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Abstract

Synaptic dynamics plays a key role in neuronal communication. Due to its high dimensionality, the main fundamental
mechanisms triggering different synaptic dynamics and their relation with the neurotransmitter release regimes (facil-
itation, biphasic, and depression) are still elusive. For a general set of parameters, and employing an approximated
solution for a set of differential equations associated with a synaptic model, we obtain a discrete map that provides
analytical solutions that shed light on the dynamics of synapses. Assuming that the presynaptic neuron perturbing the
neuron whose synapse is being modelled is spiking periodically, we derive the stable equilibria and the maximal values
for the release regimes as a function of the percentage of neurotransmitter released and the mean frequency of the presy-
naptic spiking neuron. Assuming that the presynaptic neuron is spiking stochastically following a Poisson distribution,
we demonstrate that the equations for the time average of the trajectory are the same as the map under the periodic
presynaptic stimulus, admitting the same equilibrium points. Thus, the synapses under stochastic presynaptic spikes,
emulating the spiking behaviour produced by a complex neural network, wander around the equilibrium points of the
synapses under periodic stimulus, which can be fully analytically calculated.
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1. Introduction

Synapses are specialized structures in neuronal com-
munication which play a key role in the transmission of
neuronal signals in the brain [1]. There are two types of
synapses, the electrical and the chemical [2]. Through the
electrical synapses, neurons communicate with each other
by direct exchange of ion currents [3]. In the axon termi-
nals of the presynaptic neurons with chemical synapses,
the action potentials generate the release of neurotrans-
mitters in the synaptic cleft that arrive at the receptors
and then produce a current in the postsynaptic neurons
[4]. In the mammalian brain, most synapses are chem-
ical [5]. The effectiveness of these transmitted currents
depends on the synaptic strength that usually changes in
time due to the previous activity of the synapse [6].

Some mathematical models were proposed in the lit-
erature to describe the dynamics of chemical synapses.
Many of them provide a simplified description of the signal
transmission between the neurons [7], for instance, single
exponential decay, alpha, and double exponential synap-
tic functions [8, 9]. However, in these models, the max-
imal conductance associated with each spike event has a
fixed value and does not exhibit synaptic regimes, such
as facilitation and depression [10]. Others, however, pro-
vide more realistic synaptic dynamics where the intensity
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of synaptic conductance is altered over time [11]. This
process of change in the synaptic intensity is called synap-
tic plasticity [12], where short- and long-term are the two
main types of synaptic plasticity [13]. While for a long
time scale, plasticity can exhibit long-term potentiation
(LTP) or depression (LTD) [15, 14], for short time scales,
the synaptic dynamics are associated with facilitation, de-
pression and biphasic regimes [18, 17, 16]. Both facilita-
tion and depression synaptic regimes are found between
excitatory neurons in the neocortex [19]. These two kinds
of plasticity also have different functions in the brain, for
example, long-term plasticity is associated with processes
such as memory and learning, while short-term plasticity
is related to processing functions and working memory in
neural circuits [21, 20].

In simple terms, short-term plasticity consists of the
changes in synaptic strength conductance in a relatively
small period of time which are associated with the release
of neurotransmitters in each synapse [22]. These synaptic
changes can act in the time scale of milliseconds to seconds,
but can also last longer in the order of minutes [24, 23, 25].
A relevant model in this framework for short-term plastic-
ity was introduced by Markram et al. [26]. According to
it, spiking frequency and the amount of neurotransmitters
released in the synaptic cleft are two important factors in
synaptic dynamics [22]. The mechanism described by the
mentioned model considers that the changes in synaptic
transmission strengths depend mainly on the spike activ-
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ity of the presynaptic neuron [27]. Depending on the time
constants, frequency of spikes, and the amount of neuro-
transmitter released, different regimes such as facilitation,
depression, and biphasic regime of the synapse can emerge
[28]. The synapses with a high probability of release tend
to present short-term depression [29]. On the other hand,
facilitation regimes emerge when the number of vesicles
available increases due to consecutive spikes [30]. In ad-
dition, the combination of depression and facilitation has
been reported to generate particular synaptic and network
dynamics [31, 32].

