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Noise-induced synchronization is a pervasive phenomenon observed in a multitude of natural and
engineering systems. Here, we devise a machine learning framework with the aim of devising noise
controllers to achieve synchronization in diverse complex physical systems. We find the implicit
energy regularization phenomenon of the formulated framework that engenders energy-saving arti-
ficial noise, and we rigorously elucidate the underlying mechanism driving this phenomenon. We
substantiate the practical feasibility and efficacy of this framework by testing it across various rep-
resentative systems of physical and biological significance, each influenced by distinct constraints
reflecting real-world scenarios.

Introduction.—Noise-induced synchronization is a
widespread phenomenon observed in various physical sys-
tems, encompassing from chaotic to limit-cycle oscillators
[1–6]. Among the various paradigms of synchronization,
complete synchronization (CS) has been extensively dis-
cussed in the presence of noise [7, 8]. Since Maritan and
Banavar claimed that two chaotic systems subjected to
the same and sufficiently strong noise can achieve syn-
chronization [9], the mechanisms of common noise en-
hancing CS and its variants have been a highly relevant
topic [4, 10, 11]. Apart from the common noise, the im-
pact of uncorrelated and correlated noise on synchroniza-
tion has garnered research attention recently [12, 13].

To reveal the complicated mechanism of noise-induced
synchronization, previous work has primarily focused on
investigating the local stability of the synchronization
manifold [7, 14], or on exploring the global stability via
analytically designing the Lyapunov function for the syn-
chronization error dynamics [15, 16]. However, all these
methods are system-specific and pose challenges in de-
vising synchronous noise for general networked systems.

In this Letter, we devise and formulate the Artificial-
Intelligence Noise (AIN) Synchrony, an inaugural and
scalable framework for proficiently devising the noise con-
trollers to attain the CS in diverse physical systems, inte-
grating the stochastic stabilization theory with the ma-
chine learning techniques. Indeed, the devised AIN Syn-
chrony is not only of mathematical rigorousness, but also
applicable to stabilizing the synchronization manifold in
both local and global manners. We illustrate its efficacy
and practical feasibility using a wide range of represen-
tative systems, including chaotic and networked dynam-
ics of limit-cycle oscillators. The results demonstrate
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that the machine-learning-coined noise can remarkably
achieve energy-saving synchrony, which consumes low en-
ergy cost in the control process. We call this phenomenon
as implicit energy regularization, and theoretically un-
cover the universal mechanism that produces it.
Problem setup and notations.—We consider the col-

lective dynamics of coupled oscillators, expressed in a
general form as:

dxi

dt
= M0(xi,µ0) +

n∑
j=1

AijM1(xi,xj ,µ1), (1)

where xi ∈ Rd (i = 1, ..., n) is the oscillatory state of the
i-th node, M0 represents the self-dynamics of oscillators
and exhibits a (unstable) limit cycle or chaotic attrac-
tor, denoted by s and satisfying ds/dt = M0(s,µ0), M1

describes the i, j pairwise interaction, and A = (Aij) ∈
Rn×n captures the interacting structure between the os-
cillators. Although the systematic parameters µ0,1 char-
acterizing the dynamics M0,1 may be potentially dis-
tributed across the system’s components, in this Letter
we focus on the common µ0,1 requiring that there exists
a synchronous manifold M = {xi = s, i = 1, ..., n}. We
further require the coupling terms to be synchronization
non-invasive, i.e.,

∑n
j=1 AijM1(s, s,µ1) = 0, which is

satisfied when the interacting structure A is the Lapla-
cian or the coupling function vanishes at the synchronous
manifold M1(s, s,µ1) = 0. We aim at designing only
noise controllers such that: (1) The network achieves
the CS physically, that is, xi(t) → M (t → +∞) for
all i, (2) the noise can act flexibly to any experimentally
feasible parts of a system under consideration, including
the parameters µ0,1, the interacting structure A, and the
external forces, (3) and the controller adapts to practical
requirements from the real-world scenarios, such as pin-
ning control, communication constraints, and the com-
mon or uncorrelated noise.

AIN Synchrony.—For brevity of presentation, we suc-
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cinctly denote the collective dynamics (1) as dx/dt =
F (x,µ) with x = (x⊤

i , ...,x
⊤
n )

⊤ and µ = {µ0,µ1}.
Consider the noise controlled variational dynamics of
ξ = x−E ⊗ s with zero solution ξ ≡ 0 as follows,

dξ = [F (ξ +E ⊗ s,µ)−M0(s,µ0)] dt+ u(ξ, s)dBt,

≜ G(ξ, s)dt+ u(ξ, s)dBt,
(2)

where E = (1, ..., 1)⊤ ∈ Rn, ⊗ is the Kronecker product,
u ∈ Rnd×r is the state-dependent stochastic controller,
andBt is the r-dimensional (r-D) Brownian motion. The
detailed formulation of how the noise controller acts on
the parameters µ, the structure A, and the external
forces are provided in Supplemental Material (SM)-S1.
We propose the stability theory for devising the diffusion
term u to stabilize the variational dynamics (2). The
proof of this theory is included in SM-S2.

Theorem 1.— Suppose that there exists a function V ∈
C1,2(R×Rnd;R≥0) such that V (0, t) = 0, V (ξ, t) ≥ c∥ξ∥p
for constants c, p > 0, and[

∇V (ξ, t)⊤u(ξ, s)
]2

V (ξ, t)2
− b · LV (ξ, t)

V (ξ, t)
≥ 0, ξ ̸= 0, (3)

for some b > 2. Here, L represents Itô’s derivative sat-
isfying LV = Vt + ∇V ⊤G + Tr

[
u⊤∇2V u

]
/2, ∇ rep-

resents the gradient operator with respect to ξ, Tr[·]
represents the trace of a given matrix, and the limit

limx→0
∥∇V (x,t)⊤u(x,t)∥2

V (x,t)2 > 0 holds. Then, for k > 0, we

obtain lim supt→+∞
1
t log ∥ξ(t)∥ ≤ −k b−2

2bp in a physical

sense (i.e., with probability one).
Parameterization.—Manually seeking the functions

pair V , u satisfying the above conditions including (3)
is impractical due to the complexity and nonlinearity of
the original dynamics G. To address this, we introduce
the machine learning techniques and devise an algorithm
that leverages G and s to identify the expected functions
pair Vθ and uϕ, where θ and ϕ represent the parameters
of the neural networks to be trained. To enhance train-
ing efficacy, we establish the neural networks such that
Vθ and uϕ meet specific prerequisites. Specifically, we
construct the function Vθ as Vθ(ξ, t) = gθ(ξ, t) + ε∥ξ∥2,
where gθ is a second-order differentiable input convex
neural network [17, 19] wherein g(0, t) = 0 and ε is
a small hyperparameter guaranteeing the positive defi-
nite lower bound of Vθ. To proceed, we parametrize a
synchronous-noninvasive controller with uϕ(0) = 0 and
limit the Lipschitz constant of the controller using the
spectral norm regularization method [18, 20]. The de-
tailed formulation of Vθ and uϕ is provided in SM-S6.
We theoretically validate the validity of the conditions
assumed in Theorem 1 for the parameterized neural net-
works in SM-S2.

Loss function.—After parameterizing Vθ and uϕ,
we need to ensure the controlled variational dynam-
ics (2) satisfying the conditions established in (3). As
such, we can attain the CS in the original collec-
tive dynamics (1) under noise control. To do so,

we heuristically devise the loss function as L(θ,ϕ) =

1
m

∑m
i=1

{
b·LVθ(ξi,ti)
Vθ(ξi,ti)

− [∇Vθ(ξi,ti)
⊤uϕ(ξi,s(ti))]

2

Vθ(ξi,ti)2

}+

, where

{ξi, s(ti), ti}mi=1 is the training dataset and {·}+ denotes
the operation of max(0, ·). To circumvent the drawback
that training on the finite dataset may not guarantee the
validity of the stability condition in Eq. (3) on the whole
space, we further provide a stability guarantee theory to
endow the stability guarantee to the current framework
(More details refer to SM-S2).

Theorem 2.— With the functions specified in Theo-
rem 1, denote by M the maximal Lipschitz constant of
∥∇V ⊤u∥2 and LV ·V on D, where D is a bounded state
space. Further denote by D̃ the finite discretization of D
with size r such that, for each x ∈ D, there exists x̃ ∈ D̃
with ∥x− x̃∥ < r. If there exists a constant 0 ≤ δ ≤ Mr
such that −∥∇V (x̃, t)⊤u(x̃, t)∥2 + b · LV (x̃, t)V (x̃, t) +
(2 + b)Mr ≤ δ for all x̃ ∈ D̃\{0}. Then, the controller
u rigorously satisfies the stability condition in Eq. (3).
Therefore, the learned noise controller rigorously satis-
fies the stability condition through replacing the training
dataset by D̃ and slightly modifying the loss function
with the newly added term (2 + b)Mr.

Accerelating the training process.—The computational
cost for computing the Hessian matrix in Tr[u⊤∇2Vθu]
is O(d2), which hinders the framework from scaling
to higher dimensional tasks. To reduce the compu-
tational cost, we establish an unbiased estimator as
Tr

[
u⊤∇2Vθu

]
= E

[
(∇(η⊤∇Vθ))

⊤uu⊤η
]
, where η is

a d-D noise vector with zero means, commonly re-
ferred to as Hutchinson’s trace estimator [21]. We
thus substitute this expectation representation with
the Monte Carlo estimator, so that Tr

[
u⊤∇2Vθu

]
≈

1
m

∑m
i=1

(
∇(η⊤

i ∇Vθ)
)⊤

uu⊤ηi with m noise vectors dur-
ing our training process. This approach reduces the com-
putational cost from O(d2) to O(md), improving the ef-
ficiency of the AIN Synchrony in the higher dimensional
task, especially for m ≪ d.

Except for considering the ground-truth variational dy-
namics (2), we can also apply the above-established ma-
chine learning framework to the traditional linearization
equations dξ/dt = [In ⊗∇M0 +A⊗∇M1] ξ, which
find extensive application in the master stability func-
tion theories for realizing CS [22, 23] (see SM-S3). In
addition, as suggested by the stabilization theory, our
framework can also be extended to the non-autonomous
dynamics, such as the coupling matrix A = A(t) varies
temporally (see SM-S4 and SM-S6.4).

To proceed, we numerically validate the efficacy and
flexibility of the AIN Synchrony using several represen-
tative physical models under the realistic constraints.

