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ABSTRACT Drug Side Effects (DSE) are inconvenient and inadvertent retorts of the drugs. DSEs impact on
public health and healthcare can prove costly. These DSEs can be an important factor in the failure/acceptance
of drugs. Every approved drug should be either free from DSEs or these should be minor and reported
properly. The drug discovery process should be capable of predicting and preventing these effects in advance.
Previously, proposed studies for the prediction/prevention of DSEs utilized the features of 1D drug chemical
structures or Natural Language Processing (NLP). Both these techniques required a complex transformation
process. In this research authors have proposed a deep learning model, specifically using a transfer learning
approach to predict DSEs directly from 2D chemical structure images, eliminating the need for the hefty
transformation process of the NLP domain. For this study, a unique dataset is prepared that associates
each image (taken from PubChem) with its specific side effects (SIDER). The results are evaluated using
Accuracy, Precision, Recall and F-measure. The proposed model showed its dominance with an Accuracy
of 73%, Precision of 83%, Recall of 73%, and an F1 score of 75%. The achieved results of the proposed
model are compared against established transfer learning models like VGG16, DenseNet121 and some
previously used traditional machine learning models like SVM and KNN. The collected results indicate
a significant advancement in predicting drug side effects and offer a promising avenue for streamlining the
drug development process.

INDEX TERMS Drug side effects, drug 2D chemical structure images, transfer learning, fine tuning,
pretrained models, deep learning.

I. INTRODUCTION

DSEs (adverse reactions) are undesirable and unintended
responses to the drug. These DSEs can be from minor prob-
lems like headaches to situations that put your life in danger,
such as liver damage. Symptoms like dry mouth, upset stom-
ach, fever, vomiting, and drowsiness are considered common
DSEs, whereas severe DSEs can cause death, disability,
or congenital disabilities. It can happen due to many reasons
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like using a new drug, stopping a drug that you have been
using for a while, and increasing or decreasing its dose [1].
Drug development is a demanding, complex, and costly
process that needs expertise, research skills, human effort,
chemical understanding, and a bunch of dollars. The major
reason for drug development failure is primarily due to
DSEs [2]. Consequently, it is necessary to identify and
address protective flaws in drug development. Approximately
two million people are affected by the adverse effects of
drugs worldwide [3], [4]. Drugs are immediately withdrawn
(e.g., Rofecoxib) from the market due to their unaccepted
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DSE:s [5]. According to a study, one million people lose their
lives every year and DSEs are ranked as the fourth leading
cause of death in the US [6].

A drug is launched in the market after the initial stage
of 10-15 years and the entire process (from development
to launch) can cost a lot of time and money. The average
cost for the development of a single drug is approximately
$2.6 billion [7]. Furthermore, the study of DSEs is necessary
to save cost and time as well as to speed up the drug discov-
ery process. For early prediction of DSEs, efficient and fast
methods need to be designed as the existing clinical methods
are not efficient.

The pharmacological activity of drug molecules can be
regulated with the modification of the drug structure. The
physiochemical properties and ultimately effects of a drug are
determined by its chemical structure.

A. NLP-BASED DSEs PREDICTION

Machine learning (ML) models can perform effectively in
terms of time and cost for early DSEs identification as
compared to clinical methods [8]. Numerous computational
techniques have been proposed to identify DSEs. In some
studies, a binary classifier has been used for each side
effect [6], [9], [10] whereas in some studies SEs and drugs are
considered as a pair and uniform classifiers used for the clas-
sification task [11], [12]. A single drug has four main features
i.e., Enzyme, Pathway, Chemical Substructure, and Target.
Various ML methods have been proposed by researchers
for predicting DSEs. ML methods based on drug chemical
information are designed to predict drug-related DSEs using
drug chemical structure features. Researchers have recently
developed a deep learning framework based on a neural fin-
gerprint technique to represent adverse effects and chemical
structures [13]. DSEs were predicted after the identification
of alternative targets of drugs in the study [14]. The ability
to predict DSEs can be enhanced with the combination of
biological and chemical features. The integration of target
and chemical structures enhances the ability to predict the
DSEs of drugs [15]. In another study, the combined infor-
mation of gene expression and chemical structures was used
to determine adverse reactions (ADRs) [16]. Recently knowl-
edge graph embedding has been used to predict DSEs, graph
embedding method was proposed DDTE (Drug-Disease-
Target Embedding) for embedding heterogeneous networks
with different data types in the study [17].

