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Capsule networks emerged as a promising alternative to convolutional neural networks for learning object-centric represen-
tations. The idea is to explicitly model part-whole hierarchies by using groups of neurons called capsules to encode visual
entities, then learn the relationships between these entities dynamically from data. However, a major hurdle for capsule
network research has been the lack of a reliable point of reference for understanding their foundational ideas and motivations.
This survey provides a comprehensive and critical overview of capsule networks which aims to serve as a main point of
reference going forward. To that end, we introduce the fundamental concepts and motivations behind capsule networks,
such as equivariant inference. We then cover various technical advances in capsule routing algorithms as well as alternative
geometric and generative formulations. We provide a detailed explanation of how capsule networks relate to the attention
mechanism in Transformers and uncover non-trivial conceptual similarities between them in the context of object-centric
representation learning. We also review the extensive applications of capsule networks in computer vision, video and motion,
graph representation learning, natural language processing, medical imaging, and many others. To conclude, we provide an
in-depth discussion highlighting promising directions for future work.
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1 Introduction

The quintessential task of computer vision is to classify an object from a vector of features extracted from an
image and to provide fuller descriptions such as its pose, shape, appearance, etc. For decades, constructing data
representations (features) that were suitable for downstream tasks involved extensive hand-engineering and
expert knowledge. Representation learning [9] consists of a set of tools that enable a machine to automatically
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Fig. 1. Statistics of capsule network research activity. (a) Number of capsule network-related papers published in any
scientific venue. (b) Number of capsule network-related papers published in top conferences. (c) Main research topics in
capsule network literature.

discover useful representations of raw data, which may then be utilised for downstream predictive tasks. The
most successful representation learning method in recent years is Deep Learning (DL) [70]. Despite the many
successes of modern DL-based vision systems [47, 66, 70], a general lack of robustness to distributional shifts
remains prevalent [40]. Indeed, unlike current systems, humans can quickly adapt to distributional changes
using very few examples to learn from [10, 15, 21]. There is compelling evidence that humans parse visual
scenes into part-whole hierarchies, and that we do so by modelling the viewpoint-invariant spatial relationship
between a part and a whole, as the coordinate transformation between the intrinsic coordinate frames assigned to
them [48, 59, 102]. One way to make Neural Networks (NN) more transparent and interpretable, is to try to make
them understand images in the same way humans do. However, this is difficult for standard NNs because they
cannot dynamically represent a different part-whole hierarchy tree structure for each image [49]. This inability
was the main motivation behind the development of capsule networks [49-51, 64, 106].

A capsule network is a type of NN that is designed to model part-whole hierarchical relationships more explicitly
than Convolutional Neural Networks (CNNs), by using groups of neurons to encode entities and learning the
relationships between these entities [72]. Like many other developments in machine learning [36, 95], capsule
networks are biologically inspired, and their goal is to be able to learn more robust object-centric representations
that are pose-aware and interpretable. Evidence from neuroscience suggests that groups of tightly connected
nearby neurons (i.e. hypercolumns) could represent a vector-valued unit which is able to transmit not only scalar
quantities but a set of coordinated values [10]. This idea of vector-valued units is at the heart of both capsule
networks and the attention mechanisms [7, 10, 114], found in Transformers [123]. In capsule networks, these
vector-valued units are known as capsules, and in Transformers, they are represented by query, key and value
vectors. Performing operations such as the scalar product between neural activity vectors, enables powerful
algorithmic concepts such as coincidence filtering and attention to be computed. Despite the promising progress
on capsule networks, Barham et al. [8] explained that current DL frameworks have been highly optimised for a
small subset of computations used by popular models. Although their capsule model required around 4 times
fewer floating point operations (FLOPS) with 16 times fewer parameters than their CNN, implementations in
both TensorFlow [1] and PyTorch [96] ran significantly slower and ran out of memory with much smaller models.
We hope this survey will inspire researchers to develop suitable tools for capsule networks.

To that end, we provide a comprehensive review of representation learning using capsule networks and related
attention-based models. Although research on capsules is still at an early stage relatively speaking, Figure 1a
shows us that despite an initial rapid growth in popularity, the total number of publications per year has somewhat
stagnated. This is possibly due to the high barrier of entry to the field and the lack of a reliable point of reference.
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Table 1. Organization of capsule network literature covered in this survey split into the most prominent research areas.

Research Area ‘ Literature ‘ Description
Capsule Routing Algorithms [4, 22, 30, 44, 50, 64, 80, | Novel routing algorithms for optimizing the degree of coupling between capsules
(Sections 3 & 4) 91, 101, 106, 120] across capsule network layers. Proposed methods range from dynamic iterative

routing to concurrent and non-iterative, inspired by both probabilistic clustering
algorithms and attention mechanisms.

Video & Motion with Capsules [27, 28, 85, 88, 133] Innovative applications of capsule networks in the analysis of video and motion
(Section 5.1) data. This area is distinct from standard capsule networks which only process
images as there is an extra dimension of time. Creative solutions are needed to
improve efficiency during training and inference.

Graph/Geometric Capsules [42, 60, 78,113, 116, 128, | Capsule networks have been adapted to facilitate the processing of graph struc-

(Section 5.2) 132, 142] tures and 3D point clouds. This typically entails significant modifications in both
theoretical and architectural aspects of standard capsule networks.

Generative Capsules [29, 58, 91, 112] These works move away from discriminative learning and pursue a generative

(Section 5.3) perspective to learning with capsule networks. Examples include the integration

of capsules into the framework of Generative Adversarial Networks (GANs).

NLP with Capsules [16, 18, 61, 75, 79, 121, | A breadth of work has been done in applying capsule networks to Natural Lan-
(Section 5.4) 125, 131, 134, 136, 138, | guage processing (NLP) tasks. Such works typically include using modifications
139, 141, 143] of capsule routing instead of, or in'combination with, the attention mechanism

used in Transformers.
Capsules in Medical Imaging [2,3,33,68,69,76,81,90, | Many works have proposed applications of capsule networks to high-resolution
(Section 5.5) 126, 140] and/or 3D image data in medical imaging contexts. The focus is typically on

proposing modifications to capsule network architectures to improve efficiency
and performance on real-world data.

Other Applications of Capsule Networks [24, 43, 84, 92, 94, 98, | Research exploring diverse applications of capsule networks across various do-
(Appendix A) 127, 145] mains beyond those specified in the other categories. Each of the sub-areas
covered in the relevant section required bespoke modifications to capsule net-
works to be proposed, but these works do not have sufficient overlap to warrant
their categorisation.

Nonetheless, as shown in Figure 1b, the number of capsule network-related publications at the top venues has
continued to increase steadily. We believe that there is now sufficient material to warrant a detailed organisation
of the various techniques and foundational ideas for the benefit of the community. At the time of this writing,
there exist only three other capsule network-based surveys. [124] was written shortly after capsule networks
were first introduced, so it does not cover large milestones achieved recently. Similarly, [110] was written to
be brief and therefore covers a very small portion of the literature. [97] is more recent and covers a larger
breadth of research, but is still lacking context as the field has naturally continued to develop (see Table 1 for
examples). Moreover, this survey provides a more thorough explanation of the motivating ideas behind capsules
and positions them in the context of other seemingly unrelated avenues in the field of deep learning such as
attention and slot-based representation learning. In summary, the purpose of this survey is to provide the first
highly comprehensive and detailed breakdown of capsule networks and related research. Specifically, we aim to:
(a) Explain the foundations, motivations and fundamental concepts; (b) Survey the state of the art; (c) Relate and
compare capsules and routing-by-agreement with Transformers and self-attention. (d) Discuss open problems
and provide promising future research directions. We anticipate that our survey will serve as the main point of
reference on capsule network research going forward, and will help contribute towards the advancement of the
field.

Overview. This survey is organised as follows. In Section 2, we gently introduce invariance and equivariance,
and explain why these concepts are fundamental in object-centric representation learning. In Section 3, we explain
the foundational ideas and motivations behind capsule networks, introducing basic concepts like vector-valued
neural activities (capsules), agreement and capsule routing. In Section 4, we review the most prominent capsule
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Fig. 2. Depiction of invariance and equivariance properties in a visual setting. Translation (or shift) is denoted by T,
viewpoint (perspective) projection is denoted by V, and f : R? — R¥ denotes a feature mapping. (a) E.g. a CNN with Global
Average Pooling (GAP). (b) Capsule networks are explicitly wired to try to produce viewpoint invariant predictions. (c)
Convolution in CNNs, whereby changes in input translation lead to equivalent (place-coded) changes in neural activities. (d)
Cartoon example of capsule layers, which look to capture rate-coded viewpoint equivariance in neural activity vectors called
capsules.

routing algorithms and draw comparisons between them. In section 5, we uncover the conceptual similarities
between capsule routing and the attention mechanism in Transformers. Sections 6 to 11 discuss applications of
capsule networks for video, graphs, natural language processing, medical imaging and many more. Lastly, in
Section 12 we discuss open challenges and shortcomings of capsule networks, along with promising directions
for future research.

2 Background & Motivation
2.1 Invariance

Invariance is a useful property to model for a variety of recognition tasks, as we’d often like the final prediction
of our model to be invariant to transformations of the input that preserve intrinsic properties, such as relative
positions and symmetries. A symmetry of an object is a transformation that leaves it unchanged, e.g. rotating
a (perfect) circle about its centre (rotational invariance). For example, the intrinsic properties of the ‘Horse’
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in Figure 2 remain unchanged relatively speaking when translating, scaling or flipping it, thus our model’s
prediction of ‘Horse’ should be the same under these transformations. This notion of invariance is also linked to
model generalisation and design [9, 54].

Translation Invariance. To humans, both images shown in Figure 2a should be classified as a ‘Horse’
regardless of where it appears within the boundaries. This is because a positional shift (translation T) of the
horse does not change its intrinsic properties. Concretely, translation invariance refers to a feature mapping f
that produces the same output (e.g. ‘Horse’) regardless of input translation T(x). More formally, f is invariant to
input translations of x if:

f(x) = f(T(x)). (1)
Sub-sampling techniques typically used in CNNs, such as max-pooling, make neural activities of the next layer
locally invariant to input translations [9, 138]. That is, the output of a pooling unit is the same irrespective of
where a specific feature is located inside its pooling region.

Viewpoint Invariance. A more challenging invariance to model is viewpoint invariance as shown in Figure 2b.
By the same logic as before, a feature mapping f is invariant to viewpoint projection V of the input x if:
f(x) = f(V(x)). To humans, this task is relatively trivial since we are very good at extrapolating object
appearance to novel viewpoints. However, this is not the case for standard CNNs [51] as they often struggle
to generalise to viewpoints not seen during training. As explained later, unlike CNNs, capsule networks are
explicitly wired to try to capture viewpoint invariance in the network’s weights to produce viewpoint-invariant
predictions. Capsules attempt to encode explicit pose representations of parts and objects hierarchically, as any
change in viewpoint can be modelled by a simple linear operation on these poses. As explained next, capsule
networks look to go beyond invariance to more complex (approximately) equivariant inference.

2.2 Equivariance

The success of CNNs can be largely attributed to their ability

to exploit translation symmetry to reduce sample complexity. f N
Indeed, the convolution operator and weight sharing pro- .
vide the useful property of equivariance under translation, | | | * m -

enabling efficient spatial transfer of knowledge. Naturally,
much research in recent years has focused on exploiting N
other transformations and symmetries such as rotation and x Rooe () [z x f]

scale to improve statistical efficiency [19, 51, 54, 129]. Two

fields of particular interest are Group CNNs [19, 20, 25, 103] f — °
and capsule networks [22, 50, 64, 99, 101, 106], which are o
both predicated upon the notion that intermediate neural o ‘ - -

network layers should not be fully invariant. This is pri-
marily because the relative pose of local features ought
to be preserved for deeper layers in the network to aid in
generalisation to new transformations not seen during train-

' [z’ % f]

¢ Fig. 3. Example of lack of equivariance in convolution.
ing [19, 51]. Each filter weight was sampled as: f; ~ Uniform(0, 1).
Translation Equivariance. One of the simplest exam- Unlike the translation case, the output [x” % f] is not

ples of equivariance is translation equivariance afforded by  simply a rotated version of [x x f] as convolution is not
the convolution operation in CNNs [71]. As shown in Fig- rotation equivariant.

ure 2¢, a change in translation of the input leads to equivalent changes in neural activities. More formally, f is
equivariant with respect to (w.r.t.) translation T if:

f(T(x) = T(f(x)), ()
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81.4% elephant 71.1% tabby cat 63.9% elephant
10.3% indri 17.3% grey fox 26.4% indri
8.2% black swan 3.3% siamese cat 9.6% black swan

Fig. 4. Evidence of current CNNs (ResNet-50) being biased Fig. 5. Example of texture bias in CNNs. CNN:s still achieve

towards textures rather than using shapes like humans. Ap- high accuracy on the texturised images, whereas humans
plying the ‘elephant’ texture leads to misclassification. Fig-  do not due to the loss of global shape information. Figure
ure from [34]. from [13].

where f denotes the convolution operation in this example. In other words, we can first translate x then convolve,
or first convolve x then translate to obtain the same output. In this case, this is known as place-coded equivariance,
since a discrete change in the input x results in a discrete change in which neurons are used to encode it.