AIN Synchrony for driving-response Lorenz systems.—
We investigate the unidirectionally-coupled Lorenz sys-
tems, where the driving and the response systems, re-
spectively, are dx1/dt = f(x1, σ, ρ, β) and dx2 =
f(x2, σ, ρ, β) + u(ξ,x1)dBt with xi = (xi, yi, zi)

⊤, ξ =
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FIG. 1. Synchronizing the driving-response Lorenz systems.
(a) Sketch on different noise controlling modes by the parame-
ter regulation and by the external forces. (b) The success rate
of 7 combinations of the regulated parameters, compared with
the pinning controller AINy. The dots in the left 7 bars repre-
sent the success rate with umax ∈ {1.0, 1.2, 1.4, 1.6, 1.8, 2.0},
where umax = maxx ∥u(x)∥∞. (c) The MSE between the
driving and the response systems under different controllers
with the shaded region representing the variance. (d) The
synchronization error at time 20 and the energy cost in the
controlling process against the strength of the linear con-
troller. The horizontal dashed lines represent the correspond-
ing values of the learned controller AINy. (e) The stability
of the controlled trajectories and the convexity of the learned
V function of linear controllers compared with that of AINy.
(f) The projection of VAINy −VLC10 to a random selected 2-D
section. (g) The energy cost, the convexity of the V function
for the AINy over the training process, and their Pearson cor-
relation coefficient ρ.

(ξ1, ξ2, ξ3)
⊤ = (x1−x2, y1−y2, z1−z2)

⊤, f(xi, σ, ρ, β) =

[σ(yi − xi), ρxi − yi − xizi, xiyi − βzi]
⊤
, and i = 1, 2.

The Lorenz system is characterized by three parameters
σ, ρ, β, being proportional to the Prandtl number, the
Rayleigh number, and certain physical dimensions of the
layer itself, respectively, which are all experimentally ad-
justable [24]. In addition, we apply the pinning control
on this system by partially controlling some variables of
the system. As shown in Fig. 1(a), we explore both the
parameters control and the pinning control for synchro-
nizing the response system to the attractor produced by
the driving Lorenz system. Firstly, we study whether
the CS of the driving-response systems is achieved by
solely regulating the parameters of the response sys-
tem using noise. For instance, we examine the impact
of adjusting the Prandtl number with noise, employing
u = (δσ(ξ)(y2 − x2), 0, 0)

⊤ with δσ(0) = 0 as the con-
troller. We employ a loss function after training and the
temporal average of the mean square error (MSE) be-
tween the driving system and the coupled response sys-
tem as indicators to evaluate the controller performance.
We consider totally 7 different combinations of the con-
trolled parameters, including Ω1 = {σ}, Ω2 = {ρ},
Ω3 = {β}, Ω4 = {σ, ρ}, Ω5 = {σ, β}, Ω6 = {ρ, β},
Ω7 = {σ, ρ, β}, with a requirement for the scale of the
learned noise umax to be less than 2 for realizing fea-

sible simulations. In Fig. 1(b), we compare Ω1:7 with
another pinning controller in the rate of successfully syn-
chronizing the driving-response systems over 50 samples.
The results indicate that the parameter β dominates the
behavior of the Lorenz system among all these three pa-
rameters. Moreover, the findings imply that parameter
regulation with noise is not always as effective as external
forces, which agrees with the intuition.

Next, we delve into the intricacies of the task of pin-
ning control. Initially, our focus centers on the pinning
controllers that act on the nodes x2 and y2, denoted by
AINx and AINy, respectively. As shown in Fig. 1(c),
AINy succeeds in this task while AINx does not, this im-
plies that node y exerts greater influence on the whole
dynamics compared to the node x in the Lorenz sys-
tem in the presence of the noise controller. Addition-
ally, we identify the pinning controller on both x and z,
denoted by AINxz, as efficacious. Furthermore, we com-
pare the AINy with the stochastic linear controllers LCk,
i.e., u = (0, k(ξ1 + ξ2 + ξ3), 0)

⊤ [25], that only acts on
y2 using different strengths k (= 1, ..., 15), in terms of
the MSE and the energy cost. Figure 1(d) reveals that
the AINy is significantly energy-saving than the linear
LCk for k ≥ 6 that successfully synchronizes the driving-
response systems, hinting an implicit energy regulariza-
tion in the AIN Synchrony. To gain more insights into
the observed implicit energy regularization, we focus on
the linear controller LCk and train Vθk

for each LCk
within our framework. We consider the spatial convexity

Eξ

[
1
nd

∑nd
i=1 λi(∇2V )

]
defined by the eigenvalues of the

Hessian matrix of V . Numerical comparisons of the spa-
tial convexity of Vθk

and VθAINy are presented in Fig. 1(e),
revealing that VθAINy

function of the AINy boasts the
greatest convexity among successful controllers. This
finding is further demonstrated in Fig. 1(f), where the
random projection onto the 2-D surface of the section
of VθAINy − VθLC10 exhibits a pronounced steepness. Fig-
ure 1(g) shows the anti-correlation between the energy
cost and the convexity of V in the training process, which
validates the implicit energy regularization from the nu-
merical perspective. Furthermore, the following theorem
elucidates the mechanism of these findings.

Theorem 3.— Consider the controlled dynamics in
(2) with the AIN Synchrony controller uϕ learned ac-
cording to the stability condition in Eq. (3). Then,
the loss function in the training process is equivalent
to the control energy in the control process by norm,

E = E
∫ T

0

∥∥∥u⊤
ϕ(x(t), s(t))Quϕ(x(t), s(t))

∥∥∥dt, where Q is

the variance matrix of the Brownian motion.

Consequently, as we minimize the loss function, the
control energy is optimized as well, which thus results in
the implicit energy regularization. More detailed demon-
strations are included in SM-S5.

AIN Synchrony for subcritical Landau-Stuart oscilla-
tor.—Consider coupled Landau-Stuart oscillators gov-
erned by the complex-valued differential equations: Żj =
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FIG. 2. Synchronizing the subcritical Landau-Stuart oscilla-
tors under different communication constraints. (a) Illustra-
tion of the CS task. (b) Bar plots of energy cost, succeeding
rate, transient time τ0.1 and stability at three different com-
munication modes for 50 sample trajectories, and the mean
first passage-time τ0.1 of the controlled process. All the in-
dices are normalized to [0, 1]. (c) Energy cost and (d) success
indicator R with time, where the dashed vertical lines repre-
sent the corresponding values of τ0.1.

(β+iγ+µ|Zj |2)Zj+
∑n

k=1 AjkZk for Zj ∈ C, j = 1, ..., n,
β < 0, and µ > 0. Here, the self-dynamics undergoing
the subcritical Andronov-Hopf bifurcation possesses an
unstable periodic orbit (UPO) [26]. We focus on synchro-
nizing the coupled oscillators to the UPO under several
typical communication constraints, e.g., (i) all oscillators
communicate, (ii) half of the oscillators communicate,
and (iii) none of the oscillators communicate (resulting
in a decentralized controller), as shown in Fig. 2(a).

We examine the impact of communication constraints
on the energy cost, the success rate of stabilization and
synchronization, the transient time from initial values to
the synchronization manifold on the UPO, and the sta-
bility of the controllers. We utilize the order parameter
R1 = 1

n

∑n
j=1 e

iθj as the synchronization indicator, where
θj is the argument of the complex variable Zj . Addition-
ally, we employ the distance R2 = 1

n

∑n
j=1 |Zj | between

the UPO and the controlled orbits as the stabilization in-
dicator. We set R = (R1+R2)/2 as the success indicator,
and the transient time is assessed by the empirical expec-
tation of the stopping time τp = inf{t ≥ 0 : 1− |R(t)| =
p} ∨ inf{t ≥ 0 : |R(t)| = 1 − p} over the trajectories
with a predefined accuracy p. The stability of the con-
trollers is captured by the reciprocal empirical average
of the standard variance of the trajectories. The results
are comprehensively presented in Fig. 2(b). Although
there is no significant difference in success rate and sta-
bility, we observed an interesting trade-off phenomenon
that the energy cost increases with the decreased com-
munication capability while the transient time decreases.
This property is further demonstrated in Figs. 2(c)-2(d).
The reason is that full communication optimally allocates
control resources, achieving the task with smaller con-
trol costs. As a result, the reduced energy leads to the
prolonged transient time since they have significant anti-
correlation.

AIN Synchrony for networked neuronal dynamics.—
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FIG. 3. Synchronizing the coupled FitzHigh-Nagumo oscilla-
tors on four respective networks. (a) The order parameter R
in the time interval [150, 200] under external stochastic forces
at three different types of noise intensities: Low (umax = 1.0),
middle (umax = 1.5), and high (umax = 2.0), for 10 realiza-
tions in each type of noise. Error bars indicate the variance.
(b) R150:200 of the noise perturbed system using the respective
networks over the weight perturbed strength δAmax ∈ [0, 2].
(c) The in-degree distribution of the four networks, where the
inset panel shows the difference among the peaks and the flat-
nesses of these networks. (d-g) The heat maps of the learned
optimal weighted perturbation structure.

Finally, we synchronize the higher-dimensional net-
worked dynamics using the coupled FitzHugh-Nagumo
(FHN) neuronal oscillators with two modes of artificial
noise, including direct driving force on each node and per-
turbing the coupling structure. The networked neuronal
dynamics are described by: dvi/dt =

(
vi − v3i /3− wi

)
+∑n

j=1 Lij/(1+e−10vj ) and dwi/dt = 0.1(vi+0.7−0.8wi),

where (Lij)n×n = (δij
∑n

j=1 Aij − Aij)n×n is the Lapla-
cian matrix of coupling matrix A = (Aij)n×n [27–29].
To quantify the synchronization of all the FHN oscilla-
tors, we employ the order parameter introduced in [30]

as, R = ⟨M2⟩−⟨M⟩2
1
N

∑N
i=1(⟨v2

i ⟩−⟨vi⟩2)
, where M = (

∑N
i=1 vi)/N is

the mean field and ⟨·⟩ represents the time average. As
such, R = 0 corresponds to the asynchronous regime,
while R = 1 indicates the CS state. For the external
noise forces, we compare the effects of the common noise
and the uncorrelated noise under different noise intensi-
ties in achieving the CS, we employ the Baydry, a real-
istic food-web network [31] with n = 128. As shown in
Fig. 3(a), common noise gets a larger order parameter
while uncorrelated noise exhibits smaller variance over
multiple realizations in all noise scales, forming an inter-
esting trade-off between performance and robustness. In
the latter control mode, we perturb the structure with
δA driven by the Brownian motion (see Table S1 in SM-
S1 for the detailed formulation). We investigate the in-
fluence of network structure using four coupling matrices,
viz., the Baydry, the directed Erdös and Rényi (ER) net-
work, and two scale-free networks (denoted by SF1 and
SF2) [32]. Fig. 3(b) shows the order parameter of the
noise-perturbed dynamics under four networks against
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the perturbation intensity δAmax = ∥δA∥∞. The CS
performance of the realistic network significantly exceeds
the others in the low intensity. As the intensity increases,
the ER network outperforms Baydry foodweb slightly,
and both outperform SF1, with SF1 surpassing SF2. To
uncover the mechanism behind this phenomenon, we an-
alyze the in-degree distribution plotted in Fig. 3(c). We
find that the distribution of the Baydry foodweb is the
most flat, having a heavy tail, while the peaks of the dis-
tributions ER, SF1, and SF2 tend towards zero. This
indicates that the impact of noise decreases gradually
as the homogeneity of the networks grows, as further
demonstrated in Figs. 3(d)-3(g).