Zhao et al. proposed a similarity-based method for pre-
dicting DSEs using heterogeneous information [12]. In their
study, they converted the problem into binary classification
after considering drug and DSEs as pairs. Pairs were based
on a similarity concept, whereas a pair represented five
features, and each feature derived from the drug property.
They applied the Random Forest algorithm as a prediction
engine. The results indicated a strong correlation between
DSEs and drug fingerprints. The extraction of information
from several drug heterogeneous networks and drug features
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provided the base of the network embedding method [11].
Additionally, pairing of drug features and DSEs was used to
represent a single sample. The association of drug-side effect,
apredictor was proposed in the study [ 18] which was based on
semi-supervised learning and multiple kernel learning (MKL)
approaches. This model could combine many input sources to
enhance prediction performance.

Furthermore, Yen Lee et al. [19] proposed a hybrid deep
learning model, this proposed model consists of a graph con-
volutional neural network (GCNN) model and bi-directional
long short-term memory (Bi-LSTM) for efficient learning
of drug features and association of DSEs. Dimitri and Li6
[20] proposed a machine learning-based model under the
name DrugClust. DrugClust model combined two tech-
niques for DSEs prediction. The model pipeline clustered
the drugs based on their features and predicted their DSEs
by applying Bayesian scores. Whereas biological valida-
tion of resulting clusters can be verified using enrichment
analysis.

Jiang et al. [21] introduced an approach grounded in the
premise that drugs sharing similar structures are prone to
exhibit comparable SEs. They developed a network represen-
tation encapsulating both drug structures and SEs, employing
a path-based algorithm to discern noteworthy associations
between drugs and their corresponding SEs. Liang et al.
[22] presented a dual source data approach, incorporating
drug-drug and drug-side effect similarities. Calculations for
drug-drug similarities were rooted in chemical structure sim-
ilarities, while drug-side effect similarities were derived from
their occurrence in clinical trials. Employing a transductive
matrix co-completion algorithm on the resultant matrix, they
predicted missing entries, representing potential DSEs. The
algorithm harnessed the inherent similarities between drugs
and DSEs to predict absent entries within the matrix. A sum-
marized literature review is presented in Table 1. The review
indicates a significant relationship between chemical struc-
tures and DSEs, with existing studies predominantly focusing
on NLP techniques.

B. PROPOSED DSEs PREDICTION WITH DRUG CHEMICAL
2D-STRUCTURE IMAGES

The proposed research has been based on 2D structure
images. It is imperative to predict the SEs of drugs at an
early stage to launch a useful medicine in the market such
as pandemic situation e.g., COVID-19. Typically, a drug has
four features (Structure, Pathway, Enzyme, and Target). Out
of these features, the most reliable feature is chemical struc-
ture because it is a persistent and efficient feature to predict
early SEs. Initially, DSEs prediction is approached as a binary
classification problem. In this study, a transfer-learning-based
CNN model is proposed to predict DSEs using 2D chemical
structure image. Various Online tools are available that can
design a drug molecule structure. Once proposed study is
implemented in such a tool, it can predict DSEs based on the
molecule’s structure as well.
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TABLE 1. NLP based literature summary.

Study Model Name Method/Approach Description Result’s
4] NDDSA Network and Domain-Based Based on the assigned side effect score model can AUPRC of Liu’s
Algorithm predict the DSEs of a new drug. Datasets
(41.2 % and 39.1
%)
[16] - Machine Learning Classification Machine learning model based on drugs' chemical -
Approach structure and gene expression features.
Average
Matthews
correlation
[11] - Random Forest Network embedding method with the random forest coefficients
as a prediction engine. (64 % for
balanced and
64.1% for
unbalanced
datasets)
The model was based on semi-supervised learning AUPRC
and multiple kernel learning approaches. (66.8 %, 67.3%,
[18] - MKL Algorithm and 67.0% on
three benchmark
data sets
respectively)
This model used clustering for drug features and
[20] DrugClust Machine Learning Approach Bayesian scores for DSEs. -
The authors utilized similarities The study provides a comprehensive approach to
Co—Com_pletion between drugs  (based on evaluating drug safe_ty and ) facilitating dmg
[22] Algorithm chemical structure) and DSEs dgv?lopl?lent. It achieves this by _comparing -
- . similarities between drugs and their side effects,
(based  on  clinical  trial . Lo .
occurrences) to predict potential alflfowmg for the prediction of potential adverse
DSEs. This was achieved through effects.
a transductive matrix  co-
completion algorithm.
Examined data fi 10,064
23] XGBoost ] xe?n?me ata - from ’ i The study aimed to predict DSEs of the coronavirus Accuracy
individuals, collecting  vaccine using machine learning methods. (58 to 74%)
information on their age, history
of COVID-19, gender, smoking
status, level of education,
symptoms, and  type of
vaccination.
Analyzed DSEs using data fi
[24] Random Forest nalyze s 1?s1ng ata from The study aimed to predict DSEs based on Accuracy
Classifier WebMD.com, which was sourced  descriptions from health and medical forums. (62.4%)
from health and medical forums,
and applied machine learning
models.
: Conducted a systematic analysis of 10,822 tweets
- L -Based A h >
125] exicon-Based Approac discussing 74 medications to assess whether they s 7F§ %)
. ()

could indicate potential signals for ADRs.

