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Abstract. We investigate spaces of symplectic embeddings of n ≤ 4 balls into the complex
projective plane. We prove that they are homotopy equivalent to explicitly described algebraic
subspaces of the configuration spaces of n points. We compute the rational homotopy type of
these embedding spaces and their cohomology with rational coefficients. Our approach relies
on the comparison of the action of PGL(3,C) on the configuration space of n ordered points in
CP2 with the action of the symplectomorphism group Symp(CP2) on the space of n embedded
symplectic balls.
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1. Introduction

Background. The study of symplectic embeddings is of major importance in symplectic topol-
ogy, as it directly addresses the question of what it means to be symplectic. An example of a
symplectic embedding result is the Gromov’s Nonsqueezing Theorem [16] which is a fundamental
manifestation of symplectic rigidity, and which gives rise to the notion of symplectic capacity.
Most of the research on this field has been focused on existence problems and much less is known
about the topological properties of embedding spaces per se. Some notable exceptions are the
results about connectedness obtained by Biran [8] and McDuff [29, 30]. Other results about the
space of symplectic embeddings of one or two balls in rational ruled 4-manifolds can be found
in [23, 32, 5]. In particular, in [5] it is shown that for certain values of the capacity of the ball this
space does not have the homotopy type of a finite CW -complex. Note that most results have been
proven in dimensions 2 and 4. On the other hand, Chaidez and Munteanu [10] obtained interesting
results about the homology groups of spaces of symplectic embeddings between ellipsoids in any
dimension.

Consider a symplectic 4-manifold (M,ω). Let B4(c) ⊂ R4 be the closed standard ball of radius
r and capacity c = πr2 equipped with the restriction of the standard symplectic structure of R4,
and let Symp(B4(c)) be the group of symplectomorphisms of B4(c) that extend to some open
neighbourhood of B4(c). Let Embn(c;M) denote the space, equipped with the C∞-topology, of
symplectic embeddings of n disjoint balls Bc := B4(c1) ⊔. . .⊔ B4(cn) of capacities c := (c1, . . . , cn)
into (M,ω). Let ℑEmbn(c;M) be the space of subsets of M that are images of maps belonging
to Embn(c;M), which we topologize as the quotient

ℑEmbn(c,M) := Embn(c,M)/
∏
i

Symp(B4(ci)),

where the group Symp(B4(ci)) acts by reparametrizations of the ball B4(ci). We say ℑEmbn(c,M)
is the space of unparametrized symplectic balls of capacities c1, . . . , cn inM . Finally, let Confn(M)
denote the configuration space of n distinct and ordered points in M , that is,

Confn(M) = {(x1, . . . , xn) ∈Mn | xi ̸= xj for i ̸= j}.
The homotopy type of ℑEmbn(c,CP2), for n ∈ {1, 2} was computed by Pinsonnault in [32]:
ℑEmb1(c,CP2) ≃ CP2 while ℑEmb2(c,CP2) ≃ Conf2(CP2). In particular, in these two cases,
it is independent of the choice of the capacities. Moreover, the case n = 1 is a particular instance
of a recent result in [4], where the authors showed that for a rational manifold M with χ(M) ≤ 11
the space ℑEmb1(c,M) is weakly homotopy equivalent to M whenever the capacity c of the ball is
smaller than the symplectic area of any embedded symplectic sphere of negative self-intersection
in the blow up (M̃c, ω̃c).
Main results. In this paper we consider the symplectic manifold (CP2, ωFS) and compute the
rational homotopy type and the cohomology with rational coefficients of the space ℑEmbn(c,CP2),
for n ∈ {3, 4}. We assume that c1 ≥ . . . ≥ cn and we normalize CP2 so that the area of a line
is 1. The spaces Embn(c;CP2), with n ≤ 4, are non-empty if and only if ci + cj < 1 for all i ̸= j
and, by the work of McDuff [29], are connected.

The configuration space Conf3(CP2) decomposes into 2 disjoint strata

Conf3(CP2) = F0 ⊔ F123,

where

F0 = {P ∈ Conf3(CP2) | the 3 points are in general position}
F123 = {P ∈ Conf3(CP2) | the 3 points are colinear}.

