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Abstract 

Shipping Liquefied Natural Gas (LNG) has become a popular method for transporting LNG. 

However, offloading work poses significant risks, many of which are attributed to human errors. 

Considering that most accidents are associated with human errors, the Human Reliability Analysis 

(HRA) method is a critical option to prevent accidents and to predict Human Error Probability (HEP). 

One such method is fuzzy CREAM, a well-known HRA methods. However, this method has some 

limitations. The method uses Common Performance Conditions (CPCs) to estimate HEP, but the 

source of CPC data is insufficient. Without enough and reliable CPC data, the process and the result 

of fuzzy CREAM are questionable and criticized. Therefore, this study proposes a modified approach 

to address this issue. The proposed method uses the definition of "Risk" as the support to collect each 

CPC's data from aspects of likelihood and impact. Then, using the collected risk data as the source 

to determine each CPC's fuzzy degree, to determine each CPC's weight by combining with Grey 

Relationship Analysis (GRA), and to identify each activated fuzzy If-Then rules and the rule weight. 

Afterwards, the proposed method integrates the fuzzy degree of each CPC, the weight of each CPC, 

and the weight of each activated If-Then rule together to estimate HEP. Finally, the proposed method 

is validated through a real engineering case of shipping LNG offloading work. 
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1. Introduction 

Shipping Liquefied Natural Gas (LNG) is the most widely used method for LNG transportation. 

However, LNG is flammable and explosive, making its shipping LNG risky. Offloading LNG is a 

crucial aspect of its shipping process, which involves a high level of risk. This work requires people's 

correct operations to connect two different systems (LNG ship and LNG terminal); even a minor 

operational error can result in severe consequences such as fire, explosion, and even fatalities. In 

addition, many researches have indicated that in marine and shipping process, operational risk should 
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be analyzed seriously (Meng and An, 2021; Liu et al., 2024). As a large number of accident statistics 

show, 75%–90% of accidents are related to human error (Tao et al., 2020). Therefore, assessing human 

reliability and predicting Human Error Probability (HEP) are necessary in ensuring safe LNG 

offloading operations. 

 

Human Reliability Analysis (HRA) methods are widely used today to assess and estimate human 

reliability and HEP. Since the first HRA method was applied in the 1980s, dozens of HRA methods 

have been published for commercial use. Those methods can be divided into three generations. The 

typical first-generation HRA methods include Technique for Human Error Rate Prediction (THERP), 

Human Error Assessment and Reduction Technique (HEART), and Success Likelihood Index 

Methodology (SLIM). The representative methods of second-generation HRA methods are Cognitive 

Reliability and Error Analysis Method (CREAM), and A Technique for Human Error Analysis 

(ATHEANA). The representation of third-generation HRA methods is the IntegrateD Human Event 

Analysis System (IDHEAS). The objective of HRA is to identify potential forms of human errors for 

each task, to analyze the factors that could potentially precipitate these errors, and to recommend 

solutions for mitigating human errors (Morais et al., 2021). Those HRA methods have been 

successfully and effectively used in many engineering cases including nuclear energy industry, 

aerospace industry, transportation industry, healthcare industry, chemical industry, petroleum 

industry (Taylor et al., 2020; Sujan et al., 2020; Lin et al., 2021; Zare et al., 2022; Elidolu et al., 2022; 

Ciani et al., 2022; Shi et al., 2023).  

 

However, the first-generation HRA methods focus on the task characteristics, and they lack 

consideration of other important influence factors, so this group of HRA methods is criticized and 

questioned. Moreover, the first-generation HRA methods are designed for the nuclear industry, and 

may not be suitable for shipping LNG process. The ATHEANA method is time-consuming, it is weak 

in quantification analysis, and it is also focused on the nuclear industry. The IDHEAS considers 

cognitive and psychological factors more, but it is still designed for the nuclear industry. As a result, 

the CREAM method is selected as the main structure for further research. This method applies to 

general industry and is robust in quantitative analysis, so it is suitable for human safety assessment 

during the shipping LNG process. Work processes like shipping LNG offloading work often expose 

operators to complex scenarios involving danger like installations with explosive potential and 

flammability hazards, so the impact of environmental factors deserves great concern (He et al., 2021). 

CREAM emphasizes the influence of the work environment on individuals' behavior (Wu et al., 

2021), suggesting that human performance in production is influenced by the working environment 



 

 

and conditions, rather than being random (Abrishami et al., 2020). According to the descriptions 

above, CREAM is determined to be the framework of this study. 

 

The CREAM method is designed by Professor Erik Hollnagel (Hollnagel, 1998). It is a logical 

analysis framework that can predict HEP at each step of a task (Chen et al., 2019). CREAM provides 

information on both the mechanisms and probabilities of human errors, ranging from cognitive 

activities to behavioral executions (Li et al., 2023). It selects nine CPCs to determine the four 

Contextual Control Models (COCOMs) levels for predicting HEP for the targeted task. Since its first 

publication, CREAM has received many further developments. Among them, fuzzy CREAM is one 

of the most attractive developments because fuzzy theory is an effective way to handle uncertainties. 

In fuzzy CREAM, fuzzy membership function and fuzzy membership degree are used to express 

each CPC and each COCOM. Since the first publication of fuzzy CREAM in 2006 by 

Konstandinidou (Konstandinidou et al., 2006), it has received many developments. Marseguerra 

integrated fuzzy logic operation (Min-Max operation) with CREAM (Marseguerra et al., 2006), and 

through this approach, fuzzy CREAM has become a useful way for HEP quantification. Many 

mathematical methods have been combined with fuzzy CREAM in the past 10 years. Many 

researchers have selected Bayesian networks to combine with fuzzy CREAM for better estimating 

HEP value (Yang et al., 2013; Fan et al., 2022). Besides the Bayesian network, some researchers 

adopt a genetic algorithm for defuzzification to find the optimal HEP result (Zhang and Tan, 2018). 

Although those mathematical methods are beneficial to the fuzzy CREAM process, there are still 

issues on the fuzzy operation process. The fuzzy CREAM methods mentioned above are 

mathematical models that utilize fuzzy Min-Max operations for conducting fuzzy calculations. 

However, the fuzzy Min-Max operation only considers the maximum and the minimum fuzzy data, 

and it is hard to consider the weight of each fuzzy data. Therefore, a Product-Sum-based fuzzy 

CREAM has been proposed to make it consider fuzzy data and corresponding weight values together 

(Ung, 2015). This Product-Sum-based fuzzy CREAM has also been connected with the Bayesian 

network (Ung, 2019). Although the weight and degree are effectively combined, there are still issues 

that need to be addressed. According to the fuzzy CREAM procedure and fuzzy theory, nine CPCs 

will activate several fuzzy if-then rules, and each rule should have corresponding rule weights 

(Ishibuchi and Nakashima, 2001; Zhang et al., 2021). However, the above-mentioned fuzzy CREAM 

methods have not considered fuzzy if-then rule weight. To integrate fuzzy if-then rule weights into 

fuzzy CREAM, researchers have successfully adopted the T-norm theory to calculate fuzzy if-then 

rule weight and integrated the rule weight values with Product-Sum-based fuzzy CREAM (Zhang et 

al., 2021).  