Conclusion.—We have conceived and formulated a ma-
chine learning framework to artificially generate noise
controllers for synchronizing both general chaotic sys-
tems and limit-cycle systems. Harnessing the commuta-
tion property of the trace estimator, our framework scales
to any higher dimensional systems with a linear-order
computational cost. We applied our AIN Synchrony
framework to successfully synchronize several represen-
tative systems under different constraints conforming to
realistic scenarios. The results reveal that the machine-
learning-coined noise has an implicit energy regulariza-
tion phenomenon, inducing the energy-saving synchrony.
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S1. DETAILED FORMULATION OF FLEXIBLE NOISE CONTROL

In this section, we give an explicit description on how the noise controller acts flexibly on the experimentally feasible
parts of the original system, including (i) regulation of the systematic parameters, (ii) perturbation to the interacting
structure, and (iii) addition of the external forces. Recall the original collective dynamics as follows,

dxi

dt
= M0(xi,µ0) +

n∑
j=1

AijM1(xi,xj ,µ1). (S1.1)

In the main text, the nonlinear controlled variational dynamics (S1.1) can be written as the following compact
concatenated vector form:

x = (x⊤
i , · · · ,x⊤

n )
⊤ ∈ Rnd, ξ = x−E ⊗ s,

dx = F (x,µ, t)dt,

dξ = [F (ξ +E ⊗ s,µ, t)−M0(s,µ0)] dt+ u(ξ, s)dBt,

≜ G(ξ, s, t)dt+ u(ξ, s)dBt.

(S1.2)

In order to clarify the controlling formulation, we consider the oscillator-wise controlled variational dynamics as

dξi =

M0(ξi + s,µ0)−M0(s,µ0) +

n∑
j=1

AijM1(ξi + s, ξj + s,µ1)

dt+ ui(ξ, s)dBi(t), (S1.3)

with udB(t) =
[
(u1dB1(t))

⊤
, · · · , (undBn(t))

⊤
]⊤

. We now give the specific expression of the diffusion term ui in

all cases mentioned above.

(i) We regulate the systematic parameters µ0,1 of ith oscillator with artificial noise denoted by (δµ0,1)i, where
(δµ0,1)i represents the scale of the noise. We require the noise control is non-invasive so that the system does
not need extra control to sustain the synchronization state, so we let the scale be closed-loop and vanish at
zero, that is, (δµ0,1)i = [(δµ0,1)ϕ]i(ξ, s), [(δµ0,1)ϕ]i(0, s) = 0, parameterized by the neural networks with

parameters ϕ. In this way, the diffusion term in the SDE (S1.3) takes the following form:

ui(ξ, s) = M0(ξi + s,µ0 + δµi
0(ξ, s))−M0(s,µ0 + δµi

0(ξ, s)) +

n∑
j=1

AijM1(ξi + s, ξj + s,µ1 + δµj
1(ξ, s)).

(ii) If we perturb the weighted coupling structure A = (Aij) with noise scale δA = (δAij), under the same non-
invasive principle, we have two kinds of choices: One is the constant matrix with Laplacian form, i.e.,

∑
j δAij = 0

for each row i; the other is the closed-loop type control vanishing at zero, i.e., δAij = δAij(ξ), δAij(0) = 0.
In reality, changing the scale of the perturbation of each link continuously is computationally infeasible and
energy-consuming, so in this work, we focus on the former type of non-invasive perturbation. In this way, the
diffusion term is

ui(ξ, s) =

n∑
j=1

δAijM1(ξi + s, ξj + s,µ1).

Here we set δA as a trainable matrix and our framework can find the optimal perturbation structure under
limited resources such as δAij ≤ γ for some prescribed threshold γ, as shown in the Fig. 3(h-k) in the main text.

(iii) Finally, for the direct external forces, the diffusion term has no explicit dependence on the original dynamics
and systematic parameters. We simply set ui as the output of the neural network, to take realistic factors into
consideration, we truncate each component of ui such that it stays in some practically feasible set [−γ, γ]. We
give a detailed formulation of this kind of controller in the next section.

After we train the neural networks and find the optimal noise controllers with the variational equation (S1.3), we
apply the controllers to the original dynamics as

dxi =

M0(xi,µ0) +

n∑
j=1

AijM1(xi,xj ,µ1)

 dt+ ui(x−E ⊗ s, s)dBi(t). (S1.4)
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Appendix on formulation of noise controllers.–We present the explicit formulation of how the noise controller acts
flexibly to the experimentally feasible parts of the original system, including (i) regulating the systematic parameters,
(ii) perturbing the interacting structure, and (iii) directly adding the external forces in Tabs. S1. For reference, the
controlled systems obey the following dynamics:

dxi =

M0(xi,µ0) +

n∑
j=1

AijM1(xi,xj ,µ1)

dt+ ui(ξ, s)dBi(t).

We also present how the controller adapts to practical constraints from the real-world scenarios in Tabs. S2. As an
aside, although we only list the conditions considered in this Letter, the AIN Synchrony has the ability to adapt to any
other constraints because our framework proposes a general rule for learning noise controllers, which is independent
of the realistic constraints.

TABLE S1. Detailed formulation of the noise controller in different cases. Items with subscript ϕ represent the output of the
neural network controller with trainable parameters ϕ.

Controlled parts Controller ui(ξ, s) Learning Target (Type)

Parameter regulation
M0(ξi + s,µ0 + [(δµ0)ϕ]i(ξ, s))−M0(s,µ0 + [(δµ0)ϕ]i(ξ, s)) (δµ0)ϕ(ξ, s) (Feedback function)

+
∑n

j=1 AijM1(ξi + s, ξj + s,µ1 + [(δµ1)ϕ]j(ξ, s)) (δµ1)ϕ(ξ, s) (Feedback function)

Structure perturbation
∑n

j=1[(δA)ϕ]ijM1(ξi + s, ξj + s,µ1) (δA)ϕ (Constant matrix)

External forces (uϕ)i(ξ, s) uϕ(ξ, s) (Feedback function)

TABLE S2. Introduction of the constraints from the real-world scenarios.

Constraints (reference) Description Implementation

Pinning control on intra-structure ([1]) Controller acts on varying component set Ni ⊂ {x1
i , ..., x

d
i } for node xi Fig. 1

Pinning control on inter-structure ([2]) Controller acts on partial node set N ⊂ {x1, ...,xn} Fig. S2 in SM
Communication constraints ([3]) Input varying node set Ni ⊂ {x1, ...,xn} to each ui Fig. 2

Common noise ([4]) ui is driven by the same Brownian motion Bi = B Fig. 3
Uncorrelated noise ([5]) ui is driven by the correlated Brownian motion with Cov(B1, ...,Bn) = In×n Fig. 3
Varying connection ([6]) Inter-structure A is time varying Fig. S1 in SM
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S2. STOCHASTIC STABILIZATION THEORY

In this section, we prove the main stochastic stabilization theorem used in our framework. The main idea is inspired
by the stochastic stabilization theory in [7]. The theorem is formally proposed as follows,

Theorem S2.1 Consider the following controlled SDE:

dx(t) = G(x(t), t)dt+ u(x(t), t)dBt, t ≥ 0, x(0) = x0 ∈ Rd. (S2.5)

We let G(0, t) = 0, u(0, t) = 0 such that 0 is the equilibrium of both the original system and the controlled system.
To guarantee the existence and uniqueness of the SDE (S2.5), we assume that the drift and diffusion terms satisfy
the locally Lipschitzian continuity, that is, for every integer n ≥ 1, there is a number Kn > 0 such that

∥G(x, t)−G(y, t)∥ ≤ Kn∥x− y∥, ∥u(x)− u(y)∥F ≤ Kn∥x− y∥,

for any x,y ∈ Rd with ∥x∥ ∨ ∥y∥ ≤ n, where ∥ · ∥F represents the Frobenius norm. Suppose the following conditions
hold simultaneously:

(i) the state space of the SDE (S2.5) is a prescribed bounded region, denoted by Ω,

(ii) there exists a function V ∈ C1,2(R× Rd;R) such that V (0, t) = 0, V (x, t) ≥ c∥x∥p for some constants c, p > 0,

and limx→0
∥∇V (x, t)⊤u(x, t)∥2

V (x, t)2
> 0, and

(iii) the following inequality holds,

∥∇V (x, t)⊤u(x, t)∥2

V (x, t)2
− b · LV (x, t)

V (x, t)
≥ 0, x ̸= 0, (S2.6)

for some b > 2.

Then we have

lim sup
t→∞

1

t
log ∥x(t;x0)∥ ≤ −k

b− 2

2bp
a.s., (S2.7)

for some constant k > 0.