Viewpoint Equivariance. It is more challenging to capture viewpoint equivariance in a model (see Figure 2d).
That is, changes in viewpoint that lead to equivalent changes in neural activities. Like before, f is said to be
equivariant w.r.t. viewpoint (perspective) projection V of the input x if: f(V(x)) = V(f(x)). Convolution is
not equivariant to transformations other than translation, which makes it challenging for CNNs to deal with
viewpoint changes [19, 51] (see Figure 3). As explained later, capsule networks [50, 64, 106] look to move from
place-coded to rate-coded viewpoint equivariance in the final layers, whereby a real-valued change in the input
results in an equivalent real-valued change in neuronal output (capsule pose vectors), but which neurons are
used for coding the input stays the same.

2.3 Capsule Network Foundations

Although capsule networks have taken on several different forms since their inception [50, 51, 64, 106], they are
generally built upon the following core assumptions and premises [22]:

(i) Capturing equivariance w.r.t. viewpoints in neural activities, and invariance in the network’s weights;
(ii) High-dimensional coincidences are effective feature detectors, e.g. using the dot product to compute the
similarity between neural activity vectors;
(iii) Viewpoint changes have non-linear effects on pixel intensities, but linear effects on part-object relation-
ships;
(iv) Object parts belong to a single object, and each location contains at most a single object.

In theory, a perfect instantiation of the above
premises could yield more sample-efficient models,
that leverage robust representations to better gener-
alise to unseen cases. Unlike current methods, humans
can often extrapolate object appearance to novel view-
points even after a single initial observation. Evidence
suggests that this is because we impose coordinate
frames on objects [48, 102]. Capsules imitate this con-
cept by representing neural activities as poses of ob-
jects with respect to a coordinate frame imposed by

Fig. 6. Example of the ‘Picasso problem’. Relative part-object
relationships ought to be preserved if we are to label each
image as a person’s face. Inspired by Figure 1 from [103, 108].
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Fig. 7. (a) lllustration of the artificial neuron as found in standard neural networks. The artificial neuron receives an input
signal vector x € R and outputs a scalar quantity y. (b) Depiction of a capsule as foundin capsule networks. Unlike the
neuron, a capsule receives n input signal vectors x; € R?, and outputs a vector y € R¥ of neural activities.

an observer and attempt to disentangle salient features of objects into their composing parts. This is reminiscent
of inverse graphics [67], but is not explicitly enforced in capsule formulations since the learned pose matrices are
not constrained to be interpretable geometric forms.

Capsule networks can also be viewed as an extension of the successful inductive biases already present in
CNNs, by wiring in some additional complexity to deal with viewpoint changes using vector-valued neural
activities. The desired effect is to produce viewpoint invariant predictions and align the learned representations
with those perceptually consistent to humans, such that adversarial examples become less effective [10, 98].

2.3.1 The Picasso Problem. In the ideal case, capsule networks address the ‘Picasso problem’: i.e. images of an
object containing all the right parts — but that is not in the correct spatial relationship — are often misclassified as
said object by typical DL-based systems. To gain some intuition, consider the example of an image of a person’s
face (object), whereby the positions of the various parts of the face (e.g. mouth, eyes and nose) are shuffled, and
the image is still (wrongly) classified as a person’s face. As depicted in Figure 6, although every image is composed
of the same parts, only the green bordered examples ought to be labelled as a person’s face [108], since all the
parts are in agreement w.r.t: the face.

Classifying an image of an object viewed from a very different angle than those seen during model training
also often leads to misclassification. Intuitively, this occurs because typical modern vision systems such as CNNs
are not wired to explicitly model relative positions and spatial relationships between parts and objects. Instead,
they tend to focus on detecting the most generally discerning properties of the input in the hope it produces the
correct outcome [34, 51]. As discussed later, CNNs focus much more on textures than shapes, unlike humans [34]
(see Figures 4, 5). One inefficient way of mitigating the above issue is to use data augmentation to provide the
CNN model with examples of objects from all possible angles. However, this approach is not general and can
become infeasible in real-world scenarios due to lack of data. A more efficient way to solve this problem would
be to decompose the images into their constituent parts and objects and use the linearity of part-object spatial
relationships (i.e. pose matrix multiplication used in computer graphics) to generalise to all viewpoints — which
is the goal of capsule networks.

Sub-sampling & Convolution. The issue of poor generalisation to novel viewpoints in CNNs is exacerbated by
pooling (sub-sampling) operators, which discard potentially pose-aware information in favour of training/inference
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Fig. 8. A 2D example of capsule routing. All n part capsules x; € R? in the lower layer vote for each object capsule y; € R?
above by: v;|; = Wj;x;. If the votes for an object capsule agree and form a cluster there is iterative feedback to increase the
routing weights y;; between the object capsule and the part capsules’ votes that form the cluster, whilst decreasing them for
other object capsules.

speed and performance [50, 106]. Indeed, there is strong evidence that modern deep CNNs do not parse images
like humans, and that they are in fact biased towards textures and other properties rather than shapes [13, 34, 35].
For examples of this phenomenon see Figures 4 and 5. These biases are also corroborated by the fact that
adversarial examples are often visually indistinguishable to humans [38, 118]. On that note, [98] showed that
capsule networks use features that are more aligned with human perception, and therefore have the potential to
address the central issue of adversarial examples. Moreover, [50] demonstrated that capsule networks can better
generalise to novel viewpoints compared to CNNs of a similar size, and [106] showed that they are considerably
better than CNNs at recognising overlapping digits. Although research on capsule networks is still in its infancy,
there are representational reasons for believing that it is a better approach to vision, and these early results
highlight their potential [50, 106].

2.3.2 Capsule Networks. To explain what a capsule network is in simple terms, we begin by comparing the
traditional artificial neuron found in standard NNs, and the capsule as found in a capsule network (shown in
Figure 7). Note that in this section, we focus on providing a brief description of the main sub-components of
capsule networks, and we introduce some general notation which will aid in understanding more intricate capsule
formulations described later on.

Capsule. A capsule is a group of artificial neurons. It is a biologically inspired structure based on hypercolumns
in the brain, wherein groups of tightly connected nearby neurons are thought to represent vector-valued
units which can transmit not only scalar quantities but a set of coordinated values [10]. The transmission of
coordinated values can increase the flexibility of an output signal. More formally, a capsule is a parameterised
function ¢(X; W) : RN*P — RP where X = {xi}ﬁl is a set of N input signals x; € RP, and W = {Wi}f.\il isa
set of N transformation weight matrices W; € RP*P. A dynamic routing ! process — akin to clustering — gives
rise to routing coefficients: y = {y;}X,, y; € [0, 1], which represent the affinity between each input signal vector
x; and the output capsule in question. As explained later in Section 2.3.3, the process by which these routing
coefficients are obtained takes into account the context from other capsules. Lastly, an activation function ¢(+) is

'How this routing process is defined is explained in detail later.
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applied, and the output capsule y € R” is given by

N
y=¢(ZYiWi‘Xi)~ (3)

i=1

Notice that, unlike the artificial neuron, a capsule outputs a

vector y € RP of neural activities rather than a scalar y € R. actual a target
output

output

Indeed, a capsule operates on a set of N input signal vectors and
N parameter matrices, rather than a single input signal vector

and weight vector. The neural activities within a capsule aim to 0000

encode the various properties of the entity it learns to represent,

such as its pose, colour, size, texture etc. ax |y
Capsule Layers. In adjacent capsule layers we have i = Pl X

1,..., N lower level part capsules x; € RP (considered the in- 060

puts), and j = 1,..., M higher level object capsules y; € RP
(considered the outputs). The initial part capsules (primary cap-
sules) are typically extracted from the raw input (e.g. images) via
convolution, and the object capsules of a layer £ become the part
capsules of £ + 1 and so on hierarchically until the final layer in

Fig. 9. The transforming autoencoder for modelling
translations. There are 3 capsules and each one has
the network. 3 recognition units (red) and 4 generation units

2.3.3 What is Capsule Routing? Capsule routing is a non- (green). Figure from [51].

linear, clustering-like process that occurs between adjacent cap-

sule layers. The goal of capsule routing is to dynamically assign part capsules i = 1,..., N in layer ¢ to object
capsules j = 1,..., M in layer ¢ + 1, by iteratively adjusting routing coefficients y € RN*M where 0 < y;; < 1.
These routing coeflicients are like an attention matrix which modulates the outputs as a weighted average of
the inputs. For a simple example of capsule routing in 2D see Figure 8. This type of ‘routing-by-agreement’ is a
dynamic alternative to the primitive form of routing implemented by max-pooling, whereby neurons in the upper
layer ignore all but the most active feature activation in a local pool in the layer below. As shown in the example
Figure 6, rather than merely detecting whether certain parts/objects are present anywhere in an input image like
pooling CNNs, capsule routing aims to detect objects by looking for coherent agreement between the pose of
discovered parts and performing equivariant inference. Dynamic routing has been shown to be an effective way
to implement the “explaining away” that is needed for segmenting overlapping objects and generalising to novel
viewpoints [50, 106].

3 Capsule Routing Mechanisms

This section provides an in-depth overview of the most prominent capsule routing algorithms in the literature.
Our exposition loosely follows chronological order starting with the seminal works on capsules and ending with
more recent research.

3.1 Transforming Autoencoders

The idea of using capsules instead of neurons as the building blocks in a neural network was first introduced by [51].
All subsequent work on capsules is built upon the premises laid out in this work, such as pose agreement and
vector-valued neural activities. The authors showed how a neural network can be used to learn features that output
a vector of instantiation parameters (capsule), and argued that this is a better way of dealing with transformations
of the input. They proposed the transforming autoencoder as a way to learn the first level of capsules, whereby
pixel intensities are converted to pose parameters. As shown in Figure 9, transforming autoencoders can receive
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Algorithm 1 Dynamic Routing-by-Agreement *
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3 Vi, jioj; « Wij-x; > voting == |'s F ? - 4

4 for r iterations do W =86

5: Vie:y; « softmax(y;) » routing weights

6 Vjet+1:sj — Y;vijoj Fig. 10. A simple capsule network with 3 layers. The
7 ¥ j€t+1:y; < squash(sj) >Eq.(4)  PrimaryCaps are the lowest level of multi-dimensional neu-
8 Vij:aij < vjj;-y; >agreement  ronal activity (each capsule is an 8D vector). The length of
9 Vi jvij < vij+aij >update  the activity vector of each capsule in the DigitCaps layer
10: return y; indicates the presence of each class. Figure from [106].

the input image and a desired shift, Ax and Ay, and output the shifted input by merging information from
generative capsule units. In Figure 9, p is the probability that the visual entity modelled by a particular capsule is
present in the image. The authors also studied the prediction of more complex 2D transformations and changes
in 3D viewpoint by using 3X3 matrix representations of the desired A’s, demonstrating the merit of the approach.

3.2 Dynamic Routing Between Capsules

The idea of routing-by-agreement was first introduced in the seminal work by [106], and since then many other
variants of capsule routing have been proposed. Their routing process is shown in Algorithm 1, whereby vectors
x; € RP of lower layer capsules are transformed by weights W;; € RP*P to make predictions for the vectors
y; € RP of higher layer capsules. If a lower layer capsule i (e.g. encoding a nose) predicts the properties of a
possible parent capsule j (e.g. encoding a face) with high accuracy, there is top-down feedback which increases
the affinity (routing coefficient y;;) between them. The proposed capsule network architecture in [106] is shown
in Figure 10.

3.2.1 Capsule Vector Activation. This version of capsules uses the length of the output capsule vector to represent
the probability that the entity encoded by that capsule is present in the input [106]. To that end, the authors
proposed the following non-linear “squashing” function to activate every j* capsule:

2
. .
Yy = H;st_j sj = Z YijWij - Xi. 4)
1+ [l l-

The routing coefficients y;; are iteratively updated based on the agreement between the output y; of each higher
layer capsule j, and the prediction (votes) »;; made by each lower layer capsule i. The agreement is measured by
the scalar product: a;; = vj); - y;. To gain some intuition about this procedure, imagine y; and v;|; are both unit
vectors, i.e. their magnitudes are: |y;| = 1 and |v;|;| = 1. Then, the dot product between them is equal to cos 0,
where 0 is the angle between the two vectors. The resulting agreement «;; is added to y;;, updating part-object
affinities based on the extent to which the vectors y; and v;; point in the same direction.

3.22 Margin Loss Function. The objective function presented in [106] for learning capsule network parameters
leverages the length of the capsule vectors to represent the probability that a capsule’s entity is present in the
input. Note that the norm of the last layer capsule vector ||yx||, representing class k must be (long) close to 1, if
and only if (iff) an image belonging to class k is present in the input. With that in mind, the (multiple) margin
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Algorithm 2 Expectation-Maximisation Routing e A pimaycaps 6 [ cowcapsr & convearsz % R
1: function EM-RouTING(a, M, W, r) = ] o T g cevee
2 V i, j capsules in layer £ and £ + 1: y;; — M1 £
3 Vi,j:Vj“(—Mi'Wij > voting
4 for r iterations do
5 Viet:yij—vyijOa; > routing weights Fig. 11. The capsule network architecture with 3 convolu-
6: Vjet+1:pj0; — M-sTEP(Y,V) tional capsule layers (ConvCaps) used in [50]. Rather than
7 cost — (Bu +log 6}-1) Sivij connecting all part capsules in a lower layer to all object
8 a; — Singid(A(ﬁaj— 5, costh)) s activate capsules in a higher layer, convolutional object capsules
. , only receive votes from part capsules within their recep-
9 Viet:y; < E-sTER(n, 0,0’,V) > update L . . .
tive field. The number of weights in each layer is shown
10 return a, M
above.
loss used is [106]:
2 -\2
Loargin = Y, Temax(0,m* = [[gel)* + A1 = Tic) max(0,llgel]. - m ™) 5)
k

where T = 1 iff a (digit of class) k is present, m* = 0.9, m~ = 0.1 and A'= 0.5. The A down-weighting of the loss
for absent (digit) classes stops the initial learning from shrinking the lengths of the activity vectors of all the digit
capsules. The authors opt for this multi-margin loss function over standard cross-entropy (CE) used in CNNs to
more easily accommodate multi-label classification tasks.