 



 

 

Based on the above descriptions, fuzzy CREAM has become a method that can take CPCs' fuzzy 

degree, CPCs' weight, and fuzzy if-then rule weight together. Although the fuzzy operation in fuzzy 

CREAM has been improved, still significant limitations exist. In most past applications of fuzzy 

CREAM, the source data of each CPC for HEP estimation is insufficient and has poor explainability. 

The historical recording data is always limited, and the data collected by experts' judgments has no 

standard for evaluation. No matter how robust the fuzzy CREAM process is, if the source data are 

questionable, the produced results will be unreliable. Therefore, it is essential to have a reliable and 

reasonable procedure along with trustworthy data to ensure the accuracy and dependability of the 

results produced. 

 

To deal with the limitations of CPC data, some researchers have introduced the definition of risk to 

reveal the different importance levels of each Performance Shaping Factor (PSF) in the SPAR-H 

method (Liu and Li, 2014). Based on the definition of risk, our team also has proposed a method that 

combines the risk data of each PSF with Grey Relational Analysis (GRA) to calculate the significance 

value of each PSF in the Petro-HRA method (Zhang et al., 2023). These researches provide an idea 

that it is possible to use the definition of risk as the support to collect CPC's source data for addressing 

the insufficient recording of CPC data. Using the collected risk data for CPC fuzzification, CPC 

weight analysis (with GRA), if-then rule weight analysis, and final HEP calculation is possible. 

Therefore, enhancing the data explainability and making it more understandable is possible. The 

definition of risk, which considers both likelihood and impact, is familiar to many since it is a more 

friendly approach to data analysis. 

 

This study improves the fuzzy CREAM approach for estimating HEP in shipping LNG offloading 

work. The proposed approach aims to provide reliable source data and calculation process. The study 

is organized as follows: Section 1 presents the main work and method of this study. Section 2 further 

explains the risk-based fuzzy CREAM and other major support methods. Section 3 is based on a real 

shipping LNG offloading case to verify the effectiveness of the proposed approach. Section 4 

provides a discussion to indicate the advantages and the issues of the proposed method. Finally, 

Section 5 concludes the final findings and suggests future research. 

 

2. Methodology 

This study involves the definition of risk, fuzzy theory, GRA and Center Of Area (COA) methods 

based on the framework of CREAM. The methodology is divided into 5 parts shown below. Part 1 

expresses the main methodological steps, and Part 2 introduces the main framework of the method. 

Parts 3−5 list the key approaches contributing to the final result. 



 

 

 

2.1. Methodological procedure 

This study aims to propose a risk-based fuzzy CREAM method that handles the defects of traditional 

CREAM. The approach is divided into five steps shown in Fig. 1. 

 

Fig. 1. Procedure flow of the proposed fuzzy CREAM model. 

Step 1 is to collect risk data and construct fuzzy membership function. To restrain the influence of 

subjectivity, this study collects 15 sets of “risk data” in different classifications to be the CPC data. 

Each set has two parts: severity and probability. Afterwards, the fuzzy function is determined based 

on the risk data. The fuzzy membership function is widely used to express and explain some 

uncertainties. This study adopts trapezoidal fuzzy membership function because the trapezoidal fuzzy 

function takes the risk data of CPC located in an interval to be “1”, which avoids massive if-then 

rules activated by those CPC. 

 



 

 

Step 2 is to obtain the fuzzy membership degree and the weight of each CPC. With the fuzzy 

membership functions defined in the last step, the fuzzy degrees can be determined, and through 

GRA, the weight of each CPC can be calculated with the risk data of CPC.  

 

Step 3 is to establish the if-then rule and calculate the rule weight. This study identifies the activated 

if-then rules according to the fuzzy membership degree and the risk-based fuzzy functions. And the 

weight of the rule is collected by multiplying the corresponding fuzzy degree of each CPC. Then, the 

initial weighted fuzzy degree of each activated rule's COCOM can be identified with the fuzzy 

membership degree and weight of CPC. 

 

Step 4 is to obtain the final weighted fuzzy degree of COCOMs. To estimate the HEP, the final 

weighted fuzzy degree ought to be collect based on the initial fuzzy degree of each activated rule's 

COCOM and the rule weight. This study uses the fuzzy product-sum method (Ung, 2015) combined 

with if-then rule weight, to multiply the initial weighted fuzzy degree of each activated rule's 

COCOM and the rule weight. Next it sums the products for the final weighted fuzzy degree of 

COCOM. 

 

Step 5 is defuzzification. The COA method calculates the crisp HEP, with the final weighted fuzzy 

degrees of COCOMs collected in step 4. 

 

2.2. CREAM 

Table 1 lists nine CPCs of this study: adequacy of organization, work condition, adequacy of the 

man-machine interface (MMI) and operational support, availability of procedures/plans, number of 

simultaneous goals, available time, time of day, adequacy of training and experience, and crew 

collaboration quality (Ung, 2018; Hollnagel, 1998). 

Table 1 Description of CPCs. 

No. CPC Description 

1 Adequacy of organization 

Effectiveness of Safety Management 

System (SMS); Level of shore-based 

support for ships 

2 Working condition Work condition 

3 Adequacy of MMI and operational support 

User-friendliness level of control 

panel of navigation instruments, 

including radar, GPS, helm, and echo 

sounder 



 

 

4 Availability of procedures/plans 

Effectiveness of the international 

safety management (ISM) related 

procedures and plans 

5 Number of simultaneous goals 
Number of simultaneous goals when 

ship crew are on duty 

6 Available time Available time of day 

7 Time of day The time period of work 

8 Adequacy of training and experience 
Adequacy level of crew training and 

experience 

9 Crew collaboration quality Level of crew collaboration quality 

 

CREAM provides a contextual control model, arranged in ascending order based on the degree of 

control, and categorizes the control mode into four groups: scrambled, opportunistic, tactical, and 

strategic (Abrishami, et al., 2020). In this study, the four COCOMs are determined using the nine 

CPCs listed above. The evaluation form of CREAM is shown in Table 2. Each CPC has different 

levels, and the corresponding effects match the CPC level regarding human reliability performance. 

Every specific level has three reliability influences; as shown in the last column, “1” represents a 

positive effect, “0” is equivalent to no effect, and “−1” represents a negative effect. 

