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Abstract

Objectives: To describe statistical tools available for assessing publication integrity of groups of randomized controlled trials (RCTs).

Study Design and Setting: Narrative review.

Results: Freely available statistical tools have been developed that compare the observed distributions of baseline variables with the
expected distributions that would occur if successful randomization occurred. For continuous variables, the tools assess baseline means,
baseline P values, and the occurrence of identical means and/or standard deviation. For categorical variables, they assess baseline P values,
frequency counts for individual or all variables, numbers of trial participants randomized or withdrawing, and compare reported with inde-
pendently calculated P values. The tools have been used to identify publication integrity concerns in RCTs from individual groups, and
performed at an acceptable level in discriminating intentionally fabricated baseline summary data from genuine RCTs. The tools can be
used when concerns have been raised about RCT(s) from an individual/group and when the whole body of their work is being examined,

when conducting systematic reviews, and could be adapted to aid screening of RCTs at journal submission.
Conclusion: Statistical tools are useful for the assessment of publication integrity of groups of RCTs. © 2024 The Author(s). Pub-
lished by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

A reliable biomedical literature is essential , but errors
and/or unreliable data in publications are common [1].
These publications can be said to have compromised publi-
cation integrity. Often, the issues arise from honest mis-
takes, such as typographical or coding/analytical errors,
but sometimes they result from questionable research prac-
tices, including research misconduct such as fabrication or
falsification. Detecting compromised publication integrity,
particularly arising from questionable research practices,
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can be difficult. However, techniques have been described
for assessing individual publications [2,3]. Assessments
can be conducted using summary information from the
publication [4], although assessing individual patient data
is more powerful [5].

Publication integrity concerns about a body of work
from a research group can arise either de novo or in the
context of existing retractions. Here, techniques for single
publications can be used, but it is also possible to simulta-
neously examine data from all studies. For groups of ran-
domized controlled trials (RCTs), which are among the
highest levels of evidence and strongly influence clinical
practice, potentially powerful techniques can aid assess-
ment of publication integrity. A fundamental premise of
an RCT is that as group allocation occurs randomly (by
chance), any between-group differences are due to chance.
This principle can be exploited to assess publication integ-
rity. Baseline variables (and outcomes unrelated to random-
ization) will differ by chance in an RCT. Therefore, the
observed distributions of variables can be compared with
the distributions expected to arise by chance. If the

0895-4356/© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/

4.0/).


http://creativecommons.org/licenses/by/4.0/
mailto:m.bolland@auckland.ac.nz
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jclinepi.2024.111365&domain=pdf
https://doi.org/10.1016/j.jclinepi.2024.111365
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.jclinepi.2024.111365

2 M.J. Bolland et al. / Journal of Clinical Epidemiology 170 (2024) 111365

What is new?

Key findings

o Statistical tests have been developed to aid in the
assessment of publication integrity of groups of
randomized controlled trials and are freely
available.

What this adds to what was known?

e The tools compare observed and expected distribu-
tion of continuous and categorical baseline vari-
ables, and numbers of trial participants
randomized or withdrawing, matching summary
statistics, and compare reported and independently
calculated P values.

e The tools have been used to identify integrity con-
cerns in groups of published randomized trials and
performed acceptably in discriminating between
intentionally fabricated summary trial data and
data from genuine randomized trials.

What is the implication and what should change

now?

e The tools could be used to examine bodies of work
about which concerns have been raised, and adapt-
ed to aid in screening of journal submissions.

observed and expected distributions are discrepant, this
suggests that randomization has been unsuccessful or
compromised. Because successful randomization is the
fundamental aspect of an RCT, compromised randomiza-
tion means its results are unreliable and causal inferences
cannot be drawn. Such an RCT has compromised publica-
tion integrity.

At least a moderate number of variables are usually
required for sufficient power to detect differences between
observed and expected distributions. Many individual pub-
lications report few baseline data (such as patient character-
istics), so analysing groups of RCTs can overcome this
limitation, and the resulting pattern of observed results
may provide compelling evidence of compromised publica-
tion integrity. It may be difficult for researchers with nefar-
ious intent to fabricate or alter data so that observed
distributions conform to expected distributions [6].

Several statistical techniques for assessing groups of
RCTs have been developed recently [7—14]. To our knowl-
edge, they have not been reviewed previously. Here, in a
narrative review, we summarize these techniques, give ex-
amples of their application to existing groups of RCTs with
compromised publication integrity, and report the applica-
tion of these techniques to data intentionally fabricated
by clinicians and statisticians.