The scope of this research is to develop a predictive model
for DSEs using 2D chemical structures and deep learning

techniques. The research focuses on leveraging deep learning
models such as MobileNetV2 model to analyze 2D chemical

50186 VOLUME 12, 2024



M. A. Arshed et al.: Img2Side: A Transfer Learning Based Model for Predicting Drug Side Effects

IEEE Access

T s
v

PubChem

Dataset

Resize
Normalization

Preprocessing

Data Augmentation

Proposed
Model
(Img2Side)

Significant
Results

Test Samples
(CoviD-19)
y \ 4
( Model Training

K-Fold Selection
Optimizer
Learning Rate
Loss Function

Model
Evaluation

Number of Epochs

FIGURE 1. Abstract diagram of the proposed study.

structures and predict potential DSEs of drugs. The ultimate
goal of the project is to develop a reliable and accurate tool
that can assist healthcare professionals and researchers in
predicting potential DSEs of drugs based on their 2D chem-
ical structures, thereby improving drug safety and patient
care. The research does not cover the real-life experimental
validation of DSEs prediction. Additionally, the prediction
of DSEs in this research is done without the use of genetic
information.

C. MAJOR CONTRIBUTIONS
The major contributions of the proposed study are:

o Preparation of a unique dataset, label each 2D structure
image with its associated side effect (SIDER- Side Effect
Resource information).

o This study is the first of its kind (as per our knowl-
edge) to predict fever DSEs using 2D chemical structure
images.

« A fully tweaked transfer-learning-based model to serve
the purpose of proposed study.

o To boost the model performance, a data augmentation
technique was used to increase the dataset size with
rotation, zoom, and flipping of the original dataset
images.

o The proposed model has reduced the hefty transforma-
tion process contrary to the NLP domain which employs
smiles to fingerprints and features extraction process.

o The proposed model is also tested for predicting the
DSEs of COVID-19 drugs and achieved an F1 score
of 75%.

Il. PROPOSED METHODOLOGY

This section comprises dataset description, dataset prepro-
cessing, methodologies, and network details. The abstract
diagram of the proposed study can be seen in Fig. 1.
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A. DATASET AND LABELING

In this study, drug information and associated DSEs are
extracted from the open-source database SIDER (Version
4.1) [26] maintained by the European Molecular Biology
Laboratory (EMBL). SIDER contains information about mar-
keted medicines and their associated DSEs. The database
encloses information on 1,430 drugs (I did not observe any
information with the drug name ‘x’ so the actual number
of drugs considered is 1,429), 5,868 ADRs, and 1,39,756
Drug-ADR associations this database is connected with Pub-
Chem [27]. The 2D chemical structure images collected from
PubChem [27]. In this study, fever is considered as one
of the DSEs. SIDER has 790 drugs (768 unique) that can
cause different types of fever (body temperature increased,
fever neonatal, fever chills, unknown origin fever, and herpes
labialis) as DSEs.

o Fever: A very common problem or condition that is
experienced by almost all people in their lives. The
average normal temperature of the body is 98.6° Fahren-
heit [28] and continuous fever is the major reason for
being disconnected from routine work. Human often feel
fever after taking high-potency medicines. 2D chemical
drug structure images collected and labeled as 1 and 0
i.e., a binary classification problem. Whereas, 1 repre-
sents the side effect of fever and O represents those drugs
that have no side effect. Table 2 describes samples and
their associated labels.

In addition to that COVID-19 2D chemical structure
images extracted from DrugBank [29] exhibiting fever as
DSEs. This step was taken to test the generalization and
robustness of the proposed model.

B. DATASET PRE-PROCESSING
The 2D drug’s chemical structure images are of 300 x
300 dimension. The images are resized to 224 x 224
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TABLE 2. Prepared dataset samples, counts, and associated label.

Drug Name Drug Chemical Structure Image Label
'1N;{
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Ny H
1/\/" !

Hy®
o

N O

atosiban

0
Il
S-methyltetrahydrofolate ﬁ [ “ N 1 | o 0
N N’ °
Il
NTON
Total 0 Class Images before Pre-Preprocessing 651
Total 1 Class Images before Pre-Preprocessing 745
Total 0 Class Covid-Medicine Images before Pre-Preprocessing 10
Total 1 Class Covid-Medicine Images before Pre-Preprocessing 23

dimension and normalized pixel (0-255) intensity values
between 0-1. Some images that only contain elements names
were removed. Table 3 depicts some of the removed elements
from the dataset.