Table 2 Evaluation form of CREAM. 

CPC Level Effect on reliability 

1. Adequacy of organization 

Very efficient Improved (+1) 

Efficient Not significant (0) 

Inefficient Reduced (−1) 

Deficient Reduced (−1) 

2. Working condition 

Advantageous Improved (+1) 

Compatible Not significant (0) 

Incompatible Reduced (−1) 

3. Adequacy of MMI and 

operational support 

Supportive Improved (+1) 

Adequate Not significant (0) 

Tolerable Not significant (0) 

Inappropriate Reduced (−1) 

4. Availability of 

procedures/plans 

Appropriate Improved (+1) 

Acceptable Not significant (0) 

Inappropriate Reduced (−1) 

Fewer than capacity Not significant (0) 



 

 

5. Number of simultaneous 

goals 

Matching current capacity Not significant (0) 

More than capacity Reduced (−1) 

6. Available time 

Adequate Improved (+1) 

Temporarily inadequate Not significant (0) 

Continuously inadequate Reduced (−1) 

7. Time of day 

Day Not significant (0) 

Evening Reduced (−1) 

Night Reduced (−1) 

8. Adequacy of training and 

expertise 

Adequate high experience Improved (+1) 

Adequate limited experience Not significant (0) 

Inadequate Reduced (−1) 

9. Crew collaboration quality 

Very efficient Improved (+1) 

Efficient Not significant (0) 

Inefficient Not significant (0) 

Deficient Reduced (−1) 

 

Then, identify the demand for the relationship of each CPC and COCOM, the definition of the HEP 

interval, the logarithm interval of each COCOM, and the context influence index (CII) value to 

determine the COCOMs and the HEP interval. The CII value is calculated using Eq. (1). 

𝐶𝐼𝐼 = ∑|𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑑| − ∑|𝑅𝑒𝑑𝑢𝑐𝑒𝑑|                   (1) 

where CII is used as the value to determine each COCOM. ∑|Improved| and ∑|Reduced| represent 

the sum of CPCs with the improved reliability effect (+1) and the reduced reliability effect (−1), 

respectively. Furthermore, Fig. 2 shows four control modes in COCOM: strategic, tactical, 

opportunistic, and scrambled. The CII is introduced to decide the COCOM, as depicted in Fig. 2 (Sun 

et al., 2012). 

 

Fig. 2. Relationship between each CPC and COCOM. 



 

 

Table 3 presents the HEP interval, the logarithm interval of each COCOM, and the CII value. 

Table 3 HEP and log10 HEP interval of each COCOM. 

COCOM HEP interval Log10HEP interval CII values 

Strategic (0.00005, 0.01) (−5.3, −2) [−7, −3] 

Tactical (0.001, 0.1) (−3, −1) [−3, 1] 

Opportunistic (0.01, 0.5) (−2, −0.3) [2, 5] 

Scrambled (0.1, 1.0) (−1, 0) [6, 9] 

 

As for the data, this method introduces the definition of risk and collects risk data as the data resource 

of CPC to address the explainability of the data. The replacement of the expert scoring mechanism 

avoids the influence on data caused by the level and experience of experts and fundamentally 

diminishes subjectivity. Eq. (2) expresses the way to collect the risk data of CPC. 

𝐶𝑃𝐶𝑟
𝑛 =

∑ 𝐷𝑙𝑖
𝑖 ×𝐷𝑖𝑚

𝑖6
𝑖=1

6
                             (2) 

where r, li and im indicate the definition of risk (𝑟𝑖𝑠𝑘 = 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × 𝑖𝑚𝑝𝑎𝑐𝑡). Moreover, 𝐶𝑃𝐶𝑟
𝑛 

represents the risk data of the nth CPC, which are collected by multiplying each group of the severity 

data and the probability data correspondingly, and the average of the product is just the nth risk-based 

CPC data. Besides, the two parts data of each CPC both have six values, 𝐷𝑙𝑖
𝑖  and 𝐷𝑖𝑚

𝑖  represent the 

ith data of “likelihood” and “impact”. This study collects 15 groups of risk data through a Likert scale 

ranging from 0 to 5, as shown in Fig. 3, and then 15 sets of CPC data are collected from the risk data 

after repeating the operation. 

 

Fig. 3. Likert scale for risk data collection. 

 

2.3. Fuzzy membership function construction based on risk data  

Fuzzy logic is a type of many-valued logic in which the truth values of variables may be any real 

number between 0 and 1, considered “fuzzy” (Novk et al., 1999). Fuzzy logic is a useful tool that can 

effectively solve problems in an uncertain environment, especially in modeling processes that are too 

complex for conventional quantitative techniques or when the available information from the process 

is qualitative, inexact, or uncertain (Konstandinidou et al. 2006; Wang, 2012; Wang et al., 2009; Zhou 

and Thai, 2016). Fuzzy logic has been successfully used in many fields. Moreover, several kinds of 

prevalent fuzzy functions exist, including triangular, trapezoid, Gaussian, and bell-shaped. Among 

these functions, the trapezoidal fuzzy function is well-known for its high flexibility, which helps 

express different situations better. Therefore, the trapezoidal fuzzy function is chosen to describe the 

CPC and the level of each COCOM. According to the risk definition (𝑟𝑖𝑠𝑘 = 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × 𝑖𝑚𝑝𝑎𝑐𝑡), 



 

 

the risk data of CPC is collected by Eq. (2) shown in Section 2.2, where 𝐷𝑙𝑖
𝑖  and 𝐷𝑖𝑚

𝑖  is collected by 

a Likert scale range from 0−5, so the 𝐶𝑃𝐶𝑟
𝑛 which represent the product of 𝐷𝑙𝑖

𝑖  and 𝐷𝑖𝑚
𝑖  range from 

0 to 25. As a result, the nine trapezoidal fuzzy functions are defined with grade scopes ranging from 0 

to 25 based on the risk data of CPC. 

This approach constructs nine different fuzzy functions matched to each of the nine CPCs. Fuzzy 

statistical methods and expert judgment are always used to determine the expression of a fuzzy 

membership function. The fuzzy membership degree is calculated by the trapezoid membership 

function which is presented as Eq. (3). 

𝜇[𝑎,𝑏,𝑐,𝑑](𝑥) =

{
 
 

 
 

0 (𝑥 ≤ 𝑎)
𝑥−𝑎

𝑏−𝑎
 (𝑎 ≤ 𝑥 ≤ 𝑏)

1 (𝑏 ≤ 𝑥 ≤ 𝑐)
𝑑−𝑥

𝑑−𝑐
 (𝑐 ≤ 𝑥 ≤ 𝑑)

0 (𝑥 ≥ 𝑑)

                                   (3) 

where the four parameters a, b, c, and d represent the abscissa of the four nodes of the trapezoidal fuzzy 

function. In addition, x represents the data of the fuzzy membership function; it acts as both the grade, 

ranging from 0 to 25, and the logarithm of COCOMs' probability interval, ranging from −5.3 to 0. 