3.3 Matrix Capsules with EM-Routing
More recently, a new version of capsules was proposed [50], which overcomes the following deficiencies of [106]:

(i) Using the length of the pose vector to represent the probability that an entity is present, requires an
unprincipled non-linearity (“squashing”) that prevents the use of typical objective functions [50]. Instead,
they propose to separate the probability of existence from the pose vector.

(i) Using the cosine of the angle between vectors to measure agreement makes the system insensitive to small
differences between good and very good agreements.

(iii) Using a vector of length D to represent poses (unnecessarily) increases the number of transformation
weights. They propose to use a matrix with D elements instead, which reduces parameters from D? to D.

Rather than using vector capsules x; € RP as before, the authors use M; € RVDxVD capsule pose matrices, and a
separate activation probability a € R to represent the presence of the entity modelled by each capsule [50]. They
also presented a new capsule network architecture (see Figure 11) featuring convolutional capsules and proposed
an alternative routing-by-agreement procedure based on the Expectation-Maximisation (EM) algorithm [23].

3.3.1 Matrix Capsule Voting. In [50], the voting procedure from capsules i in a lower layer #; for the pose
matrices of capsules j in a higher layer ¢; is: V;; = M; - W;;, where W;; € R4, V;|; denotes the vote from
the i part capsule for the j™ object capsule, and W;; is the transformation weight matrix. Since both the pose
matrices and the transformations weights are 4x4, each capsule’s vote is V;|; € R**%. See Figure 12 for a simple
2D translation example. We can motivate the use of 4xX4 matrices through a geometric interpretation: i.e. 4x4
transformations matrices are commonly used in 3D computer graphics under homogeneous coordinates for
perspective projection [5]. A 4x4 matrix can represent the following transformations among others: translation,
rotation, reflection, glides, scale, contraction, expansion, shear, dilation etc. Assuming a capsule network is able to
extract sensible entities from the input, 4x4 pose and transformation weight matrices are theoretically sufficient.
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Fig. 12. How capsules deal with viewpoint changes (2D translation example). An object can be detected by looking for
agreement between votes V; for its pose matrix M. Lower level (part) capsules produce a vote by multiplying their pose
matrix M; by a learned viewpoint-invariant transformation matrix W;;. Agreement between multiple parts means that their
votes are similar: Vj|; ~ Vi, for i # k, which is unlikely to occur by chance in high dimensions [50, 106]. As the viewpoint
changes, all the pose matrices change in a coordinated manner, so that any voting agreement will persist [50].

It is worth noting the distinction between the voting procedure in Eq. (4) and this one: i.e in the former the
vote is calculated via the matrix-vector product: v;;; = W;;x;, whereas in the latter we have a matrix-matrix
product: Vj; = M;W;;. Once again we can provide a geometric interpretation that justifies the order of the
product, since due to the non-commutativity of square matrices: M;W;; # W;;M;. In geometric terms, M;W;;
applies a transformation on the pose matrix M; defined by matrix W;;, whereas W;;M; would wrongly imply
that W;; is the pose matrix and M; is the transformation matrix.

3.3.2  Convolutional Capsules. Hinton et al. [50] also introduced the idea of convolutional capsules, whereby the
connectivity between capsules in adjacent layers, follows that of a convolutional neural network. That is, rather
than performing a regular convolution (sharing scalar feature detector kernels across the input), convolutional
capsule layers share transformation weight matrices W;; spatially across input capsules. Multiple convolutional
capsule layers are then stacked to build a deep capsule network (see Figure 11). This extension in the EM paper
makes intuitive sense as ideally, we would like to retain the ability to generalise knowledge across all spatial
locations in the image like CNNSs, whilst replacing basic max/average pooling operations in favour of capsule
routing-by-agreement.

3.3.3  Expectation-Maximisation Routing. Similar to [106], a non-linear procedure to route between adjacent
capsule layers they call EM-Routing (see Algorithm 2) is proposed in [50]. Concretely, the procedure is a version
of the Expectation-Maximisation (EM) algorithm [23], that iteratively adjusts the means, variances and activation
probabilities of the capsules in layer ¢ + 1, and the assignment probabilities between all capsules (routing
weights y). Unlike Dynamic routing [106], EM-Routing fits Gaussian distributions on the votes coming from
part capsules i to object capsule j poses: N(M; | y;, U]?) Vj, where each capsule j (of N; total object capsules
in layer ¢ + 1) has a diagonal covariance matrix with h components: O'JZ. € R". Following Algorithm 2 closely,
EM-Routing iterates between updating the means p, variances 6}? and activations a; of capsules j whilst holding
the routing coefficients y;; fixed (M-step), and updating y;; holding p;, 6]2. and a; fixed (E-step). For a more
detailed explanation, the reader may refer to [50].
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Algorithm 3 Variational Bayes Routing

1: function VB-RouTiNG(a, M, W, r) N ] = (A =

2 Vi, j capsules in layer £; and Lj: y;j « Nj’1 3 D £ &%

3 Vi,j:Vj|l-<—Ml--W,-j > voting Nt S

4 vV j € L;j:ap,mg, ko, Yo, Vo > initialise priors P

5: for r iterations do

6 Vie Li:yij < vij ©aj > routing weights Fig. 13. Depiction of VB-Routing between convolutional

7 ¥ j € Lj: UppaTE ¢* (7, p, A) capsule layers. Each capsule has an activation a and a pose

8 Vi€ L; : UPDATE q*(2) matrix M € R**4, Parent capsules j € Lj(blue) only receive

9 Vije Lj:d = dfa— (fu+ Ellnm] + votes from child capsules i € L; (orange) within their recep-
E[In det(A)])) tive field. ¢ and d denote the number of child and parent

10: return @/, M capsule types (channels) respectively. Figure from [101].

3.3.4 Capsule Activation. As shown in Algorithm 2, vote agreement is measured using the variance o; of
each object capsule’s Gaussian, which is then weighted by its support: }; yi;, i.e. the number of part capsules i
assigned to object capsule j. To set the activation probability a; for a particular object capsule j, [50] compare
the description lengths (energies —f, and —f, that are learned discriminatively) of two different ways of coding
the poses of the activated capsules i assigned to j by the routing procedure. The difference in the two energies is
put through a logistic function to determine the activation probability of each object capsule j, noting that the
logistic function computes the distribution: Bernoulli(p), that minimises free energy when the difference in the
energies is its argument (see line 8 in Algorithm 2).

3.3.5 Spread Loss function. The “spread” loss function used in [50] directly maximises the gap between the
activation of the (final layer) capsule representing the target class a;, and the other class capsules:

Lspread = Z L, L; = max(0,m - (a; - ai))za (6)
i#t
where the margin m is linearly increased during training from 0.2 to 0.9, avoiding dead capsules in the earlier
layers. It is reported in [50] that EM-Routing matrix capsules outperform [106], and significantly outperform
comparable size CNNs on viewpoint-invariance and adversarial robustness tasks.

3.4 Capsule Routing via Variational Bayes

Ribeiro et al. [101] proposed Variational Bayes (VB) routing as a way to address some of the inherent drawbacks of
EM-Routing [50] encountered by various other authors such as training instability and reproducibility [41, 45, 120].
A problem with EM-Routing is that variance-collapse singularities can occur when an object capsule claims sole
custody of a part capsule, yielding infinite likelihood and zero variance. To address this, Bayesian learning is
brought to capsule networks by placing priors and modelling uncertainty over capsule parameters [101]. The
advantages of VB-Routing include: (i) flexible control over capsule complexity by tuning priors; (ii) number of
effective object capsules is determined automatically; (iii) pathological solutions of EM-Routing are addressed in
a principled manner.

3.4.1 Variational Bayes Routing. See Figure 13 for an illustration of VB-Routing. The authors place conjugate
priors over u and A, which are the mean and inverse covariance (precision) matrix of each object capsule’s
Gaussian distribution, and over s which are the mixing coefficients of the mixture model. The latent variables
z={z,...,2z|z,} are a set of one-hot vectors describing the cluster assignments of each of the lower capsules’
votes Vj|; to higher capsules’ Gaussian distributions. Variational inference (VI) [52, 57] of the above latent
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from [45].

variables is performed [101] — analogously to Bayesian Gaussian mixture models [6, 12] = between all adjacent
capsule layers. Unlike standard mixture models, here every cluster (object capsule) has its own learnable matrix
W;;, with which its datapoints (votes) are transformed, so every cluster sees a different view of the data [50, 101].
The generative story for each part capsule i is that of a mixture model with priors over object capsule j parameters
7, pu, A, as follows:

(i) Choose an object capsule: z; ~ Multinomial(s), where s ~ Dirichlet(ay);

(ii) Generate part capsule from j* object’s Gaussian:

Viiilzi=j~N(u;, A]TI), Hjlzi=j~ N(m,, (K()Aj)_l), Aj | zi = j ~ Wishart(¥y, vp). (7)

The joint distribution of the model is: p(V,z, , g, A) = p(V|z, i, A)p(z|7)p(7)p(u|A)p(A), and the poste-
rior is approximated with a factorised variational distribution over all the latent variables: p(z, &, u, A|V) =
q(2)q(m) [1jez, 9(pj. Aj). To perform capsule routing, the authors iteratively optimise parent capsule parameter
distributions: q(s, p, A), with the responsibilities z over child capsules fixed, and re-evaluate the new expected
responsibilities g*(z) with the distributions over parent capsule parameters fixed. This approach leads to a
variational EM algorithm (see Algorithm 3). For further details on the standard closed-form update equations of
Bayesian mixture models the reader may refer to [6, 12, 101].

3.4.2 Agreement & Capsule Activation. To measure agreement, [101] propose to use the differential entropy of
higher capsule j’s Gaussian-Wishart variational posterior distribution ¢* (p;, A;). In simple terms, if the entropy of
a capsule j’s Gaussian is low that means the votes received from capsules i agree (i.e. form a tight cluster), and vice-
versa. In practice, the authors approximate the entropy up to constant factors with: H[g*(p;, A;)] ~ E[Indet(A;)].
As outlined in Algorithm 3, this agreement measure is then weighted by the amount of support for each object
capsule (mixing coefficient) and activated via the logistic function o(-), where f,, f, are (optional) parameters
learned 'discriminatively, similar to EM-Routing [50]. Unlike EM [50] or Dynamic routing [106] however, capsules
are only activated after the routing iterations are complete. The authors find that this can improve training
stability without degrading performance.

3.5 Uncertainty in Capsule Routing

Sources of uncertainty in assembling objects via a composition of parts can arise from: (i) feature occlusions due to
observed viewpoints; (ii) sensory noise in captured data; (iii) object symmetries for which poses may be ambiguous
such as spherical objects and/or parts. Recently, [22] proposed a global (locally non-iterative) view of capsule rout-
ing based on representing the inherent uncertainty in part-object relationships, by approximating a posterior distri-
bution over part-object connections. In simple terms, the local routing iterations are replaced with Variational Infer-
ence (VI)
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p > p P

work with L total layers.

Priors. The authors [22] place a prior distribution p(z(!)) over each part capsule’s ¢; € £ connections to
the object capsules they vote for ¢; € £+ 1, and assume fully factorised independence across layers: p(z) =

I Hﬁi”l p(zf,i)), with z) = (zy,..., ZN,L;) ~ p(z?), where the part-object connections vector of each capsule
c; is 29 € RNi~J | with Ni_,j denoting the number of object capsules j that each part capsule i votes for in a
particular layer (see Figure 14 for convolutional capsule voting example). After considering different choices
of prior, the authors opted for Dirichlet priors due to a reduced parameter count. A mean-field variational
approximation g (z¢41) to the (intractable) posterior on part-object connection variables is made between all
adjacent capsule layers. The model is defined hierarchically where the object capsules in layer ¢ are the part
capsules of £ + 1 and so on. The model is then fit end-to-end by maximising a variational lower bound on the
conditional marginal log-likelihood log p(y|x) (see [22] for further details).

3.5.1 Routing & Activating Capsules. As in previous work [50, 101], matrix capsules M € R***, and convolutional
capsule voting are used (see Figure 14). During training, the authors [22] fit multivariate Gaussians M; ~
N (pj, oj), on each object capsule’s D=16 dimensional poses, and randomly sample part-object connections from
the approximate posterior at each capsule layer ¢: z(9) = (zy, ..., ZN,,;) ~ 44(Zee41), Yei € £, then calculate the
parameters of each capsule’s Gaussian. The procedure (see Algorithm 4) can be interpreted as global (locally
non-iterative) routing, since the posterior: qg(z|Z)) ~ p(z|D, W) is inferred for all layers at once, rather than
performing local (iterative) inference of z in the E-step of EM-Routing [50] between each pair of adjacent capsule
layers.