Notice that F0 = U(3)/T3.
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Theorem 1.1. Consider CP2 endowed with its standard Fubini-Study symplectic form and let
c1, c2, c3 ∈ (0, 1) be such that ci + cj < 1.

(i) If c1 + c2 + c3 ≥ 1, the space ℑEmb3(c,CP2) is homotopy equivalent to the flag manifold
F0 = U(3)/T3.

(ii) If c1+c2+c3 < 1, the space ℑEmb3(c,CP2) is homotopy equivalent to the full configuration
space Conf3(CP2) = F0 ⊔ F123.

Similarly, the configuration space Conf4(CP2) decomposes into 6 disjoint strata

Conf4(CP2) = F0 ⊔ F234 ⊔ F134 ⊔ F124 ⊔ F123 ⊔ F1234

where

F0 = {P ∈ Conf4(CP2) | no three points of P are colinear}
Fijk = {P ∈ Conf4(CP2) | only the points pi, pj , pk are colinear}
F1234 = {P ∈ Conf4(CP2) | all four points of P are colinear}

Theorem 1.2. Consider CP2 endowed with its standard Fubini-Study symplectic form. Let 0 <
c4 ≤ c3 ≤ c2 ≤ c1 < 1 be such that ci + cj < 1. Then the following table gives the homotopy type
of the space ℑEmb4(c,CP2) depending on the capacities ci.

Capacities Homotopy type of ℑEmb4(c,CP2)

c2 + c3 + c4 ≥ 1 F0 ≃ PU(3)

c2 + c3 + c4 < 1 and c1 + c3 + c4 ≥ 1 F1 := F0 ⊔ F234

c1 + c3 + c4 < 1 and c1 + c2 + c4 ≥ 1 F2 := F0 ⊔ F234 ⊔ F134

c1 + c2 + c4 < 1 and c1 + c2 + c3 ≥ 1 F3 := F0 ⊔ F234 ⊔ F134 ⊔ F124

c1 + c2 + c3 < 1 and c1 + c2 + c3 + c4 ≥ 1 F4 := F0 ⊔ F234 ⊔ F134 ⊔ F124 ⊔ F123

c1 + c2 + c3 + c4 < 1 F5 := Conf4(CP2)

Remark 1.3. The homotopy type of embedding spaces can be seen as a refinement of the Gromov
capacity and, as such, should reveal a finer interplay between symplectic rigidity and flexibility.
In both Theorem 1.1 and Theorem 1.2, we observe an interesting gradation from a most rigid
situation (the case of "big" balls) to a completely flexible regime (the case of "small" balls).

Our geometric methods allow for the computation of the rational cohomology ring of the embed-
ding spaces. For 3 balls, the rational cohomology algebra of the spaces Conf3(CP2) and U(3)/T3

is known from previous works that rely on algebraic methods (see [3]). We recover the same results
in Section 7.1. In the case of 4 balls, we obtain the following description of the cohomology ring
H∗(ℑEmb4(c,CP2);Q).

Theorem 1.4. Consider CP2 endowed with its standard Fubini-Study symplectic form. Let 0 <
c4 ≤ c3 ≤ c2 ≤ c1 < 1. Then the rational cohomology ring of the space ℑEmb4(c,CP2) of
4 unparametrized balls in the projective plane is given in the following table, depending on the
capacities ci:
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Capacities H∗(ℑEmb4(c,CP2);Q)

c2 + c3 + c4 ≥ 1 Λ(β, η)

c2 + c3 + c4 < 1 and c1 + c3 + c4 ≥ 1 Λ(α1, η)/(α
2
1)

c1 + c3 + c4 < 1 and c1 + c2 + c4 ≥ 1 Λ(α1, α2, η)/(α
2
1 + α2

1, α1α2)

c1 + c2 + c4 < 1 and c1 + c2 + c3 ≥ 1 Λ(α1, α2, α3, η)/(α
2
1 + α2

2 + α2
3, αiαj), i ̸= j

c1 + c2 + c3 < 1 and c1 + c2 + c3 + c4 ≥ 1 Λ(α1, α2, α3, α4, η)/(α
2
1 + α2

2 + α2
3 + α2

4, αiαj), i ̸= j

c1 + c2 + c3 + c4 < 1 H∗(Conf4(CP2);Q)

Here Λ denotes an exterior algebra, deg β = 3, deg η = 5 and degαi = 2 for all 1 ≤ i ≤ 4.