 

2.4. GRA based on the definition of risk 

GRA is broadly applied in evaluating or judging the performance of a complex project with meager 

information (Senthilkumar et al., 2014). AHP is also a widely-used method to calculate the weight 

value, and it uses a standard scale to distinguish the weight level among different elements. However, 

in this study, there is no such as scale to let people realize which is the best or the worst risk-based 

CPC data, so GRA method is selected to calculate the CPC. GRA method is based on the relative 

importance concept which takes the best and the worst data as the relative maximum or minimum 

data to complete the analysis when there is no comparison standard. It involves five steps, shown in 

Fig. 4. 

 

Fig. 4. Steps of GRA. 

Step 1: To take the data collection work as the beginning, and to construct the grey matrixes which is 

expressed as Eq. (4). 



 

 

𝑇𝐺 = (

𝑇1(1) 𝑇1(2)
𝑇2(1) 𝑇2(2)

… 𝑇1(𝑛)
… 𝑇2(𝑛)

⋮ ⋮
𝑇𝑚(1) 𝑇𝑚(2)

⋱ ⋮
… 𝑇𝑚(𝑛)

)                        (4) 

where 𝑇𝐺  is the grey matrix, 𝑇𝑚(𝑛), which represents the element for the nth criteria in the data 

series of the mth attribute, is defined by risk data. 

Step 2: The reference series and each comparative series can be decided from the grey matrix. It is 

the set of the maximum or minimum data that are defined to be the reference series for the most part. 

The maximum data are selected to build reference series for this study. Eq. (5) shows the expression: 

𝑇𝑂 = (𝑇𝑂(1), 𝑇𝑂(2),⋯ , 𝑇𝑂(𝑛))                     (5) 

where 𝑇𝑂 is the reference series. 𝑇𝑂(𝑛) represents the maximum data of the nth column in the grey 

matrix, and it also represents the maximum data in the nth criteria. 

Step 3: To calculate the absolute differences between the reference series and other comparative 

series in this step. Eq. (6) shows the expression: 

∆𝑂𝑗(𝑘) = |𝑋𝑂(𝑘) − 𝑋𝑗(𝑘)|, (𝑘 = 1,2,⋯ , 𝑎; 𝑗 = 1,2,⋯ , 𝑏)           (6) 

where the term 𝑋𝑂(𝑘) is the kth element in the reference series, 𝑋𝑗(𝑘) is the kth element in the jth 

comparative series, and ∆𝑂𝑗(ℎ) is the absolute difference between them. 

Step 4: Using Eq. (7) to calculate the grey relation coefficient as follows: 

𝑟𝑘
𝑗
=

𝑚𝑖𝑛1≤𝑗≤𝑏𝑚𝑖𝑛1≤𝑘≤𝑎∆𝑂𝑗(𝑘)+𝛿×𝑚𝑎𝑥1≤𝑗≤𝑏𝑚𝑎𝑥1≤𝑘≤𝑎∆𝑂𝑗(𝑘)

∆𝑂𝑗(𝑘)+𝛿×𝑚𝑎𝑥1≤𝑗≤𝑏𝑚𝑎𝑥1≤𝑘≤𝑎∆𝑂𝑗(𝑘)
           (7) 

where 𝑟𝑘
𝑗
  is the grey relation coefficient, while the terms  𝑚𝑖𝑛1≤𝑗≤𝑏𝑚𝑖𝑛1≤𝑘≤𝑎∆𝑂𝑗(𝑘)  and 

 𝑚𝑎𝑥1≤𝑗≤𝑏𝑚𝑎𝑥1≤𝑘≤𝑎∆𝑂𝑗(𝑘)  are the minimum data and the maximum data of each ∆𝑂𝑗(𝑘) , 

respectively. For 𝛿 ranging from 0 to 1, this method uses it as an identifier to make the difference 

of the grey coefficient for each element identifiable. Moreover, this method takes 0.5 as the value of 

this parameter, referring to the suggestion from most application cases and the designer of GRA. 

Step 5: With the absolute differences and the grey relation coefficient determined before, the grey 

relationship degree can be calculated as follows: 

𝐺𝑗 = ∑ 𝑊𝑘 ∙ 𝑟𝑗
𝑘𝑛

𝑘=1                             (8) 

Furthermore, the final grey degree for each attribute is calculated by Eq. (9).  

𝐺𝑗
𝐶𝑜𝑛. = 𝐺𝑗

𝐿𝑖𝑘𝑒𝑙𝑖. ∙ 𝐺𝑗
𝐼𝑚𝑝.

                          (9) 

where the term 𝐺𝑗
𝐿𝑖𝑘𝑒𝑙𝑖.and 𝐺𝑗

𝐼𝑚𝑝
 represent the relationship degrees of the likelihood and the impact, 

respectively, while 𝐺𝑗
𝐶𝑜𝑛. is the final “risk-based” grey degree. Finally, the CPC weight is collected 

using Eq. (10) which is expressed in below. 

𝛿𝑖 = 
𝐺𝑗
𝐶𝑜𝑛.

∑ 𝐺𝑗
𝐶𝑜𝑛.9

𝑛=1
                            (10) 

where the 𝛿𝑖 represents the weight of the nth CPC, and 𝐺𝑗
𝐶𝑜𝑛.is the final “risk-based” grey degree. 



 

 

 

2.5. HEP calculation 

HEP value is the conclusion of the risk-based fuzzy CREAM method, it directly determines the 

practicability and efficacy of the proposed method. This study newly designed a valid approach to 

achieve the HEP calculation. This study collects the fuzzy membership degree based on the risk data 

of CPC and the risk-based fuzzy function, calculates the CPC weight according to the risk data of 

CPC, identifies every activated if-then rule, calculate the rule weight, and calculates the final 

weighted fuzzy degree of COCOMs. The HEP value is determined by considering the fuzzy degree 

of each CPC, the weight of each CPC, and the weight of each activated If-Then rule together.  

 

2.5.1. Fuzzy membership degree collection 

The fuzzy membership degree of CPC is the key operator that contributes to the final HEP result. 

This study establishes a fuzzy membership function based on risk data and decides the risk data of 

CPC as input to collect the fuzzy degree of CPC. Fig.5 lists the nine fuzzy functions constructed 

based on risk data match to 9 CPCs, then the fuzzy degree of CPC would be obtained by Eq. (3) once 

the risk data of CPC was taken into the function. 