To activate capsules, Ribeiro et al. [22] follow the general concept of [101], and measure vote agreement via
the average negative entropy of each capsule’s Gaussian: —H [N (M; | pj, 0;)] = —% 2?:1 log(aji)\/Z_fre). The
agreement is weighted by the (normalised) support (# parts assigned to an object) for each capsule, and activated
using the logistic function o(-), where E(S;) is the average support each object capsule receives in a given layer,
S; ~ Binomial(Nj, N; ') as shown in Algorithm 4. For further technical details please refer to [22].

3.5.2  Uncertainty Quantification. With their method, the authors unlock uncertainty representation in capsule
networks. To that end, they draw T Monte Carlo samples of part-object connections z from the approximate
posterior, and calculate the predictive entropy H (y|x, z, W) of the model’s output distribution with sampled
zt ~ q;;(z|2)). Under full posterior learning: q,4(z, W), the pose transformation matrices W are also randomly
sampled.
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3.6 Stacked Capsule Autoencoders

Kosiorek et al. [64] introduced the Stacked Capsule Autoencoder (SCAE), a seminal work on formulating CapsNets
as an unsupervised capsule autoencoder which explicitly uses geometric relationships to reason about objects.
This was the first work that combined ideas from Transforming Autoencoders [51] and EM routing capsules [50]
— but unlike previous methods — inference in this model is amortized and performed by off-the-shelf neural
encoders. The authors also used discovered objects to predict parts rather than using parts to predict objects as in
previous capsule networks. Even though the training objective used in SCAE is not concerned with classification
or clustering, it is the only method that achieves competitive results in unsupervised object classification without
relying on mutual information. The proposed SCAE architecture can be seen in Figure 15, and it consists of two
main parts: i) the Part Capsule Autoencoder (PCAE); ii) the Object Capsule Autoencoder (OCAE).

In addition to the two stages mentioned above, there is also an earlier step that deals with abstracting away pixels
and the part-discovery stage, called Constellation Capsule Autoencoder (CCAE). CCAE uses two-dimensional
points as parts, whose coordinates are given as input to the system. CCAE then learns to model the sets of points
as arrangements of familiar constellations, each of which has been transformed by an independent similarity
transform.

3.6.1 Part Capsule Autoencoder (PCAE).. Although CCAE considers a part as a 2D point (x and y coordinates),
for PCAE each part capsule m has a six-dimensional pose x,, (two rotations, two translations, scale and shear), a
presence variance d,, € [0, 1], and a unique identity. Discovering part is formulated as an auto-encoding exercise:
the encoder learns to infer the poses and presences of different part capsules, while the decoder learns an image
template T, for each part. In the case where a part exists, the corresponding template is affine-transformed with
the inferred pose giving T;,. Finally, all the transformed templates are arranged into the image.

3.6.2  Object Capsule Autoencoder (OCAE).. This stage proceeds PCAE and resembles the processes involved
in the CCAE. All the parameters that have been extracted and identified from PCAE need to be composed in a
way that forms objects. This is achieved by providing concatenated poses x,,, special features z,,, and flattened
templates Ty, as input to the OCAE. This differs from the CCAE in that the part capsules presence probabilities
dp, are fed into the OCAE’s encoder to add bias to the attention mechanism of the Set Transformer [73] not to
consider absent points. In addition, d,,s are also used to weight the part-capsules’ log-likelihood, so that we do
not take absent points into account. This is achieved by raising the likelihood of the m’h part capsule to the
power of d,,. Parts discovered by the PCAE have independent identities, therefore every part-pose is explained as
an independent mixture of predictions from object capsules. The OCAE is trained by maximising the likelihood
of the detected parts, and it learns to discover further structure in previously identified parts, leading to sparsely
activated object capsules. For more detailed information on the mathematical formulations of SCAE please refer
to [64].

. w3 u;,
3.7 Self-Routing Capsule Networks [onsvpervised] e,y ’!gmi ;o
C e C .. . Clusteri ciy
The fact that capsules specialize in disjoint regions of usterme Network
the feature space leads to them making multiple predic- (a) Routing-by-Agreement (b) Self-Routing

tions based on the information that is made available to
them for each region. At a layer level, this means that
we have an ensemble of submodules that are activated
differently per example — similar to a mixture of experts, parameters WTOUl€ are fed capsule pose vectors u; and
where each expert specializes in different regions of input  [ear 1o outputlthe routing coefficients c;; directly. Figure
space. Motivated by this observation and the fact that = from [44].

routing-by-agreement is computationally costly, the authors in [44] proposed a simpler self-routing strategy

Fig. 16. Self-routing capsule networks. (a) typical routing-
by-agreement; (b) the self-routing mechanism proposed
by [44]. In self-routing, subordinate routing networks with
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inspired by Mixture-of-Experts. In Self-Routing Capsule Networks (SR-CapsNet) proposed by [44], each capsule
independently defines its routing coefficients without coordinating the agreement with other capsules. Instead,
each capsule is empowered by higher modelling capabilities in the form of a subordinate routing network that
learns to predict the routing coefficients directly (Figure 16). In self-routing, computing the routing coefficients
¢;j and predictions uj); involves two learnable weight matrices W"°“¢ and W?°*¢ respectively. For each layer of
the routing network, each pose vector u; is multiplied by a trainable weight matrix W"°%¢ to output the routing
coefficients directly. After softmax normalization, the calculated routing coefficients c;; are then multiplied by
the capsule’s activation scalar g; to generate weighted votes. The activation a; of an upper-layer capsule is the
summation of the weighted votes of lower-level capsules over spatial dimensions H X W, or K X K when using
convolutions. The authors observed competitive performance on standard benchmarks, including robustness to
adversarial attacks. Although simple, this method somewhat limits the capsule network’s ability to dynamically
adjust the routing weights based on the input, since these are now fully determined by the learned parameters of
the routing subnetworks. This approach is also reminiscent of the Synthesizer in Transformer literature [119].

3.8 ProtoCaps: Non-iterative Capsule Routing

Everett et al. [30] present a non-iterative approach for capsule routing that primarily aims to improve capsule
efficiency via prototype routing. Each ProtoCaps routing layer operates by projecting the pose matrices of the
lower-level Capsules into a shared subspace denoted as S. The projection is executed by a multi-layer perceptron
following: posef "ol = MLPp,j(pose;), where pose; corresponds to the i pose matrix of the lower-level capsules.
Within the shared subspace S, one has n learnable prototype vectors Q = (g1, ga. . - ., qn), where each ¢; € R9.
Compared to other non-iterative capsule approaches, such as [45], ProtoCaps uses fewer FLOPS whilst achieving
better performance.

3.9 Straight-Through Attentive Routing

One of the main drawbacks of capsule networks, especially
the dynamic routing approach, is computational complex-
ity that stems from the complex mechanisms of the voting
and routing processes. Even if the capsule network archi-
tecture has a fixed number of parameters, the number of
routing iterations can increase the training and inference
time significantly. With that in mind, Ahmed and Torre-
sani [4] proposed a non-recursive attention-based routing
mechanism, inspired by the non-recurrent self-attention
approach found in Transformers [123]. The proposed STAR-
Caps layer architecture can be seen in Figure 17, and utilizes
a straight-through attentive routing mechanism, formulat- Fig. 17. STAR-CAPS layer architecture [4]. Given the
ing each capsule as a matrix rather than a vector as proposed ~ Pose features from the lower-level capsules, the pose
in EM routing framework [50]. is transformed through shared trainable weight matri-
STAR-Caps [4] employs the following two-mechanism ces (pre-vote). The routing between the lower-level and
. . . . .. higher-level capsules takes place through two compo-

process for routing capsules: i) the attention estimator; ii) the i . . .

; . ’ nents: the Attention Estimator and the Straight-through
straight-through router. The role of the attention estimator ... This router estimates a binary signal that de-
7ij, is to estimate the attention matrix A;; € RP*? between (jges whether to connect or disconnect the current route
lower and higher level capsules. The straight-through router = petween the lower-level capsule and the higher-level cap-
R;; decides which capsules to connect/disconnect. As shown  sule. Figure from [4].
in Figure 17, given the attentive matrix A;;, the straight-through router R;; acts as a gate that estimates a binary
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decision value §;; € 0, 1, indicating whether to disconnect (§;; = 0) or connect (§;; = 1) the route between capsules
i and j. This process is akin to hard attention, where each R;; sends its hard attention signal to the higher-level
capsules. To make this process differentiable the authors employ a straight-through estimator [11, 56, 86]. As
usual, the ClassCaps layer outputs the final predictions, where each capsule vector represents a single class.
Like [106], the authors encode activations implicitly in the capsule, and the final probability is given by a global
average pooling operation on the poses followed by a logistic transformation. They then calculate the spread loss
as in EM routing [50] for training.

3.10 Inverted Dot-Product Attention Routing

In [120], the authors proposed a routing algorithm for
capsule networks inspired by the attention mechanism
commonly found in transformers [123] (see Fig. 18).
They design their routing algorithm via an inverted
dot-product attention mechanism that includes layer Fig. 18. The Inverted Dot-Product Attention routing mecha-
normalization when updating the poses of higher-level nism, showing the two-step process; i.e., the agreement be-
capsules. This approach is most similar to Dynamic rout-  tween lower-level capsules and higher-level capsules, and
ing [106] since the capsule voting scheme and agree- the update of the pose of the higher-level capsules. Figure
ment are computed in much the same way. Unlike dy- from [120].

namic routing however, inverted dot-product attention

routing introduces the concept of concurrent routing, whereby multiple layers of capsules are iteratively routed at
the same time rather than routing capsules in each each layer sequentially. In their experiments, the authors
showed that their method compares favourably to Dynamic and EM routing on standard benchmark tasks.

3.11 Inference for Generative Capsule Models

In most previous works on capsules [50, 106] an inference algorithm is typically presented without specification of
a corresponding generative model for the data (with the exception of [64] who use an autoencoder for generation).
In [91] the authors argue for a generative approach to model the relationships of objects and their parts in capsule
networks. They state that it is more natural to describe the generative process by which an object gives rise
to its parts, rather than the other way around as is typical. To that end, they present a principled generative
capsule model that leads naturally to avariational algorithm for inferring the transformation of each object and
the assignments of observed parts to the objects. Their work is built on the premise that the input to a capsule
should be a set of parts. For example, say we have an object k with instantiation parameters y, and each object
has parts p,, where n = 1,. .., N. These parts are then matched against observed parts x,,. Under a probabilistic
framework, the authors get posterior distributions for both the y;’s and the match variables z,,,x that match x,,
to part n of object k.

Such a setup leads directly to a principled routing-by-agreement algorithm via variational inference, which can
be derived similarly to the classical Gaussian Mixture Model [12]. They therefore avoid having to devise a custom
inference algorithm with an ad hoc objective function as previously proposed in EM-Routing capsules [50].
The authors demonstrated that their approach outperforms the CCAE part of the SCAE method [64] in the
constellations data generated from multiple geometric objects, e.g., triangles, squares, etc. that they used, as well
as data from a parts-based model of faces. They also demonstrated that random sample consensus (RANSAC) [32]—
where a minimal number of parts are used in order to instantiate an object—is often an effective alternative to
variational inference routing-by-agreement, especially when the basis in RANSAC is highly informative about
the object.
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4 Understanding Attention & Capsules

As previously alluded to in Section 1, there are notable Self-Attention Capsule Routing
conceptual similarities between capsule routing and i Agvi
the self-attention mechanism popularised by Trans- Q/DT
formers [123]. In this section, we first provide a de-
tailed breakdown of the relationship between them,
and show how we can think of each method from a uni-
fied perspective. There is also significant conceptual
overlap between capsule networks and other object- (a)
centric representation learning techniques involving

slots [40, 82]. Therefore, we discuss previous research Fig. 19. Comparing self-attention and capsule routing. (a) In
on using the attention mechanism for object-centric self-attention, an output token (e.g. y1) is a weighted average of

learning and highlight conceptual similarities to the the input values, Where,the weights sum toloveri=1....n.
le f lati 1 th (b) In capsules, the weights of each input sum to 1 over the
capsule lormulation along the way. outputs. (c) A single output capsule (e.g..y1) is a weighted
cr . . . average of the input votes with weights that do not necessaril
4.1 A Unifying Perspective: Agreement Machines 8 P g Y
sum to 1 over i.
In this section, we introduce both self-attention and capsule routing as agreement machines, consisting of dynamic
weighted averaging layers that operate on D dimensional vector-valued units x; € R?. When convenient, we
adopt Einstein index notation to highlight conceptual similarities between the two methods more clearly (see the

respective code in Figure 20. These vector-valued units x; are known as token embedding vectors in transformers

and capsules in capsule networks. To illustrate this, let X = (xg,...,XN) € RNXD denote a matrix of input token
embedding vectors or capsules x; = (x1,...,xp). Consider the computation of a single output token y; € R” in
N

simple self-attention, given a sequence of input tokens {x;}Y , where A € RV*M is an attention weight matrix

between all input/output pairs:

i=1°

N
Y= ZAini, ®)
im1

N
=1
we have the same expression: y; = SN A X;. As we describe in greater detail next, the main differences lie in
the precise introduction of parameters and how the attention weights are normalised. Moreover, we often have
fewer outputs than input capsules (M < N), making A no longer a square matrix like in self-attention.
Self-Attention. In scaled dot product self-attention [123], the N input vectors X € RN*D are transformed

into respective query, key and value matrices as follows:

