
University of Notre Dame Australia
ResearchOnline@ND

Physiotherapy Papers and Journal Articles School of Physiotherapy

2014

Achilles tendinopathy alters stretch shortening cycle behaviour during a sub-
maximal hopping task

James R. Debenham
University of Notre Dame Australia, james.debenham@nd.edu.au

Mervyn J. Travers

William Gibson
University of Notre Dame Australia, william.gibson@nd.edu.au

Amity Campbell

Garry T. Allison

Follow this and additional works at: http://researchonline.nd.edu.au/physiotherapy_article

Part of the Physical Therapy Commons, and the Physiotherapy Commons

This article was originally published as:
Debenham, J. R., Travers, M. J., Gibson, W., Campbell, A., & Allison, G. T. (2014). Achilles tendinopathy alters stretch shortening
cycle behaviour during a sub-maximal hopping task. Journal of Science and Medicine in Sport, Early View (Online First).
http://doi.org/10.1016/j.jsams.2014.11.391

This article is posted on ResearchOnline@ND at
http://researchonline.nd.edu.au/physiotherapy_article/74. For more
information, please contact researchonline@nd.edu.au.

http://researchonline.nd.edu.au/?utm_source=researchonline.nd.edu.au%2Fphysiotherapy_article%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
http://researchonline.nd.edu.au/?utm_source=researchonline.nd.edu.au%2Fphysiotherapy_article%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
http://researchonline.nd.edu.au?utm_source=researchonline.nd.edu.au%2Fphysiotherapy_article%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
http://researchonline.nd.edu.au/physiotherapy_article?utm_source=researchonline.nd.edu.au%2Fphysiotherapy_article%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
http://researchonline.nd.edu.au/physiotherapy?utm_source=researchonline.nd.edu.au%2Fphysiotherapy_article%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
http://researchonline.nd.edu.au/physiotherapy_article?utm_source=researchonline.nd.edu.au%2Fphysiotherapy_article%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/754?utm_source=researchonline.nd.edu.au%2Fphysiotherapy_article%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1086?utm_source=researchonline.nd.edu.au%2Fphysiotherapy_article%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
http://doi.org/10.1016/j.jsams.2014.11.391
http://researchonline.nd.edu.au/physiotherapy_article/74
mailto:researchonline@nd.edu.au
http://www.nd.edu.au/?utm_source=researchonline.nd.edu.au%2Fphysiotherapy_article%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.nd.edu.au/?utm_source=researchonline.nd.edu.au%2Fphysiotherapy_article%2F74&utm_medium=PDF&utm_campaign=PDFCoverPages


1 
 

This is the author’s post print copy of the article published as: 

Debenham, J. R., Travers, M. J., Gibson, W., Campbell, A., & Allison, G. T. 

Achilles tendinopathy alters stretch shortening cycle behaviour during a sub-

maximal hopping task. Journal of Science and Medicine in Sport. doi: 

10.1016/j.jsams.2014.11.391 

  



2 
 

Abstract 

Objectives 

To describe stretch shortening cycle behaviour of the ankle and lower limb in patients with Achilles 

tendinopathy (AT) and establish differences with healthy volunteers.  

Design 

Between-subjects case-controlled  

Methods 

Fifteen patients with AT (mean age 41.2 ± 12.7 years) and eleven healthy volunteers (CON) (mean 

age 23.2 ± 6.7 years) performed sub-maximal single-limb hopping on a custom built sledge-jump 

system. Using 3D motion analysis and surface EMG, temporal kinematic (lower limb stiffness, ankle 

angle at 80 ms pre-contact, ankle angle at contact, peak ankle angle, ankle stretch amplitude) and 

EMG measures (onset, offset and peak times relative to contact) were captured. Data between AT and 

CON were compared statistically using a linear mixed model.  