 

2.5.2. Calculation of CPC weight based on risk data 

This study introduces fuzzy logic, and the trapezoidal fuzzy membership functions of this research 

are established based on risk data to calculate the fuzzy membership degree of CPC. Moreover, GRA 

is introduced to solve the issue of weight differences among the CPCs in this research, and the weight 

of CPC is assessed based on the risk data of CPC using Eq. (4) to Eq. (10). 

 

2.5.3. If-then rule identification and weight calculation 

The if-then rule does well in dealing with uncertainty. The rule base was established in combination 

with the fuzzy membership degree of CPC obtained in the previous step. Eq. (11) shows the common 

expression of a fuzzy if-then rule: 

𝑃𝑚: if (𝑥1 𝑖𝑠 𝑥𝑚1) and⋯and, (𝑥𝑛 𝑖𝑠 𝑥𝑚𝑛) then the answer goes to 𝐶𝑚 with the rule weight 𝑊𝑃𝑚 

 (11) 

where 𝑃𝑚 is the mth activated fuzzy if-then rule, while 𝑥1 represent the nine CPCs for this study. 

𝑥𝑚1–𝑥𝑚𝑛 denote the concrete corresponding fuzzy linguistic variables for all the CPCs, and 𝐶𝑚 

represents all kinds of the corresponding relationships between 𝑥𝑛 and 𝑥𝑚𝑛. 𝑊𝑃𝑚 is the weight of 

the mth rule, which is calculated as Eq. (12) expressed. 

𝑊𝑃𝑚 = ∏ 𝐷𝑖
9
𝑖=1                             (12) 

where 𝐷𝑖 is the fuzzy membership degree of the ith CPC in the rule 𝑃𝑚. 

 



 

 

2.5.4. Calculation of the final weighted fuzzy degree of COCOMs 

In this section, the product-sum method proposed by Ung in 2015 is introduced to calculate the final 

weighted fuzzy degree of COCOMs with the initial weighted fuzzy degree of each activated rule's 

COCOM and each activated rule's weight. The initial weighted fuzzy degree of each activated rule's 

COCOM expresses each attribute's fuzzy degree and importance weight. To obtain the final weighted 

fuzzy degree of COCOMs, the initial weighted fuzzy degree of each activated rule's COCOM can be 

calculated using Eq. (13). 

𝑍𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑛

= ∑ 𝑍𝑅𝑛
𝑝
𝑖=1 (𝑥𝑖) ∙ 𝛿𝑖                        (13) 

where 𝑍𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑛  represents the initial weighted fuzzy degree of each activated rule's COCOM for the 

nth activated fuzzy if-then rule, 𝑍𝑅𝑛(𝑥𝑖) represents the 1st to pth CPC in the nth rule, and 𝛿𝑖 is the 

weight of the ith CPC. 

Then, the final weighted fuzzy degree can be calculated with the initial weighted fuzzy degree of 

each activated rule's COCOM and each activated rule's weight in the fuzzy product-sum method 

shown as Eq. (14). 

𝑍𝑓𝑖𝑛𝑎𝑙
ℎ (𝑋) = ∑ 𝑍𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑛𝑚ℎ
𝑛=1 ∙ 𝑊𝑃𝑚                       (14) 

where 𝑍𝑓𝑖𝑛𝑎𝑙
ℎ (𝑋)  is the final weighted fuzzy degree for the hth task, and 𝑍𝑖𝑛𝑖𝑡𝑖𝑎𝑙

𝑛   represents the 

initial weighted fuzzy degree of the activated fuzzy if-then rules. It is mh that represents the number 

of rules for hth task and 𝑊𝑃𝑚 is the rule weight collected as the way Eq. (12) expressed. 

 

2.5.5. Defuzzification 

Through the procedures mentioned above, the final weighted fuzzy degree of each COCOM can be 

determined using the fuzzy risk data. In this section, the final HEP value is calculated by 

defuzzification. The most common defuzzification methods include the COA, maxima, Mean Of 

Maxima (MOM), Weighted Mean Of Maximums (WMOM), and Center Average Weighting (CAW) 

methods (Runkler and Glesner, 1993; Rao and Saraf, 1995; Runkler, 1996; Roychowdhury and 

Pedrycz, 2001; Ung and Shen, 2011). Owing to the relatively high level of accuracy, the COA method, 

shown as Eq. (15), is adopted to transfer the fuzzy results into the crisp value.  

𝐿𝑜𝑔10𝐻𝐸𝑃 =
∑ [∫ 𝑍𝑖(𝑥)𝑥𝑑(𝑥)

𝑥𝑈
𝑥𝐿

]𝑛
𝑖=1

∑ [∫ 𝑍𝑖(𝑥)𝑑(𝑥)
𝑥𝑈
𝑥𝐿

]𝑛
𝑖=1

                      (15) 

where Zi(x) represents the ith fuzzy membership function; x is the logarithm data of COCOM ranging 

from −5.3 to 0 in this study, and the upper and lower limits of the integration for Zi(x) are respectively 

expressed by XU and XL. The crisp value of this study is transformed into the logarithmic value of 

HEP. 

 

3. Case study 



 

 

This study presents a comprehensive and rigorous approach to calculating the fuzzy CREAM and 

develops a modified method that ensures accurate and reliable results by utilizing 15 sets of risk data 

contributing to the risk data of nine CPCs. Then, the fuzzy membership functions and GRA are 

adopted to help complete the calculation of fuzzy CREAM. Finally, the COA method is also 

introduced to achieve the crisp HEP value and demonstrate the reliability of the modified method. 

All calculation processes of this study are completed with the assistance of MATLAB. The 

procedures adopted in this study comprise six steps, as shown in Fig. 1, involving applying and 

validating the modified fuzzy weighted CREAM. 

 

3.1. Risk data collection 

This study collects risk data as input and then obtains the fuzzy membership degree and the weight 

of each CPC. Some applications of CREAM are used to attain the data by expert scoring. However, 

the result would be greatly affected by the level and experience of the experts. Unlike the typical 

expert scoring mechanism, this study uses risk data as the data resource. Moreover, a hierarchical 

task analysis (HTA) is introduced to analyze the main work during the marine transportation of LNG, 

and the classifications are shown in Table 4. This study collects 15 sets of “risk data” based on the 

15 tasks and the third task is selected to be the example for case study since the data of Task 3 are 

representative in the calculation process. 

Table 4 Classifications of risk data. 

Task No. Name 

1 
Inspect each piece of safety-critical equipment to ensure that it is at the correct 

position. 

2 Test the sensors and monitoring system to ensure that they are functional. 

3 
Check the LNG transfer arms, pipelines, valves, and flanges to guarantee that there 

is no leakage. 