1) DATA AUGMENTATION

Data augmentation is a technique used to increase the amount
of data samples for deep learning models. The goal of data
augmentation is to create additional data samples that are
similar to the original ones but with small variations. This
helps to mitigate over-fitting, which occurs when a model
performs well on the training data but poorly on new, unseen
data [30]. It can be performed in several ways, including
rotation, zoom, flipping, and adding noise to the original data
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samples. These operations are applied to the original data to
generate new, augmented data samples that can be used for
deep learning models. The augmented data samples help the
model learn to recognize patterns in the data that are invariant
to small transformations, which can improve its generaliza-
tion performance. Table 4 has lists of pipeline parameters and
their values for the augmentation process that applied in this
study.

Table 5 shows the original and augmented dataset sam-
ples as well as class-wise counts after preprocessing and
augmentation.

C. PRE-TRAINED MODELS
Pretrained models are deep learning models that have already
been trained on a large dataset and are made available for

VOLUME 12, 2024
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TABLE 3. Prepared dataset samples, counts, and associated labels.
Drug Name Drug Chemical Structure Image Label
chromium 0
TABLE 4. Augmentation pipeline parameters.
Data Augmentation Parameters Sub Parameters & Value(s)
Probability (0.3), Max_left rotation=5, Max_right rotation=>5
Rotation
Zoom Probability (0.1), Min_factor=1.0, Max_factor=1.2
Flipping Flip_Left Right (Probability of 0.1)
TABLE 5. Prepared dataset samples, counts, and associated labels after pre-processing and augmentation.
Drug Name Drug Chemical Original Drug Chemical Augmented 2D Structure Image Label
2D Structure Image
8 )5 }
o_H
3 ~ 0
4-PBA 0
Total 0 Class Images after Pre-Preprocessing and Augmentation
. . 1242
Total 1 Class Image after Pre-Preprocessing and Augmentation 1490
Total 0 Class Covid-Medicine Images after Pre-Preprocessing 7
Total 1 Class Covid-Medicine Images after Pre-Preprocessing 23
others to use. These models are used as a starting point for
solving specific tasks, such as image classification, natural

language processing, and many others, rather than starting the
VOLUME 12, 2024

training process from scratch [31].
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FIGURE 2. Transfer learning concept.

The idea behind using pre-trained models in proposed
study is that model has already learned important features and
patterns from the vast amounts of data that they were trained
on, and these features can be fine-tuned for a specific task.
This can save a significant amount of time and resources, as it
is often more efficient to fine-tune a pretrained model than to
train a model from scratch.

1) TRANSFER LEARNING

Transfer learning is a deep learning technique that is being
used to improve the performance of a task after learning
another task. In the transfer learning approach, for the training
of a new model, a pre-trained (such as DenseNet121) model
is used as a base model for different but related tasks as
can be seen in Fig. 2. The idea is that the pre-trained model
has already learned useful representations of data that can be
reused and adapted for the new task.

Transfer learning has gained popularity in recent years due
to the rise of deep learning and the availability of large pre-
trained models, such as BERT, and VGG16.

The transfer learning approach is considered to the numer-
ous benefits as it can reduce the amount of data needed to train
a new model, which is particularly useful when labelled data
is scarce or expensive and it can also speed up the training
process and improve the performance of the new model [32].

2) FINE-TUNING
Fine-tuning [33] is a technique that involves taking a
pre-trained model and adapting it to a new task or dataset
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by updating its parameters through additional training. This
process enables the model to learn the specifics of the new
task while leveraging the knowledge it has already acquired
during the pre-training phase. Fine-tuning involves taking
the pre-trained model and updating its parameters on a new,
smaller dataset that is specific to the task at hand.

Fine-tuning has several benefits in deep learning. It can
save time and resources compared to training a new model
from scratch and often leads to better performance on the
new task due to the transfer of knowledge from pre-training.
However, there are also some challenges associated with
fine-tuning.

3) PROPOSED MobileNetV2 PRE-TRAINED MODEL
MobileNetV2 [34] is a deep learning architecture that was
developed by Google specifically for mobile and embedded
devices. It is an improvement over the original MobileNet
architecture, which was designed to be lightweight and
efficient while still achieving good accuracy on image classi-
fication tasks.

The architecture of MobileNetV2 consists of a series of
blocks, each of which contains a combination of depth wise
separable convolutions, pointwise convolutions, and pool-
ing layers. It also includes skip connections and residual
blocks, which are used to improve the performance of the net-
work. MobileNetV?2 has achieved good results on benchmark
datasets such as ImageNet and COCO and is widely used
in computer vision applications on mobile and embedded
devices.

VOLUME 12, 2024
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FIGURE 4. Fine-tuned VGG16 model architecture.