Proof. By applying Itô’s formula [8] to log V (x(t), t) we have

d log(V (x(t), t)) =
dV (x(t), t)

V (x(t), t)
− dV (x(t), t)⊤dV (x(t), t)

2V (x(t), t)2

=
∇V (x(t), t)⊤dx(t) +

1

2
Tr[dx(t)∇2V (x(t), t)dx(t)]

V (x(t), t)
− (∇V (x(t), t)⊤dx(t))2

2V (x(t), t)2

=

[
LV (x(t), t)

V (x(t), t)
− (∇V (x(t), t)⊤u(x(t), t))2

2V (x(t), t)2

]
dt+

∇V (x(t), t)⊤u(x(t), t)2

V (x(t), t)2
dBt

=

[
LV (x(t), t)

V (x(t), t)
− (∇V (x(t), t)⊤u(x(t), t))2

bV (x(t), t)2
+ (

1

b
− 1

2
)
(∇V (x(t), t)⊤u(x(t), t))2

V (x(t), t)2

]
dt

+
∇V (x(t), t)⊤u(x(t), t)2

V (x(t), t)2
dBt

≤ −δ
(∇V (x(t), t)⊤u(x(t), t))2

V (x(t), t)2
dt+

∇V (x(t), t)⊤u(x(t), t)2

V (x(t), t)2
dBt,

(S2.8)

where δ = 1
2 −

1
b > 0. Denote by M(t) the martingale

∫ t

0
∇V (x(s),s)⊤u(x(s),s)2

V (x(s),s)2 dBs. Then, by virtue of the exponential

martingale inequality [7], we have

P
{

sup
≤t≤n

[
M(t)− ε

2

∫ t

0

(∇V (x(s), s)⊤u(x(s), s))2

V (x(s), s)2
ds

]
>

2

ε
log n

}
≤ 1

n2
,
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for any ε ∈ (0, 1) and integer n ∈ Z+. According to the Borel-Cantelli lemma [9], we know that there exists an integer
n0 such that the following inequality

M(t) ≤ 2

ε
log n+

ε

2

∫ t

0

(∇V (x(s), s)⊤u(x(s), s))2

V (x(s), s)2
ds, n ≥ n0, 0 ≤ t ≤ n

holds almost surely. Combining with Eq. (S2.8), we have

log V (x(t), t) ≤ −
(
δ − ε

2

)
kt+

2

ε
log n+ log V (x0),

where k = infx∈Ω
∥∇V (x,t)⊤u(x,t)∥2

V (x,t)2 ≥ 0. From the condition (ii) and the smoothness of the functions V and u, it

follows that there exists γ > 0, such that

inf
x∈O(γ)

∥∇V (x, t)⊤u(x, t)∥2

V (x, t)2
≥ 1

2
lim
x→0

∥∇V (x, t)⊤u(x, t)∥2

V (x, t)2
> 0,

inf
x/∈O(γ)

∥∇V (x, t)⊤u(x, t)∥2

V (x, t)2
> 0.

Then, we have

k = min

{
inf

x∈O(γ)

∥∇V (x, t)⊤u(x, t)∥2

V (x, t)2
, inf
x/∈O(γ)

∥∇V (x, t)⊤u(x, t)∥2

V (x, t)2

}
> 0.

This thus implies that

1

t
log V (x(t), t) ≤ −

(
δ − ε

2

)
k +

1

t

(
2

ε
log n+ log V (x0)

)
≤ −

(
δ − ε

2

)
k +

1

n− 1

(
2

ε
log n+ log V (x0)

)
, n− 1 ≤ t ≤ n.

Finally, letting t → ∞ and ε → 0 yields

lim
t→∞

1

t
log V (x(t), t) ≤ −δk.

This consequently implies that

lim
t→∞

1

t
∥x(t)∥ ≤ −δk

p
= −b− 2

2bp
k,

which therefore completes the proof.

Now, we explain why the proposed framework in the main text satisfies the conditions (i) and (ii) required in the
Theorem S2.1. Firstly, if we consider the dynamics with a chaotic or periodic attractor, the variational dynamics
between the original oscillators and the manifold is bounded due to the boundedness of the attractors. If we consider
the unstable limit-cycle oscillators, we only focus on synchronizing the oscillators initiating inside the limit-cycle so
the state space is bounded by some region taking the limit-cycle as the border. Therefore, the state space of the
variations defined in the main text is always bounded, which meets the condition (i). Secondly, we construct the V
function as a strictly convex function according to the ICNN [10]. Taking d = 1 for an example, by L′Hôpital rule,
we have

lim
x→0

V ′(x, t)u(x)

V (x, t)
= lim

x→0

V ′′(x, t)u(x) + V ′(x, t)u′(x)

V ′(x, t)
= u′(0).

So we have

lim
x→0

(V ′(x, t)u(x))2

V 2(x, t)
= u′(0)2.

The similar relation holds true for d > 1, since we use Tanh(·) and ReLU (·) as the activation functions in the
parametrization of the controller u; this controller u has linear order in the vicinity of 0 and hence ∇u(0) ̸= 0. These
thus guarantee the validity of the condition (ii) in our framework.
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Discretization and Stability Guarantee. Next, we provide a stability guarantee theory for our stabilization
theory, in a way that we can improve the machine learning framework such that the learned controller satisfies the
stability condition (iii) in Theorem S2.1 in the whole state space, and therefore ensure the rigorous stability for the
controlled system. Our idea is roughly based on the finite covering of state space and the local upper bound estimation
ensuing from the Lipschitz condition.

Theorem S2.2 (Stability Guarantee Theory) With the functions specified in Theorem S2.1, denote by M =
M(G,u, V,D) the maximum of the Lipschitz constants of ∥∇V ⊤u∥2 and LV V on D, where D is a bounded state
space. Also, denote by D̃ the mesh grid discretization of D and by r the mesh size, such that, for each x ∈ D, there
exists x̃ ∈ D̃ with ∥x− x̃∥2 < r. Suppose that there exists a non-negative constant δ ≤ Mr such that

−∥∇V (x̃, t)⊤u(x̃, t)∥2 + b · LV (x̃, t)V (x̃, t) + (2 + b)Mr ≤ δ, ∀x̃ ∈ D̃, x̃ ̸= 0. (S2.9)

Then, the controller u satisfies the stability condition (iii) specified in Theorem S2.1.

Proof. From the condition, we know that ∥∇V (x̃, t)⊤u(x̃, t)∥2− b · LV (x̃, t)V (x̃, t)− (1+ b)Mr ≥ 0. For any x ∈ D,
there exists x̃,∈ D̃ s.t. ∥x− x̃∥2 ≤ r. By interpolation, we have

∥∇V (x, t)⊤u∥2 − b · LV (x, t)V (x, t)

=− ∥∇V (x̃, t)⊤u(x̃, t)∥2 + ∥∇V (x, t)⊤u(x, t)∥2 + ∥∇V (x̃, t)⊤u(x̃, t)∥2

− b · LV (x̃, t)V (x̃, t)− b · LV (x, t)V (x, t) + b · LV (x̃, t)V (x̃, t)

≥(1 + b)Mr −Mr − bMr ≥ 0,

Since V > 0 for any x ̸= 0, the condition (iii) in Theorem S2.1 holds. The proof is complete.

Remark S2.3 (Discussion of Theorem S2.2) The main difficulty in the original machine learning framework is to
guarantee the condition for every point x ∈ D, as the trained neural network basically guarantee this condition on
a finite dataset. With the proposed stability guarantee theory, if we choose the training dataset as the mesh grid
discretization D̃, and terminate the training process until the loss function is smaller than some precision δ ≤ Mr, the
stability guarantee on the whole D is obtained. Here the bounded state space is reasonable in most real-world scenarios
and hence is a mild condition. For example, in synchronization of the coupled oscillators, each oscillator is located on
the attractor and the difference between any two oscillators are bounded by twice size of the attractor.

Remark S2.4 (Formula of Lipschitz constant) In Theorem S2.2, we utilize the Lipschitz constants of the functions
taking the form as fg, and estimate the Lipschitz constant as Lfg = LfMg+LgMf , where L(·) represents the Lipschitz
constant and M(·) is the L∞ norm for the correspondingly given function on the bounded space D.

Remark S2.5 (Lipschitz neural network) In our settings, we add the spectral normalization for the neural control
function to constrain its Lipschitz constant lower than 1 [11, 12]. Therefore, it is direct to estimate the Lipschitz
constant M is Theorem S2.2. Other Lipschitz regularization methods can be applied in our framework [13, 14] as
well.

Remark S2.6 (Size of training dataset) In our original version of the AIN Synchrony, we randomly sample the state
points as the training data, and the size of the training data is usually independent of system’s dimension. For example,
we select the size 2, 000 in most of the simulations. However, in the stability guarantee version, since we require the
dataset to be the finite mesh grid discretization of the state space, the size of dataset depends on the dimension d and
on the mesh size r as well. Specifically, if we need N grids for each variable to obtain the expected mesh size r, the
size scales as O(Nd). Since the mesh grid is not the unique choice of the space discretization, the other discretization
methods can be considered depending on the shape of the state space.

Finally, we define the loss function for the stability guarantee of the controlled system (S2.5) as follows:

LD̃(θ,ϕ) =
1

|D̃|

∑
(ξ,s(ti),ti)∈D̃

(
b · LVθ(ξi, ti)Vθ(ξi, ti)−

[
∇Vθ(ξi, ti)

⊤uϕ(ξi, s(ti))
]2

+ (2 + b)Mr

)+

. (S2.10)
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S3. CONTROLLING LINEAR VARIATIONAL EQUATION

In this section, we extend our framework to the linear variational equation near the synchronization manifold
which has been extensively studied after the pioneering work [15], known as the master stability function. We
consider the coupling structure to be a Laplacian matrix, i.e.,

∑
j Aij = 0. In this way, the linear expansion

around s of the coupling term can be expressed as
∑

j Aij

(
M1(s, s,µ1) +∇xM1(s, s,µ1)ξi +∇yM1(s, s,µ1)ξj

)
=∑

j Aij∇yM1(s, s,µ1)ξj . For the nonlinear controlled dynamics of the variance ξ in (S1.2), the linear expansion
around the zero solution is

dξ =
[
In ⊗∇xM0(s,µ0) +A⊗∇yM1(s, s,µ1)

]
ξdt+ u(ξ, s)dBt. (S3.11)

Notice this linear equation still depends on the temporal variable s = s(t), hence it is a non-autonomous dynamical
system. Similarly to Section. S1, the detailed formulation of noise controllers under different cases are as follows:

(i) Regulation of the systematic parameters as

u(ξ, s) =
[
In ⊗∇xM0(s,µ0 + δµ0(ξ, s)) +A⊗∇yM1(s, s,µ1 + δµ1(ξ, s))

]
ξ.

(ii) Perturbation to the network structure as

u(ξ, s) =
[
δA⊗∇yM1(s, s,µ1 + δµ1(ξ, s))

]
ξ.

(iii) Addition of the external forces as

u(ξ, s) = Tγ
(
M(M0,A)(uϕ(ξ, s))

)
.