4 
Maintain communication with the central control room, both at the LNG ship and at 

the LNG terminal. 

5 
Finish all documentation work and get it approved by both the LNG port and the 

LNG ship. 

6 Start oil-loading arms one by one and move them toward the LNG ship. 

7 Connect LNG loading arms one by one with manifolds at the LNG ship. 

8 
Periodically perform a safety inspection of the pipelines, valves, flanges, and 

transfer arms. 

9 Continuously monitor the ship's conditions and maintain effective communication. 

10 Control the transfer arms and move them toward the LNG terminal. 



 

 

11 Vent all the remaining LNG in each transfer arm. 

12 Deice the ice and disconnect each transfer arm with manifolds at the LNG ship. 

13 Quickly install a blind flange and seal it on manifolds to avoid LNG leakage. 

14 Locate the LNG transfer arms at the correct position and lock them. 

15 Finish documentation work. 

 

The CPC data are collected based on the definition of “risk.” Risk was determined by “impact” and 

“likelihood.” Thus, each group of risk data has the impact and likelihood, two groups of data, as Task 

1 shows in Tables 5 and 6. 

Table 5 Grey data of likelihood for Task 1. 

CPC 

No. 
Expert A Expert B Expert C Expert D Expert E Expert F 

CPC1 1.5 1 1.25 1.25 1.5 0.75 

CPC2 0.5 0.5 0.25 0.25 0.5 0.5 

CPC3 2 2 2.5 1.5 1.75 1.5 

CPC4 1 1 0.5 0.75 1 0.5 

CPC5 1.5 1 0.5 0.5 0.75 0.5 

CPC6 1 1 0.25 0.25 0.5 0.25 

CPC7 1.5 2 2 1.25 1.5 1.25 

CPC8 1 1 0.75 0.5 0.75 0.75 

CPC9 0.5 1 0.5 1 1.25 1 

Table 6 Grey data of impact for Task 1. 

CPC 

No. 
Expert A Expert B Expert C Expert D Expert E Expert F 

CPC1 1.5 1.5 1.5 1.5 1.75 1.75 

CPC2 2 2 2 2 1.5 1.5 

CPC3 1.5 1.5 1.5 1 1.75 1.5 

CPC4 2 2 2 2 2 2 

CPC5 1.5 1.5 1.5 2 2.25 2.25 

CPC6 1.75 1.5 1.5 1.5 1.25 1.25 

CPC7 1.5 1.5 1 1 1 1 

CPC8 2.5 2 2 2.5 2.25 2.25 

CPC9 1.5 1.5 1.5 1 1.5 1 



 

 

This study collects 15 sets of CPC data through Eq. (2) based on the 15 sets of risk data. The risk 

data of Task 1 is shown in Table 7. Then, the risk data of CPC are used as the data input to verify the 

proposed approach. 

Table 7 CPC data based on risk for Task 1. 

CPC No. 1 2 3 4 5 6 7 8 9 

CPC data 1.91 0.75 2.76 1.58 1.39 0.82 1.88 1.77 1.15 

 

3.2. Calculation of fuzzy CREAM 

Next, the risk-based CPC data are taken to the modified fuzzy CREAM to calculate the HEP value. 

In the beginning, the construction of fuzzy membership functions is completed based on the risk data 

of CPC. Fuzzy logic has an excellent track record as a critical tool for dealing with a complex process 

coupled with uncertain factors. The trapezoidal fuzzy function is adopted in this study, among other 

popular ones, owing to its outstanding performance with massive calculations. Matching them with 

nine CPCs, this study constructs nine trapezoidal fuzzy functions, as shown in Fig. 5. 



 

 

 

Fig. 5. Fuzzy membership functions constructed based on risk data. 

Fuzzy membership functions effectively help describe the intricate impact of the environment on 

operators during LNG shipping. In the fuzzy membership function, the number of functions 

corresponds to the number of the CPC effect level. In each trapezoidal function, four abscissa joints 

are determined by the risk data of CPC; for instance, three trapezoidal functions match the three 

levels (deficient/inefficient, efficient, very efficient) in the fuzzy membership function of CPC 1; the 

four abscissa joints of the trapezoidal function of the level " deficient/inefficient " are (0, 0, 2, 6), the 

four abscissa joints of the trapezoidal function of the level "efficient" are (2, 6, 9, 12), and the four 

abscissa joints of the trapezoidal function of the level "very efficient" are (9, 12, 25, 25). Then, taking 

the risk data of CPC, the CPC data lie in different intervals and obtain different fuzzy membership 

degrees ranging from 0 to 1 by Eq. (3). With the nine different fuzzy membership functions 

constructed based on the risk data of CPC, the fuzzy membership degree of each CPC can be 

calculated, as the CPCs of the first task shown in Table 8. 

Table 8 Fuzzy membership degree of CPCs for Task 1. 

CPC No. Fuzzy membership degree Impact level 

1 1/0 (Deficient, Inefficient)/Efficient 

2 1/0 Incompatible/ Compatible 

3 0.27/0.73 Inappropriate/ Tolerable 

4 0.03/0.97 Inappropriate/ Acceptable 

5 0/1 Matching/ Fewer 

6 1/0 Continuously inadequate/ Temporarily inadequate 

7 0/1 Evening/Day 

8 0.05/0.95 Inadequate/ Adequate limited experience 



 

 

9 1/0 Deficient/ Inefficient 

 

Moreover, the weight of CPC can be calculated using GRA based on the calculation of risk data. Eq. 

(4) to Eq. (10) express the calculation process of the CPC weight. Table 9 lists the weight of CPC for 

the third task. 

Table 9 CPC weight of Task 3. 

CPC No. 1 2 3 4 5 6 7 8 9 

Weight (× 10−2) 9.66 6.32 18.07 11.33 8.66 8.82 14.32 14.23 8.55 

 

Next, to identify the if-then rules based on the fuzzy membership degree of CPC after the CPC 

calculation. As shown in Table 8, the fuzzy membership degree moves to 1, 0, or the two figures 

range from 0 to 1. Then, when p CPCs lead to two figures, the number of rules moves to 2p. For 

example, in the third task, the third CPC, as well as the fourth and eighth CPCs, results in two fuzzy 

membership degree data, the input sample (1.33, 0.55, 3.06, 2.10, 1.04, 1.047, 1.71, 2.20, 1.25) 

activated eight rules, as shown in Table 10.  

Table 10 If-then rules for Task 3. 