Remark 1.5. The rational cohomology of Conf4(CP2) can be understood from an algebraic model
constructed independently by Kriz [21] and Totaro [34] for configuration spaces Confn(M) whenever
M is a projective manifold. However, their model does not give an explicit presentation of the
cohomology algebra H∗(Conf4(CP2);Q). This is explained in Section 7.2.1.

It is important to point out that the homotopy equivalences between configurations spaces and
embedding spaces given in Theorem 1.1 and in Theorem 1.2 are not obtained by constructing ex-
plicit maps. Instead, our approach consists in comparing the action of the complex automorphism
group PGL(3,C) on Confn(CP2) with the action of the symplectomorphism group Symp(CP2)
on ℑEmbn(c,CP2). To this end, we use the symplectic blow-up construction to replace balls
in CP2 by exceptional curves in the n-fold blow-up M̃n of CP2. We then replace the action of
Symp(CP2) on ℑEmbn(c,CP2) by the action of the diffeomorphism group Diffh(M̃n) on a certain
space A(n, [Σ]) of compatible almost complex structures on M̃n which admits a partition analo-
gous to the stratification of the configuration space Confn(CP2). Both Theorem 1.1 and 1.2 are
proven in Section 2.6 and are consequences of the following result which offers a more conceptual
explanation as to why they hold.

Theorem 1.6. The natural action of PGL(3) on the strata of the configuration space Confn(CP2)

and the action of Diffh(M̃n) on the strata of A(n, [Σ]) have equivalent homotopy orbits.

A more precise statement of the above theorem is given as Theorem 2.15 which is proven in
Section 5.2. Since this approach applies equally well for the cases n = 1 and n = 2, it provides a
uniform treatment of the embedding spaces ℑEmbn(c,CP2) for n ≤ 4.

Our results exhibit an interesting duality between complex geometry and symplectic topology on
CP2. More precisely, for n ≤ 4, genericity conditions on sets of n distinct points on CP2 translate
into numerical conditions on the symplectic capacites of the n disjoint balls that determine the
homotopy type of ℑEmbn(c,CP2). It is an interesting question to see whether this duality still
holds for n ≥ 5. Our work suggests the following conjecture.

Conjecture 1.7. For n ≤ 8, and for any admissible capacities c = c1 ≥ · · · ≥ cn > 0, the space
ℑEmbn(c,CP2) is homotopy equivalent to a union of strata in Confn(CP2) defined by the relative
positions of n points with respect to generic immersed holomorphic spheres in CP2.

The main difficulties in proving this conjecture are twofold. Firstly, the space of admissible ca-
pacities has a more complicated structure giving rise to combinatorial difficulties (see Section 2.4.4
for an example). Secondly, our approach relies crucially on the transitivity of the actions of sym-
plectomorphism groups on certain configurations of symplectic spheres of negative self-intersections
(as discussed in Section 4). It is not clear that analogous results hold for the more general config-
urations that occur when n ≥ 5.

From a homotopy theoretic point of view, a duality between points and balls is somewhat
expected in view of the homotopy equivalence Symp(CP2) ≃ PGL(3). Indeed, the homotopy fiber
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FC of the complex evaluation map evC : PGL(3) → Confn(CP2) can be computed by looking at
the symplectic evaluation fibration

(1)
FC ≃ Symp(CP2,p) Symp(CP2) Confn(CP2)

PGL(3)

evω

≃
evC

and one may ask what should be the symplectic analogue of the stabilizer Symp(CP2,p) when
we restrict the action of PGL(3) to invariant subspaces of Confn(CP2). In essence, this is what
we investigate in the present paper.