Results  

Patients with AT exhibited significantly increased lower limb stiffness when compared to healthy 

volunteers (p<0.001) and their hopping range was shifted towards a more dorsiflexed position 

(p<0.001). Furthermore, ankle stretch amplitude was greater in AT compared with healthy volunteers 

(p<.001). A delay in muscle activity was also observed; soleus onset (p<.001), tibialis anterior peak 

(p=0.026) and tibialis anterior offset (p<.001) were all delayed in AT compared with CON. 

Conclusions  

These findings indicate that patients with AT exhibit altered stretch-shortening cycle behaviour during 

sub-maximal hopping when compared with healthy volunteers. Patients with AT hop with greater 

lower limb stiffness, in a greater degree of ankle dorsiflexion and have a greater stretch amplitude. 

Likewise, delayed muscle activity is evident. These findings have implications in terms of informing 

the understanding of the pathoaetiology and management of AT. 
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Main Text 

Introduction 

Achilles tendinopathy (AT) is a common clinical syndrome experienced by active individuals, 

characterised by a combination of pain, diffuse or localised swelling, and impaired performance 

arising from overuse. Whilst AT is a challenging condition to manage and evidence supports a 

conservative approach 
1
, frequent reports of sub-optimal clinical outcomes (e.g. van der Plas, de 

Jonge, de Vos, van der Heide, Verhaar, Weir, Tol 
2
) suggest our understanding of the condition is 

incomplete. 

The pathoaetiology of AT is complex 
3
 and whilst multiple factors clearly interact in the development 

of AT, mechanical factors dominate where the cumulative load placed upon the tendon exceeds its 

mechanical capacity, resulting in a ‘failed loading response’ 
4
. Given the central role that the Achilles 

tendon plays in the stretch-shortening cycle (SSC), it seems reasonable that aberrations in SSC 

behaviour and AT may be related. 

The stretch shortening cycle (SSC) is a phenomenon that describes the natural pre-activation of a 

musculotendinous unit, followed by an eccentric phase and a subsequent concentric phase 
5
. Its role is 

to simplify the motor control of locomotion and optimise locomotor efficiency 
6
. It has been 

suggested that aberrations in SSC performance may result in injury 
7
 and evidence exits describing 

how AT is associated with alterations in measures indicative of altered SSC behaviour 
8-10

. 

Unfortunately, these studies collectively provide an incomplete picture of the biomechanical changes 

that occur in the presence of Achilles tendinopathy. In particular kinematic evaluation of the ankle in 

the sagittal plane, and the associated activity of key agonist/antagonist muscles during a SSC task 

have yet to be explored in this population. Given that the principal plane of motion for the SSC during 

running is sagittal, a greater depth of understanding at this level would provide further insight into the 

relationship between AT and SSC behaviour. 

In this study we compared SSC behaviour during sub-maximal single limb hopping in individuals 

with AT and in a group of healthy volunteers (CON). We hypothesised that in the AT group 
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alterations in SSC behaviour would be observed. Specifically, we hypothesised that when compared 

with CON, the AT group would exhibit decreased lower limb stiffness, hop in a greater degree of 

dorsiflexion and have a greater stretch amplitude. Likewise, we hypothesised that in AT, delayed 

muscle activity in both the agonist and antagonist muscles would be observed. To test these 

hypotheses, we measured SSC behaviour during a sub-maximal hopping task on a sledge-jump 

system (SJS). The utility of such a system is its capacity to limit variability of movement and mitigate 

fatigue; such systems have been used in the past to explore a variety of conditions influencing SSC 

behaviour 
11

.  

Achilles tendinopathy is a common injury and challenging to treat in part due to our incomplete 

understanding of the pathoaetiological drivers of the condition. The findings of this study may have 

connotations in both deepening our understanding of the mechanical pathoaetiology of AT, and 

potentially informing the development and refinement of therapeutic interventions for AT. 

Methods 

This study employed a between-subjects case-controlled design and included 15 patients with AT 

(mean age 41.2 ± 12.7 years; 9 male: 6 female; affected side 4 left: 11 right) and 11 CON volunteers 

(mean age 23.2 ± 6.7 years; 5 male: 6 female). CON volunteers were recruited from the local 

university community and AT patients were recruited from local medical practices in Perth, Western 

Australia. AT inclusion criteria included a >3 month history of unilateral mid-portion Achilles tendon 

pain, a VISA-A score <80/100, with mid-portion pain and thickening identified on palpation. 