Here, uϕ(ξ, s) is the output of the neural network, and Tγ is the element-wise truncation operator such that

Tγ(x) =


γ, x > γ,

x, − γ ≤ x ≤ γ,

− γ, x < −γ,

or

Tγ(x) =


0, x > γ,

x, − γ ≤ x ≤ γ,

0, x < −γ.

Additionally, M(M0,A) is the mask operator depending on the inner structure of self-dynamics M0 and the coupling
structure. This operator is used to determine the controlled components of oscillators or the controlled oscillators such
as the pinning control. In practice, we could change the operation order of Tγ and M(M0,A) according to the specific
situation. The specific form of this operator is shown in Section S6. Although our framework is compatible with this
non-autonomous linear variational equation, this non-autonomous dynamical system can be further simplified to an
autonomous version under mild conditions. To achieve this goal, we first provide the following Comparison Theorem
for stochastic differential equations.

Theorem S3.1 (Comparison Theorems of SDEs) Consider the following two SDEs,

dx = P (t)xdt+ u(x)dBt, x(0) = z0 ∈ Rd,

dy = Qydt+ u(y)dBt, y(0) = z0 ∈ Rd,

where (P (t)⊤ + P (t)) − (Q⊤ − Q) is a temporal negative definite matrix, u(0) = 0 s.t. 0 is the equilibrium of the
SDEs, and u satisfies the locally linear growth condition such that the strong solutions of both SDEs exist. Then we
have ∥x(t)∥2 ≤ ∥y(t)∥2. Furthermore, if limt→∞ y(t) = 0, we have limt→∞ x(t) = 0.

The Comparison Theorem of SDEs has been investigated before in [16]; but our contribution here is to propose a
new concise proof based on the constructive auxiliary process.
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Proof. By Itô’s formula, we have

dx⊤x =
[
x⊤(P⊤(t) + P (t))x+ u(x)⊤u(x)

]
dt+ 2x⊤u(x)dBt,

dy⊤y =
[
y⊤(Q⊤ +Q)y + u(y)⊤u(y)

]
dt+ 2y⊤u(y)dBt

By setting z = x⊤x− y⊤y and using the following linearization notations,

α(t) =


x⊤ [P (t)⊤ + P (t)

]
x− y⊤ [P (t)⊤ + P (t)

]
y + u(x)⊤u(x)− u(y)⊤u(y)

z
, z ̸= 0

0, z = 0,

β(t) =


2x⊤u(x)− 2y⊤u(y)

z
, z ̸= 0

0, z = 0,

we have the following representation of the dynamics of z,

dz =
{
α(t)z + y⊤

[
(P (t)⊤ + P (t))− (Q⊤ −Q)

]
y
}
dt+ β(t)zdBt

Denote by ϕ(t) = y⊤
[
(P (t)⊤ + P (t))− (Q⊤ −Q)

]
y. Hence, we have ϕ(t) ≤ 0 according to the condition. Next, we

construct an auxiliary process M(t) as

dM = −α(t)Mdt− β(t)MdBt, M(0) > 0.

Then, the process is an exponential martingale such that M(t) > 0. Thus, applying Itô’s formula to zM yields

d(zM) = zdM +Mdz + dZdM

= z [−α(t)Mdt− β(t)MdBt] +M
{[

α(t)z + y⊤((P (t)⊤ + P (t))− (Q⊤ −Q))y
]
dt+ β(t)zdBt

}
+ {−α(t)Mdt− β(t)MdBt}

{[
α(t)z + y⊤((P (t)⊤ + P (t))− (Q⊤ −Q))y

]
dt+ β(t)zdBt

}
=
(
−∥β∥2zM + ϕ(t)

)
dt.

By the Variation-of-Constants formula [17], we obtain

z(t)M(t) = e−
∫ t
0
∥β(s)∥2

2ds

{
z0M0 +

∫ t

0

e
∫ s
0
∥β(τ)∥2

2dτM(s)ϕ(s)ds

}
, (S3.12)

Since z0 = 0, M(t) ≥ 0 and ϕ(t) ≤ 0 on [0,∞), the right hand side of Eq. (S3.12) is less than 0, we have z(t) ≤ 0 on
[0,∞), which completes the proof.

We focus on the variational dynamics for each oscillator ξi by diagonalizing the coupling structure A as

dξi =
[
∇xM0(s,µ0) + λi∇yM1(s, s,µ1)

]
dt+ ui(ξ, s)dBt,

where {λ1, · · · , λn} are the eigenvalues of coupling matrix A. By applying this Comparison Theorem to equa-
tion (S3.11), we obtain the corresponding dominant equation as

dξi =
[
M̃0 +max{|λ1|, · · · , |λn|}M̃1

]
dt+ ui(ξ, s)dBt,

with (M̃0)ij ≥ (∇xM0(s,µ0))ij and (M̃1)ij ≥ (∇yM1(s, s,µ1))ij . We can find such M̃0,1 thanks to the bound-
edness of the synchronization manifold s. Now, we only need to find the appropriate form of the stabilizing noise for
this dominant equation with autonomous drift function, and then apply the noise to the original collective dynamics
as (S1.4).

We should emphasize that this extension is used to demonstrate the generality of our framework, but not an essential
improvement. Since the linear variational equation is only the linear approximation of the variational dynamics near
the zero solution, it is not rigorously valid within the whole state space. Thus, we propose to use this simpler
equation (S3.11) to find the artificial stabilizing noise only in the case where the original dynamics owns a global
attractor, in which the system is going to evolve into the vicinity of the synchronization manifold after a sufficiently
long time.
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S4. CONTROLLING COLLECTIVE DYNAMICS WITH TEMPORAL INTERACTING STRUCTURE

In this section, we establish two theorems for extending our framework to synchronize the non-autonomous dynamics
with temporal coupling structure A = A(t). Theorem S4.1 addresses global synchronization and Theorem S4.2
addresses local synchronization.

Theorem S4.1 Consider the nonlinear variational equations in (S1.3). If the continuous coupling function M(x,y,µ1)
is positively (resp., negatively) semi-definite and the temporal structure A = A(t) is bounded for t ∈ [0,∞), then the
dominant equation of dynamics (S1.3) is

dξ̃i =

M0(ξ̃i + s,µ0)−M0(s,µ0) +

n∑
j=1

ÃijM1(ξ̃i + s, ξ̃j + s,µ1)

dt+ ui(ξ̃, s)dBt, (S4.13)

with Ãij ≥ Aij(t) (resp. Ãij ≤ Aij(t)), which means if u stabilizes the dominant equation (S4.13), then it also
stabilizes the original nonlinear variational equation (S1.3).

Proof. Since M1 is positively semi-definite and Ãij ≥ Aij(t), each scalar variable of ÃijM1(x,y,µ1) is larger than
Aij(t)M1(x,y,µ1). Taking ξ11 (the first variable of ξ1) for example, we have

dξ11 =

M1
0(ξ1 + s,µ0)−M1

0(s,µ0) +

n∑
j=1

Aij(t)M
1
1(ξ1 + s, ξj + s,µ1)

dt+ (u1(ξ, s)dBt)
1

≜ f1(ξ
1
1 , t)dt+ g(ξ11 , t)dB̃t,

and

dξ̃11 =

M1
0(ξ̃1 + s,µ0)−M1

0(s,µ0) +

n∑
j=1

ÃijM
1
1(ξ̃1 + s, ξ̃j + s,µ1)

dt+ (u1(ξ̃, s)dBt)
1

≜ f2(ξ̃
1
1 , t)dt+ g(ξ̃11 , t)dB̃t,

for some standard Brownian motion B̃t. From the condition above we have with f1 ≤ f2, based on Comparison
Theorems of SDEs in Theorem S3.1, if ξ̃11 is stabilized by noise term g, then ξ11 is stabilized by g. We could prove it in
the same way as we presented in the proof of Theorem S3.1, so we omit it here. By induction, we complete the proof.

If the coupling function M1 is not positive or negative, we could obtain the following comparison theorem for the
linear variational equation.

Theorem S4.2 Consider the linear temporal variational equations in (S3.11). If the synchronization manifold s is
bounded and the Jordan normal form of the temporal structure A(t) is P−1J(t)P bounded by J(t), the dominant
equations in (S3.11) become

dξi =

[
M̃0 + max

t∈[0,∞)

{
J11(t), · · · , Jnn(t)

}
M̃1

]
ξdt+ u(ξ, s)dBt,

where Ãij ≥ |Aij(t)|, (M̃0)ij ≥ |∇M0(s,µ0)ij |, and (M̃1)ij ≥ |∇M1(s, s,µ0)ij |. Then, the stabilizing noise u for
the dominant equations also stabilizes the original linear temporal variational equations in (S3.11).

Proof. The validity of this theorem follows directly from Theorem S3.1, so we omit the proof here.

The condition of A(t) = P−1J(t)P has been used to construct the temporal network under limit resources [6]. The
aforementioned theorems tell us how to extend our framework to synchronize the temporal network with the closed-
loop neural noise. In addition, we could directly design open-loop noise to synchronize the system as Theorem S2.1
stands for general non-autonomous dynamics.
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S5. IMPLICIT ENERGY REGULARIZATION THEORY

In this section, we theoretically explain the mechanism of implicit energy regularization that induces energy-saving
synchrony observed in our results. We summarize the energy-saving property in our machine learning framework in
Theorem S5.1, and then detailed analyze the reason.

Theorem S5.1 Consider the controlled dynamics in (S2.5) where the controller u = uϕ in the diffusion term is

learned through the proposed machine learning framework, under the loss function

L(θ,ϕ) =
1

m

m∑
i=1

b · LVθ(ξi, ti)
Vθ(ξi, ti)

−

[
∇Vθ(ξi, ti)

⊤uϕ(ξi, s(ti))
]2

Vθ(ξi, ti)
2


+

, (S5.14)

where {ξi, s(ti), ti}mi=1 is the training dataset sampled from the state space X × s× [0, T ]. Then, the loss function in
the training process is equivalent to the control energy in the control process by norm,

E = E
∫ T

0

∥u⊤
ϕ(x(t), s(t))Quϕ(x(t), s(t))∥Fdt, (S5.15)

here Q is the variance matrix of the Brownian motion. In other words, once we minimize the loss function in the
training stage, the control energy in the test stage is optimized at the same time, which leads to the energy-saving
phenomenon.