It is worth mentioning that, as a byproduct of our methods, we obtain a homotopy equivalence
between the space Jc([Σ]) of compatible almost complex structures on the blow-up (M̃c, ω̃c) for
which there exist the classes of exceptional divisors have J-holomorphic representatives and the
subspace J int

c ([Σ]) of integrable ones. See Proposition 4.24 for details.
Organization of the paper. In Section 2 we explain a general framework for the study of
symplectic balls. We then characterize the stability chambers of the set of admissible capacities,
describe the stratification of the configuration space of points and analogous stratifications of
various spaces of almost complex structures. At the end of this section we state our main geometric
result Theorem 2.15 in full detail. Assuming this, we then give the proofs of Theorem 1.1 and
Theorem 1.2. In Section 3 we analyse the action of PGL(3) on Confn(CP2), while Section 4 is
devoted to analysis of the actions of symplectomorphism and diffeomorphism groups on spaces
of complex structures, obtaining homotopy decompositions of the classifying space of stabilizers
of balls. We then combine the results obtained in Sections 3 and 4 to prove Theorem 2.15 in
Section 5. Then, in Section 6, we construct a rational algebraic model for the space of symplectic
embeddings of balls into CP2. Using this model, in Section 7, we compute the cohomology with
rational coefficients of ℑEmbn(c,CP2) proving Theorem 1.4.
Acknowledgements. The first author is grateful to Pedro Brito and Gustavo Granja for helpful
and enlightening conversations. The third author is grateful to Siyuan Yu for useful comments
on early drafts of this paper and to Denis Auroux for helpful discussions. All three authors
would like to thank the support of FCT/Portugal, through projects UID/MAT/04459/2020 and
PTDC/MAT-PUR/29447/2017, and the Mathematics Department of Instituto Superior Técnico,
where part of this work was completed.

2. Symplectic balls in rational 4-manifolds

2.1. General setting. In [23] Lalonde and Pinsonnault proposed a general framework to study
embedding spaces of symplectic balls in symplectic 4-manifolds through natural actions of sym-
plectomorphism groups. We recall the main points in the special case of rational 4-manifolds for
which a number of simplifications occur.

In the following, let (M,ω) be a symplectic rational 4-manifold. Given a compatible almost
complex structure J which is integrable near n distinct points let M̃n := M#nCP2 be the
n-fold complex blow-up of M at these points. Let Σ1, . . . ,Σn denote the exceptional divisors,
let E1, . . . , En be their homology classes, and let PD(Ei) denote their Poincaré duals. If K :=
K(M,J) ∈ H2(M,Z) is the anti-canonical class associated to J , then K − E1 − · · · − En is the
anti-canonical class of M̃n. Note that these anti-canonical classes only depend on the deformation
class of the symplectic form ω. A homology class E ∈ H2(M,Z) is exceptional if E · E = −1,
K · E = 1, and if it is represented by a smooth embedded sphere. Let E(M,ω) ⊂ H2(M,Z) be
the set of all such exceptional classes. The set E(M,ω) characterizes the symplectic cone of any
symplectic rational 4-manifold of Euler number χ(M) ≥ 5.

Let C(M,ω, n) ⊂ (0, cM )n be the set of capacities c = (c1, . . . , cn) for which there exists a
symplectic embedding B4(c1) ⊔ · · · ⊔ B4(cn) ↪→ (M,ω). In the next theorem we collect a few
results about symplectic rational 4-manifolds that will be useful in what follows.
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Theorem 2.1. Let M be a symplectic rational 4-manifold.

(1) Any two cohomologous symplectic forms on M are diffeomorphic [22, 25].
(2) There exists a symplectic embedding B4(c1) ⊔ · · · ⊔ B4(cn) ↪→ (M,ω) if, and only if, the

cohomology class

[ω̃c] := [ω]− c1 PD(E1)− · · · − cn PD(En) ∈ H2(M̃n,R)

pairs strictly positively with all exceptional classes in E(M̃n), and if it satisfies the volume
condition ⟨[ω̃c]

2, [M̃n]⟩ > 0; see [26].
(3) If M is a symplectic rational 4-manifold, then for each c ∈ C(M,ω, n), the embedding

space Embn(c,M) is path-connected [29, Corollary 1.5].

Note that the theorem implies that a symplectic form in M̃n is uniquely defined by the coho-
mology class [ω] and the capacities c = (c1, . . . , cn).