Exclusion criteria for both groups included an absence of co-existing lower quadrant musculoskeletal 

pathology or other visual/motor impairment(s). Informed consent approved by the Human Research 

Ethics Committee of Curtin University was obtained from all participants prior to testing 

(HR28/2010). 

Retro-reflective markers were fixed to the skin of participants according to a customised marker set 

and model for the lower quadrant (see Figure 1b), set according to an established cluster-based 

method 
12

. This established set-up enabled determination of anatomically-relevant ankle, knee and hip 



6 
 

joint axes of rotation and joint centres 
12

, and subsequent motion capture was performed using a 14-

camera Vicon MX motion analysis system (Vicon, Oxford Metrics, Oxford, UK) operating at 250 Hz.  

Temporal measures of soleus and tibialis anterior muscle activity were recorded using an AMTI-8 

(Bortec Biomedical Ltd) surface EMG (sEMG) system. Bipolar differential surface electrodes (Ag / 

AgCL) were placed on the belly of each muscle with the reference electrode on the medial malleolus. 

Skin impedance (< 15kOhms) was achieved with skin preparation and signals were pre-amplified, 

analogue filtered (10 – 500Hz band pass) and then digitised using an 18 bit A-D card with a sampling 

rate of 1000Hz. All data was temporally synchronised and recorded on dedicated hardware running a 

customised Labview program (National Instruments, Austin, Texas, 2011). 

Participants attended on a single testing occasion. They were instructed to continue with their normal 

everyday activities but to refrain from undertaking unfamiliar activities in the week prior to testing. In 

addition, they were instructed to avoid vigorous physical activity in the 24 hour period prior to data 

collection. AT participants were further instructed to not receive novel therapeutic interventions in the 

2 weeks prior to testing.  

Participants were instructed on the performance of sub-maximal hopping on a custom-built SJS (see 

Figure 1a). The task involved continuous sub-maximal single-limb hopping on the SJS keeping the 

knee fully extended; participants hopped on their affected (AT) or dominant (CON) limb for 15 

seconds trials, before a 30 s rest period. Five trials were repeated. 

Data was processed using Vicon Nexus motion analysis software (Vicon, Oxford Metrics, Oxford, 

UK). Kinematic data were filtered using a fourth order Butterworth filter operating at a frequency cut-

off of 20 Hz for the marker trajectories and 50 Hz for the ground contact data as determined by 

residual analysis 
13

. All lower limb anatomical and joint coordinates were calculated in accordance 

with the standards outlined by the International Standards of Biomechanics  and have been previously 

described 
12

. Data was exported from Nexus for further analysis using a customised LabVIEW 

program (National Instruments, Austin, Texas, 2011). For each hopping trial, the following ankle 

kinematic measures were calculated; ankle angle 80 ms prior to ground contact, ankle angle at ground 
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contact, peak ankle angle and ankle stretch amplitude. In addition, lower limb stiffness was calculated 

using the method described by Dalleau, Belli, Viale, Lacour, Bourdin 
14

 (figure 1c). In addition, 

temporal measures of muscle activity for soleus and tibialis anterior were calculated relative to ground 

contact; onset, peak and offset. 

The EMG signal was full wave rectified and onsets detected using an integrated protocol 
15

. Trial 

linear envelopes (LE) were created using a fourth-order, zero-lag Butterworth low-pass filter (10 Hz) 

 and temporally synchronised to (T=0) foot contact.  

Statistical analysis was conducted using SPSS version 20 (SPSS, Chicago, Il, USA). Descriptive 

statistics were used to establish mean values for all variables in each group (AT vs. CON). A linear 

mixed model was used for all statistical comparisons between groups. Age, gender height and body 

mass were input as covariates and adjusted for within the model. A fixed main effects model was 

fitted, with a type III sum of squares used to assess statistical significance. Parameter estimates were 

utilised, and main effects were compared as pairwise comparisons using a Bonferoni correction. The 

residuals were tested for normality as required by the linear mixed model.  