2. Literature review and examples

We searched PubMed (until October 31, 2023) for rele-
vant articles to inform this review using the terms ‘“‘publi-
cation integrity,” ““‘research integrity’ and statistics,” and
the MESH term “Scientific Misconduct/statistics and nu-
merical data.” We hand-searched the references of identi-
fied articles for other potentially relevant publications. All
relevant identified publications have been included in this
review. We have illustrated the techniques using examples
from existing datasets of groups of RCTs with and without
integrity concerns. Table 1 shows features of three groups
of RCTs with known integrity concerns (Satolwamoto
[15], Asemi [12,16], Monticone [14]), two control sets of
RCTs without integrity concerns (Auckland control dataset
[10], REBALANCE [12]) and the Carlisle dataset [4],
which includes 5087 RCTs published in eight journals over
15 years, and contains 72 previously retracted RCTs and
some trials with publication integrity concerns identified
through Carlisle’s analysis. All analyses were done using
the freely available package “‘reappraised” for the R statis-
tical program (https://CRAN.R-project.org/
package=reappraised) which contains functions that carry
out all the techniques described here for groups of RCTs,
and function names are provided.

3. Techniques
3.1. Baseline continuous variables

The most commonly used technique has been evaluation
of baseline continuous variables. In the first study of its
kind, Carlisle compared the distribution of individual
continuous variable means in 168 RCTs by Fujii et al. with
the expected distribution [7]. He also pooled all the contin-
uous variables and repeated the analysis. For comparison,
he repeated the analyses in 366 RCTs by other authors.
In the 168 RCTs of interest, the observed and expected dis-
tributions differed markedly, whereas in the 366 control
RCTs, both were similar. Subsequently, it was also found
that the Fujii RCTs lacked ethical approval, and by
November 2023, 172 publications by Fujii had been
retracted.

Carlisle et al. modified the original technique to handle
calculation of P values from rounded summary statistics
(mean, standard deviation [SD]) better [8]. This Monte-
Carlo analysis could be used across a whole body of RCTs,
or on a single RCT [4]. When applied to groups of RCTs, a
uniform distribution is expected for P values from the com-
parison of means between RCT arms calculated using this
approach. Figure 1A shows that the cumulative distribution
function (CDF) in the Satolwamoto dataset differs mark-
edly from the expected CDF (reappraised package,
anova_fn).

We adapted the original approach of Carlisle to P values
obtained from the comparison of baseline continuous
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Table 1. Integrity concerns in the datasets used

Groups of RCTs with known integrity concerns Control datasets
Dataset name Satolwamoto [15] Asemi [12,16] Monticone [14] Auckland [10] REBALANCE [12] Carlisle [4]
Trials (n) 41 151 17 13 131 5087
Integrity concerns
Differences in baseline means Yes Yes NA No NA No
Continuous baseline P-value Yes Yes NA No NA No
distribution
Matching summary statistic Yes Yes NA No NA NA
Differences between reported and Yes NA Yes NA NA NA
calculated P values (categorical
variables)
Categorical baseline P-value Yes NA Yes No NA NA
distribution
Distribution of participant numbers Yes Yes NA No NA NA
Distribution of withdrawals Yes Yes NA NA No NA
Distribution of frequency counts Yes NA Yes No No NA

More details of the datasets are available in the primary publications.
NA, Not assessed.

variables (continuous baseline P values) [10,11]. Because patient data. Figure 1B shows that the observed and ex-
differences between randomized groups arise by chance, pected distribution of reported continuous baseline P values
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Figure 1. (A) Monte-Carlo analysis of differences in continuous baseline variables in the Satolwamoto dataset. The expected distribution is the
dotted line. (B) Observed and expected (dotted line) distribution of reported continuous baseline Pvalues in the Satolwamoto dataset. (C) Observed
and reference (dotted line) distribution of calculated continuous baseline P values in the Asemi dataset. (D) Area under the curve (AUC) of the
cumulative distribution function of the continuous baseline P values in (B). The expected distribution is the dotted line.
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the P values, which quantifies the extent of departure from
the expected distribution (reappraised package, pval_-
cont_fn). By contrast, the observed distribution of contin-
uous baseline P values is uniform in the Auckland
control dataset [10]. In a subsequent series of analyses
and simulations, we found that non-normality of data, cor-
relation between baseline variables at the level found in real
clinical trials, and method of randomization did not affect
P-value distribution [11]. However, rounding of data had
a visually obvious effect on the expected distribution
[11], and therefore needs to be incorporated into reference
expected distributions. Reference data for the expected dis-
tribution of P values from rounded data are available from
>5000 RCTs [16] or can be calculated empirically.
Figure 1C shows that the observed distribution of contin-
uous baseline P values in the Asemi dataset when P values
are calculated from reported (rounded) summary statistics
is very different to the reference expected distribution (re-
appraised, pval_cont_fn).