Given capacities c = (c1, . . . , cn) ∈ C(M,ω, n), the connectedness of Embn(c,M) implies that
the natural action of the identity component of the symplectomorphism group Symp0(M,ω) on
Embn(c,M) is transitive. After choosing a fixed embedding ι : Bc ↪→ M we get a ladder of
evaluation fibrations

(2)
Symp(M, ι(Bc)id) Symp0(M,ω) Embn(c,M)

Symp(M, ι(Bc)) Symp0(M,ω) ℑEmbn(c,M),

where Symp(M, ι(Bc)id) is the subgroup of symplectomorphisms which restrict to the identity on
the image ι(Bc), and where Symp(M, ι(Bc)) consists of symplectomorphisms which map the image
of each ball B4(ci) ⊂ Bc to itself. Note that it follows from Theorem 2.1 that Embn(c,M) does
not depend on the choice of the fixed embedding ι. As the group Symp(B4(c)) is homotopically
equivalent to U(2) (independently of the capacity c), the above two fibrations are essentially
equivalent.

Let M̃c := (M#nCP2, ω̃c) be the n-fold symplectic blow-up of M at the balls ι(Bc). Let
Σ = Σ1 ⊔ · · · ⊔ Σn be the union of the exceptional divisors. By definition, Σ is an (ordered)
configuration of disjoint exceptional symplectic spheres in classes E1, . . . , En. Let’s write Cc(Σ)
for the space of all such configurations, and let Jc(Σ) be the space of all compatible complex
structures on M̃c for which there are embedded J-holomorphic representatives of each class Ei.
By positivity of intersections, there is exactly one configuration for each J ∈ Jc(Σ). Arguing as
in [23, Section 4.1], one proves that the map Jc(Σ)→ Cc(Σ) is a fibration with contractible fibers,
so that it is a homotopy equivalence. In particular, since Jc(Σ) is open, dense, and connected in
the contractible space of all tamed almost-complex structures, Cc(Σ) is itself connected. It follows
that Symp0(M̃c) acts transitively on Cc(Σ) and that there is a fibration

(3) Symp(M̃c,Σ)→ Symp0(M̃c)→ Cc(Σ) ≃ Jc(Σ),

where Symp(M̃c,Σ) is the subgroup of symplectomorphisms sending each exceptional divisor Σi

to itself. As explained in Section 2 of [23], there is a homotopy equivalence

(4) Symp(M̃c,Σ) ≃ Symp(M, ι(Bc)).
This yields a homotopy fibration

(5) Symp(M̃c,Σ)→ Symp0(M,ω)→ ℑEmbn(c,M)

which can be used to compute the homotopy types of ℑEmbn(c,M) and of Embn(c,M).
Given two n-tuples of capacities c = (c1, . . . , cn) and c′ = {c′1, . . . , c′n}, we declare c ≤ c′ iff

ci ≤ c′i for all 1 ≤ i ≤ n. Given a non-negative n-tuple ϵ = {ϵ1, . . . , ϵn}, we write c + ϵ for
{c1 + ϵ1, . . . , cn + ϵn}. For each pair c, c+ ϵ, there is a restriction map

(6) ic+ϵ
c : Embn(c+ ϵ,M)→ Embn(c,M).
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Let SpFr(n,M) be the space of symplectic frames at n ordered points in M . Evaluation of the
derivatives at the centers of the n balls defines a fibration

(7) Embfn(c,M)→ Embn(c,M)
jc−→ SpFr(n,M),

where Embfn(c,M) consists of embeddings with a fixed framing f at the centers. Since the evalu-
ation maps commute with restrictions, there is a map

(8) lim−→Embn(c,M)
j∞−−→ SpFr(n,M),

where the direct limit is taken with respect to the partial order given by reverse inclusions. The
next two results are valid for symplectic manifolds (M2m, ω) of any dimension.

Lemma 2.2. For (M2m, ω) compact, and for any n ≥ 1,

(1) there exists capacities c0 = (c1, . . . , cn) such that the induced map

π∗(jc) : π∗(Embn(c,M))→ π∗(SpFr(n,M))

is surjective for all c ≤ c0,
(2) the map j∞ : lim−→Embn(c,M)→ SpFr(n,M) is a weak homotopy equivalence.