An important behaviour found in neuron activities is
the spike variability [7]. To study neuronal activities, Pois-
son processes are standard to model the spike time vari-
ability of irregular firings [33, 34, 35]. The Poisson process
can be considered as homogeneous [36] or inhomogeneous
[37]. The main difference between these two types of Pois-
son processes is that the homogeneous has a constant rate
of events over time while the inhomogeneous has the rate
of events changing over time [38, 39]. In the field of neu-
roscience, the Poisson process is considered as an approxi-
mation for spontaneous neuron spikes that can be useful to
investigate some aspects of neuronal dynamics [40, 41, 42].
Moreover, the Poisson process is one of the simple ways to
describe the spike activities with stochastic firings [43].
There are some evidences that Poisson-like behaviors can
be related to the emergence of neuronal variability [44].
The Poisson distribution allows us to derive results which,
under certain conditions, are relate to real dynamics. Neu-
rons can exhibit near periodic and Possonian spike activi-
ties over time [45]. The comprehension of how periodic and
Poisson-like spike activities induce different synaptic dy-
namics can shed light into the understanding of neuronal
communication.

In this work, we obtain a map from a synaptic model
described by a set of fourth ODEs proposed by Tsodyks
et al. [22], and analyse how different synaptic states de-
pend on relevant parameters, such as the spiking frequency
of presynaptic neuron and the percentage of neurotrans-
mitters released. We obtain analytically the equilibrium
points in the periodic regime, identify the synaptic regimes,
and determine the final and maximal value of active neuro-
transmitters in the space parameter of frequency and the
fraction of neurotransmitters released. The maximal value
corresponds to the most intense release of neurotransmit-
ters that can generate the highest synaptic currents on the
postsynaptic neurons. However, the interest in analyti-
cally calculating these values is because the solution will
depend on the peculiarities of the transient behaviour in
biphasic and depression, and the asymptotic behaviour of
the facilitation. Furthermore, we identify when the maxi-
mal fraction of active neurotransmitters can occur in each
regime. In addition to that, assuming that the presynap-
tic neuron is spiking following a Poisson distribution, we
showed that the equations for the time average of the tra-
jectory are the same as the map under periodic presy-
naptic stimulus, admitting the same equilibrium points.

The periodic and Poisson spikes are approximations of the
dynamics observed in real neuronal dynamics for regular
and random spikes. Furthermore, we demonstrate numer-
ically the correctness of our analytical derivations for the
map and its equilibrium points of active neurotransmit-
ters. These results can contribute to understand how com-
munication in the brain is mediated by synapses under
regular or irregular stimulus.

The paper is organised as follows. In Section 2, we
introduced the synaptic model considered in this work. In
Section 3, we showed the analytical and numerical results.
In the last section, we draw our conclusions.

Methods

In short-term plasticity, the effective synaptic conduc-
tance changes in time depending on the neuron spike his-
toric. The relevant parameters in synaptic dynamics are
the presynaptic neuron firing frequency, the percentage
of neurotransmitters released, and the time constants of
the synapse. All these parameters in the model take into
account the fact that there is a finite amount of neuro-
transmitters in each synapse and that they are not always
available in the same quantity over time. Based on this,
to study the synaptic dynamics, we considered the phe-
nomenological model proposed in [22]. The model consid-
ered in this study is based on a map derived to describe
experimental data reported in [46], which was modeled by
an ODE in [22]. We provide a map and solutions for the
ODE system proposed in [22].

In this model, each directional synaptic connection from
a presynaptic neuron [47] is represented by the set of ODEs

dx

dt
=

z

τrec
− xuδ(t− tsp), (1)

dy

dt
= − y

τina
+ xuδ(t− tsp), (2)

dz

dt
=

y

τina
− z

τrec
, (3)

du

dt
= − u

τfacil
+ U(1− u)δ(t− tsp), (4)

where x, y, and z represent the fractions of neurotransmit-
ters in the recovered (available), active, and inactive state
(refractory or recovering), respectively. u corresponds to
the fraction of available resources (x) used in each presy-
naptic spike becoming active. In Eq. (1), τrec is the re-
covery time for inactive neurotransmitters. In Eq. (2),
τina is the decay time for neurotransmitters from active
to inactive state. In Eqs. (1) and (2), the Dirac delta
function moves the fraction xu of neurotransmitter from
the recovery state to the active one at the instant which
a spike is considered in the model, namely tsp. We con-
sider that when t = tsp, the delta Dirac function can be
approximated by the Kronecker delta so that δ(t−tsp) = 1,
otherwise δ(t− tsp) = 0. In Eq. (3), the amount of recov-
ering neurotransmitters depends on the inactivation and
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recovery process. In Eq. (4), τfac is the time for the
synapses to return from the facilitation regime. As τfac
approximates to zero, less facilitation is exhibited in the
model. U describes how u value increases and is associated
with the percentage of available neurotransmitters which
are released due to each spike. In this work, we fixed the
parameters τrec = 800 ms, τina = 3 ms, and τfac = 1000 ms
[22]. Thus, we studied the parameters U and tsp, where tsp

is related to the mean spike frequency F and mean period
T = 1/F . We consider the initial condition x = 1 and
y = z = u = 0, which corresponds to a synapse with no
recent activity and neurotransmitters totally recovered.