Results 

Mean (and standard deviation) values for our biomechanical measures are presented in Table 1. 

Patients with AT exhibited increased lower limb stiffness when compared to CON (p<0.001) and their 

hopping range was shifted towards a more dorsiflexed position (p<0.001). Ankle stretch amplitude 

was greater in AT compared with CON (p<.001). A delay in muscle activity was observed in soleus 

onset (p<.001), tibialis anterior peak (p=0.026) and tibialis anterior offset (p<.001) in AT compared 

with CON 

Discussion 

This is the first study to describe SSC-behaviour during a sub-maximal hopping task in patients with 

AT with a detailed focus on sagittal plane behaviour. AT is a common injury whose pathoaetiology is 

unclear and as a result management remains sub-optimal. Whilst we have some understanding of the 

changes in SSC behaviour that correspond with the pathology, our understanding of sagittal plane 
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SSC behaviour has been to this point somewhat limited. In this comparative study, we found that 

when compared to healthy volunteers, individuals with AT exhibit altered SSC behaviour during a 

sub-maximal hopping task. This has been demonstrated in the following ways. Firstly, individuals 

with AT hopped with increased lower limb stiffness. In addition they hopped in greater dorsiflexion, 

and with greater overall stretch amplitude. We also found that soleus onset, tibialis anterior peak, and 

tibialis anterior offset timing is delayed in AT (see Table 1). Whilst changes in SSC behaviour has 

been investigated in AT 
8-10

, this is the first study that has isolated SSC performance to the ankle in 

such a manner that has enabled detailed examination of sagittal plane ankle behaviour in this manner. 

Contrary to our hypothesis and the existing literature, lower limb stiffness was increased in AT. 

Lower limb stiffness has only been previously measured in individuals with AT on limited occasions, 

and in all studies stiffness was found to be reduced. For example, Maquirriain 
10

 measured lower limb 

stiffness during an upright hopping task in athletes with AT, observing reductions in stiffness of the 

affected, compared with the unaffected leg. Arya, Solnik, Kulig 
16

 conducted the only study to date 

where stiffness has been compared with a healthy control group, which they did using an upright 

hopping model. They found that overall lower limb stiffness reduced, achieved by shifting to a knee 

strategy. As such, the most likely explanation for our findings is that in the presence of AT, the 

change in behaviour is done so with the aim of limiting exposure of the tendon to the painful stimulus. 

Assuming the strategy used to do so is task-dependent, our participants were likely attempting to 

reduce overall ankle load by limiting both ground contact time and reaction forces. Our findings, 

combined with those of Arya, Solnik, Kulig 
16

 suggest that one possible solution is that ankle stiffness 

increases to increase lower limb stiffness whilst knee stiffness reduces to reduce peak loading. If this 

theory is correct, our findings of increased stiffness could therefore be explained by the fact that our 

experimental model largely removes the ability of participants to redistribute a stiffness strategy to 

knee. Other less likely possible explanations for the increased stiffness values observed include the 

novel nature of the task, the absence of pain due to unloading, and the lack of perceived threat due to 

the secure nature of the task.  
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Consistent with our hypothesis, the AT group hopped in greater dorsiflexion at all recorded time 

points including; 4.3° at contact and 7.4° at peak. Our findings are consistent with those of Ryan, 

Grau, Krauss, Maiwald, Taunton, Horstmann 
17

, who investigated ankle range of motion in patients 

with AT compared with healthy volunteers, finding that runners with AT had comparatively increased 

dorsiflexion range of motion. Whilst we observed an increase in dorsiflexion stretch amplitude, Ryan, 

Grau, Krauss, Maiwald, Taunton, Horstmann 
17

 found similar findings on observation of eversion 

stretch amplitude. When combined with the findings of increased stiffness during the hopping task, it 

might be suggested that whilst increasing stiffness as a strategy to limit exposure to ground contact, 

individuals with AT lack the structural apparatus to achieve this in the most effective manner. During 

SSC tasks, elongation of the TA occurs in the presence of a ‘quasi-isometric’ plantarflexion 

contraction 
18

. However, it has been reported that AT is associated with reduced tendon stiffness 
19, 20

, 

so the increased stretch amplitude may be viewed as an indicator of reduced tendon stiffness.  