3.2. Matching summary statistics for continuous
variables

Some studies report identical summary statistics (mean,
SD) for a variable. These can be either in different arms
within an RCT or in different cohort studies/RCTs. The
occurrence of an identical mean and an identical SD for a
variable in an RCT is uncommon, unless it is rounded to
1 significant figure, and/or the SD is small [13]. For a single
variable, the likelihood of the observed identical summary
statistics can be simulated [13]. This approach can be
extended to determine the likelihood of identical summary

statistics in different RCTs (or cohort studies) conducted in
similar populations [13]. Table 2 shows the proportion of
identical means/SDs in different studies from the Satolwa-
moto dataset compared with the Auckland control trials (re-
appraised, cohort_fn). Six of 10 variables occurring in >10
studies had more identical mean/SDs than expected in the
Satolwamoto dataset compared with 0/10 variables in the
Auckland trials.

A similar approach can be applied to the proportion of
matching summary statistics within individual RCTs. These
calculated proportions can be compared to those from the
reference Carlisle dataset [13] or calculated empirically.
Table 3 shows proportions for the Satolwamoto dataset, a
fabricated dataset from a validation study described later,
and the reference dataset (reappraised, match_fn). In the
Satolwamoto dataset, there are a large proportion of means
reported to three significant figures, and a higher proportion
of matching means than for the reference dataset. By
contrast, in the fabricated dataset, there are fewer than ex-
pected matches. The differences between proportions of
matches in RCTs with integrity concerns we have analysed
and the reference dataset were inconsistent, suggesting this
approach needs further study.

3.3. Baseline categorical variables

Unlike continuous variables, the expected distribution of
baseline P values for categorical variables is not uniform,
but it can be calculated empirically, permitting an observed
to expected comparison [10]. Figure 2A shows the observed
and empirically calculated expected distribution of

Table 2. The proportion of recurring summary statistics for variables in at least 10 studies in the Satolwamoto and Auckland control datasets

Satolwamoto dataset

Auckland control dataset

Mean/SD Largest P Mean/SD Largest P

Match Number Mean/SD Match Number Mean/SD
Variable N N (%) Matches N (%)? Match” Variable N N (%) Matches N (%)? Match”
Age 28 0 (0) 0 (0) 0.99 Age 20 0 (0) 0 (0) >0.99
BMI 18 4 (22) 2(11) 0.49 BMI 22 2(9) 2(9) 0.64
BMD 12 3 (25) 3 (25) 0.09 BMD 22 2(9) 2 (9) 0.11
250HD 28 11 (39) 9 (32) 0.03 250HD 22 0 (0) 0 (0) 0.81
CTx 18 8 (44) 4 (22) 0.36 CTx 14 0 (0) 0 (0) 0.40
PTH 26 5(19) 3(12) <0.001 PTH 10 0 (0 0 (0 0.99
Vitamin D intake 11 6 (55) 2 (18) 0.03 sCR 22 0 (0) 0 (0) >0.99
1,250HD 26 8 (31) 6 (23) <0.001 Weight 22 0 (0) 0 (0) 0.90
iCa 25 11 (44) 4 (16) <0.001 YSM 20 0 (0) 0 (0) 0.81
Osteocalcin 20 6 (30) 4 (20) 0.02 Albumin 22 21 (95) 7 (32) 0.81

BMD, bone mineral density; BMI, body mass index; 250HD, 25-hydroxyvitamin D; CTx, C-telopeptide; PTH, parathyroid hormone; Vitamin D
intake, dietary vitamin D intake; 1,250HD, 1,25-dihydroxyvitamin D; iCa, ionized calcium; SD, standard deviation.
@ The columns represent the number where the mean/SD combination has identical matches for the same variable in different cohorts; and the

largest number of matches for a single mean/SD combination.