Fig. 1 (a) shows a schematic representation of the neu-
rotransmitters in the synapse by means of the variables x,
y, and z. When a spike is considered in the model, the
fraction of recovered neurotransmitters x can be released
in the synaptic cleft, assuming an active state y that effec-
tively will generate a current in the postsynaptic neuron.
After the activation, these fraction of neurotransmitters
are inactivated staying in the z variable until be in the
recovered state x again and restart the cycle.

Results

Definitions and notations

The variables x, y, and u are continuous in time when
the evolution is considered between two sequential spike
events, from the time immediately after a spike event un-
til the last time immediately before the next spike event.
The variable z is continuous all the time. We define t′ =
t − tsp = 0 to represent the time immediately after the
spike of the neuron where δ(t′) = 1. Fig. 1 (b) shows
the time evolution of the variables, where xb corresponds
to the value of x immediately before the spike (tsp). x(0)
and xa represent both the value of x immediately after a
spike event (t = tsp), with the notation x(0) being used to
handle the variables describing the evolution of the system
of ODEs. Such notation is extended for other variables, y,
z, and u. In this way, it is possible to relate the variable
value before and after each spike to be considered in all
variables that are also described by the Eqs. (1)-(4) by

x(0) = xa = xb − ubxb, (5)

y(0) = ya = yb + ubxb, (6)

z(0) = za = zb, (7)

u(0) = ua = ub + U(1− ub). (8)

Note that Eqs. (5)-(8) for the left equalities represent the
time “tsp” immediately after the first spike occurs in the
presynaptic neuron. In the right equality of Eqs. (5)-(8),
in a more general case, these equations relate the vari-
able values immediately before (b) and after (a) the spike
events.

Analytical approximation

To improve our understanding of the synaptic model,
we search for an analytical approximation. We seek a so-
lution between two sequential spike events for the set of
differential Eqs. (1)-(4). We note that a general solution
for y(t′) and u(t′) is independent of the other variables,
resulting in

y(t′) = y(0)e
− t′

τina and u(t′) = u(0)e
− t′

τfac , (9)

where t′ ∈ [0, tsp], tsp being the time interval terminating
just before the next spike happens. These solutions can be
obtained just by integrating directly Eqs. (2) and (4). As
can be observed, given a certain initial condition of these
two variables, y(0) and u(0), the time evolution of y and u
is determined until just before the next spike event. Since
we have a solution for y(t′) and z(t′), it is possible to find
an approximation for the solution of Eq. (3), replacing the
solutions of Eq. (9) in Eq. (3), which result in

z(t′) =
[
z(0) + y(0)(1− e−t′/τina)

]
e−t′/τrec . (10)

Considering now the solution of Eq. (10) into Eq. (1),
similarly we have done to find the z(t′), we determine the
solution of Eq. (1) as

x(t′) = x(0)− z(0)(e−t′/τrec − 1)

−y(0)

[
(e−t′/τrec − 1)− τina

τrec + τina
e
−t′

(
1

τina
+ 1

τrec

)]
.(11)

Taking into account Eqs. (5)-(8) and the following defini-
tions

A(t′) = e−t′/τina , B(t′) = e−t′/τrec , C(t′) = e−t′/τfac , (12)

and

E(t′) = B(t′)

[
1− τina

τrec + τina
A(t′)

]
, (13)

we can write Eqs. (9), (10), and (11) as

x(t′) = (xb + yb)− zb[B(t′)− 1]− (yb + xbub)E(t′), (14)

y(t′) = (yb + ubxb)A(t′), (15)

z(t′) =
{
zb + (yb + xbub) [1−A(t′)]

}
B(t′), (16)

u(t′) =
[
ub + U(1− ub)

]
C(t′). (17)

Note that Eqs. (12) and (13) are considered to make the
solutions in Eqs. (8)-(10) more compact, the result is pre-
sented in Eqs. (14)-(17). This compact solution describes
the variable values for t′ times after a spike. In other
words, given a spike event that occurs when the variables
are equal to xb, yb, zb, ub, the variable values after t′ are
equal to x(t′), y(t′), z(t′), and u(t′).
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Figure 1: (a) Schematic representation of the neurotransmitter states in a synaptic connection. x, y, and z stand for recovered, active, and
inactive neurotransmitters, respectively. (b) Variable evolution x, y, z, u overtime for the facilitation regime. xb and x(0) stand by the x
variable immediately before and after the spike event, respectively. x∗ stands the fixed point of x after the transient time immediately before
the spike event in the periodic spike regime. x∗u∗ represents the amount of neurotransmitters removed from the recovered state x and added
to active state y. The same notation is used to identify the values of the variables before and after the spike event, as well as the fixed point
after the transient. In Figure (b), we fixed U = 0.1 and F = 2.5 Hz.