Proof. Let J be a compatible almost complex structure, and let g be the Riemannian metric
associated to the pair (ω, J). Let exp be the corresponding exponential map, and let r > 0 be the
injectivity radius of (M, g).

Let τ : SpFr(n,M) → R>0 be the function that assign to a frame the minimal distance be-
tween any two of its points. Given ϵ > 0, let SpFr≥ϵ(n,M) = τ−1[ϵ,∞). For ϵ small enough,
the closed subspace SpFr≥ϵ(n,M) is a strong deformation retract of SpFr(n,M). The sub-
space SpFr≥ϵ(n,M) itself deformation retracts onto the compact subspace of unitary frames
UFr≥ϵ(n,M).

Given a unitary frame fm at a point m ∈M , we can construct a symplectic embedding of a ball
ϕ : B4(c(m)) → M of some small capacity c(m) such that dϕ0(f0) = f , where f0 is the standard
unitary frame of R2m ≃ Cm. To see this, let fm : R2m → TmM be the identification of the tangent
space given by the symplectic frame fm. For 0 < δ < r, the smooth map ψm(z) = expm(fm(z))
is an embedding of B2m(πδ2). Since dψm = f at the origin, Moser’s theorem implies that ψm is
isotopic to a symplectic embedding ψ′

m of a smaller ball of radius δ′. Let δ(fm) be the supremum
of all δ′ > 0 that are obtained this way. Since Moser’s isotopy is continuous with respect to the
parameters involved, δ(fm) is continuous in fm and, by compactness of UFr(1,M), we can set

δM =
1

3
min

fm∈UFr(1,M)
{δm, ϵ} > 0.

This procedure defines a continuous map

Ψ : UFr≥ϵ(n,M)→ Embn(πδ
2
M , . . . , πδ

2
M ,M)

which is a section of the composition

Embn(c,M)
jc−→ SpFr(n,M)

≃−→ UFr(n,M).

This proves the first statement. For the second statement, we look at the fiber of the fibration (7)
under restriction maps. Choose a frame f and a collection ψi : B2m(δ) → M of n disjoint
framed Darboux charts. Let A be a class in πq(Embfn(c,M)) represented by the map ϕ : Sq →
Embfn(c,M). By restricting the embeddings to small enough balls, we can ensure that for each z ∈
Sq, the image of the restriction is contained in the chosen charts. Consequently, after restriction,
the class A is represented by a collection of n framed embeddings of a single ball B2m(ϵi) into
another ball B2m(δ) whose derivative at the origin is the identity. By further restricting to smaller
balls, we can apply Alexander trick to show that each restriction is isotopic to the inclusion. This
shows that the class A becomes trivial after restriction to small enough balls. This concludes the
proof of the second statement. □
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Corollary 2.3. Let (M2m, ω) be a compact, simply connected, symplectic manifold without bound-
ary. Let n be a positive integer satisfying the following conditions:

(1) n ≥ 4 if M = S2,
(2) n ≥ 3 if H(M ;Q) ≃ Q[x]/xk,
(3) n ≥ 2 in all other cases.

Then there exists capacities c0 = (c1, . . . , cn) such that, for every c ≤ c0, the embedding space
Embn(c,M) is rationally hyperbolic and the rational cohomology ring H∗(Symp(M, ι(Bc)id);Q) is
not finitely generated.

Proof. A result of Y. Felix and J.-C. Thomas asserts that under the conditions of the statement,
the configuration space Confn(M) is rationally hyperbolic, see [14, Corollary p. 562]. Looking at
the fibration

Sp(2m)n → SpFr(n,M)→ Confn(M)

and recalling that finite dimensional Lie groups are rationally elliptic (see [15] p. 86), it follows
that SpFr(n,M) is also rationally hyperbolic. On the other hand, Theorem 1.1 in [19] asserts
that if a topological group G acts transitively on a simply connected rationally hyperbolic space
X, then the rational cohomology ring of the isotropy subgroup of a point H∗(Gpt;Q) is infinitely
generated. Together with Lemma 2.2, this proves the statement. □

Remark 2.4. In general, it is not known whether there exist capacities c0 = (c1, . . . , cn) such
that the map Embn(c,M) → SpFr(n,M) is a weak homotopy equivalence for every c ≤ c0. See
the discussion of stability in Section 2.3.