b P refers to the probability that the reported number of matching mean/SD combinations for each variable (or a more extreme number of

matches) occurred in 100,000 simulations.
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Table 3. Proportion of identical summary statistics in the Satolwamoto dataset, one fabricated dataset, and the reference Carlisle control dataset

1 significant 2 significant 3 significant 4 significant 5 significant
All variables figure figures figures figures figures
Satolwamoto dataset
Number of variables, n (%)
Mean 464 12 (2.6) 137 (29.5) 299 (64.4) 15 (3.2) 1 (0.2)
SD 464 79 (17.0) 296 (63.8) 86 (18.5) 3(0.6) 0 (0.0)
Proportion of identical summary statistics in both treatment groups (%)
Means match 21.8 91.7 30.7 15.7 6.7 0.0
SDs match 12.3 38.0 8.4 2.3 0.0 0.0
Both mean and SD match® 5 18.6 2.4 0.0 0.0 0.0
Fabricated dataset
Number of variables, n (%)
Mean 300 25 (8.3) 220 (73.3) 54 (18.0) 1 (0.3) 0.0
SD 300 148 (49.3) 104 (34.7) 48 (16.0) 0 (0.0) 0.0
Proportion of identical summary statistics in both treatment groups (%)
Means match 6 12.0 5.9 3.7 0.0 0.0
SDs match 9.7 19.6 0.0 0.0 0.0 0.0
Both mean and SD match?® 1.3 2.7 0.0 0.0 0.0 0.0
Carlisle reference dataset
Number of variables, n (%)
Mean 21,948 607 (2.8) 8149 (37.1) 10,978 (50.0) 2082 (9.5) 132 (0.6)
SD 21,145 4320 (20.4) 10,682 (50.5) 5618 (26.6) 552 (2.6) 36 (0.2)
Proportion of identical summary statistics in both treatment groups (%)
Means match 13.4 66.4 20.6 7.5 1.6 0.8
SDs match 14.8 40.5 11.6 2.7 0.4 0.0
Both mean and SD match® 5.1 16.9 2.7 0.2 0.0 0.0

SD, standard deviation.

@ Where the number of significant figures differed between the mean and SD, we used the number of significant figures for the mean to cate-

gorize the combination of mean and SD.

categorical baseline P values are markedly different in the
Monticone dataset (reappraised, pval_cat_fn).

Because P values for categorical variables can be calcu-
lated directly from summary statistics, they can be indepen-
dently calculated for all reported variables and compared
with any reported P values. Different statistical tests can
also be used for categorical data (eg, chi-square, Fisher’s
exact). When the statistical test is not described, reported
P values can be compared to those calculated using a range
of common tests. Table 4 shows that in the SatoIlwamoto
dataset, 35% of reported categorical baseline P values
differed from the calculated P value. Where there are
important differences, explanations should be sought [14].

In his original study, Carlisle found striking differences
between the observed distribution of individual categorical
variables in the 168 RCTs and the expected binomial distri-
bution [7]. By contrast, the observed and expected distribu-
tions were similar for categorical variables from the 366
control RCTs [7]. Briefly, Carlisle’s approach was that
the number of trial arms with a frequency count for the var-
iable of 0, 1, 2, ... participants is summed and this distribu-
tion is compared to the expected (binomial) distribution of
trial arms with these frequency counts. The expected

distribution is calculated using the probability of the vari-
able occurring in the trial and the number of participants
in the trial arm, and then the results for all trial arms are
summed. Worked examples are available [7,12]. The tech-
nique can be applied to baseline variables (eg, gender), or
outcome variables unrelated to randomization. There were
differences in the observed and expected distributions for
participant withdrawals in the Asemi and Satolwamoto da-
tasets but not in the Auckland or REBALANCE control da-
tasets [12]. Figure 2B shows that there were many more
trial arms with three withdrawals and many fewer trial arms
with one withdrawal than expected in the Asemi dataset
(reappraised, cat_fn). A potentially more powerful
approach is to consider between-group differences in two-
arm trials rather than frequency counts. Figure 2D shows
that for withdrawals in the Asemi dataset, there were far
more trials with no difference and fewer trials with differ-
ences of >2 between trial arms than expected (reappraised,
cat_fn).