It is also commonly used as a feature extractor in transfer
learning, where the pre-trained weights of MobileNetV2 are
used as a starting point to fine-tune the network on a new task
with a smaller dataset. All the pre-trained layers are frozen
in proposed model and additionally three fully connected
(FC) layers of 64, 32, and 16 neurons respectively. Whereas
ReLU [35] is an activation function between FC layers and
sigmoid [36] is an output activation function. In order to avoid
overfitting, additional dropout layers (0.55, 0.3) are added
after each FC layer except the last FC layer, see Fig. 3.

4) VGG16 PRETRAINED MODEL

VGG16[37], [38] is a CNN-based architecture and its name is
due to its developer name ‘“Visual Geometry Group (VGG)”
and 16 refers to weight layers. VGG16 is one of the most
widely used deep learning models for image classification
tasks and is known for its simplicity and good performance.
The VGGI16 architecture uses small convolutional filters
(3 x 3) and a lot of them, which gives the network the ability
to learn fine-grained features of the input image. Additionally,
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it uses a deep network of many layers, which allows it to
learn high-level abstract features that are more informative
for classification.

VGG16 has been trained on a large dataset of images, and
the weights of its layers can be used as pre-trained weights
for transfer learning, which is a technique used to fine-tune
a pre-trained network on a new task with a smaller dataset.
This allows the network to adapt to new tasks and improve its
performance without having to start from scratch. This model
is considered due to its simplicity and high performance, see
Fig. 4 for fine-tuned VGG16 network.

5) DenseNet-121 PRETRAINED MODEL

DenseNet121 [39] is a variant of the DenseNet architec-
ture. The architecture of DenseNetl121 is based on the idea
of densely connected convolutional networks. This con-
nectivity pattern enables DenseNetl121 to reuse features
learned in earlier layers, which leads to better gradient
flow, reduces overfitting, and improves accuracy. Addition-
ally, DenseNet121 employs batch normalization after every
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FIGURE 5. Fine-tuned DenseNet-121 model architecture.

convolutional layer, which speeds up training and improves
accuracy.

DenseNet121 uses a global average pooling layer that
reduces the number of parameters and helps to prevent over-
fitting. DenseNet121 has achieved state-of-the-art results on
various image recognition tasks, including the ImageNet
dataset. Overall, DenseNet121 is a powerful deep neural
network architecture for image classification tasks, and its
unique connectivity pattern and efficient use of parameters
make it a promising technique for applications in computer
vision.

To compare these three pre-trained models, FC layers,
activation functions, and dropout layers are used with the
same configuration as described in MobileNetV2, see Fig. 5
for fine-tuned DenseNet121 network.

IIl. EXPERIMENT RESULTS AND DISCUSSION

A detailed discussion has been provided in Table 2 to Table 5
as a proposed methodology, which includes all the steps such
as data scraping, preprocessing, and augmentation to artifi-
cially increase the data samples. In this study, three pretrained
architectures VGG16, MobileNetV2, and DenseNet121 con-
sidered. All three architectures were trained and hyper-tuned
for better performance on prepared dataset. In this section,
we have evaluated the performance of all three architectures
based on evaluation metrics. A detailed discussion of net-
work training and the performance of the proposed model is
described in this section.

A. EVALUATION METRICS

In deep learning, the evaluation of models is a crucial step
in understanding how well a model performs. The evalu-
ation matrices help in this regard for the model’s efficacy
evaluation [40].

o Accuracy: Accuracy is a percentage of correctly pre-
dicted class from the total prediction without the con-
sideration of class labels. The formula to calculate the
accuracy is mentioned in Equation 1, that based on True
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Positive (TP), False Positive (FP), True Negative (TN),
and False Negative (FN).

Accuracy = (TP +TN)/(TP+ FP+ TN + FN) (1)

Precision: Precision measures the accuracy of positive
predictions. The formula to calculate the accuracy is
mentioned in Equation 2, in which it is observable
that precision is calculated with counts of true positive
predictions (TP) divided by the sum of true and false
positive predictions (TP+FP).

P = TP/(TP + FP) 2)

Recall: Recall (also known as true positive rate (TPR) as
well as sensitivity) is used to measure the model’s ability
to find all positive instances. The formula to calculate
the recall is mentioned in Equation 3, in which it is
observable that recall is calculated with counts of true
positive predictions (TP) divided by the sum of true
positive and false negative predictions (TP+FN).

R = TP/(TP + FN) 3)

F1 Score: The F1 balances both precision and recall and
gives a single score to the model’s performance & and it
is the harmonic mean of precision (P) and recall (R). The
formula to calculate the F1 is mentioned in Equation 4.

F1=2(PR)/(P+R) @

Binary Cross Entropy: The Binary cross entropy
(BCE) is a loss function commonly used in machine
learning for binary classification tasks, where the goal
is to predict a binary output (e.g., true/false, 0/1, yes/no,
etc.) based on input features. The BCE loss measures the
difference between the predicted probability distribution
and the true probability distribution. It calculates the
cross-entropy between the true labels and the predicted
probabilities.