The neural network tends to minimize the following loss function in the training process,

L(θ,ϕ) =
1

m

m∑
i=1

(
b · LVθ(ξi, ti)
Vθ(ξi, ti)

−
(∇Vθ(ξi, ti)

⊤uϕ(ξi, s(ti)))
2

Vθ(ξi, ti)
2

)+

.

Notice that the second part −

[
∇Vθ(ξi,ti)

⊤uϕ(ξi,s(ti))
]2

Vθ(ξi,ti)
2

is semi-negative, thus the sufficient condition for minimizing

the loss function is to minimize the first part,

L̃(θ,ϕ) =
1

m

m∑
i=1

(
b · LVθ(ξi, ti)
Vθ(ξi, ti)

)+

.

Next, according to the definition of LV , there is a semi-positive part in the modified loss function L̃:

L̄(θ,ϕ) =
1

m

m∑
i=1

1

2
Tr
[
u⊤
ϕ(ξi, s(ti))∇2Vθ(ξi, ti)uϕ(ξi, s(ti))

]
.

This implies that minimizing L̄ is necessary for minimizing the modified loss function L̃. Notice that the energy
consumed in the control process is defined as

E = E
∫ T

0

∥u⊤
ϕ(x(t), s(t))Quϕ(x(t), s(t))∥Fdt,

where x(t) is the controlled trajectory, Q is a positive definite matrix related to the specific form of energy consumption,
and ∥ · ∥F is the Frobenius norm. In our experiments, we take Q = I for simplicity. From the equivalence of the
matrix norm [18] , we have

∥u⊤
ϕQuϕ∥F ⇐⇒ ∥u⊤

ϕQuϕ∥2.

Here the equivalence relation A ⇐⇒ B is defined by αB ≤ A ≤ βB for some α, β > 0. Since for positive semidefinite
matrix u⊤

ϕQuϕ, the following inequality holds,

∥u⊤
ϕQuϕ∥2 = λmax(u

⊤
ϕQuϕ) ≤ Tr

[
u⊤
ϕ∇2Quϕ

]
≤ rλmax(u

⊤
ϕQuϕ)



11

with r being the dimension of the Wiener process, which implies,

∥u⊤
ϕQuϕ∥2 ⇐⇒ Tr

[
u⊤
ϕ∇2Quϕ

]
.

Furthermore, we can regard positive definite matrices Q and ∇2Vθ as constant matrix since they are independent of
parameter ϕ, leading to the following relation,

∥u⊤
ϕQuϕ∥F ⇐⇒ Tr

[
u⊤
ϕ∇2Vθuϕ

]
.

Finally, we come to the conclusion that under suitable data distribution in the path space, the necessary loss function
L̄ is the Monte Carlo realization of the energy E. In this way, the noise controller becomes more energy-saving in the
synchronization process by gradient descent with training epochs, leading to the implicit energy regularization.



12

S6. SIMULATION CONFIGURATIONS AND SUPPLEMENTARY EXPERIMENTS

In this section, we provide detailed descriptions of the experimental configurations of the physical examples in the
main text. The first low dimensional models are trained within several minutes on the computational device with a
single i7-10870 CPU with 16GB memory, and the left high dimensional tasks are trained within several minutes with
a single Nvidia 3070 GPU with 16GB memory, while the neural networks for our artificial noise controllers are trained
under PyTorch architecture [19] with Adam optimizer [20]. We fix the number of noise vectors in Hutchinson’s trace
estimator as m = 1 in all the experiments, as proposed in [21, 22]. The source code is released in AIN Synchrony.

1. The input convex neural network (ICNN) V function is constructed as:

z1 = σ(W 0x+ b0),

zi+1 = σ(U izi +W ix+ bi), i = 1, · · · , k − 1,

p(x) ≡ zk,

V (x) = σ(p(x)− p(0)) + ε∥x∥2,

σ(x) =


0, if x ≤ 0,
(2dx3 − x4)/2d3, if 0 < x ≤ d,
x− d/2, otherwise

where σ is the smoothed ReLU function for ensuring V ∈ C2(Rd), W i ∈ Rhi×d, U i ∈ (R+ ∪ {0})hi×hi−1 ,
x ∈ Rd, and, for simplicity, this ICNN function is denoted by ICNN(h0, h1, · · · , hk−1). If the V function
depends on time t, we could directly multiply the ICNN function by some parameterized function hθh

(t) with

hθh
(t) > 0. The parameters to be trained are summarized as θ = {Wi}k−1

i=0 ∪ {Ui}k−1
i=1 for time independent V

function and θ = {Wi}k−1
i=0 ∪ {Ui}k−1

i=1 ∪ θh for time dependent V function.

2. The neural control function is constructed as:

z1 = F(W 0x+B1),

zi+1 = F(W izi + bi), i = 1, · · · , k − 1,

NN(x) ≡ W kzk,

u(x, s) = N (NN(x, s),x), or u(x) = N (NN(x),x),

where F(·) is the activation function, Wi ∈ Rhi+1×hi , and N is some nonlinear function s.t. u(0, s) = 0 or
u(0) = 0. The control function is denoted by Control(h0, h1, · · · , hk+1), and the trainable parameters are
ϕ = {W i}ki=0;

https://github.com/jingddong-zhang/AIN-Synchrony/blob/main/README.md
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6.1. Driving-response Problem of Lorenz System

The driving system is governed by

ẋ1 = σ(y1 − x1),

ẏ1 = ρx1 − y1 − x1z1,

ż1 = x1y1 − βz1,

and the noise controlled response system is governed by

dx2 = σ(y2 − x2)dt+ u1(ξ)dB1(t),

dy2 = (ρx2 − y2 − x2z2)dt+ u2(ξ)dB2(t),

dz2 = (x2y2 − βz2)dt+ u3(ξ)dB3(t),

where ξ = (ξ1, ξ2, ξ3)
⊤ = (x2 − x1, y2 − y1, z2 − z1)

⊤, and the control goal is finding the diffusion term u(ξ) =
(u1(ξ), u2(ξ), u3(ξ)) that can completely synchronize the response system to the driving system, that is ξ = 0. We
fix the parameters as σ = 10, ρ = 28, β = 8/3. The corresponding variational dynamics of z becomes

dξ1 = σ(ξ2 − ξ1)dt+ u1(ξ)dB1(t),

dξ2 = [ρξ1 − ξ2 − (x1 + ξ1)(z1 + ξ3) + x1z1]dt+ u2(ξ)dB2(t),

dξ3 = [(x1 + ξ1)(y1 + ξ2)− x1y1 − βξ3]dt+ u3(ξ)dB3(t),

where s = (x1, y1, z1)
⊤ is the synchronization manifold in this case. In this case, we focus on the noise control

acting on the systematic parameters and the structural control on components of {ξ1, ξ2, ξ3}. So we only consider the
common noise case, that is B1(t) = B2(t) = B3(t). We consider the following cases of noise controllers.

(i) Regulating systematic parameters: We consider the noise taking the form as follows,

u1(ξ) = M1

(
Tγ(δσϕ)(ξ2 − ξ1)

)
,

u2(ξ) = M2

(
Tγ(δρϕ)(ξ1)

)
,

u3(ξ) = M3

(
− Tγ(δβϕ)(ξ3)

)
,

Tγ(x) =


0, x > γ,

x, − γ ≤ x ≤ γ,

0, x < −γ,

where δσϕ, δρϕ, δβϕ are parameterized by the neural networks, the mask operator M = (M1,M2,M3) corre-

sponds to the specific case among the 7 different regulated parameters combinations Ω1:7 ∈ 2{σ,ρ,β}. Specifically,
we have

Ω1: M(x) = (x, 0, 0),

Ω2: M(x) = (0, x, 0),

Ω3: M(x) = (0, 0, x),

Ω4: M(x) = (x, x, 0),

Ω5: M(x) = (x, 0, x),

Ω6: M(x) = (0, x, x),

Ω7: M(x) = (x, x, x).

To comprehensively investigate the influence of the regulating parameters, we select the scale of the output of neu-
ral networks as umax = γ ∈ {1.0, 1.2, 1.4, 1.6, 1.8, 2.0}. We parameterize the functions V (x) as ICNN(3, 36, 36),
the controller as Control(3, 9, 9, 3) with F = ReLU. We set the hyperparameter as b = 2.5, lr = 1e-2 (learning
rate), iters = 1e3 (iterations). The synchronization manifold s is pre-generated on 2000 regular time points on
time interval [0, 50] by numerically solving the driving system with dopri5 method in torchdiffeq [23] package.
For training data of ξ, we sample 2000 points from uniform distribution U([−5, 5]3). After training, we generate
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the controlled trajectories under different combinations of Ω1:7 and γ, and we use Euler–Maruyama method [24]
to numerically obtain 50 trajectories in time interval [0, 10] with dt = 1e-4 and random seed from {0, 1, · · · , 49}
for each case. To compare the controlled performance, we calculate the success rate as the ratio of the time
average L2 difference ∥(x2−x1, y2− y2, z2− z1)∥2 on [9, 10] being less than 1.0 in all the 50 trajectories for each
case.

(ii) Adding external forces in the form of pinning control: We consider the following external noise forces:

u(ξ) = M
(
Tγ
(
N (uϕ(ξ), ξ)

))
,

N (uϕ(ξ), ξ) = (uϕ,1
(ξ)ξ1, uϕ,2

(ξ)ξ2, uϕ,3
(ξ)ξ3)

⊤, or (ξ1 + ξ2 + ξ3)(uϕ,1
(ξ), uϕ,2

(ξ), uϕ,3
(ξ))⊤

where Tγ and M are the same as defined above. We test the performance under nonlinear operation N and
select the best case in our experiment. To match the scale of the chaotic attractor of the Lorenz dynamics, we
set γ = 100. To take the inner structure of variables x, y, z in Lorenz dynamics into consideration, we select
three different operators M as follows:

AINx : M(x) = (x, 0, 0),

AINy : M(x) = (0, x, 0),

AINxz : M(x) = (x, 0, x),

corresponding to the pinning control of the self-dynamics. The training and generating processes are the same
as those mentioned above. We generate 50 trajectories on time interval [0, 20] for each case.