Q =XW¢, K = XWK, V=XW", 9)

with N = M and 0 < A;; < 1. Similarly, to compute a single output capsule y; € R, given input capsules {x;}

where W9, WK and WY are Dx P dimensional parameter matrices, and Q, K and V are therefore N x P dimensional.
Let’s now consider the calculation of the attention weights for a single input token x;. Given x;’s query row
vector Q;. € R™P its attention weights A;. € RN are given by the normalised dot product with each of the
key vectors:

Qi,:KT
v )

——
agreement

A;. = softmax( (10)

The dot product agreement between token x;’s query Q;. and all the keys K dictates how much “value” V =
(Vi,...,Vn) € RN*P from each other token should be represented in token x;’s revised representation. That is, a
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def capsule_routing(X: torch.Tensor, iters: int = 3): def self_attention(X: torch.Tensor):
N, D = X.shape # N-by-D inputs N, D = X.shape # N-by-D inputs
M, P=3, 4 # M-by-P outputs M, P=N, 4 # M-by-P outputs, M = N
W = nn.Parameter(torch.randn(N, M, D, F)) Wg = nn.Parameter(torch.randn(D, P))
Wk = nn.Parameter(torch.randn(D, P))
V = torch.einsum('id,ijdp->ijp', X, W) Wv = nn.Parameter(torch.randn(D, P))
Y = (1./M) * torch.sum(V, dim=@) # init capsules

Q = torch.einsum('id,dp->ip', X, Wq)
= torch.einsum('id,dp->ip’, X, Wk)
V = torch.einsum('id,dp->ip", X, Wv)

-~
I

agreement = torch.zeros(N, M)

for i in range(iters):
agreement = torch.einsum(

agreement += torch.einsum('jp,ijp->ij', Y, V) "ip,ip-»1j', Q, K) / np.sgrt(P)

A = agreement.softmax(dim=1) A = agreement.softmax(dim=1)

Y = torch.einsum('ij,ijp->jp’', A, V) ¥ = torch.einsum('ij, jp->ip', A, V)
return Y return Y

Fig. 20. Comparing capsule routing and self-attention in Pytorch code [96]. Both operations take i = 1,..., N input vectors
x; € RP,and produce j = 1,..., M output vectors yj € RP, where M = N in self-attention. The outputs are attention-weighted
averages of the inputs, with attention weights A € RN*M computed using the agreement (similarity) between neural activity
vectors, which is a form of coincidence filtering. Notice how the final steps are similar, and that in capsule routing the output
capsules Y act as the queries Q in self-attention, and the capsule votes V|; play the role of both the keys K and the values V.
A notable difference is that self attention can handle variable-length (N) sequences naturally, whereas capsule routing has a
more rigid structure defined by the weights W € RNXMXDXP This can be relaxed via weight sharing across capsules, e.g.
using W € RMXDXP ge|f attention is more parallelizable and better suited for current hardware accelerators compared to
the sequential and iterative nature of capsule routing.

single output token Y;. € R™" is simply a weighted average of the input token’s values:

N
Yip = (AV)IP = ZA,‘jVjp, (11)
j=1
fori=1,...,Nandp = 1,...,;P. Each output token y; := Y;. € R™*F constitutes the revised representation for x;.

Capsule Routing. Comparatively, a single output capsule is given by first calculating the capsule votes,
which are each input capsule’s prediction of what the output capsule should be. Using tensor contraction
notation as above, we start by multiplying input capsules X € RN*P by a 3D learned parameter matrix (3-tensor)
W e RNXDxP,

D
Vip = > WiapXia» (12)
d=1
fori =1,...,Nand p = 1,...,P. The resulting votes are V = (V;,...,Vy) € RN*P Note that unlike in self-
N

attention, here we have N separate weight matrices, one for each input vector-valued unit {x;}.' , i.e. capsule.
In the first routing iteration, the output of the j™ capsule is an average of its votes: y; = ﬁ >N, Vi, since the
attention weights are uniform over outputs. The agreement (also measured by the dot product) between the votes
and the output is then used to iteratively revise both the attention weights and the output: y; = SN A Vi
However, unlike in self-attention, to compute the attention weights for a single output capsule we require the
context of all the other output capsules in the same layer. Indeed, there is no direct equivalent equation to Eq. (10)
we can use here without breaking the softmax normalisation. Moreover, since each output capsule receives
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def slot_attention(X: torch.Tensor, iters: int = 3): def cross_attention(
N, D = X.shape # N-by-D inputs X: torch.Tensor, Y: torch.Tensor
M, P=3, 4 # M-by-P outputs ):
N, = X.shape # N-by-D inputs for keys/values
Wg = nn.Parameter(torch.randn(P, P)) M, P = Y.shape # M-by-P inputs for gueries
Wk = nn.Parameter(torch.randn(D, P})
Wv = nn.Parameter(torch.randn(D, P)) Wg = nn.Parameter(torch.randn(P, P))
Wk = nn.Parameter(torch.randn(D, P))
K = torch.einsum('id,dp->ip*, X, Wk) Wv = nn.Parameter(torch.randn(D, P))
V = torch.einsum('id, dp->ip', X, Wv)
Y = torch.randn(M, P) # init slots K = torch.einsum(’id,dp->ip', X, Wk)

V = torch.einsum('id,dp->ip', X, Wv)
for i in range(iters):

Q = torch.einsum('jp,pp—>jp', Y, Wg) / np.sgrt(P) Q = torch.einsum('jd,pp->jp', Y, Wg) / np.sqrt(P)

agreement = torch.einsum(’jp,ip-=ij', Q, K) agreement = torch.einsum('jp,ip->ij', Q, K)
A = agreement.softmax(dim=1) A = agreement.softmax(dim=1)
Y = torch.einsum('ij,ip->jp', A, V) Y = torch.einsum('ij,ip->jp', A, V)

return Y return Y

Fig. 21. Comparing slot attention and cross-attention in Pytorch code [96]. As shown, slot attention can be understood as
an iterative cross-attention procedure, where the second input sequence is randomly initialized rather than being given:
Y~ N(0,1,) € RM*P This Y sequence plays the role of the slots/capsules, which we infer given X € RNV*P via an iterative
attention procedure similar to capsule routing. In contrast, the initial slots/capsules Y in capsule routing are typically a
function of X, not randomly initialized.

i=1,...,N votes, in order to compute j =1,..., M output capsules we require the transformation weights to be
a 4-tensor: W € RNV*MXDXP Thys there is a learned D x P matrix between every input/output capsule pair.

With that in mind, carefully consider the full procedure for computing a single output capsule in a capsule
layer, in conjunction with the accompanying code implementation in Figure 20. The following steps can be
repeated to constitute routing, by iteratively refining the initial uniform attention weights in Eq. (13) with new
estimates from Eq. (14):

D N
) 1
(1. Voting) Vijp = Z WijapXid, (2. Average votes) Yjp = % Z Vijps (13)
d=1 i=1
P N
(3. Attention) Ajj = softmax( Z Vijpyjp) B (4. Output capsule) Yjp = Z AijVijps (14)
J )
p=1 i=1

for each j = 1,:.., M output capsule. Notably, Eq. (14) entails a softmax normalisation over outputs, rather than
inputs as in self-attention (Eq. (10)). As depicted in Figure 19, the input capsules spread their value among output
capsules, causing output capsules to compete with each other for input capsule’s values—whereas in self-attention
the competition is between the input tokens instead. In the language of transformers, we can think of the output
capsules as the query, and the capsule votes act as both the keys and the values in self-attention. To calculate the
attention weights in capsule routing we compute the agreement between outputs and votes via the dot product,
just like we would in self-attention.

4.2 Inductive Biases: Transformers vs Capsules

Having established a formal relationship between self-attention and capsule routing, in this section, we compare
and contrast the inductive biases inherent to both methodologies. Recall that an inductive bias of a learning
algorithm is a modelling assumption which induces a preference for certain solutions. Inductive biases often
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consist of encoding useful prior assumptions about the target function mapping inputs to outputs, that can
aid in generalisation to unseen cases and reduce sample complexity. The exposition in Section 4.1 highlights
the inductive biases induced by the capsule formulation are such that each part (input) capsule belongs to a
single object (output capsule), and each object must compete with other objects for parts. This is also known
as the “single parent” assumption, commonly found in mixture models and clustering algorithms. Moreover, as
previously outlined in Section 2.3, the (per-capsule) vote transformation matrix W is biased towards encoding
invariance to viewpoint transformations, and the capsule vectors are biased towards capturing equivariance of
neural activities. On the other hand, the self-attention mechanism induces weaker inductive biases since there
are no equivariance or single-parent assumptions like in CNNs or capsule networks for example. This relaxed
inductive bias makes transformers with self-attention very flexible models, but it also means that more data is
typically required to match the performance of models with more explicit inductive biases [26], since a portion of
the modelling capacity has to be spent on learning to encode any useful biases. With that said, one inductive bias
we can interpret from self-attention is that each output token is best explained by a single input token (due to the
softmax normalisation over inputs) which can be thought of as a “single child” assumption. Subsequently, input
tokens compete with each other to be included in each output token’s revised representation through pairwise
interactions.

Lastly, it is important to note that both capsules and attention share some key inductive biases, such as: using
vectors of neural activity to represent a collection/hierarchy of concepts and taking the agreement between these
high dimensional vectors as a feature detection mechanism. The relationships between these concepts are then
dynamically adjustable based on the input, and the concepts themselves are refined based on global context.
Self-attention can be considered a more efficient way to perform coincidence filtering with fewer inductive biases
than capsule routing.

4.3 Slot Representations & Attention

Many object-centric representation learning approaches
using neural networks can be categorised as being slot
based [40]. As shown in Figure 22, slots constitute a general
representational format used for separating object-based
representations. They provide a sort of working memory
with fixed capacity which can be used to access indepen-
dent object representations simultaneously. There are four

T ;. [_,D_,D DFE [ |
\L/XWZ AL L/%//'A e ;/ L7 \/%

Instance Slots Spatial Slots Category Slots

Fig. 22. Depicting the four different types of slot-based
representations formats, the figure is from [40]. Final
layer capsules are typically instantiated as category slots

since they bind to objects in the input based on some
categorical criteria like class identity. On the other hand,
convolutional capsules [50] can be thought of as spatial
slots, since they only receive votes from parts within
their receptive field.

main types of slots as outlined by [40], but to remain within
the scope of this survey, we focus mainly on: (i) category
slots, which are the most commonly used representational
format in capsule networks; (ii) instance slots, which can be
classed as “universal” capsules that can dynamically bind to
multiple objects rather than a specific pre-specified category.
Locatello et al. [82] showed how attention can be used to extract object-centric representations that enable
generalization to unseen compositions. Indeed, the proposed method they call Slot Attention is reminiscent of
recent developments in both capsule networks and self-attention. As shown in Figure 23, the authors introduce
the slot attention module, a differentiable interface between the outputs of a CNN and a set of variables they
call slots. They employ an iterative attention mechanism, much like capsule routing, wherein the slots play
the role of the capsules (see Figure 21). However, unlike capsules, the slots produced by slot attention do not
specialise to one particular type of class or object, instead they can store/bind to any object in the input, making
them more flexible. Because of this, slots have been referred to as “universal” capsules [49], as they can contain
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enough knowledge to model more than one type of object/part. Nonetheless, the slots still compete with each
other at each iteration for explaining parts of the input via a softmax-based attention mechanism, just like in
capsule networks and transformers. In fact, the slot attention iterations in their method can be thought of as
equivalent to unrolled transformer layers that share param-

eters. This is reminiscent of capsule routing, whereby the oA

routing iterations can be thought of as being equivalent to
unrolled layers of attention that share parameters. In their
experiments, the authors demonstrate that slot attention is
competitive with previous approaches on unsupervised vi-  regewes
sual scene decomposition tasks like object discovery, whilst

being more efficient.

More recently, Li et al. [77] proposed SCOUTER, a Fig. 23. Slot attention module (left), object discovery/set
slot-attention-based classifier for transparent, explainable prediction (bottom right). Slots are “universal” capsules
and accurate classification. The main difference between that can bind to any object in the input. Figure from [82].
SCOUTER and vanilla slot attention is that the slots are now associated with single categories like in capsule
networks. Indeed, the so-called evidence for a certain category in SCOUTER can be thought of as its support in
capsule networks, i.e. using an attention mechanism to find support in the image that directly correlates with a
certain output category. Li et al. [77] also employ an iterative attention mechanism to update the slots, where
the number of iterations T=3 just like in capsule routing and vanilla slot attention. We can think of SCOUTER
as a capsule network with restricted inductive biases and fewer parameters; thus the explainability insights
from SCOUTER apply to capsule networks. Zhou et al. [144] bring the slot attention ideas to real-world data
and achieve state-of-the-art performance on video panoptic segmentation tasks. The proposed Video Panoptic
Retriever (VPR) retrieves and encodes all panoptic entities in a video, including both foreground instances and
background semantics, with a unified object-centric representation called panoptic slots. The output panoptic
slots can be directly converted into the class, mask, and object ID of panoptic objects in videos.