Rule No. CPC 1 CPC 2 CPC 3 CPC 4 CPC 5 CPC 6 CPC 7 CPC 8 CPC 9 

Rule 1 1.00 1.00 0.27 0.03 1.00 1.00 1.00 0.05 1.00 

Rule 2 1.00 1.00 0.73 0.03 1.00 1.00 1.00 0.05 1.00 

Rule 3 1.00 1.00 0.27 0.97 1.00 1.00 1.00 0.05 1.00 

Rule 4 1.00 1.00 0.73 0.97 1.00 1.00 1.00 0.05 1.00 

Rule 5 1.00 1.00 0.27 0.03 1.00 1.00 1.00 0.95 1.00 

Rule 6 1.00 1.00 0.73 0.03 1.00 1.00 1.00 0.95 1.00 

Rule 7 1.00 1.00 0.27 0.97 1.00 1.00 1.00 0.95 1.00 

Rule 8 1.00 1.00 0.73 0.97 1.00 1.00 1.00 0.95 1.00 

 

This study constructs a rule base containing 145 if-then rules. The weight of the if-then rule is 

calculated based on the rule base and the fuzzy membership degree of CPC as the way Eq. (11) and 

Eq. (12) expressed. Table 11 shows the weights of the eight rules of the third task. 

Table 11 Rule weight of Task 3. 

Rule No. 1 2 3 4 5 6 7 8 

Weight 3.42×10−4 9.45×10−4 1.28×10−2 3.54×10−2 0.66×10−2 1.81×10−2 2.46×10−1 6.80×10−1 

 

Based on the if-then rule base, this method calculates the fuzzy membership degree and the weight 

of CPC (Table 8 and Table 9), as well as the initial weighted fuzzy degree of each activated rule's 



 

 

COCOM, using Eq. (13). As the if-then rule of the third task presents, the initial degree of COCOM 

is listed in Table 12. 

Table 12 Initial weighted fuzzy degree of COCOM for Task 3. 

Rule No. 1 2 3 4 5 6 7 8 

Initial degree 0.62 0.71 0.73 0.81 0.75 0.83 0.86 0.94 

 

Afterwards, the final weighted degree of COCOM can be calculated with the initial weighted fuzzy 

degree of COCOM shown in Table 12 and the weight of each activated rule listed in Table 11. Eq. 

(14) is used to calculate it. The final weighted degree of COCOM for the third task is presented in 

Table 13. Table 14 shows the final membership degree of COCOM for all tasks of this study. 

Table 13 Final weighted degree of COCOM for Task 3. 

Rule 

No. 
1 2 3 4 5 6 7 8 

Final 

degree  
2.1×10−4 6.7×10−4 9.3×10−3 2.9×10−2 4.9×10−3 1.5×10−2 2.1×10−1 6.4×10−1 

 

Table 14 Final membership degree of COCOM for Task 3. 

Task No. Strategic Tactical Opportunistic Scramble 

3 0.91 0.09 0 0 

 

3.3. Defuzzification 

According to the HEP interval of each COCOM listed in Table 3, the fuzzy membership functions of 

each COCOM are constructed shown in Fig. 6. All 15 tasks are analyzed in the way shown as the 

third task. With the COA method, the final crisp Log10HEP value for all the 15 tasks are calculated 

as shown in Table 15 and Fig. 7, using Eq. (15). 

 

Fig. 6. Fuzzy membership function of COCOM. 

 

Table 15 Final crisp value of HEP for the 15 tasks. 

Task Log10HEP HEP 



 

 

Inspect each piece of safety-critical equipment to ensure it is in the 

correct position. 
−3.87  1.33×10−4 

Test the sensors and monitoring system to ensure that they are 

functional. 
−3.88  1.32×10−4 

Check LNG transfer arms, pipelines, valves, and flanges to 

guarantee no leakage. 
−3.87  1.36×10−4 

Maintain communication with the central control room, both at the 

LNG ship and at the LNG terminal. 
−3.89  1.30×10−4 

Finish all documentation work and get it approved by both the LNG 

port and the LNG ship. 
−3.89  1.30×10−4 

Start the oil loading arms one by one and move them toward the 

LNG ship. 
−3.03  9.38×10−4 

Connect the LNG loading arms one by one with manifolds at the 

LNG ship. 
−2.48  3.30×10−3 

Periodically perform a safety inspection of the pipelines, valves, 

flanges, and transfer arms. 
−3.88  1.32×10−4 

Continuously monitor the ship's conditions and maintain effective 

communication. 
−3.89  1.30×10−4 

Control the transfer arms and move them toward the LNG terminal. −3.87  1.35×10−4 

Vent all of the remaining LNGs in each transfer arm. −3.84  1.43×10−4 

Deice and disconnect each transfer arm from the manifolds at the 

LNG ship. 
−2.02  9.56×10−3 

Quickly install a blind flange and seal it on the manifolds to avoid 

LNG leakage. 
−3.73  1.87×10−4 

Locate the LNG transfer arms at the correct position and lock them. −3.89  1.30×10−4 

Finish documentation work. −3.89  1.30×10−4 

 

 

Fig. 7. Final Log10HEP value of the 15 tasks. 



 

 

 

The HEP, which stands for Human Error Probability, represents the probability of action failure. It is 

defined as the likelihood of unsuccessful or failed human performance under specific circumstances 

specified by the CPCs (Zhou et al., 2018). As shown in Fig. 7, the tasks with top three highest HEP 

values are respectively task 6 (Start the oil loading arms one by one and move them toward the LNG 

ship), task 7 (Connect the LNG loading arms one by one with manifolds at the LNG ship) and task 

12 (Deice and disconnect each transfer arm from the manifolds at the LNG ship), which means 

existing hazards with high risk, and more effort must be made to deal with human-related risks during 

the complex process. Among them, task 6 and task 7 are related to the safety of the offloading process. 

While task 12 is vital to the safety marine transportation. For each of the three tasks, once some 

human-related error happened, there could be a leak or even an explosion at the terminal or on the 

ship. Thus, adequate measures must be taken to enhance the human reliability in the tasks. 

 

Here are some recommended management measures for the three tasks in high risk levels. The first 

measure is to maintain equipment regularly, to increase staff training, and to perform regular 

appraisals. The second measure is to keep the speed of movement of the loading arm in a proper 

interval, to ensure the valid communication between the operators on the ship and terminal. The third 

measure is to add real-time video surveillance, ensure effectiveness of de-icing operations and 

introduce segmented communication technique. Lastly, the fourth measure suggests increasing job 

rotation to ensure the physical and mental condition of operators. The final HEP result has been 

applied to the work team of shipping LNG offloading, and the application result shows that after 3 

months there is no recorded event and the work efficiency has improved about 30%. 