(iii) We further compare the learned noise controller AINy with the traditional linear noise controllers in terms of
energy consumption and stability. We train the V function of the linear noise controller u(ξ) = (0, T100(k(ξ1 +
ξ2 + ξ3)), 0)

⊤ for k ∈ {1, 2, · · · , 15}, and we generate 50 controlled trajectories on the time interval [0, 20] under
these controllers with the same method as mentioned above. We calculate the energy cost as the average of
the numerical integration

∫ 20

0
∥u(ξ(t))∥22dt on 50 trajectories. For computing the convexity of the V function

for linear controller and AINy, we equally select 8000 points an [−2.5, 2.5]3 and use Monto Carlo realization
1

8000

∑8000
j=1

1
3

∑3
i=1 λi(∇V (ξj)) as the approximation of the defined convexity E

[
1
3

∑3
i=1 λi(∇V (ξj))

]
. To nu-

merically reveal the implicit energy regularization phenomenon, we calculate the energy cost and the convexity
of trained V function of AINy during the training process over 10 trajectories for each 100 iterations with
iters = 2000 in total.

Actually, we select suitable hyperparameters using the grid search method. For example, we assess the control
performance of the machine-learning-coined noise under different learning rates (lr) in {0.1, 0.01, 0.001} and fix lr to
the parameter under which the noise controller obtains the best performance. For an intuitive illustration, we provide
an ablation study of the hyperparameters in pinning control of the driving-response Lorenz systems and summarize
the results in Table S3. In our original simulations, we do not observe the training dataset scales with the dimension
of the system. We find that the performance of the machine is good enough when the training dataset possesses 2, 000
samples as the dimension of the system ranges from 3 to 256. However, the training dataset in the newly improved
version with the stability guarantee does scale with the dimension of the system, as the training data is obtained
via the grid discretization of the state space. The size of the dataset is Nd where N is the grid size of each state
component and d is the dimension of the system.

TABLE S3. The mean square error (MSE) and the standard variation between the driving and response Lorenz systems under
noise pinning controllers trained by different hyperparameters.

Performance Layers
Lr = 1e-1 Lr = 1e-2 Lr = 1e-3

h=6 h=9 h=12 h=6 h=9 h=12 h=6 h=9 h=12

MSE
2 20.52 0.00 0.00 17.53 19.62 17.12 15.16 27.88 11.72
4 19.33 11.50 16.81 13.86 15.85 17.82 16.22 15.52 18.78
6 41.51 15.95 0.00 0.00 2.55 16.85 20.31 7.89 13.14

STD
2 12.53 0.00 0.00 7.85 5.95 10.18 11.49 20.71 12.88
4 6.19 20.27 7.54 5.81 7.87 19.91 10.37 8.11 11.51
6 25.19 8.94 0.00 0.00 7.64 6.67 18.19 17.19 8.97
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6.2. Subcritical Landau-Stuart System

The dynamics of the coupled subcritical Landau-Stuart system is governed by

Żj = (β + iγ + µ|Zj |2)Zj +

n∑
k=1

LjkZk.

Specifically, we set the number of the oscillators as n = 10, the dynamical parameters as β = −1, γ = µ = 1 to
establish the unit cycle as the UPO of the self-dynamics. In this study, we focus on the impact of the communication
constraints on the noise-induced synchronization, and we fix the controller form as external forces on each oscillator
u = (u1(Zi), u2(Z2), · · · , u10(Z10))

⊤, Zi ⊂ {Z1, · · · , Z10} driven by common noise. In this case, the communication
constraint is reflected in the self-variables of the controller, that is,

Full: Zi = {Z1, Z2 · · · , Z10}, i = 1, · · · , 10,
Half: Zi = {Z1, · · · , Z5}, i = 1, · · · , 5, Zi = {Z6, · · · , Z10}, i = 6, · · · , 10,
Decentralized: Zi = {Zi}, i = 1, · · · , 10.

In practice, we consider the controlled dynamics in the real vector space, where Zj = xj + iyj , as follows,

dxi =

−xi − yi + xi(x
2
i + y2i ) +

1

10

10∑
j=1

(xi − xj)

dt+ Tγ(ux
i (Xi,Y i, s))dBt,

dyi =

xi − yi + yi(x
2
i + y2i ) +

1

10

10∑
j=1

(yi − yj)

dt+ Tγ(uy
i (Xi,Y i, s))dBt,

where Xi = {Re(Zj) : Zj ∈ Zi}, Y i = {Im(Zj) : Zj ∈ Zi}, ux
i = Re(ui), u

y
i = Im(ui). The corresponding controlled

variational dynamic is

dξxi =

−ξxi − ξyi + (ξxi + sx)((ξ
x
i + sx)

2 + (ξyi + sy)
2)− sx(s

2
x + s2y) +

1

10

10∑
j=1

(ξxi − ξxj )

 dt+ Tγ(ux
i (ξ

x
i , ξ

y
i ))dBt,

dξyi =

ξxi − ξyi + (ξyi + sy)((ξ
x
i + sx)

2 + (ξyi + sy)
2)− sy(s

2
x + s2y) +

1

10

10∑
j=1

(ξyi − ξyj )

dt+ Tγ(uy
i (ξ

x
i , ξ

y
i ))dBt,

ṡx = −sx − sy + sx(s
2
x + s2y), ṡy = sx − sy + sy(s

2
x + s2y), sx(0)

2 + sy(0)
2 = 1,

Tγ(x) =


0, x > γ,

x, − γ ≤ x ≤ γ,

0, x < −γ,

with γ = 50. We select a large γ here because a large upper bound of the controller can accelerate the conver-
gence of the training process. Since the input features of these three controllers are different, the total learnable
parameters are different under the same neural network architecture. For a comprehensive comparison, we care-
fully design network architectures for controllers in three distinct cases, ensuring that the corresponding numbers
of parameters are nearly the same. We parameterize the functions V (x) as ICNN(20, 120, 120), the controller as
Control(20, 60, 60, 20) in full communication case, Control(10, 44, 44, 10) for two clusters of oscillators in half com-
munication case, Control(2, 21, 21, 2) for each oscillator in decentralized communication case with F = ReLU. We
set the hyperparameter as b = 2.1, lr = 3e-2, iters = 1e3. The synchronization manifold s is pre-generated on 5000
regular time points on time interval [0, 10]. For training data of ξ, we sample 2000 points from uniform distribution
U([−3, 3]20). The efficacy of the learned neural stochastic controllers is rigorously tested across 50 sample trajectories
for each case on the time interval [0, 10] with dt = 2e-3, and random seeds range in {0, · · · , 49}.
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6.3. Networked Dynamics of FitzHugh-Nagumo Systems

The mathematical formulation of the noise-controlled and coupled FitzHugh-Nagumo systems is governed by

dvi =

(vi − v3i
3

− wi

)
+ c

n∑
j=1

Aij (h(vj)− h(vi))

dt+ Tγ(uv
i (ξ))dBi(t),

dwi = 0.1(vi + 0.7− 0.8wi)dt+ Tγ(uv
i (ξ))dBi(t),

h(x) =
1

1 + e−v/vth
,

Tγ(x) =


0, x > γ,

x, − γ ≤ x ≤ γ,

0, x < −γ,

(S6.16)

where h is set as the sigmoid-type coupling function with threshold vth = 0.1 [25], A = (Aij ∈ {0, 1}) is the coupling
structure that reveals the realistic interaction of the oscillators, and c > 0 is the coupling strength. Here we consider
4 different directed graph structures with 128 nodes, belonging to three major kinds of network structures:

• A realistic food-web network Baydry with a flat degree distribution [26], the data of the network is provided in
Food Webs;

• A directed Erdös-Rényi (ER) network [27] with average degree k̄ = 4 generated by the Networkx package in
Python, this network is a homogeneous network;

• Two directed scale-free (SF) networks with different in and out degree distribution generated by the method
in [28], s.t., SF1: p(kin) ∼ k−2.5, p(kout) ∼ k−2.5; SF2: p(kin) ∼ k−2.1, p(kout) ∼ k−2.9. From the perspective of
the homogeneity, the rank of these networks are Baydry>ER>SF1 >SF2.

In this study, we simply set the trajectory of the first oscillator as the synchronization manifold, i.e., s(t) =
(v1(t), u1(t))

⊤ ≜ (sv(t), su(t))
⊤. Actually, readers can randomly select any oscillator in the coupled dynamics as a

driving system engendering the synchronization manifold, or use the mean field of the oscillators’ trajectories as the
synchronization manifold. To demonstrate the efficacy of the extended framework on linear variational dynamics as
proposed in Section. S3, we consider the following variational dynamic,

dξ = (I ⊗∇M0 + cL⊗∇M1) ξdt+ Tγ(u(ξ))dBt,

ξ = (ξ1, ξ2, · · · , ξ128)⊤, ξi = (ξvi , ξ
w
i )

⊤ = (vi − sv, wi − sw)
⊤, i = 1, · · · , 128,

Tγ(u(ξ))dBt = (Tγ(uv
1(ξ), u

w
1 (ξ))

⊤dB1(t), Tγ(uv
2(ξ), u

w
2 (ξ))

⊤dB2(t), · · · , Tγ(uv
128(ξ), u

w
128(ξ))

⊤dB128(t)),

where Lij = δij(
∑n

j=1 Aij) − Aij is the Laplacian matrix of coupling structure A, the coupling strength is fixed as
c = 0.1. For brevity, we directly use the dominant parts of the Jacobian matrices ∇M0,1 as

∇M0 =

[
1 −1
0.1 −0.08

]
, ∇M1 =

[
1

vth
0

0 0

]
.

We note that the second term embracing the Laplacian matrix in the diffusion term is semi-positive (+cL ⊗ ∇M1)
instead of the semi-negative (−cL ⊗ ∇M1) considered in the previous works [6, 29]. The latter one contributes a
negative part in the Lyapunov exponent of the variational dynamics, which makes the CS task more easily realizable.
Therefore, we consider a more difficult CS task with the former one to illustrate the capability of our framework. We
consider the following cases of the noise controllers.