VOLUME 12, 2024
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B. STRATIFIED-KFOLD

In this study, the Stratified-K-Fold considered for cross-
validation. It divides data into k-folds, where k is a user-
specified number. It’s called “‘stratified” because it tries to
ensure that the distribution of target classes is roughly the
same in each fold as in the complete dataset. Stratified-
K-Fold has used to ensure that the model should learn and
validate for each class with equal proportions. The detailed
process of Stratified-K-Fold for the 2D drug chemical struc-
ture images dataset is summarized in Algorithm 1.

In this study, for Stratified-K-Fold K=3 is used which
means data is divided into 3 folds in such a way that
the proportions of the target class in each fold are similar
to the proportions of the target class in the complete dataset.
The average scores of 3-fold training and validation are
reported in this study, the process of Stratified-K-Fold for this
study is elaborated in Fig. 6.

C. NETWORK TRAINING

A transfer learning approach has been applied to reduce
the training computational power. The architecture of the
proposed framework is elaborated in Figure 6. The archi-
tecture consists of 3 x 3 convolution layers with 64 filters
for convolutional operations with 2 x 2 max pooling. The
2D drug chemical structure images are resized to 224 x
224 from 300 x 300 to make it consistent with MobileNetV2
architecture input. The data augmentation process is applied
with three parameters rotation, zoom, and flipping for model
robustness and better generalization. The input images are
normalized to convert the pixel values [0,255] to a specific
range [0,1]. Dropout layers with dropout rates 0.55, and
0.3 are added respectively after FC layers to avoid overfitting.
The optimizer used in this study is Adam with a learning
rate of 0.0001. Additionally, a reduced learning rate with
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patience 3 and early stopping with patience 5 has also applied
in the study, see Fig. 7.

The model was trained for 50 epochs with Stratified-
K-Fold (K=3). The training and validation data are divided
into folds, whereas for testing purposes Covid-19 drugs 2D
chemical structure images considered to measure the efficacy
of the proposed model. The hyperparameters and their tuned
values are described in Table 6.

D. RESULTS AND DISCUSSION

The ultimate goal of proposed model is to identify fever as a
side effect of a drug from the dataset, which is extracted by
using the proposed Img2Side model. The results are achieved
from the 2D drug chemical structure images that used after
the preprocessing, augmentation, and normalization. To val-
idate the proposed model properly, Stratified-K-Fold consid-
ered with Fold=3 in this study. The highest training accuracy
in each split was 0.8192, 0.8145, and 0.8513 respectively
with the highest average accuracy of 0.8283. Furthermore, the
highest validation accuracy achieved in each fold was 0.8131,
0.7967, and 0.8516. Whereas the average highest validation
accuracy recorded was 0.8205.

Img2Side was trained for 50 epochs. Furthermore, to avoid
overfitting, the early stopping with patience 5 and reduced
the learning rate with patience 3 considered. Fig. 8-10 clearly
shows that model training stopped before the completion of
50 epochs as the early stopping criteria is satisfied in each
fold i.e., in Fold 1, Fold 2, and Fold 3.

To validate the efficiency of data augmentation, pro-
posed model also trained without data augmentation. Fig. 11
illustrates that the model outperformed when using the
original + augmented dataset, as opposed to only the orig-
inal dataset. Furthermore, it is observable that the training
accuracy of 0.5792 is less than the validation accuracy of
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Algorithm 1 Stratified-K-Fold for Proposed Study
Input: Drug 2D Chemical Structures Dataset

Step 1: Split the dataset into 3 folds

Repeat

For fold i=1 to 3 do

Step 2: Select fold I as the validation and the remaining folds as the training set.

Step 3: Fit the model on the training set

Step 4: Evaluate for validation set during training

Step 5: Store the evaluation scores in list S

End-for

Step 6: Find the average performance with S

Qutput: Average Performance of the Model
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FIGURE 7. Transfer learning-based proposed architecture for DSEs prediction using pretrained MobileNetV2 model.

0.5928, which indicates symptoms of underfitting in the disease was first identified in Wuhan, China, in December
model. 2019, and has since spread globally, leading to a pandemic.

Drug discovery has played a critical role in the fight against

COVID-19. Several drugs have been repurposed or developed
1) ROBUSTNESS OF PROPOSED Img2Side MODEL specifically to treat COVID-19, including remdesivir, dexam-
COVID-19, also known as coronavirus disease 2019, is a viral ethasone, and monoclonal antibodies. These drugs work by
respiratory illness caused by the SARS-CoV-2 virus. The targeting different aspects of the virus or the body’s response
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TABLE 6. Prepared dataset samples, counts, and associated labels.