 

4. Discussion 

This study proposes a modified approach that incorporates CREAM with the definition of risk for 

source data collection, fuzzy theory for HEP estimation, and GRA for CPC weight calculation 

together. The improved CREAM model is applied to evaluate human reliability in real shipping LNG 

offloading work. Compared to traditional fuzzy CREAM method, the major highlights of the 

proposed method in this study are as follows:  

1) The concept of risk is innovatively used as the support for CPC data collection, so as to address 

the lack of CPC data and to improve the explainability of CPC data;  

2) Different from previous research, the collected risk data of each CPC in this study are used as the 

source data to determine CPC's fuzzy degree, CPC's weight, and the weight of each activated if-then 

rule by CPC;  



 

 

3) The proposed approach in this study develops a hybrid fuzzy operation which integrates the fuzzy 

degree of each CPC, the weight of each CPC, and the weight of each activated if-then rule together 

to estimate HEP values; 

4) The proposed method is practicable to real engineering cases. 

 

Other methods such as IDHEAS and SPAR-H are also useful HRA methods, but they are designed 

for the nuclear industry, so they may not suitable for shipping LNG. As a result, the general industry 

used HRA method “CREAM” is finally decided to be as the main framework of this study.  

 

Compared to the traditional fuzzy CREAM, the proposed method uses the definition of risk as the 

support for CPC data collection and CPC fuzzy degree determination, so that to improve the data 

quality and reliability, since it provides more dimensions (likelihood and impact) to collect and to 

explain data. However, in many other HRA methods, the support for source data collection is limited. 

Apart from the advantage in source data collection, the calculation process also improves the 

proposed method. As there is no certain standard to determine the different weights of each CPC, 

different from traditionally-used Analytic Hierarchy Process (AHP) method, the Grey Relationship 

Analysis (GRA) method is selected for CPC weight analysis in the proposed research to decrease 

subjectivity by using relative importance analysis. In addition, according to fuzzy theory, fuzzy if-

then rule has weight on final result, and this study considers the weight of each activated fuzzy if-

then rule for calculation. However, most previous research ignores this weight.  

 

To better present the practicability and superiority of the proposed method, this study chooses 

traditional product-sum fuzzy CREAM approach as comparison to estimate HEP during shipping 

LNG offloading work. The final membership degree of COCOM and the HEP value of the proposed 

fuzzy CREAM and the traditional product-sum fuzzy CREAM are shown as Table 16 and Table 17 

(where S and T respectively represent the COCOM level Strategic and Tactical) in bellow. 

Table 16 Final COCOM level and HEP value of the risk-based fuzzy CREAM for the 15 tasks. 

Task COCOM level HEP 

1 S(0.95), T(0.05) 1.33×10−4 

2 S(0.97), T(0.03) 1.32×10−4 

3 S(0.91), T(0.09) 1.36×10−4 

4 S(1), T(0) 1.30×10−4 

5 S(1), T(0) 1.30×10−4 

6 S(0.36), T(0.64) 9.38×10−4 

7 S(0.12), T(0.88) 3.30×10−3 



 

 

8 S(0.98), T(0.02) 1.32×10−4 

9 S(1) ,T(0) 1.30×10−4 

10 S(0.93), T(0.07) 1.35×10−4 

11 S(0.81), T(0.19) 1.43×10−4 

12 S(0.08), T(0.92) 9.56×10−3 

13 S(0.75), T(0.25) 1.87×10−4 

14 S(1), T(0) 1.30×10−4 

15 S(1), T(0) 1.30×10−4 

 

Table 17 Final COCOM level and HEP value of the traditional fuzzy CREAM for the 15 tasks. 

Task COCOM level HEP 

1 S(0.94), T(0.06) 1.32×10−4 

2 S(0.94), T(0.06) 1.30×10−4 

3 S(0.83), T(0.17) 1.49×10−4 

4 S(1), T(0) 1.30×10−4 

5 S(1), T(0) 1.30×10−4 

6 S(0.74), T(0.26) 1.87×10−4 

7 S(0.56), T(0.44) 3.00×10−4 

8 S(0.89), T(0.11) 1.30×10−4 

9 S(1), T(0) 1.30×10−4 

10 S(0.89), T(0.11) 1.31×10−4 

11 S(0.83), T(0.17) 1.32×10−4 

12 S(0.13), T(0.87) 3.00×10−3 

13 S(0.81), T(0.19) 1.69×10−4 

14 S(1), T(0) 1.30×10−4 

15 S(1), T(0) 1.30×10−4 

 

As shown in Table 16 and 17, the COCOM level and HEP value of the proposed fuzzy CREAM 

method are close to the traditional fuzzy CREAM. Besides, the outcomes of the two approaches both 

show that Task 6, 7 and 12 have the top three highest risk levels. All in all, the comparison indicates 

the feasibility, reliability, and explainability of the proposed risk-based fuzzy CREAM. 

 

Although the proposed method has many advantages, still there are some issues that should be 

addressed. For the source of data, although using risk data to replace the traditional way is 

commendable, the recording work on CPC should be continuously carried out for HRA application 



 

 

in the future. In addition, as human behavior has uncertainties, when individuals perform a task, they 

may not strictly follow the designed procedures, so it is necessary to promote the mathematical 

method to consider human behavior, to express uncertainties, and to express human-machine 

interaction. Furthermore, software method should be developed to make this proposed method can 

be practiced friendly in real industry.  

 

5. Conclusion  

This study analyzes the human reliability during shipping LNG offloading work, The proposed 

method firstly divides the entire offloading task into 15 key human-related tasks by HTA, and then 

adopts a risk-based modified fuzzy CREAM to estimate the HEP values. The proposed method 

innovatively uses the risk data of each CPC as the source data to determine CPC's fuzzy degree, 

CPC's weight, if-then rule weight, COCOM degree, and final HEP value with a more reasonable 

mathematical way. Through the proposed method, it indicates that the sixth task, the seventh task, 

and the twelfth task are the top three risky tasks with the highest HEP values 9.38×10−4, 3.30×10−3, 

and 9.56×10−3.  

 

It shows that during the connection and disconnection task in shipping LNG offloading work, 

operators have high probability to make errors. Therefore, some particular work should be done. For 

instance, operators need to receive more targeted training on transfer arm connection and 

disconnection; adopting communication skill training to ensure efficient and accurate communication. 

In addition, shipping LNG offloading work procedures should be reviewed, modified, and practiced 

to ensure safe operations. 

 

Although using risk data as the source for HEP estimation is beneficial for HEP estimation during 

risky and complex tasks, as mentioned in the discussion, this study still needs improvements. 

Therefore, in future studies, the type-II fuzzy theory, the safety-II theory, and the currently proposed 

method could be integrated together to express uncertainties of human behavior and human-machine 

interactions. In addition, it is necessary to design a computer-based software way for people to collect 

CPC data, to analyze CPC data, and to calculate HEP value, not only for shipping LNG offloading 

work, but also for broader applications. 
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