Our findings on temporal muscle activity partially supported our hypothesis with 3 of our 6 measures 

demonstrating delays in AT (see Table 1). The most likely explanation for this observation is that the 

pain experienced during the contact phase of the SSC can trigger inhibition of neuromuscular activity 

21
 resulting in delays or reductions in EMG activity 

9
. Alternatively, it is possible that the earlier 

offsets observed are a manifestation of a learnt behaviour, adopted in response to chronic changes in 

muscular performance or alterations in sensory input secondary to changes in tendon compliance 
22

, 

which in turn affect feedforward muscle activity. Likewise, this sensory input may also be negatively 

influenced by the increased compliance observed in patients with AT 
20

. Our findings are consistent 

with those of Azevedo, Lambert, Vaughan, O'Connor, Schwellnus 
23

, who observed reduced muscle 

activity in the tibialis anterior of runners with AT performing a running task. Likewise, Baur, Muller, 

Hirschmuller, Cassel, Weber, Mayer 
9
, investigating neuromuscular control of tibialis anterior, 

fibularis and gastrocnemius muscles in runners with AT reported that whilst no differences were 

observed in pre-activation of any muscles studied when compared with controls, gastrocnemius 

activity was reduced during the eccentric phase of the SSC. Finally, Wyndow, Cowan, Wrigley, 

Crossley 
24

 observed a delay in soleus offset in AT compared to controls during a running task in the 
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order of 18 (± 22) ms. The delay observed in tibialis anterior offset might suggest a global strategy of 

muscle delay in AT. The global nature of this strategy supports the findings of Smith, Honeywill, 

Wyndow, Crossley, Creaby 
25

 who observed delayed activation of gluteus medius and gluteus 

maximus in runners with AT.  

Some methodological issues require consideration. The descriptive nature of this study limits 

causative interpretations; it is not possible to elucidate the temporal relationship between altered SSC 

behaviour, AT symptoms and pathology. Whilst age and gender matching was not ideal, the 

utilisation of the linear mixed model accounted for by its inclusion as a covariate in the model. We did 

not match participants for activity levels, which would have improved the homogeneity of groups. 

However, benefits exist in terms of external validity when using a heterogeneous group, which 

nevertheless remained reflective of the AT population. Finally, in this study, participants hopped 

rather than ran. In doing so, this enabled us to make a detailed exploration of SSC behaviour and 

whilst this is the first study to have conducted such an analysis in AT, its use in other experimental 

models does exist 
11

.   

We speculate that many of our findings support the theory that biomechanical changes result in 

altered tendon loading and may be pathogenetic for AT. During SSC tasks, the plantarflexors control 

ankle dorsiflexion eccentrically and the shift in operating range towards greater dorsiflexion may 

increase the task demands of the plantarflexors. This may be further magnified by the possibility of a 

shift in the angle to peak torque that has been observed in other lower limb conditions 
26

. This is an 

area of enquiry that justifies further exploration.  

It has been speculated that muscle (pre-)activation is the strategy employed to increase stiffness to 

absorb impact forces 
27

, and the delays in muscle activity observed in our study could indicate an 

increase in tendon loading during the eccentric phase of the SSC. Although our findings require 

further confirmation, it is possible that differential stress generated by altered muscular activation 

generate altered intratendinous loads and may be associated with the pathogenesis of AT, as suggested 

by Wyndow, Cowan, Wrigley, Crossley 
24

.  
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Since no prospective data exists, we can only speculate if the observed changes in SSC behaviour in 

AT is a cause or consequence of the condition. Regardless of whether or not the observed changes in 

SSC behaviour are causative or not, they do inform clinical applications. It seems clear that focus 

should be placed on developing interventions to optimise SSC behaviour in line with modifying the 

impairments identified in this and other studies as a key factor to improving patient-centred functional 

outcomes.. In particular, our recommendations would include strategies to encourage regulation of 

stiffness strategies, reductions in dorsiflexion during ground contact and appropriate enhancement of 

agonist/antagonist timing around the ankle. 