4.4  Transformers for Routing & Sets

Sun et al. [115] propose a visual parser that attempts to learn part-whole hierarchies through attention operations.
The visual parser learns a two-level hierarchy iteratively refining the part and whole representations. At each
iteration, the part encoder uses a set of learned part prototypes and performs an attention operation on the
previous whole representations to obtain a set of N part representations. Then the whole decoder refines the
previous whole representation with the global information in this set of parts. Using this iterative encoder-
decoder structure, the visual parser learns robust representations which can be applied to several tasks including
image classification, object detection, and instance segmentation. Carion et al. [17] present a transformer-based
framework for object detection. After extracting a spatio-temporal grid of features from an image, the DEtection
TRansformer (DETR) uses an encoder-decoder architecture to generate a set of N object predictions. This is
accomplished by using N learned object queries in the transformer decoder whose output features are given to a
feed-forward network to generate the class and bounding box dimensions. The network is trained end-to-end
with a bipartite graph matching loss which attempts to minimise the difference between the predicted and
ground-truth objects.

Self-attention has a quadratic O(N?) space and time complexity for N inputs. Wu et al. [130] alleviate this by
proposing the centroid transformer which clusters the N inputs into a set of M centroids which are then passed
to the self-attention operation resulting in an O(NM) complexity. This clustering operation can be viewed as
a means to "route” the information from N inputs (parts) to M higher-level outputs (wholes) like in capsules.
Similarly, Roy et al. [105] reduce the computational cost of the self-attention operation by only computing
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attention between a subset of keys and queries. Given an input sequence of length N, a clustering operation
(k-means) is performed on the keys and queries to obtain k centroids. Then, for each of the N inputs, attention
is computed on the set of keys which belongs to the same centroid as its given query. This proposed “Routing
Transformer" reduces the computational cost from O(N?) to O(N'*), and outputs a sequence length of N.

Contrary to standard self-attention, the set transformer [73] performs the attention operation on a fixed set of
m learned query vectors (also known as inducing points). This allows for reduced computational cost when the
number of input vectors (n) becomes large (i.e. operation becomes O(mn) as opposed to O(n?) in self-attention).
Furthermore, set transformers have been utilised in as a capsule routing procedure in the Stacked Capsule
Auto-encoder [64]: the part capsules are passed through multiple set transformer layers to obtain a set of object
capsules. Although the inducing points are learned in the set transformer, they are static and do not change based
on the given input. Zare et al. [135] remedy this by introducing a “PICASO" block to update the learned inducing
points based on information from a given input. By passing the inducing points through multi-head attention
blocks, PICASO leads to improved representations for downstream tasks including classification, clustering, and
anomaly detection.

The learning of object-centric representations through Neural Expectation Maximization (N-EM) was studied
by [39, 122]. N-EM is a probabilistic model which attempts to group pixels within an image into K entities whose
properties are described by a vector ). A differentiable Expectation Maximization (EM) algorithm is used to find
these groupings by computing the Maximum Likelihood Estimate for each 6. Van et al. [122] extended this work
by proposing a Relational N-EM (R-NEM) approach to learn interactions between different entities (parts/objects)
over time. By replacing the M-step of the EM algorithm with a recurrent neural network, R-NEM is able to model
the temporal dynamics of a given scene. Although these methods were primarily evaluated on primitive objects
and shapes (e.g. triangles, squares, and circles), they have similar goals to capsule networks and constitute a
promising probabilistic alternative.

5 Applications of Capsule Networks

Capsules for Video & Motion. Although the majority of
foundational capsule approaches tend to be applied toimage  wowveee
data, there have been several works that focus on the video N-F
domain. Generalizing 2-dimensional capsule networks to -
the 3-dimensional video domain is non-trivial. First, with the

addition of a temporal dimension, how can capsule networks
successfully capture the motion information from multiple -E @
frames, or time steps, in a video sequence? Second, how o

can computationally costly routing operations scale to deal

with video inputs? There is no current capsule work which ~Fig. 24. The VideoCapsuleNet architecture proposed
completely answers these questions, but there have been by [27], which includes 3D convolutions and capsule
several works which apply capsule networks to various '€vel pooling for processing video inputs efficiently.
video and motion problems.

Traditional 2D convolutional capsule routing was extended to 3D convolutional routing in [27] (see Figure 24).
In 3D convolutional routing, capsules which are both spatially and temporally nearby are routed together to obtain
the higher layers’ capsule outputs. Since the number of capsules being routed increases drastically as the size of the
receptive field increases, conventional iterative routing operations are unsuited for 3D capsule networks. To this
end, a capsule-pooling procedure was proposed, which averages each capsule type’s poses and activations within
the receptive field. Capsule-pooling ensures the number of capsules routed is only proportional to the number
of capsule types within each layer, rather than the size of the receptive field. Duarte et al. [27] present a video
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capsule network, VideoCapsuleNet, which performs end-to-end action detection. The network consists of 3D
convolutional layers to transform the input RGB video sequence (8 frames) into the initial video capsules. Then, this
is followed by a 3D convolutional capsule layer with capsule pooling, followed by a fully connected capsule layer
to produce class capsules. VideoCapsuleNet is not only able to

classify the action being performed within the video but also spa- pose (translation, quaternion)
tiotemporally localizes the video by the use of a convolutional object G oAt festure
decoder. This idea is extended in [28], where the authors propose Capsule
CapsuleVOS, a network which can perform video object segmen-
tation. Given a video clip and the segmentation of the object of
interest in the first frame, CapsuleVOS propagates the segmen-
tation through all frames of the video. The network consists of
two branches which generate capsules for the video clip (video
capsules) and capsules for the first frame and segmentation (frame
capsules). Then an attention routing algorithm is proposed to con-
dition the video capsules based on their agreement with the frame
capsules. This routing procedure first performs EM-routing on the
frame capsules to obtain some higher-level capsule representation Fig. 25. Geometric capsule model for processing
for the object in the first frame. Then, the routing coefficients point clouds. The part capsules activate the ob-
are obtained for the video capsules by measuring their similarity ject capsule to describe the entire object and its
to the higher-level frame capsules. The resultant video capsule < pose [113].

representations are used by a convolutional decoder to segment objects.

Previous video capsule networks implicitly learn temporal and motion information through 3D convolutions
and routing. Recently, a capsule autoencoder architecture has been proposed to explicitly learn robust motion
representations [133]. This work takes concepts from the stacked capsule autoencoders (see Section 3.6), but
the Motion Capsule Autoencoder (MCAE) replaces the part and object capsules with “snippet" and “segment”
capsules. Here, a snippet capsule contains a semantic-agnostic representation for a short time frame and a segment
capsule contains a semantic-aware representation for a longer time frame. Segment capsules are obtained by
aggregating the snippet capsules and reconstructing their parameters. Although this work shows impressive
results in unsupervised motion representation learning, the MCAE operates on individual points (2-dimensional
coordinates) and not directly on video pixels. Nonetheless, MCAE presents an elegant capsule-based approach to
directly model motion in input sequences, and extending such an approach to RGB videos is an interesting avenue
for future work. A capsule-based approach for regression tracking has been proposed in [85]. Instead of obtaining
a single set of video capsules from 3D convolutions, two sets of capsules S-Caps and T-Caps are obtained which
learn the spatial and temporal relationships within the video. These two sets of capsules are then combined and
passed through a series of convolutional routing layers to obtain regression capsules (RegCaps) which classify
the target and background. Finally, the pose matrices of the RegCaps are compressed using knowledge distillation
to reduce computational costs and obtain more discriminative representations. Video capsule networks have also
been applied to the multimodal domain of actor and action video segmentation from a sentence. Given a video
and a natural language description [88] propose an end-to-end capsule network that segments the object/actor
described by the description. The network first extracts a spatial grid of video capsules which represent the
various entities or objects within the video. Then a visual-textual routing algorithm combines both capsule
modalities at each location on the spatial grid. These capsules are then sent through a convolutional decoder
network to obtain the output segmentation mask for the actor described in the sentence.

Part
Capsules

point-to-part
routing
[l 3D Point
Cloud
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5.1 Geometric & Graph-based Capsules

Capsule network models have been proposed for processing 3D point clouds that are equivariant to 3D rotations
and translations, as well as invariant to permutations of the input points. One of the earliest works is by Xinyi
et al. [132], who proposed CapsGNN, which is a framework that combines graph neural networks (GNN) and
capsules. GNN is used to extract node embeddings which are fed onto primary capsules (Block 1). In the second
stage, the node embeddings are scaled via an attention module that together with dynamic routing generates
the graph capsules (Block 2). In the last stage, graph classification takes place via dynamic routing (Block 3).
Srivastava et al. [113] proposed a geometric capsule design, (Figure 25) in which every visual entity - part or
whole object — is encoded using two components: a pose and a feature. The pose represents the transformation
between a global frame and the entity’s canonical frame in a geometrically interpretable manner, as a six-degree-
of-freedom coordinate transformation. Conversely, the feature is represented as a real-valued vector which
encodes all non-pose attributes and is invariant to the object’s pose w.r.t the viewer. The proposed Geometric
Capsule Autoencoder is constructed to group 3D points into parts and these parts into objects in an unsupervised
manner.

Li et al. [78] proposed a graph-based capsule routing mechanism that focuses on learning intra-relationships
between capsules in each layer, which is relevant to text classification problems. Intra-relationships that are
found in text data need to be taken into account, along with hierarchical relationships, in order to improve
sentiment analysis. The proposed method treats capsules in each layer as nodes in a graph and applies a new
routing mechanism that combines bottom-up routing and top-down attention to learn hierarchical- and intra-
relationships. Finally, the relationship between different capsules is evaluated by the Wasserstein distance,
and a normalization trick is used to approximate the adjacency matrix. Aiming at making CapsNets more
interpretable, like Grad-CAM [109] that has been proposed for explaining CNN-based classifications, the method
termed GraCapsNets proposed by Gu & Volker [42], modifies CapsNets to have built-in explanations. The
part-part relationship, i.e. the relationship between primary capsules, is modelled with graphs, followed by

graph pooling operations that pool relevant object
parts from the graphs to make a classification vote.
The idea is that since the graph pooling operation
reveals which input features are pooled as relevant
ones one can create explanations to explain the clas-
sification decisions. In addition to interpretability, the
proposed model improves object recognition via inte-
grating graph modelling into CapsNets, hence treating
capsules as node feature vectors and representing them
as graphs so that one can leverage graph structure
information. As highlighted by Zhao et al. [142], pro-

(b) Poin2Capsule (©) Tusk oricated network

Fig. 26. Point2SpatialCapsule architecture. Given input point
clouds, the three steps involved are: i) extract multi-scale fea-

ine 3D point clouds i hallenci blem d tures from multi-scale areas; ii) feature-spatial embeddings are
cessing 5L pomt clouds 1s a challenging problem Que .o teq and merged via a spatial relationship aggregation step;

to two main reasons: a) point clouds are irregular and iii) task-specific network performs a downstream task. Figure
unorganized, and b) the group of transformations that o [128].

one has to deal with is more complex given that 3D data are often observed under arbitrary non-communicative
SO(3) rotations. Consequently, extracting and learning relevant embeddings requires 3D point networks to be
equivariant to these transformations, while maintaining invariance properties to point permutations. The quater-
nion equivariant capsule module presented in [142] extends the work presented in [74] and is able to process
point clouds while maintaining equivariance to SO(3) rotations and preserving translation and permutation
invariance. This work achieves SO(3) by restricting the model to a sparse set of local reference frames (LRFs) that
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collectively determine the object orientation. In addition, the authors proposed a variation of dynamic routing,
termed Weiszfeld dynamic routing that uses inlier scores as activations, and which together with LRFs, form part
of the quaternion equivariant capsule module. This process allows for equivariant latent representations to be
extracted that point to local orientations and activations, while also disentangling orientation from evidence of
object existence. Another challenge when dealing with 3D point clouds concerns adequately capturing spatial
relationships between local regions, e.g. the relative locations to other regions in order to learn discriminative
shape representation. Pooling-based feature aggregation methods struggle to achieve this satisfactorily.
A way to overcome is presented in [128] whereby a new
architecture called "Point2SpatialCapsule” is proposed that
consists of two parts: a) a module named geometric fea- > 2] 7[1AIAIN S <] [ ] — .
ture aggregation is designed to aggregate the local region wiieh | | ' [\
features into learnable cluster centres, which manages to i
encode the spatial locations from the original 3D space,
and b) a module named spatial relationship aggregation is \/
also proposed that further aggregates the clustered features
and the spatial relationships among them in the feature
space using a new capsule layer termed spatial-aware cap- Fig. 27. The Topographic Variational Autoencoder
sules. The complete architecture can be seen in Figure 26. With shifting temporal coherence. The combined
A self-supervised 3D point cloud capsule architecture was colour/rot4ggn transformatvior.] in the input space T!i.be'
proposed by Sun et al. [116] termed canonical capsules. The ~>™M¢® BREO"Qs groll within the capsule dimension.
. . Figure from [60].
algorithm computes K-part capsule decompositions of 3D
point-cloud objects through permutation-equivariant atten-
tion while self-supervising the process by training with pairs of randomly rotated objects (i.e. siamese training).
This process removes the need to pre-align training datasets. The decomposition of the point cloud consists of
assigning each point to one of the K parts via attention, which is then integrated into K key points. To ascer-
tain equivariance, the two keypoint sets are set to differ only by the known relative transformation; regarding
invariance, this takes place naturally by asking the descriptors of each keypoint of the two instances to match.
It is said that many parts of our brain are organized topographically, such as the ocular dominance maps. Keller
& Welling [60] built upon this concept and proposed the topographic variational autoencoder: a novel method for
efficiently training deep generative models with topographically organized latent variables (Figure 27). In their
paper, they refer to capsules as “learning sets of approximately equivariant features or subspaces”. The model
they proposed tries to bridge two different classes of models, i.e., topographic generative models and equivariance
neural networks. The proposed model is built upon the notion that inducing topographic organization can
be leveraged to learn a basis of approximately equivariant capsules for observed transformation sequences.
The resulting representation consists of a large set of capsules where the dimensions inside the capsule are
topographically structured, but between the capsules there is independence. The algorithm allows for sequences
of input to be introduced to the model via encouraging topographic structure over time between sequentially
permuted activations within a capsule, a property they call shifting temporal coherence. For further technical
details, the reader may refer to [60].