Parameters Values
Train Generator Shuffle True
Batch Size 32
Epochs 50
Learning Rate 0.0001
Reduce Learning Rate Yes
Patience for Reduce Learning Rate 3
Early Stopping Patience 5
Stratified-K-Fold K Value 3
Optimizer Adam
FC Layers Activation Function ReLU
FC Layers Neurons 128, 64, 32
Output Layer Neurons 2
Output Activation Function Sigmoid
Dropout between FC Layers 0.55,0.3
Compile Loss Binary Cross Entropy
Model Accuracy Model Loss
080 08
075 07
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W
3 065 =
2 0s
0.60 -
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\ ' | ) 03 i
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FIGURE 8. Model accuracies and losses graph for Fold-1.

to the virus. However, like all drugs, COVID-19 treatments
can have DSEs. For example, ritonavir has been associated
with fever, while dexamethasone can cause increased blood
sugar levels, weight gain, and mood changes.

It is essential to carefully weigh the potential benefits of
these treatments against their potential DSEs and to closely
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monitor patients receiving these medications. Additionally,
ongoing research and clinical trials are exploring new treat-
ments and strategies to manage COVID-19 and minimize
its impact on public health. In light of these facts, sug-
gested model’s generalizability and robustness tested using
COVID-19’s 2D chemical structure. In this research, the
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FIGURE 10. Model accuracies and losses graph for Fold-3.

COVID-19 drugs extracted from the DrugBank source [26]
and proposed model validated using the 30 COVID-19
drugs’ 2D chemical structures for fever as a side effect
(Table 7).

Table 8 depicts the performance of the proposed Img2Side
model. It is observed that the proposed model has shown
the highest percentage for important classification measures
i.e., precision, recall, F1, and accuracy. It is evident from
the classification report that the Img2Side model achieved
accuracy, precision, recall, and F1 of 73%, 83%, 73%, and
75% respectively. In Table 8, the ‘Support’ column denotes
the number of samples for each respective class. Out of a
total of 30 samples, 7 belong to Class 0 (No Fever), and
23 belong to Class 1 (Fever). The variation in per-class scores
is attributed to the imbalanced number of samples during
testing.

Furthermore, the overall comparison for the proposed
Img2Side against VGG19 and Dense-Netl21 is shown
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FIGURE 11. Results of original and original + augmented dataset.

in Fig. 12. This clearly shows that proposed model
outperformed other variants. An important point to note here
is that fully connected layers, layer activation functions, and

VOLUME 12, 2024



M. A. Arshed et al.: Img2Side: A Transfer Learning Based Model for Predicting Drug Side Effects

IEEE Access

COMPARISON OF PRETRAINED MODELS FOR
COVID-19 DRUGS
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FIGURE 12. Img2Side model comparison with pretrained variants (with data augmentation and pretrained weights) on basis of accuracy and weighted

average of (Precision, Recall, and F1) for Covid-19 Drugs.
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FIGURE 13. Img2Side model comparison with pretrained variants (with data augmentation and pretrained weights) on basis of confusion matrix

for Covid-19 Drugs.

dropout layer configurations were maintained consistently
across all three models.

The comparison based on the confusion matrix of the pro-
posed Img2Side transfer-learning-based model is illustrated
in Fig. 13. Furthermore, the confusion matrix comparison
also confirmed that proposed model has better performance
than other models.

Moreover, to demonstrate the robustness of employ-
ing pre-trained ImageNet weights, experiments conducted
without pretraining, i.e., without using pre-trained weights.
The fine-tuned architectures of Image2Side, VGG16, and
DenseNet121 considered and theses models are trained from
the ground up for predicting DSEs in this study. Fig. 14
illustrates that these models exhibited inferior performance
when trained without pre-trained weights. The Image2Side
and DenseNet121 models are overfitted as training accuracy
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0.7819 of Image2Side and 0.8367 is too much greater than
validation and test accuracy [41]. The VGG16 model is
underfitted as the training accuracy of 0.5424 too much less
than the test accuracy of 0.77.

Typically, authors have not found any study that pre-
dicts DSEs purely based on 2D chemical structure images.
However, some research has been done based on Canonical
Smiles, which is solely related to the NLP domain. For the
use of deep learning approach robustness, the proposed model
compared with machine learning models (ML) as well as
with variations in terms of data augmentation and pre-trained
weights. Proposed Image2Side model is well generalized
when it is used with data augmentation and pre-trained
weights, see Table 9.

The practical applicability of this work lies in its potential
to revolutionize drug development processes. By predicting
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TABLE 7. Covid-19 treatment drugs.
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FIGURE 14. Img2Side model comparison (with data augmentation and without pretrained weights) on basis of confusion matrix for Covid-19 Drugs.