When considering these descriptive findings, it is recommended that prospective studies are 

undertaken to further explore whether the altered SSC behaviour observed in patients with AT is a 

consequence or a predisposing factor. In line with the clinical applications suggested by our findings, 

further study is also recommended exploring therapeutic interventions that modify SSC behaviour, 

such as strength training and plyometric training, developed with the relevant precautions required for 

this population in mind. 

Conclusions 

Our observation of SSC behaviour changes in Achilles tendinopathy showed relevant changes in 

lower limb stiffness, ankle joint kinematics and muscle activity. These findings support the theory of a 

mechanical pathoaetiological mechanism contributing to the development of Achilles tendinopathy 

and support the use of therapeutic interventions designed to optimise SSC behaviour in this patient 

population. Although these findings support these theories, further prospective studies are 

recommended to clarify causality. 

Practical implications  

• The shift in ankle mechanics during sub-maximal hopping towards a more dorsiflexed 

position with larger stretch amplitude and the associated global delay in muscle activity is 

likely to result in excessive load being placed on the Achilles tendon. 
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• The observed alterations in stretch shortening cycle behaviour in patients with Achilles 

tendinopathy lend support to the theory that failed loading is a pathoaetiological component 

of the condition. 

• Clinicians should consider applying therapeutic interventions that optimise SSC behaviour in 

patients with AT. 
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Tables 

Table 1. Mean (standard deviation) values for participant 

characteristics and biomechanical derived variables 

 

  

Participant Characteristics Achilles 

Tendinopathy 

Healthy 

Volunteers 

n = (male: female)  

Age (years) 

Height (cm) 

Mass (kg) 

VISA-A (0-100) 

Tendinopathy duration (months) 

15 (9:6) 

41.2 (± 12.7)
a 

174.1 (± 9.6)
 a
 

82.0 (± 12.2)
 a
 

64.7 (± 12.7)
 a
 

12.06 (±8.24) 

11(3:8) 

23.2 (± 6.7) 

170.1 (± 8.2) 

70.7 (± 13.3) 

100 

na  

Stiffness    

Lower Limb Stiffness (kNm
-1

) 8.8 (1.3)
 a
 4.5 (2.6) 

Ankle Kinematics   

Ankle Angle 80 ms pre-contact (° dorsiflexion) -15.3 (9.97)
 a
 -19.5 (8.97) 

Ankle Angle at contact (° dorsiflexion) -12.9 (10.0)
 a
 -17.0 (9.3) 

Peak Ankle Angle (° dorsiflexion) 18.4 (7.65)
 a
 10.9 (9.97) 

Ankle Stretch Amplitude (°) 29.9 (8.87)
 a
  26.1 (6.82) 

Muscle Activity   

Soleus Onset (ms) 82 (62)
 a
 72 (66) 

Soleus Peak (ms) 245 (69) 241 (72) 

Soleus Offset (ms) 346 (67) 342 (66) 

Tibialis Anterior Onset (ms) 46 (113) 38 (130) 

Tibialis Anterior Peak (ms) 212 (114)
 a
 201 (154) 

Tibialis Anterior Offset (ms) 371 (74)
 a
 347 (77) 

 
a
 Significant difference between AT and CON means (p<0.05) adjusted for age, gender, height, mass 

and tendinopathy duration 

 

VISA-A- Victorian Institute of Sport Assessment- Achilles 
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Figure Legends 

Fig 1. (a) Custom-built low-friction sledge jump system (adapted with permission from Gibson, 

Campbell, Allison 
28

; (b) 3D motion analysis marker set configuration and; (b) lower limb stiffness 

derivation 
14
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