Synaptic map model - Periodic regime
For periodic presynaptic spikes with a certain frequency

F , the period between two spikes is given by T = 1/F and
we set t′ = t−tsp = T . The map is constructed by relating
the value of the variables at the time t′ = T (immediately
before the second spike)

(xn+1, yn+1, zn+1, un+1) = (x, y, z, u), (18)

with those of the variables at the time t′ = 0 (immediately
before the first spike)

(xn, yn, zn, un) = (xb, yb, zb, ub). (19)

Thus, this map relates the value of the variables immedi-
ately before two consecutive spikes. This is important be-
cause such values determine the changes in synaptic vari-
ables as well as the fraction of active neurotransmitters.

From Eqs. (14)-(17), we obtain the map for the synapse

xn+1 = (xn + yn)− zn[B(T )− 1]− (yn + xnun)E(T ),(20)

yn+1 = (yn + xnun)A(T ), (21)

zn+1 = {zn + (yn + xnun) [1−A(T )]}B(T ), (22)

un+1 = [un + U(1− un)]C(T ). (23)

Fixed point solutions
For periodic spikes, after a certain transient time, the

equilibrium point represented by x∗, y∗, z∗ and u∗ is achieved.
The equilibrium point is obtained by solving the system

(xn+1, yn+1, ...) = (xn, yn, ...) = (x∗, y∗, ...), (24)

which lead us to

x∗ = 1− y∗ − z∗, (25)

y∗ = [y∗ + x∗u∗]A(T ), (26)

z∗ = {z∗ + [y∗ + x∗u∗][1−A(T )]}B(T ), (27)

u∗ = [u∗ + U(1− u∗)]C(T ), (28)

and finally

x∗ =
A(T )[1 +B(T )] +B(T )− 1

D(T )
, (29)

y∗ =
A(T )[B(T )− 1]

D(T )
u∗, (30)

z∗ =
B(T )[A(T )− 1]

D(T )
u∗, (31)

u∗ =
UC(T )

1 + [U − 1]C(T )
, (32)

where

D(T )=A(T )B(T )[2u∗−1]+[A(T )+B(T )][1−u∗]−1, (33)

and A, B and C are defined in Eqs. (12), for t′ = T .

Approximation for low frequency

In the numerical simulation, we considered a small
value of the time for inactivation given by τina = 3 ms.
Such value generates a fast decay in the y variable, so that
we can approximate yn to zero in Eqs. (20), (21), and
(22). In this case, we also can approximate A(T ) to 0
since we can neglect A(T ) for the inactivation time con-
stant τina = 3 ms and low frequencies, rewriting the map
of Eqs. (20)-(22) as

xn+1 = xn − zn[B(T )− 1]− xnunB(T ), (34)

yn+1 = 0, (35)

zn+1 = {zn + [xnun]}B(T ), (36)

un+1 = [un + U(1− un)]C(T ). (37)

Noticing that B(T ) and C(T ) for the time constants τrec
= 800 ms and τfac = 1000 ms have typically a far from
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zero value for low frequencies and we can rewrite the fixed
points as

x∗ =
B(T )− 1

D
, (38)

y∗ = 0, (39)

z∗ =
−B(T )

D(T )
u∗, (40)

u∗ =
UC(T )

1 + [U − 1]C(T )
, (41)

where

D(T ) = B(T )[1− u∗]− 1. (42)

Numerical analysis

By a numerical approach, we study the synaptic regimes
as the function of the constant spike frequency F and the
amount of neurotransmitter released associated with the
parameter U . The range of U is taken in the interval from
the minimal (Umin=0) to the maximal fraction (Umax=1)
of neurotransmitters that can become active due to a spike
in a certain time. Values higher than 1 are related to an
amount of neurotransmitters higher than the available in
the synapse. There is no negative fraction of neurotrans-
mitters. The range for the frequency is taken in an appro-
priate interval where the regimes, maximal, and equilib-
rium values change considerably for the combinations of
U and F , for the parameters considered in our study [22].