5.2 Generative Capsule Networks

There exist several studies which propose implementations of Generative Adversarial Networks (GANs) [37]
using capsule networks. One of the earliest works was proposed by Jaiswal et al. [55], where a CapsNet was
used as the discriminator and a deep CNN as the generator. However, the authors did not propose a new routing
mechanism and instead, the model used was the one proposed in [106]. On the other hand, in the work presented
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in [29], a new CapsNet model was proposed, called Subspace Capsule Network (SCN), which is built upon the
idea of modelling the properties of an entity through a group of capsule subspaces instead of simply grouping
neurons to create capsules. Using a learnable transformation, a capsule is then created by projecting an input
feature vector from a lower layer onto the capsule subspace. This transformation finds the degree of alignment
of the input with the properties modelled by the capsule subspace. A purportedly interpretable variant of
capsule networks termed iCaps was proposed in [58], using class-supervised disentanglement learning. This
approach aims at disentangling the latent feature of x into two complementary subspaces, i.e. class-relevant
and class-irrelevant subspaces, in a setting where the class label for images in the training set is provided.
The iCaps architecture consists of six different parts: (i) a capsule network (classifier); (ii) an encoder that
represents the class-irrelevant (residual) latent space; (iii) a generator that creates synthetic images; (iv) a
discriminator that distinguishes whether an observation is from the dataset; (v) a classifier for image generation;
(vi) a discriminator for contrastive regularization that maximizes the distance between the concepts represented.

A probabilistic generative version of capsule networks
was proposed by Smith ef al. in [112], which aims to encode
the assumptions under which capsules are built. This work
is similar in spirit to the more recent work on inference in
generative capsule models by [91] as discussed previously
in Section 4. Smith et al. introduced a variational bound
which allowed them to explore the properties of their gen-
erative capsule model independently of the approximate
inference scheme. In doing so, the authors gained insights Fig, @amagfliagrammatic overview of the generative
into the failures of the capsule assumptions and inference |;,odel for a capsule network. On the left sketch, one
amortisation. Concretely, the authors expressed the mod-  can see the detailed connectivity between the random
elling assumptions of capsules as a probabilistic model with variables that correspond to the red-circled region of
joint distribution over all latent and observed random vari- the overall graph that can be seen on the right. Figure
ables. They then derived a routing algorithm directly from from [112].
variational inference principles, leading to an amortised method similar to variational autoencoders [62]. The
approach they introduced for routing phrases the problem as approximate inference in a graphical model, hence
allowing for further future improvements by leveraging advancements in inference in graphical models. Their

O

model performs comparably with previous works on capsules, showing that their probabilistic interpretation
is a close approximation to capsule network assumptions. Their results also suggest that generative capsule
formulations such as the one proposed may help enforce desirable equivariance properties, but this is far from
sufficient, as these models typically come without theoretical guarantees. They elaborate that while promising,
this type of capsule-based formulation is still somewhat underdetermined. Specifically, there are issues relating
to the identifiability guarantees of obtaining objects from purely observed data, which suggests changes to the
generative model may be necessary going forward.

5.3 Capsules for Natural Language Processing

Capsule networks have gained popularity in the field of natural language processing due to their ability to model
part-whole relationships. Here, the sentence parts are individual words and the routing procedure learns the
semantic relationships between words. Capsule-based architectures have been applied to a variety of natural
language tasks including text classification, relation extraction, search personalization, and recommender systems.
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Text Classification. Text classification spans several tasks including sentiment classification, question categori-
sation, news categorisation, and intent detection. Yang et al. [134] first explored the use of capsule networks in nat-
ural language processing for the problem of text classification (see Figure 29). Here, the dynamic routing algorithm
[106] is augmented to deal with noisy capsules in three ways: the addition of orphan (i.e. background) categories,
the use of leaky-softmax instead of the standard softmax operation to obtain the routing coefficients, and the mul-
tiplication of routing coefficients by the probability of existence of child capsules (denoted coefficient amendment).
This work shows that a capsule network can achieve strong
performance across 6 datasets when compared with stan-
dard neural network methods like CNNs and LSTMs. Kim et
al. [61] also propose a capsule network for text classification.
To circumvent the need for max-pooling the text sequence,
this work makes use of an ELU-gate unit that does not lose
spatial information. Following the gate unit, the primary
capsules are generated and passed through a “static routing”
procedure which consists of a single forward pass of the
dynamic routing algorithm. Another work [141] attempts Fig. 29. Architecture of a capsule network-based system
to adapt capsule networks to be more successfully applied  for text classification as proposed by Yang et al. [134].
to NLP applications. First, a capsule compression operation The adjusted local spatial routing between the primary
is performed which merges similar capsules to reduce the and convolutional capsules is shown in detail.
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number of primary capsules. Then, for routing an adaptive optimizer is introduced which allows for a variable
number of routing iterations for a given sample. Lastly, for final classification, a partial routing procedure allows
for a reduced number of output capsules to be produced leading to alarge reduction in computational cost.
Another work [131] utilizes capsule networks for the task of zero-shot user intent detection. The proposed
capsule network can detect intents unseen at training time by modifying the dynamic routing algorithm with
self-attention and allowing for the generation of capsules for emerging intents (i.e. intents not used during
training). Furthermore, analysis of the routing coefficients illustrates the capsule networks’ ability to model the
relationships between parts (words) and their corresponding whole (intents). Chen et al. [18] propose a Transfer
Capsule Network (TransCap) for the problem of aspect-level sentiment classification (i.e. classifying the sentiment
of a specific aspect occurring in a sentence). Given a sentence and the given aspect, TransCap generates a set of
feature capsules from the input words and then performs “aspect routing” which gates the sentence (context)
capsules using the aspect features to generate semantic capsules (SemanCaps). These SemanCaps are then passed
through the dynamic routing algorithm to obtain the final classification capsule layer. Capsules have also been
applied to the task of slot filling and intent detection [136]. For a given sentence, this task involves a two-step
classification problem: first assigning words to a specific slot class (e.g. artist, playlist, movie_type) and then
classifying the intent of the overall query (e.g. change_playlist, play_music). Zhang et al. [136] propose a capsule
network which generates a capsule for each word in the sentence and applies dynamic routing to create a set of
slot capsules. The routing coefficients represent the assignment of each word in the sentence to a slot class. Then,
another routing operation is used to obtain the final intent capsules and the final intent classification.

Relation Extraction. Relation extraction is a problem involving finding the relationships between different
entities (i.e. words) within a sentence. Zhang et al. [137] illustrate capsule networks’ ability to learn these
relationships. The proposed capsule network makes use of a bi-directional LSTM to generate the initial capsule
layer. Then, dynamic routing with coefficient amendment is used to generate a set of parent capsules, whose
activations are the probabilities of different relations. The entities by which these relations are represented are
determined through another pretrained method [46]. Another work [139] proposes the architecture Att-CapNet
which also uses a bi-LSTM to generate the initial capsule layer. Here, however, the hidden states of the recurrent
model are also used in the generation of attention coefficients for improved capsule routing,.
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Search Personalization and Recommendation Systems. Capsule networks have been applied to knowledge
graph completion for the task of user search personalization [125]. For this problem, the goal is to generate
a rating for a tuple (query, user, document), such that the output document is personalized for a given user’s
query. Vu et al. use a capsule-based approach which first encodes all elements of the tuple into vectors, and uses
convolution operations to generate a set of primary capsules. Then, the dynamic routing algorithm is used to
generate a single two-dimensional capsule whose magnitude determines the score for the given tuple. A higher
score denotes that there was agreement between the input capsules, leading to a higher ranking for the document
when given the user’s query. Capsules have also been used in recommendation systems. Given a set of reviews
generated by a user and reviews for various items, recommendation systems attempt to suggest which items the
user would like the most. Li et al. [75] present a capsule-based architecture, which takes embeddings for user and
item reviews, and generates a set of positive and negative capsules to represent the sentiment of various aspects
of the reviews. Then, a routing by bi-agreement algorithm is proposed which attempts to find agreement not only
between different capsules but also within dimensions of the same capsules (both inter-capsule and intra-capsule
agreement). From the output of the routing algorithm, a recommendation score (i.e. rating) is generated for the
given item.

Language and Vision. Several applications require the use of both textual and visual data. Capsule networks
have shown promise in these multi-modal tasks. One such problem is that of visual question answering where a
natural language question is given for an image, and the goal is to select a multiple-choice answer or generate
a natural language answer. One of the first capsule-based approaches for this task is [143]. Here, routing-by-
agreement is used as an attention mechanism between the visual and textual features to improve learned
representations. Urooj et al. [121] propose a capsule framework for visual question-answering grounding systems.
This work shows that including capsules with EM-routing [50] in the generation of visual features leads to a drastic
improvement in grounding accuracy; the capsule architecture uses relevant visual information in intermediate
reasoning steps. Recently, Cao et al. [16] presented a routing algorithm that adjusts the capsule routing weights
based on the parse tree generated from the given question. The proposed linguistically routed capsule network is
shown to achieve strong visual questioning answering performance, even on out-of-distribution data. Capsule
networks have also been applied to multimodal machine translation [79]. The goal of this problem is to improve the
translation of a natural language sentence with visual features. Lin et al. [79] propose a context-guided dynamic
routing procedure to update the routing coefficients between visual capsules using cross-modal correlations.
They show that this context-guided routing outperforms the standard attention and dynamic routing mechanisms
when applied to their approach.

5.4 Capsules for-Medical Image Analysis

Another field that Capsules have been applied fairly extensively to is that of medical imaging [3, 33, 81, 126, 140].
This is largely part due to a Capsule Network’s ability to generalise to new variations of the learnt classes in
unseen data which were not captured in the training data. Additionally, this property is achieved after being
trained on the small amount of data which is typical for medical datasets due to the expertise required in
labelling. SegCaps [68] replaces the convolutional blocks of a U-Net [104] with convolutional capsule blocks
and modifies dynamic routing to be locally connected by only routing capsules in layer L to parent capsules
in layer L+1 within a kj X k,, kernel to semantically segment 2D slices of computed tomography (CT) scans
showing irregular lesions and nodules. The modified Dynamic Routing algorithm is shown below. This method
achieved state-of-the-art Dice Coefficient on the LUNA16 dataset with 98.479% accuracy while also reducing the
parameters by approximately 95%.

Building upon their previous work in [68], [69] extends their method to five new datasets as well as introducing
the condition that child capsules are only routed within a spatially located window. This change allows their
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network to scale to images of 512x512 size while remaining at around 1.5 million parameters. For reference a
standard dynamically routed capsule network would require approximately 2 quadrillion parameters to scale to
images of this size. Again, their method is able to outperform state-of-the-art networks in five datasets DICE
coefficient and outperforms in four of the five datasets in Hausdorff Distance score. Additionally, it should be
noted that their method has a significantly lower standard deviation between runs on different random seeds.
Again, applied to the detection of nodules in CT scans, Fast CapsNet [90] modified dynamic routing CapsNet
[106] in order to scale to 3D data. Their contributions are to add a constraint which allows only one Capsule
per pixel location in the Primary Capsules. By doing this they reduce the computational overhead of routing by
agreement by 32x resulting in a 3x overall increase of network training per epoch while retaining approximately
the same accuracy as base CapsNets on 2D images which were slices of a 3D volume of the full CT scan. While
this change may be small for 2D data, when they attempted to apply base CapsNets to 3D scans the network was
unable to be trained stably whilst their modified CapsNet was able to achieve better accuracy on 3D than 2D data.
Additionally, they replace the fully connected layers in the decoder section of the CapsNet with deconvolutional
layers. Overall they achieve 91.84% accuracy which is greater than the 91.05% accuracy provided by the best
CNN-based architectures and greatly improved upon the 73.65% provided by non deep learning approaches.
In the realm of Brain Tumour classification, CNNs have been shown to fail to utilise the spatial relationships
between brain perturbations which causes misdiagnosis of tumours. As a result of this, the authors in [3] propose
using a locally routed Capsule Network similar to [90]. Additionally, rough boundaries of where the tumours are
located are given to the network to ensure that it ignores irrelevant areas of the image. When trained with the
entire image without rough tumour boundaries, the network achieves 78% accuracy on their dataset of MRI scans.
This is then improved to 90.89% when additionally given the rough tumour boundaries, slightly improving upon
the state-of-the-art CNNs which are able to achieve 88.33% accuracy when given the rough tumour boundaries.

