoia increased belief 
rigidity and self-other inconsistency, and by extension, may serve as a 
useful assay to test the mechanisms of haloperidol which is theorized 
to reduced paranoia. In line with general theories of belief updating56, 
Model 2 hypothesized that beliefs would be updating with the same 
likelihood weight. Model 3 hypothesized that prior beliefs share a 
single uncertainty free parameter over each distribution, allowing for 
a simpler hypothesis that prior uncertainties may be represented by 
a single dimension, giving a more parsimonious account of the data. 
Descriptions of the parameters within the winning model are in Table 1.

The winning model uses eight parameters that calibrate an agent’s 
initial and ongoing beliefs about others. It encodes the agent’s prior 
expectations of harm, pHI0, and self-interest, pSI0, and the certainty 
of these expectations, uPri. Three parameters implement the agent’s 
internal likelihood of a partner acting with self-interest or harm based 
on their behaviour, influencing belief updates (w0, wHI, wSI). A noise 
parameter (uπ) indicates the agent’s uncertainty over the represen-
tation of their partner. The model also includes a belief persistence 
parameter, η, for agents to either persist with their most recent beliefs 
or re-set them to the prior expectations (above) upon encountering 
new partners, with higher values indicating less resetting. See Table 1  
for further details.

All computational models were fitted using an HBI algorithm 
which allows hierarchical parameter estimation while assuming ran-
dom effects for group and individual model responsibility57. This pro-
cess is shown to be most robust to outliers versus non-hierarchical 
inference or standard hierarchical inference with fixed effects, and 
minimizes parameter and model confusion57. Parameters were esti-
mated using the HBI in native space drawing from broad priors (μm = 0, 
σm = 6.5; where m = {m1, m2, m3}). This process was run independently for 
each drug condition due to the dependency of observations between 
conditions (the same participants were in each condition). Parameters 
were transformed into model-relevant space for analysis. All models 
and hierarchical fitting was implemented in Matlab (Version R2022B). 
All other analyses were conducted in R (v.4.2.3; x86_64 build) running 
on Mac OS (Ventura v.13.0). All statistics are reported as: (X, 95% CI: Y, 
Z), where X is the regression coefficient, and Y and Z are the 95% lower 
and upper CIs, respectively. All dependent regressors were centred 
and scaled. To consider the uncertainty of estimates we conducted 
Bayesian paired sample t-tests to assess individual-level parameter 
changes. This used JAGS as a backend MCMC sampler58; differences 
in the mean are additionally reported with their corresponding effect 
sizes (Cohen’s d) and posterior 95% HDI. The raw output of this is listed 
in Supplementary Table 1. Bayesian paired sample t-tests were also 
used to assess differences between attributional coupling over time. 
To note, in the original behavioural analysis35 we excluded one extra 
participant due to their extreme trait psychometric paranoia score 
(leaving 27 participants); however trait paranoia was not the subject 
of this analysis, and hierarchical model fitting constrains group behav-
iour during parameter estimation. Nevertheless, for transparency, we 
include analytic estimates with the original 27 individual included for 
comparison. This did not change conclusions (Supplementary Table 2).

We also sought to examine model covariance. Exploratory fac-
tor analysis used oblique rotation, including all parameter estimates 
for each individual within placebo and haloperidol conditions. Opti-
mal factors were determined from observation of the scree plot and 

cross-validated model accuracy (Supplementary Fig. 9). Cross-valida-
tion used ten folds with three repeats within a logistic general linear 
model. Parameter loadings and individual factor scores >|0.4| were 
retained for analysis.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
All data are freely available online: https://github.com/josephmbarnby/
Barnby_etal_2023_D2D3Modelling (ref. 59).

Code availability
All analysis codes are freely available online: https://github.com/
josephmbarnby/Barnby_etal_2023_D2D3Modelling (ref. 59).
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