To classify the synaptic regimes we considered the evo-
lution of y because it represents the effective fraction of
neurotransmitters that is transmitted from the presynap-
tic to the postsynaptic neuron [22]. To mentioning, the
synaptic current induced in the postsynaptic neuron is
given by

Isyn(t
′) = (V rev

pre − Vpost)gcy(t
′), (43)

where V rev
pre is the synaptic reversal potential associated

with the presynaptic neuron type (excitatory or inhibitory),
Vpost is the potential of the postsynaptic neuron, gc is the
maximal synaptic conductance in the chemical synapse,
and y(t′) is the fraction of active neurotransmitters re-
leased by the presynaptic neuron [22, 7, 48]. This quantity
described by the model is the effective amount of neuro-
transmitters released due to each spike event, which in the
considered case has amplitude

y(t′) = xbubA(t′) = yaA(t′). (44)

This value represents the fraction of neurotransmitters
in the active state that will arrive in the receptors. xb and
ub are the values of x and u variables immediately before
the spike, respectively, ya is the value of y immediately
after the spike. This quantity is the effective amount of
active neurotransmitters released due to each spike event.
Such values depend on the initial conditions and history
of the synaptic activity.

Synaptic Regimes - Periodic

Figs. 2 (a)-(c) show examples of the three different
regimes for periodic spikes, namely (a) facilitation, (b)
biphasic, and (c) depression. The red line represents the
fraction of active neurotransmitters, y(t), while the green
points, ya, represent the maximal value of y due to each
spike which describes the value of y immediately after the
spike event. Based on this value, we define the three synap-
tic regimes previously mentioned. Facilitation corresponds
to the synaptic regime where the value of active neuro-
transmitters only increases due to each spike or remains
with an equal intensity after the transient period. Depres-
sion is the case where the value of active neurotransmitters
only decreases due to each spike or remains at the same
value after a transient time. Biphasic is associated with
the synaptic regime where there is an increase and decrease
in the value of active neurotransmitters. ymax represents
the maximal value of y over time, while yfin indicates the
final amplitudes of y after the transient time for periodic
spikes. In Figs 2 (a)-(c), we considered F = 2.5 Hz, Fig.
(a) U=0.1 for facilitation, Fig. (b) U=0.4 for biphasic,
and Fig. (c) U = 0.8 for the depression regime. The men-
tioned parameters are indicated in Fig. 2 (d) by white
square, circle, and triangle, respectively.

Fig. 2 (d) displays the synaptic regimes in the parame-
ter space of the fraction of neurotransmitters released and
the periodic spike frequency, U and F , respectively. As can
be seen in the figure, the synaptic regimes are dependent
on the parameters. The facilitation regime is found for the
lowest frequency or smallest probabilities of neurotrans-
mitter release, or both conditions. Depression is mainly
found in the highest values of neurotransmitter release. A
biphasic regime appears between the two previously cited
regimes. In the map, we can identify the different regimes
taken into account if some conditions are satisfied. In the
facilitation regime, the amplitude of y variable will always
increase or be equal to the final value x∗u∗ if

xn(T )un(T ) ≤ xn+1(T )un+1(T ), (45)

for n > 1 with fixed U and T , otherwise, for the depression
regime, the amplitude of y variable will reduce or be equal
to the final value x∗u∗, if the condition

xn(T )un(T ) ≥ xn+1(T )un+1(T ) (46)

is satisfied for n > 1 with fixed U and T . If the Eqs.
(45) and (46) are satisfied in different iterations for n > 1,
and fixed T and U values, the synapse exhibits a bipha-
sic regime. If the fraction of neurotransmitter released
or frequency assumes values very near to zero, the value
of active neurotransmitters behaves as a linear dynamics
where there is no change on this value (very small frequen-
cies) or very close to zero (U close to zero), consequently,
it is not possible to identify the regime in the parameter
space. We identify such dynamics as “N/A” (not appli-
cable) since the considered methodology does not identify
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Figure 2: (a-c) Dynamics of the active neurotransmitters in the synapse for three different regimes, (a) facilitation, (b) biphasic, and (c)
depression. Red lines show the dynamics of active neurotransmitters represented by the y variable, and the green line with circles represents
the y amplitude immediately after the spike event, ya = y(0). In Figs. (a-c), we consider F=2.5 Hz, (a) U=0.1 for facilitation, (b) U = 0.4
for biphasic, and (c) U = 0.8 for depression regime. In Figs. (a-c), the maximal value of y overtime is identified as ymax while the final
amplitude of y is represented by yfin. (d) Regimes found in the dynamics synapses: facilitation, depression and biphasic. The facilitation and
depression regimes are identified by means of Eqs. (45) and (46). If both conditions of Eqs. (45) and (46) are satisfied over time we identified
the biphasic regime. The parameters U and F considered in Figs. (a-c) are indicated in Fig. (a).

such regimes, once conditions in Eqs. (45) and (46) be-
come close to equalities. The different regimes obtained in
our simulation, namely facilitation, depression, and bipha-
sic, qualitatively agree with experimental [22] and recon-
structions of synaptic dynamics in silico [49].