(i) Adding external forces via common noise and uncorrelated noise: We focus on the realistic Baydry network
controlled by the common noise Bi(t) = B(t), i = 1, · · · , 128 and the uncorrelated noise Cor(Bi(t), Bj(t)) = δijt.
For comprehensively investigating the impact of the correlation between the driving noise, we consider three
different scales of the noise: Low scale with γ = 1.0, middle scale with γ = 1.5, and high scale with γ = 2.0. We
parameterize the functions V (x) as ICNN(256, 768), the controller as Control(256, 768, 768, 256) with F = Tanh.
We set the hyperparameter as b = 2.5, lr = 1e-2, and iters = 5e2. For the training data of ξ, we sample 2000
points from the uniform distribution U([−4.7, 4.7]256) (4.7 is a tight upper bound of the difference between the
two FHN oscillators). The efficacy of the learned neural stochastic controllers is rigorously tested across 10
sample trajectories for each case on time interval [0, 200] with dt = 1e-2 and random seeds range in {0, · · · , 9}.

http://vlado.fmf.uni-lj.si/pub/networks/data/bio/foodweb/foodweb.htm
https://networkx.org/documentation/stable/reference/generated/networkx.generators.random_graphs.erdos_renyi_graph.html
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(ii) Perturbing the network structure A: We aim at finding the optimal noise perturbation structure δA = (δAij ∈
[−γ, γ]) under the common noise Bi(t) = B(t), i = 1, · · · , 128. The noise term is

(L̃⊗∇M1)ξdBt, L̃ij =

δij

128∑
j=1

(δA)ij

− (δA)ij .

We consider different upperbounds of the perturbation matrix δAmax in {0, 0.1, 0.2, · · · , 2.0} for four networks.
We parameterize the perturbation matrix as A⊙W , where ⊙ is the Hadamard product and W ∈ R128×128 is
the trainable matrix. The V function, the other hyperparameters, and the generating process are the same as
those specified in (i).

Connection with related work. Sherwood et al discussed the impact of correlated noise on the synchronization
of the Kuramoto model, they further provided a method to find the optimal correlation matrix of the driving noise
based on their theoretical results [30]. However, their method relies on the stationary distribution of the oscillatory
phase deduced from the corresponding Fokker-Planck equation, which is hard to apply to the general oscillators. We
now show our framework can find the optimal correlated noise easily by a reparameterization trick. Consider a set of
colored noise engendered by the linear combination of uncorrelated standard Brownian motion [B1(t), B2(t), · · · , Bn(t)]
as 

B̃1

B̃2

...

B̃n

 =


c11 c12 · · · c1n
c21 c22 · · · c2n
...

...
. . .

...
cn1 cn2 · · · cnn



B1

B2

...
Bn

 .

From the property of the Gaussian noise, we have

Cov



B1

B2

...
Bn


 = In×n → Cov



B̃1

B̃2

...

B̃n


 =


∑n

i=1 c
2
1i

∑n
i=1 c1ic2i · · ·

∑n
i=1 c1icni∑n

i=1 c1ic2i
∑n

i=1 c
2
2i · · ·

∑n
i=1 c2icni

...
...

. . .
...∑n

i=1 c1icni
∑n

i=1 c2icni · · ·
∑n

i=1 c
2
ni

 . (S6.17)

To well define the correlated noise, we restrict the rows of the coefficient matrix C = (cij) in the unit ball
∥(ci1, ci2, · · · , cin)∥2 ≤ 1, i = 1, · · · , n, s.t. the covariance matrix in (S1.2) is semi-positive with spectrum stay-
ing in [−1, 1]. By setting the elements in the coefficient matrix as the trainable parameters and integrating this
restriction into the loss function, we can find the optimal correlated noise that achieves the synchronization. Take
finding the optimal perturbation network structure under correlated noise for an example, the noise term is

(dB̃t ⊗ I2×2)(L̃⊗∇M1)ξ = (CdBt ⊗ I2×2)(L̃⊗∇M1)ξ,

L̃ij =

δij

128∑
j=1

(δA)ij

− (δA)ij , δA = A⊙W ,

128∑
j=1

c2ij ≤ 1, i = 1, · · · , 128,

where W and C are trainable matrices, and to guarantee the inequality constraints, we can add them as regularization

terms into the loss function as Lineq =
∑128

i=1 ReLU
(∑128

j=1 c
2
ij − 1

)
.
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6.4. Controlling Non-autonomous Dynamics

We consider the task of synchronizing the coupled FitzHugh-Nagumo systems with a temporal interacting network
via external forces, as a validation of the extended framework proposed in Section S4. We apply the temporal network
A(t) proposed by Yuanzhao Zhang et al [6]:

Aij(t) =


1 + (6− 8

n+1 )A sin(wt)

n
, i, j ≤ n+ 1

2
, i ̸= j,

1− 2A sin(wt)

n
, i or j >

n+ 1

2
, i ̸= j,

where n is odd. The eigenvalues of the corresponding Laplacian matrix are

λi(t) =


0, i = 1,

1 + 2A sin(wt), i = 2, · · · , n+ 1

2
,

1− 2A sin(wt), i =
n+ 3

2
, · · · , n.

(S6.18)

The dynamics of noise-controlled and coupled FitzHugh-Nagumo systems is the same in (S6.16) with A = A(t). The
coupling strength is set as c = 1 because the temporal matrix has already been normalized. Notice that the transition

(a)
t = π

2 t = π t = 3π
2

0 120Time
0

1

R

(b)

Controlled

Original

0 120Time
0

11

v i

(c)
Original

0 120Time
0

11
(d)

Controlled

FIG. S1. Synchronizing the coupled FitzHugh-Nagumo systems with the temporal network. (a) The temporal structure. (b)
The order parameter of the controlled coupled dynamics, the solid line is the average value, and the shaded region represents
the variance. The order parameter is calculated in the time window ∆t = 1 as [t− 0.5, t+ 0.5] for t ∈ [0.5, 119.5]. The results
are summarized from 10 trajectories. (c) The heatmap of the variables {vi, i = 1, · · · , 11} over time of the original dynamic,
(d) and the controlled dynamic.
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matrix in the Jordan normal form of A(t) is time invariant. Thus, we set the dominant linear variational dynamic as

dξ =
(
I ⊗∇M0 + L̃⊗∇M1

)
ξdt+ Tγ(u(ξ))dBt,

L̃ =

n∑
i=2

λ̃iviv
⊤
i , vi =

 1√
i(i− 1)

, · · · , 1√
i(i− 1)︸ ︷︷ ︸

i−1

,− i− 1√
i(i− 1)

, 0, · · · , 0︸ ︷︷ ︸
n−i


⊤

,

λ̃i = 1 + 2A ≥ λi, i = 2, · · · , n,

∇M0 =

[
1 −1
0.1 −0.08

]
, ∇M1 =

[
1

vth
0

0 0

]
.

(S6.19)

Specifically, we set A = 1, w = 1, n = 11, and γ = 5.0. We parameterize the functions V (x) as ICNN(22, 66),
the controller as Control(22, 66, 66, 22) with F = Tanh. We set the hyperparameter as b = 2.5, lr = 1e-2, and
iters = 5e2. For the training data of ξ, we sample 2000 points from uniform distribution U([−4.7, 4.7]22). The efficacy
of the learned neural noise controller is tested across 10 sample trajectories on time interval [0, 120] with dt = 1e-2
and random seeds range in {0, · · · , 9}. Figure S1 shows the artificially designed noise successfully synchronizes the
coupled dynamics with temporal networks.
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6.5. Pinning Control in the Networked Dynamics of FitzHugh-Nagumo Systems

In the main text, we have investigated the impact of the intrinsic structure of the intra-dynamic to synchronization,
by considering pinning control in the driving-response Lorenz system. In addition to this kind of control, controlling a
small fraction of oscillators in the collective dynamics has been extensively studied in the last two decades [2, 31–33].
In this section, we consider the CS tasks in coupled FitzHigh-Nagumo systems via pinning control based on the
interaction structure. We consider the following controlled FitzHugh-Nagumo dynamics on an ER network with 39
nodes,

dvik =

(vik −
v3ik
3

− wik

)
− c

39∑
j=1

Likjvj

dt+ Tγ(uv
ik
(ξ))dBi(t),

dwik = 0.1(vik + 0.7− 0.8wik)dt+ Tγ(uv
ik
(ξ))dBi(t), ik ∈ Npin,

dvĩk =

(vĩk −
v3
ĩk

3
− wĩk

)
− c

39∑
j=1

Lĩkj
vj

dt,

dwĩk
= 0.1(vĩk + 0.7− 0.8wĩk

)dt, ĩk /∈ Npin,

Lij = δij

 39∑
j=1

Aij

−Aij

Tγ(x) =


0, x > γ,

x, − γ ≤ x ≤ γ,

0, x < −γ,

where Npin represents the set of controlled nodes. Here, we select Npin as the root nodes and the feedback vertex
set [34] of the network. We fix c = 1e-3, γ = 20, and we generate the directed ER network with mean degree
k̄ = 4 by the Networkx package in Python. We parametrize the functions V (x) as ICNN(78, 156), the controller as
Control(78, 156, 78) with F = Tanh. We set the hyperparameter as b = 2.1, lr = 1e-2, iters = 5e2. For training data of
ξ, we sample 3000 points from uniform distribution U([−4.7, 4.7]22). The pinning controller is tested on a rather long
time interval [0, 8000] because only a small fraction of the nodes are controlled. The results of the pinning controller
are summarized in Fig. S2, the noise-driven pinning controller successfully increases the synchronization degree over
time.

https://networkx.org/documentation/stable/reference/generated/networkx.generators.random_graphs.erdos_renyi_graph.html
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S7. LIMITATIONS AND PERSPECTIVE

The proposed framework is applicable only to the CS tasks of identical oscillators. However, the oscillators in the
collective dynamics may have different self-dynamics in most realistic scenarios such as the Escherichia coli cells [35].
In this case, researchers delve into the phase synchronization (PS) instead of the CS. The urgent call for cultivating
a framework for enhancing PS for general oscillators similarly holds to that for CS as we reported. Although our
framework cannot solve this paramount problem directly, our current work is inspiring us to find a way to integrate
the PS theory with the machine learning techniques. Frankly, how to find the phase dynamics of the general oscillators
is still unsolved presently.

In addition, the closed-loop (also known as the feedback) control we considered in this work has significant ad-
vantages over the open-loop control due to its online property and robustness. However, the developed controller is
required to change its states continuously in time, which likely causes a huge computational burden as we deploy it
into real-life scenarios. One of our future works is to improve the current framework by replacing the closed-loop
controller with the piece-wise constant feedback controller.

(a)

0 500Epoch
0

1

L
os

s

(b)

0 8000Time

0.7

1.0

R

(c) Controlled

Original

FIG. S2. Synchronizing the coupled FitzHugh-Nagumo models with pinning control. (a) The ER network with pinning
controller acting on the blue nodes. (b) The training loss in the training process. (c) The order parameter of the controlled
and the original dynamics, calculated in the time window ∆t = 100 as [t− 50, t+ 50] for t ∈ [50, 7950].
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