Covid-19 created a demand for fast and accurate diagnosis
of patients. As a result, multiple deep learning techniques
were tested upon CT scan and x-rays of the lungs. Motivated
by Capsules Networks’ ability to achieve strong results with
low amounts of data, COVID-CAPS [2] was devised. Utilis-
ing a standard dynamic routing [106] architecture to classify
either positive or negative for COVID-19, COVID-CAPS is
able to achieve an accuracy of 95.7%. When pre-trained us-
ing a large dataset of other x-ray images, COVID-CAPS is
able to achieve 98.3% accuracy. Similarly, [76] propose MHA-
CoroCapsule a novel capsule architecture which builds upon Capsule Networks in a U-Net like architecture combin-
the dynamic routing capsules [106] by replacing the dy- ing the information learnt at different levels of down-
namic routing element with a non-iterative multi-head at- scaling via Capsule Network convolutional layers.
tention routing process. By using a dataset of under 300 lung x-rays of Covid-19 patients they were able to
achieve nearly state-of-the-art results of 97.28% accuracy compared to 98.30% achieved by COVID-CAPS [2],
however, COVID-CAPS is pre-trained on over 100 thousand images of other lung diseases compared to the 1
thousand total images used in MHA-CoroCapsules.

Fig. 30. The architecture for SegCaps [68] which uses

6 Discussion & Future Directions

In this paper, we provided an extensive breakdown of the literature on object-centric learning using capsules
and related attention-based methods. In doing so, we remark that capsule networks do not yet work as well
as they might, which can in part be attributed to their lack of efficiency in enforcing the aforementioned
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modelling premises (see Section 2.3). The additional complexity induced by vector-valued neural activities,
along with the high-dimensional coincidence filtering algorithm to detect capsule level features (capsule rout-
ing), leads to inefficient models that are often difficult to train. In the following sections, we provide an in-
depth discussion of what we believe are the main conceptual considerations for future research in the field.

The Hardware Lottery. In their detailed analysis, [8]

Segregation  Representation ~ Composition

explained that although their convolutional capsule model o oo A%‘
required around 4 times fewer floating point operations LA L F/.
(FLOPS) with 16 times fewer parameters than their CNN, oo e A %T
implementations in both TensorFlow [1] and PyTorch [96] e oo o

Dynamic Information Binding

ran significantly slower and ran out of memory with much
smaller models. Although several more efficient versions
of capsule routing have since then been proposed [4, 44, Fig. 31. The binding problem.in neural networks. It can

101, 120], the underlying problem is not only caused by pe ynderstood as a collection of three subproblems,

routing but by the capsule voting procedure as well. In their namely: segregation, representation and composition. Fig-
analysis, [8] conclude that current frameworks have been  ure from [40].

highly optimised for a small subset of computations used by a popular family of models and that these frameworks
have become poorly suited to research since there is a huge discrepancy in performance between standard and
non-standard compute workloads. As a result, non-standard workloads like those induced by the routing and
voting procedures in capsule networks are a lot slower than they could be. As pointed out by [53], while capsule
network’s operations can be implemented reasonably well on CPUs, performance drops drastically on accelerators
like GPUs and TPUs since they have been heavily optimized for standard workloads using the building blocks
found in common architectures. This phenomenon begs the question of how much the tools researchers have
readily available can predetermine the success of certain ideas based on how well they can be operationalized.
Conceptual changes to capsule networks which can capture their inherent inductive biases whilst improving
their operationalization using current hardware/frameworks would constitute a significant breakthrough. The
development of more flexible tools that enable research using non-standard workloads is also of paramount
importance going forward if we are to avoid future hardware lotteries.

The Binding Problem. The motivation behind capsule networks is part of an overarching narrative around
the shortcomings of neural networks at human-level generalization. In most works, this problem is tackled from
a computer vision perspective, where the goal is to be able to extract sensible object-centric representations
from raw visual input in order to endow neural networks with reasoning and compositionality capabilities. The
main assumption behind this is that objects play a fundamental role in systematic generalization. Greff et al. [40]
argue that current limitations of neural networks are due to the binding problem, which prevents them from
incorporating sensible object-centric representations. As quoted in [31] “The Binding Problem concerns how
items that are encoded by distinct brain circuits can be combined for perception, decision, and action". Biological
neural networks in human brains are said to overcome the binding problem by enabling flexible and dynamic
binding of information belonging to separate entities [83]. On the other hand, even the most advanced DL systems
today struggle with compositionality [93, 100], so there is a need for neural network-based systems that attempt
to tackle the binding problem more explicitly like capsule networks. With that in mind, Greff et al. [40] propose
a functional division of the binding problem into three subproblems as depicted in Figure 31. The segregation
problem refers to the ability to form modular object representations from raw inputs. The representation problem
relates to separately representing multiple object representations in a common format, without interference
between them. Lastly, the composition problem involves the capacity to dynamically relate and compose object
representations to build structured object-centric models. Indeed, we believe that overcoming each of these open
subproblems may give rise to more robust neural systems that generalize more like humans do. Capsule networks

Task/Context
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are one potential approach for tackling some aspects of the binding problem, but thus far they have mostly
been applied in constrained supervised settings, and lack the capabilities to integrate segregation, representation
and composition into a single system. Since most previous work on capsule networks have only considered the
category slot format, there is also an opportunity to extend them to different types of slot representations as
shown in Figure 22.

Limitations & Open Challenges. Capsule networks have the potential to be a disruptive technology, but
until the framework and hardware limitations are overcome, it will be quite difficult to truly test them at scale.
Indeed, Mitterreiter et al. [89] corroborates this by providing some experimental insights as to why capsule neural
networks do not scale in their current formulations, and we deem this to be fertile ground for further investigation.
On that note, we believe that developing more flexible frameworks that are better suited to innovative research is
a really important avenue for future work. As stressed by [8], there are concerns regarding the lack of flexibility
of languages and framework backends putting a brake on innovative research. From a technical perspective,
we believe the main takeaways of capsule network models are the crucial ideas of high-dimensional coincidence
filtering and agreement. In fact, many parallels can be drawn between capsules and the attention mechanism in
Transformers [123], as both methods measure high-dimensional coincidences using the agreement between neural
activity vectors to detect features. This is generally a good idea since random vectors tend towards orthogonality
as the number of dimensions grows large. Embedding vectors in Transformers can also be seen as capsules with
a much greater number of dimensions. It would be interesting to see if a Transformer-like visual model with
the correct part-whole inductive wiring can deal with viewpoint changes like capsule networks attempt to do,
whilst being more efficient. There is also an opportunity to develop Vision Transformer (ViT) [26] style capsule
architectures which do away with the expensive convolutional capsules formulation in favour of patch-based
processing. This setup would likely entail using a fewer number of much higher dimensional capsules, and a
potential relaxation of the inductive biases incurred by the computationally costly capsule voting procedure. The
extraction of more faithful primary capsules is also a promising research direction since capsule networks remain
hindered by the inability to learn effective low-level part descriptions (i.e. inverse rendering). Initial steps in this
direction have recently been taken in [107] where visual motion is used as a cue for part definition. One of the
central ideas behind this is that a part or an object can be thought of as an entity that is perceptually consistent
across time. There is an opportunity to extend these ideas to larger video datasets and use self-supervised learning
to uncover 3D parts in much more complex scenes as done in [63]. Improved primary capsule representations could
also lead to more effective iterative refinement routing algorithms since the latter is predicated upon adequate
low-level part descriptions to work as intended. Another aspect of interest for future work is carving out the role
of approximately equivariant models like capsule networks in geometric deep learning [14, 19, 60]. Specifically,
further study and comparisen of approximately equivariant models to their counterparts in terms of equivariance
metrics, sample/runtime complexity, generative modelling and semi-supervised learning performance in 2D/3D
complex tasks could be particularly important going forward. Moreover, given that capsule networks are only
approximately equivariant, there is an opportunity to develop/uncover formal equivariance guarantees to expand
the applicability of the model class.
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A Additional Applications of Capsule Networks

Capsule Networks have been applied to many different fields. The majority of these applications only use the
original dynamically routed capsules [106] in domains where either data is difficult to obtain or label or domains
where a network needs to be able to generalise to different conditions.

Adversarial Attacks. The properties of Capsule Networks are desirable for several reasons, including how
they are resistant to affine transformation and single-pixel attacks which affect CNNs. In [98], the authors showed
that the reconstruction element of capsule networks improves the robustness to standard CNN adversarial attacks.
In [43], it is shown that dynamically routed capsule networks [106] are able to maintain a 17.3% accuracy on the
CIFAR-10 dataset [65] against PGD attacks [87] compared to CNNs with 0% accuracy. Also, since the capsule
voting mechanism is slow, it naturally takes longer to generate adversarial images. However, the authors then
refocus their attacks to target the voting mechanism directly. With their proposed voting attack inside the PGD
framework, the authors are able to decrease the performance of the capsule network to 4.83%. The authors then
proceeded to train a capsule network which is specifically able to resist their proposed attack within the [98]
framework, thereby creating a capsule network able to maintain 55.3% accuracy of its 94.7% accuracy when tested
against adversarial PGD attacks:

Fault Diagnosis. In the field of bearing fault diagnosis it is not possible to easily obtain images to visually
inspect whether certain elements of machinery are failing during operation. In [145] the authors convert 1D
signals of vibration and electrical current to time-frequency graphs via Fourier transforms which can then
be fed into for analysis. Additionally, these signals often contain a lot of noise and variations between every
machine depending on the state of the sensors and the speed and load that the machine is operating at. The
only modification which the authors make to standard dynamically routed capsules [106] is the replacement
of the initial convolutional layers with inception blocks from GoogLeNet [117] to create Inception Capsule
Networks (ICN). Over 6 different fault diagnosis tasks, ICNs are consistently either state of the art or comparative
to non-capsule methods, this is in stark contrast to the other methods which generally perform very well in one
task but underperform in others. Overall, ICNs are able to achieve 97.15% accuracy on average across the 6 tasks,
compared to 94.58% of the best-competing method. Additionally, ICNs achieve 82.05% when tested on data for
6 new tasks from machines operating at different loads and speeds. Additionally, the authors propose that the
output of the class capsules can be used for regression, achieving 94.04% accuracy in determining the severity of
the faults detected. Building upon the work in [145], the authors of [127] propose an extension which proposes
the Xception module Capsule Network (XCN). This method follows the previous methodology of converting
1D signals to time-frequency graphs but uses wavelet time-frequency analysis rather than Fourier transforms.
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XCNs are able to achieve 98.4% accuracy across the three tasks of inner ring faults, outer ring faults and ball
faults. This is a fairly large improvement compared to the 97.6% that the best ensemble method is able to achieve,
additionally, XCNs perform more consistently well with 99.2%, 99.7% and 96.3% compared to 96.4%, 100% and
96.4% from the ensemble approach. Additionally, when compared to live data from a working machine, XCNs
achieve 97.2%, 98.7% and 94.5% accuracy, a significantly smaller drop off than all over approaches, showing clearly
the strength of Capsule Networks ability to generalise.

Hyperspectral Images. Another application of Capsule Networks is in hyperspectral Image classification.
Hyperspectral images are traditionally badly classified by current deep learning approaches due to their lack of
ability to exploit the spatial relationships in the spectral spacial domain which is a key factor in dealing with
extremely high dimensional data. Additionally, CNNs are known to require a large amount of data, which given
the high dimensionality and complexity of hyperspectral imaging is not possible. In [94] the authors propose
using capsule networks named Spectral-Spatial Capsule Networks (SSCN) to classify these images. The authors
achieve a large amount of success in this field with an unmodified dynamically routed Capsule Network. Over
5 different random seeds and trained on only 15% of the available data, the authors achieve state-of-the-art
segmentation in every class of two different datasets with 99.45% and 99.95% accuracy. In the third dataset,
SSCNs are able to achieve state-of-the-art in 56 out of 58 classes with an average accuracy of 98.25% on this most
complex dataset. However, it should be noted that the SSCN approach was significantly slower in terms of time
per training epoch than all but one of the other approaches on all three of the datasets. Additionally in [24] the
authors build upon the work in [94] showing further how standard dynamically routed Capsule Networks are
able to outperform CNNs achieving 96.27% accuracy on a difficult hyperspectral image dataset compared to the
state of the art CNN which achieves 95.63%.

Forgery Detection. Detection of artificially generated forgery is a task that previously would require specific
models for each variation of an attack. However, in [92] the authors propose a unified Capsule Powered framework
named CAPSULE-FORENSICS (CF) where one network is able to detect forgeries of different types in both images
and video. CFs use a pipeline of pre-processing where images are normalised and a video is split into individual
frames. These images are then fed through a VGG-19 [111] network to extract the latent features rather than
the traditional convolutional layers before the Primary Capsules. The vector output from the two class capsules
of either real or fake is then used in a traditional forgery detection framework in order to detect forgeries. By
applying noise to transformation matrix weights during the routing process, CFs are able to achieve state-of-the-
art or comparable results in 6 different datasets. Building upon the work in [92], the authors of [84] improve the
forgery detection framework to include the ability to detect Al-generated audio forgeries, they achieve 98.93%
and 97.95% accuracy on the PA and LA subsets of the ASVspoof2019 dataset while the previous best techniques
are only able to achieve 98.16% and 96.22% accuracy.
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