Covid-19 Treatment Drugs

Bromhexine Budesonide Ivermectin
Chloroquine Celecoxib Losartan
colchicine Chlorpromazine Montelukast
dipyridamole Darunavir Nitazoxanide
methylprednisolone Dexamethasone Quetiapine
rivaroxaban Famotidine Ribavirin
tranexamic acid Fondaparinux Ritonavir
argatroban Heparin Ruxolitinib
azithromycin Hydroxychloroquine Simvastatin
bicalutamide Ibuprofen Sofosbuvir

TABLE 8. Proposed Image2Side model performance (with data augmentation and pretrained weights) for Covid-19 treatment drugs.

Precision Recall F1 Support
0 (No Fever) 0.46 0.86 0.60 7
1 (Fever) 0.94 0.70 0.80 23
Accuracy 0.73 30
Macro Avg 0.70 0.78 0.70 30
Weighted Avg 0.83 0.73 0.75 30

DSEs early in the development stage, pharmaceutical compa-
nies can screen candidate drugs more effectively, saving time,
money, and potentially improving public health outcomes.
The model’s ability to achieve remarkable accuracy, even
with COVID-19 drugs, suggests its versatility and reliability
in predicting a wide range of DSEs.
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In real-time, this model could be integrated into drug devel-
opment pipelines or used by regulatory agencies to evaluate
the safety of new drugs. By analyzing 2D chemical struc-
ture images, the model could rapidly predict potential DSEs,
allowing for proactive measures to mitigate risks and enhance
drug safety.
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TABLE 9. Performance comparison between different models with variations of parameters.

Data Pretrained Average Average Covid Covid Covid Covid Model
Model Augmentation Weichts Train Validation Test Weighted Weighted Weighted Nature
& g Accuracy  Accuracy Accuracy Precision Recall F1
Img2Side Yes Yes 0.8283 0.8205 0.73 0.83 0.73 0.75  Generalized
(Proposed)
VGG16 Yes Yes 0.6159 0.6981 0.60 0.64 0.60 0.62 Underfitted
DenseNet121 Yes Yes 0.6712 0.6996 0.67 0.67 0.67 0.67 Underfitted
Img2Side
Yes No 0.7819 0.5567 0.33 0.83 0.33 0.22 Overfitted
VGG16 Yes No 0.5424 0.5201 0.77 0.59 0.77 0.67 Underfitted
DenseNet121 Yes No 0.8367 0.7014 0.57 0.69 0.57 0.60 Overfitted
Image2Side No Yes 0.5792 0.5928 0.70 0.71 0.70 0.71 Underfitted
VGG16 No Yes 0.5388 0.5672 0.77 0.59 0.77 0.67 Underfitted
DenseNet121 No Yes 0.5732 0.6073 0.67 0.57 0.67 0.61 Underfitted
SVM Yes No 0.5113 0.4904 0.26 0.82 0.27 0.15 Overfitted
KNN Yes No 0.7452 0.5479 0.53 0.68 0.53 0.57 Overfitted

IV. CONCLUSION

In this study, Img2Side model is proposed that based
on a pre-trained transfer learning MobileNetV2 architec-
ture to predict DSEs using 2D chemical structures. The
proposed study addresses limitations in the prediction of
DSEs encountered in clinical trials. The Img2Side model
improved accuracy observed through the implementation of
dropout layers, a reduced learning rate approach, and an
early stopping technique. Different approaches have applied
and concluded that the Image2Side model is effective and
well-generalized when it is used with the combination of
data augmentation and pre-trained weights. Achieving a test
accuracy of 73%, weighted precision of 0.83%, weighted
recall of 0.73% and weighted F1 of 0.75% for COVID-19
drugs, proposed Img2Side architecture holds promise for
aiding clinical trials in making early predictions of DSEs.
While proposed framework has demonstrated commendable
results, ongoing refinement of the proposed architecture is
possible.

In the sense of limitation and future work, this study
focus has been on individual DSEs; however, future endeav-
ors aim to extend proposed study to predict multiple DSEs
associated with a single drug based on its 2D chemical
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structure images. Proposed Img2Side model witnesses the
materials of modern machine learning methods’ ability to
change the prediction process related to DSEs. The model
will be further developed and enhanced, with the belief that
it will continue to have a positive impact on streamlining and
safeguarding the drug development process for researchers
and patients. Additionally, there is a need to increase
the dataset and consider other drug features along with
2D structure.

ABREVATIONS
ADR Adverse Reactions
BCE Binary Cross Entropy
Bi-LSTM  Bi-Directional Long Short-Term Memory

DDTE Drug-Disease-Target Embedding

DSEs Drug Side Effects

EMBL European Molecular Biology Laboratory
FC Fully Connected

GCNN Graph Convolutional Neural Network
MKL Multiple Kernel Learning

ML Machine Learning

NLP Natural Language Processing

VGG Visual Geometry Group
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