A similar approach can be used to compare differences
in numbers of participants between study arms in two-
arm trials that use simple randomization [15]. When simple
randomization is used, each participant has an equal (50%)
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Figure 2. (A) Observed (bars) and empirically calculated expected (dotted line) distribution of categorical baseline Pvalues in the Monticone data-
set. Observed (bars) and expected (dotted line) distribution of: (B) withdrawals in trial arms in the Asemi dataset, between-arm differences for two-
arm trials in: (C) number of participants in the Asemi dataset, (D) withdrawals in the Asemi dataset, and (E) frequency counts for all variables in the

Monticone dataset.

Table 4. Difference between reported and calculated categorical baseline P values in the Satolwamoto dataset

Test

Baseline P value

Difference hetween reported

and calculated P values n (%) Chi-square Fisher's exact 0.5-0.6 0.6—-0.7 0.7-0.8 0.8-0.9 0.9-1
0 37 (65) 35 2 2 9 8 10 8
0-0.1 12 (21) 12 1 3 5 3
0.1-0.2 4 (7) 4 1 2 1
0.2-0.3 4.(7) 4 3 1
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chance of being allocated to a treatment group, analogous
to a coin toss. For an RCT with 10 people, there are 10 coin
tosses. The single most likely outcome is five heads/five
tails (five in each arm). However, a between-groups differ-
ence of O (probability = 0.25) is not the most likely
outcome: a difference of 2 (four heads/six tails or six
heads/four tails) is nearly twice as likely (probabil-
ity = 0.41). Thus, the observed and expected between-
group differences in numbers of participants can be
compared. Figure 2C shows that there are far more trials
than expected with the same number of participants in each
trial arm in the Asemi dataset (reappraised, sr_fn). A
similar approach can be taken for block/permuted random-
ization, if the final block size and number in the final block
are known. Simple randomization can be undertaken using
a single block for each trial arm, in which case there will
always be no between-groups size difference if the blocks
are filled. It would be expected that this randomization
method would be detailed in the Methods.

The observed distribution of all categorical variables can
be compared to the expected (binomial) distribution, using
the same approach as for individual variables [14]. Fre-
quency counts or percentages can be used, but between-
group differences for two-arm trials seem to be more
powerful. There were marked differences between the
observed and expected between-group differences in fre-
quency counts in the Monticone and Satolwamoto datasets,
but not in the Auckland and REBALANCE controls [14].
Figure 2E shows results for the Monticone dataset (reap-
praised, cat_all_fn).

3.4. Digit preference

Benford’s law of the distribution of first digits and final
digit preference have been used to examine individual pa-
tient data [2,3] or summary data [17]. Mol et al. reported
unusual distributions of final digits in groups of RCTs,
including one table where the final digit for all 47 variables
was an even number [18,19]. Beyond such glaring exam-
ples, the role of this technique applied to summary data
in groups of studies requires further research before it can
be endorsed.

4. Assessing test performance

We assessed the performance of four techniques (distri-
bution of continuous baseline P values, a single categorical
variable, or numbers of trial participants, and matching
summary statistics) in identifying deliberately fabricated
data. We invited colleagues to make up summary baseline
data for 20 hypothetical RCTs. They were told the purpose
was to test the performance of tools developed to detect
fabricated data and assess publication integrity, and were
given brief, simple instructions: assume each trial used sim-
ple randomization; for each trial arm, fill out number of

participants (20—2000), females and withdrawals, and the
mean and SD for each of 15 continuous variables. Half
were randomly assigned to receive reference ranges, and
half received no further information. All data used 0—3
decimal places according to participant preference.

Fifteen people provided data (“‘cases’’): two statisticians
used statistical programs, another three individuals used
random number generators, and the other 10 reported using
no additional resources. The median time to provide data
was 4 hours (range 1—8 hours). Twelve of 15 reported
expertise of >3 on a five-point scale for interpreting clin-
ical trial results (5 = high expertise). Fifteen “control” da-
tasets were generated from the Auckland controls. For each
control dataset, 20 trials were randomly selected with
replacement, 40—4000 participants/trial randomly selected
with replacement, treatment groups randomly assigned,
and summary statistics calculated. All data were extracted
from case and control datasets and run through five assess-
ments (continuous baseline P values, withdrawals, gender,
numbers of participants, and matching summary statistics)
using development versions of reappraised package func-
tions. Output was compiled into a single pdf, with the order
of cases and controls randomly selected. This was given to
two assessors who independently rated each assessment for
each dataset as either integrity concern or not, and concerns
overall for the dataset as low, intermediate, or high. Dis-
agreements for overall concerns were resolved by
consensus.