Final fraction of active neurotransmitters - Periodic

Fig. 3 (a) shows the time evolution of the variables
given by the model described by the ODE taking into ac-
count only the time immediately before the spike event.
The figure also exhibits the value of y immediately after
considering the spike event (ya) due to its importance in
synaptic communication. The values of the fixed points
of the map are determined by Eqs. (38)-(41). The black
dashed lines indicate the calculated fixed points x∗, y∗, z∗,
and u∗, as well as the final value of y immediately after
the spike event, yfin. The value of yfin is given by

yfin = x∗u∗. (47)

Such values do not depend on the historic and initial con-
ditions of the synapse. Note that for this model the initial
condition x(0), y(0), z(0), and u(0) must satisfy x(0) +
y(0) + z(0) = 1 and u(0)=[0,1].

As it can be observed, the calculated fixed points agree
with the evolution of the dynamics by Eqs. (1)-(4), as well
as the synaptic map model. Figs. 3 (b) and (c) show the
maximal and final value of y, where yfin is obtained after

the transient time. In Fig. 3 (b), the maximal value cor-
responds to the highest value of y due to its entire time
evolution given the initial condition of the synapse in the
rest. The maximal values in the temporal series are found
for the highest U and F values. However, these high-
est values of y might appear only briefly, cases observed
in depression and biphasic regimes. For facilitation, the
maximal y values correspond to yfin and are exhibited af-
ter the transient time. As can be seen in Fig. 3 (c), the
final values of y do not appear for large frequencies, but
there is a range of frequencies where yfin is higher. For
such a range of frequency, the higher values of U leads to
higher yfin.

Maximal fraction of active neurotransmitters - Periodic

We study the maximal fraction of active neurotrans-
mitters for a synapse initially on the rest. Figure 4 dis-
plays the number of map iterations to obtain the maximal
value of y from a synapse initially in the rest. We iter-
ate the map and plot the number of iterations to arrive at
the maximal fraction of active neurotransmitters. Figure
4 (a)-(d) shows the ya dynamics for (a) depression, (b)
and (c) biphasic, and (d) facilitation regime, identifying
the ymax by a blue square. For depression, the maximal
value occurs for n = 1 while for biphasic regime occurs
for n ≥ 2. Figure 4 (e) shows the n value to find ymax in
the synaptic map considering the initial condition of the

6



Figure 3: (a) Time evolution of the variable values immediately before considering the spike event on the synaptic model described by the
ODE (xb, yb, zb, ub). As the y variable is responsible for generating the current in the postsynaptic neuron, the value of y immediately after
considering the spike event (ya) and ymax, are also indicated in the figure. The black dashed lines represent the calculated equilibrium points,
x∗, y∗, z∗, and u∗ of the discrete map, as well as the final value yfin. The parameters U = 0.8 and F = 2.5 Hz are indicated in figures (b)
and (c) by a black X. (b) Maximal y values in the parameter space U ×F . ymax is obtained as the maximal value of y in the entire temporal
evolution of the model. (c) yfin in the equilibrium point, which is the y amplitude immediately after each spike past the transient time.

synapse on the rest state. The n value to obtain the ymax

varies on the parameter space F × U . To analytically de-
termine the maximal values for the three synaptic regimes,
we consider the following initial condition of the synapse
on rest,

x0 = 1, y0 = 0, z0 = 0, and u0 = 0. (48)

These values represent the state variables immediately
before the first spike. One map iteration takes them to the
states immediately before the second spike, given by

x1 = 1, y1 = 0, z1 = 0, and u1 = UC(T ). (49)

For the depression regime shown in Figure 4 (a), the max-
imal value of y is given by Eq. (15) for t′=0, and therefore
equal to

ymax = x1u1 = UC(T ). (50)

For the biphasic regime showed in Figure 4 (b,c), the max-
imal y value is also provided by Eq. (15) for t′=0, however
depending on the parameters that maximal is only reached
after a certain number of spikes. So,

ymax = xiui, (51)

where i representing the number of spikes applied to the
initial condition at rest can assume values equal to 2, 3,
4, . . .. Abusing the notation and dropping the argument
(T ) of A(T ), B(T ), and C(T ), for simplicity, the variable
states immediately before the second spike is given by

x2 = 1− UBC, y2 = 0, z2 = UBC, (52)

and u1 = UC2 + UC(1− UC). (53)

Inputting these values into Eq. (15) provides the potential
maximal value after 2 spikes of the neuron (i = 2) given
by

ymax = x2u2 = U{2C − UC2[1 + 2B −BC]}.