2.2. Configurations of balls and points. Unlike Embn(c,M), the spaces ℑEmbn(c,M) do not
form a directed system. However, due to the stability properties described in the next section they
are homotopy equivalent to configuration spaces of points for suitable c. In what follows we make
a preparatory observation.

Let Symp(B4(c)) =
∏

i Symp(B4(ci)) be the group of symplectic reparametrisations of the
disjoint union of ballsB4(c1)⊔· · ·⊔B4(cn) and let Symp(B4(c), 0) be the subgroup fixing the origins
0i ∈ B4(ci). Notice that the orbit of (01, . . . , 0n) with respect to the natural action of Symp(B4(c))
on the product B4(c1)×· · ·×B4(cn) is the whole interior of the product and the isotropy subgroup
is Symp(B4(c), 0). This shows that the inclusion Symp(B4(c), 0) ⊆ Symp(B4(c)) is a homotopy
equivalence. In particular, the projection

ℑEmb∗n(c,M) := Embn(c,M)/ Symp(B4(c), 0)→ Embn(c,M)/ Symp(B4(c)) = ℑEmbn(c,M)

is a homotopy equivalence. Consider the following diagram,

(9)

Symp(B4(c), 0) Sp(2m)n

Embn(c,M) SpFr(n,M)

ℑEmb∗n(c,M) := Embn(c,M)/ Symp(B4(c), 0) Confn(M)

ℑEmbn(c,M),

in which the rightmost column is the symplectic frame bundle over the configuration space and
the two first horizontal maps are defined by evaluating the differential at the center. Observe
that an element of the space ℑEmb∗n(c,M) := Embn(c,M)/Symp(B4(c), 0) is a configuration of
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n symplectic balls with centers. Therefore the bottom horizontal map is well defined. Composing
it with the bottom homotopy equivalence we get the map

(10) ℑEmbn(c,M)→ Confn(M)

defined for every choice of capacities.

Remark 2.5. Corollary 2.3 implies that for generic symplectic manifolds and capacities, part of
the homotopical complexity of the embedding space ℑEmbn(c,M) is of purely topological nature
and does not encode symplectic information. What really matters are the values of capacities
c at which the homotopy type of ℑEmbn(c,M) changes. The simplest way to factor out the
contribution of the configuration space Confn(M) to the homotopy of ℑEmbn(c,M) is to study
the space ℑEmbpn(c,M) of balls with fixed centers p := {p1, . . . , pn}. However, looking at the
fibration

(11) Symp(M̃c,Σ) ≃ Symp(M, ι(Bc),p)→ Symp0(M,p)→ ℑEmbpn(c,M)

we see that this is still equivalent to analysing the symplectic stabilizer Symp(M̃c,Σ).

2.3. Stability for embedding spaces.

Definition 2.6. Let (M,ω) be a rational 4-manifold and let c0, c1 be two sets of capacities in
C(M,ω, n). We say that c0 and c1 are in the same stability component if there exists a continu-
ous family of capacities ct ⊂ C(M,ω, n) interpolating c0 and c1 for which the homotopy type of
Embn(ct,M) is constant.

The dependence of the homotopy type of Symp(M̃c,Σ) on the capacities c = (c1, · · · , cn) can
be investigated through a fibration whose total space only depends on the deformation class of
the symplectic forms. Let Diff [c](M̃,Σ) be the group of diffeomorphisms of the blow-up M̃c that
preserves the class [ω̃c] and that leave the exceptional divisor Σ invariant. Let Ωc := Ω([ω̃c]) be
the space of symplectic forms cohomologous to ω̃c and let Ωc(Σ) be the subspace of forms for
which Σ is symplectic. By applying a relative version of Moser’s lemma to each component of
Ωc(Σ), and using Part (1) of Theorem 2.1, we get that there is an evaluation fibration

(12) Symp(M̃c,Σ)→ Diff [c](M̃,Σ)→ Ωc(Σ).