Twelve of 15 cases overall were considered as high risk
of integrity concerns (three low risk), and 14/15 controls as
low risk (one intermediate risk) (sensitivity 0.80, specificity
0.93, and accuracy 0.87).

For the five components of the assessment, the two as-
sessors identified concerns for baseline P values in 12/15
and 12/15 cases, respectively, vs 1/15 and 0/15 in controls,
gender (4/15, 6/15 cases, 0/15, 0/15 controls), withdrawals
(0/15, 0/15 cases, 1/15, 1/15 controls), participants (11/15,
11/15 cases, 0/15, 2/15 controls), and matching (12/15, 11/
15 cases, 2/15, 1/15 controls). Agreement between asses-
sors was baseline P values (agreement 97%, kappa 0.93),
gender (87%, 0.5), withdrawals (93%, 0.93), participants
(93%, 0.86), matching (73%, 0.46), and overall (87%,
0.73).

4.1. Summary of test performance

The tests performed acceptably in discriminating cases
with integrity concerns from controls without concerns,
although the sample size was small. Only one control was
rated as moderate concerns in participants and matching
by one assessor, but the other assessor rated that control
as no concerns for all tests. In 2/3 cases rated low risk,
all data were created using random number generators in
a statistical program, and in the other case, at least some
data were created similarly in a spreadsheet.
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Agreement between assessors overall and for individual
tests was high. The best performing tests were the distribu-
tions of continuous baseline P values and participant
numbers. Possible reasons for this include that baseline P
values had the largest number of variables for analysis, that
people providing data did not consider that participant
numbers should follow an expected distribution, and that
these techniques give a single P value which might make
interpretation simpler.

5. When to use the tests

All the tests described require at least a moderate num-
ber of variables to allow reliable conclusions to be drawn.
This usually needs a moderate number of RCTs. It is diffi-
cult to give definite numbers of variables and studies
required, because they vary between tools and with the size
of any differences between observed and expected distribu-
tions. In general, >50 variables are probably needed. Thus,
these tools are only likely to be used for groups of RCTs.
The data extraction required is time-intensive and labour-
intensive. Therefore, it is most likely the tools would be
used when concerns have been raised about RCT(s) by a
research group. For example, if an RCT is retracted because
of questionable research practices, then all RCTs by that
group should be examined [20], and these tools could be
useful. If systematic reviewers identify concerns about
RCTs by investigators, the tools might aid in assessing
the body of work by that investigator [7,15,18,21].

There is a potential role for machine-learning models in
data extraction. It is straightforward to extract tables from
HTML, word processor or spreadsheet files, or PDFs, but
tables formatted as pictures cannot be extracted. A bigger
problem is that table formats are not standardized, and it
is not simple to extract data automatically into a ‘tidy’
format with one row for each variable and one separate col-
umn for each statistic (eg, mean) or other results (P values)
for each trial arm. Furthermore, tables may contain
different statistics within the same column (eg, mean/me-
dian) and the statistics presented can be ambiguous (eg,
SD/standard error of the mean). Currently, it is often quick-
er to manually extract data. A machine-learning model tool
that automatically extracted data into a ‘tidy’ format would
be very valuable.

While these tools have limited utility for individual tri-
als, journals could adapt the tools and ideas to screen sub-
mitted RCTs [5]. Although it is recommended that P values
are not reported in baseline tables [22], submission of a
supplementary baseline data table in a standard format with
P values would allow automatic calculation and checking
of P values and matching summary statistics. If concerns
were identified, an explanation could be sought before the
review process started. If individual data were provided in
a standardized format, more sophisticated automated as-
sessments could be undertaken. If full raw data were

required at submission, even if not for publication, it could
be kept securely by the journal and examined should con-
cerns arise later. Examining individual data is more power-
ful for assessing publication integrity than using summary
data [5].

6. Conclusion

A number of tools are now freely available to assist with
assessing publication integrity concerns for groups of
RCTs. Most of the tools compare whether the observed dis-
tributions of variables are consistent with distributions ex-
pected if successful randomization occurred. The tools
are most likely to be used when concerns have been raised
about >1 RCT(s), and an assessment of the broader body of
work by the researcher(s) is undertaken.
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