This maximal value for i = 2 is predominant in the pa-
rameter space F × U for the biphasic regime. The larger
the value of i, the smaller the area in the parameter space,
showing that it is less likely to be observed. Notice that
to calculate the maximal values analytically, the larger the
value of i the larger the degree of the polynomial associated
with the solution sought. So, we only calculate maximal
values up to i=2.

Finally, for the facilitation regime shown in Figure 4
(d), the maximal value of y is asymptotically increasing

7



Figure 4: y variable after the spike (ya) for different values of the parameter of U identifying the maximal value (ymax). In Fig. (a-d), we fix
F=9 Hz, (a) U=0.6, (b) U=0.4, (c) U= 0.15 and (d) U=0.01. Fig. (e) shows the number of iterations to find the maximal value of y from
the rest state of the synapse.

towards the equilibrium point and can be calculated by
using the values from the equilibrium points in Eqs. (38)
and (41) into Eqs. (14) and (17), and then plugging these
values into Eq. (15) for t′ = 0. Keeping in mind that
x∗ and u∗ are the equilibrium values for x and u, for the
facilitation regime we have

ymax = x∗u∗ = yfin. (54)

For F higher than 10 Hz, the synaptic regimes, n and
the maximal values of active neurotransmitters have just
a small shift in the parameter space for the constant pa-
rameters considered. However, as F increases, the fraction
of active neurotransmitters in the equilibrium decreases.

Mean Synaptic map model - Poisson

In this section, we consider non-periodic spike times
given by a homogeneous Poissonian process to generate
the time of spikes tsp. Different from the periodic case,
the time interval T between two spikes is not constant but
rather is described by a Poisson process and thus assumes
different values for each iteration. Namely, for N+1 itera-
tions, we have T0, T1, T2, ... , TN , where N is considered as
a large integer value. Just showing the iteration for these
time intervals for the y variable described by Eq. (21), we
have

y1(T0) = y0A(T0) + x0u0A(T0), (55)

y2(T1) = y1A(T1) + x1u1A(T1), (56)

y3(T2) = y2A(T2) + x2u2A(T2), (57)

... = ... + ... (58)

yN+1(TN ) = yNA(TN ) + xNuNA(TN ). (59)

Considering the sum of all the terms in the equations and
dividing by N + 1 to obtain a temporal average, we find

1

N + 1

N∑
n=0

yn+1(Tn) =
1

N + 1

N∑
n=0

[ynA(Tn) + xnunA(Tn)] .

Identifying the mean values by

yn+1 =
1

N + 1

N∑
n=0

yn+1(Tn), (60)

ynA(Tn) =
1

N + 1

N∑
n=0

ynA(Tn), (61)

xnunA(Tn) =
1

N + 1

N∑
n=0

xnunA(Tn), (62)

we can write the expression of the temporal average for
the y variable as

yn+1 = ynA(Tn) + xnunA(Tn). (63)

Taking into account that the product of the mean is equal
to the mean of products, we can rewrite the last expression
as

yn+1 = (yn + xn un)A(Tn). (64)

To determine the value of A(Tn), we consider the power
series expansion for exponential function in the case that

8



Tn << τfac, obtaining the approximation

A(Tn) =
1

N + 1

N∑
n=0

∞∑
m=0

1

m!

(
−Tn

τfac

)m

=
1

N + 1

∞∑
m=0

(−1)m

m!

(
Tm
0 + Tm

1 + Tm
2 + ...Tm

N

τmfac

)

≈
∞∑

m=0

1

m!

(
−T

τfac

)m

= A(T ). (65)

Using the same calculations for the other map variables
in Eqs. (20), (22), and (23), for a homogeneous Poisson
process, we obtain the map evolution of the temporal av-
erage given by

xn+1 = (xn + yn)− zn[B(T )− 1]− (yn + xn un)E(T ),(66)

yn+1 = (yn + xn un)A(T ), (67)

zn+1 = {zn + (yn + xn un) [1−A(T )]}B(T ), (68)

un+1 = [un + U(1− un)]C(T ). (69)

The temporal averaged map for the Poissonian presy-
naptic spikes exhibits the same evolution as the synaptic
map for presynaptic neurons spiking periodically, since the
equations are the same. These equations for the temporal
averaged map admit a solution for the equilibrium point if

xn+1 = xn = x∗, (70)

yn+1 = yn = y∗, (71)

zn+1 = zn = z∗, (72)

un+1 = un = u∗. (73)

Since Eqs. (20)-(23) are the same as Eqs. (66)-(69), the
equilibrium points of the periodic stimulus are the same for
the mean values in Poissonian stimulus. The mean value
of the active neurotransmitters for Poisson spikes remains
the same as the final value of active neurotransmitters for
the periodic spikes. In other words, the time average value
of xu immediately before spikes for both the Poissonian
and periodic spikes tends to product x∗u∗. Based on that
result, our analysis suggests that the average behaviour of
a synapse forced by Poissonian spikes is determined by the
dynamics of synapses driven by periodic spikes.

Distinguishing from the periodic case, when the spikes
follow a Poisson process it is not possible to determine the
synaptic regimes since the fraction of active neurotrans-
mitters released oscillates in time with higher and lower
values than the periodic spikes. For this reason, the maxi-
mal values of y can be significantly higher for the Poisson
spikes than for the periodic ones.

2. Conclusions

In this paper, we study short-term plasticity consid-
ering the model proposed by Tsodyks et al. [22]. We
focus our analysis on the synaptic regimes facilitation, de-
pression, and biphasic that emerge as a function of the

frequency and fraction of released neurotransmitters. De-
pression regime is mainly dependent on the percentage of
released neurotransmitters, while facilitation is observed
for low frequencies or small amounts of neurotransmitter
release, or for both cases. The biphasic regime is found be-
tween the facilitation and depression, being a combination
of both regimes. This model presents both depression and
facilitation mechanisms. Some simplified versions provide
only one of such regimes. It takes in account the emergence
of both regimes depending on the synaptic parameters and
firing frequency.

Our main result was to obtain an approximated solu-
tion for the set of differential equations and derive a map
where the synaptic dynamics can be understood in terms
of the time intervals between the spike events. From this
map, we determined analytically the equilibrium points
for periodic spiking regimes, allowing for the determina-
tion of the asymptotic values of active neurotransmitters
as a function of the frequency, the probability release of
neurotransmitters, and the time constants. We also de-
termined the expected maximal and asymptotic values for
the three synaptic regimes. We observe that the highest
value of active neurotransmitters occurs by a brief time
period from the rest regime in the depression and bipha-
sic regime, while for the facilitation regime, the maximal
values are the asymptotic ones.

Furthermore, we obtain a temporal average map when
the time intervals between spikes follow a Poisson distribu-
tion and show that the equilibrium point for such a con-
figuration is the same as found for the periodic spikes.
This result suggests that the time average dynamics of a
stochastic driven synapse emulating presynaptic spikes by
a complex neural network is regulated by the periodically
driven synapses.

To better understand the dynamic response of our syn-
aptic model in the presence of presynaptic neurons, we
consider that these neurons spike following a Poisson dis-
tribution. This hypothesis is often done in the literature.
However, other more general stochastic dynamics could
be considered as a way to emulate the spiking regime of
neurons connected in a network. A stochastic description
would, however, be an approximation. Ideally, the spiking
regime of presynaptic neurons should be determined either
experimentally or by a neural network of realistic neural
models connected under a synaptic model that could be
ours.

One practical implication of our results is the analytical
description of the synaptic dynamics, which can provide
insights into how neurons communicate and synchronize.
Our map has analytical solutions, then very large neu-
ronal networks, considering our realistic synaptic model,
can be considered to make simulations in computational
neuroscience, artificial neural networks, and neuroengi-
neering. It is possible to obtain analytical solutions of the
synaptic dynamics, thus speeding up simulations of very
large multi-synaptic networks [50]. In addition, since the
alternation of the fraction of neurotransmitters released
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is observed in some neuronal disorders [51, 52], develop-
ing drugs capable of restoring the normal fraction on the
synapses can be a potential strategy to relive symptoms
or treat brain diseases. Advances in the research on such
topic can be based on the theoretical results showed in the
present work.

We believe that our results can allow other neurosci-
entist to construct neuronal networks with a biologically
relevant synaptic model that can be analytically solved.
In the future, we plan to extend the results for correlated
spikes, burst patterns [53], inhomogeneous spike times [54]
as well as spike sequences induced by spontaneous network
activities [55].
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