Similarly, we define the space of pairs

(13) Pc(Σ) = {(ω′, J) | ω′ ∈ Ωc(Σ), J is compatible with ω′, Σ is J-holomorphic}

and the space of compatible almost-complex structures

Ac(Σ) = {J is compatible with some ω′ ∈ Ωc(Σ) and Σ is J-holomorphic} .

Then the projection maps

(14) Ωc(Σ)← Pc(Σ)→ Ac(Σ)

are homotopy equivalences. As explained in [4, Section 4.1], the homotopy fiber of the evaluation
map Diff [c](M̃,Σ)→ Ac(Σ) is homotopy equivalent to Symp(M̃c,Σ). In particular, the sequence
of maps

(15) Symp(M̃c,Σ) ↪→ Diff [c](M̃,Σ)→ Ac(Σ).

induces a long exact sequence of homotopy groups. Consequently, as the capacities c vary, the
homotopy types of Symp(M̃c,Σ) and of ℑEmbn(c,M) change precisely when the homotopy type
of the evaluation map Diff [c](M̃,Σ)→ Ac(Σ) changes.
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2.4. Stability chambers for symplectic balls in CP2. We now apply the framework of the
previous sections to the specific case of symplectic balls in CP2.

Any diffeomorphism ϕ ∈ Diff [c](M̃n,Σ) fixes the classes E1, . . . , En, and PD[ω̃c] = L−
∑

i ciEi.
It follows that the group Diff [c](M̃n,Σ) is equal to the group Diffh(M̃n,Σ) of all diffeomorphisms
acting trivially on homology and leaving the exceptional divisor Σ invariant. In particular, it is
independent of the capacities c. In order to simplify the notation, we will write

Dh := Diffh(M̃n), Dh(Σ) := Diffh(M̃n,Σ), Gc := Symp(M̃c), and Gc(Σ) := Symp(M̃c,Σ).

Stability components in the set C(n) := C(CP2, ωFS , n) of admissible capacities can be explicitly
described for embeddings of up to 8 balls in CP2. Given c ∈ C(n), let S≤−1

c (Σ) ⊂ H2(Mn,Z)
denote the set of homology classes of embedded ω̃c-symplectic spheres of self-intersection ≤ −1
that intersect non-negatively with the exceptional classes E1, . . . , En. As explained in [4, Propo-
sition 2.14(ii) and Lemma 3.2], for any 1 ≤ n ≤ 8 and any c ∈ C(n) the set S≤−1

c (Σ) is finite. Let
S≤−1
n (Σ) be the union of the sets S≤−1

c (Σ) over all capacities c ∈ C(n). To each class A ∈ S≤−1
n (Σ)

correspond a linear functional H2(Mn,R) → R and an associated map ℓA : C(n) → R defined by
setting ℓA(c) := ⟨[ω̃c], A⟩. The wall corresponding to A ∈ S≤−1

n (Σ) is the set of capacities c ∈ C(n)
for which ℓA(c) = 0. It follows from [4, Corollary 3.3] that the set of walls is locally finite, that is,
given any c ∈ C(n), 0 ≤ n ≤ 8, there exists an open neighbourhood U ⊂ C(n) that meets at most
finitely many walls.

Theorem 2.7 (Stability, [4, Theorem 1.3]). For each integer 1 ≤ n ≤ 8, the set C(n) of admissible
capacities admits a partition into convex regions, called stability chambers, such that:

(i) each chamber is a convex polyhedron characterized by the signs of the functionals ℓA,
A ∈ S≤−1

n (Σ);
(ii) if two sets of capacities c and c′ belong to the same stability chamber, then we have equality
Ac(Σ) = Ac′(Σ);

(iii) if two sets of capacities c and c′ belong to the same stability chamber, then the embedding
spaces Embn(c,CP2) and Embn(c

′,CP2) are homotopy equivalent.

It follows that to describe the stability chambers for embeddings of balls in CP2, it suffices to
describe the sets S≤−1

n (Σ).

Proposition 2.8 ([36, Proposition 4.6]). Let J be a tamed almost complex structure on Mn =
M#nCP2 with n ≤ 8, and let C = aL −

∑
riEi be an irreducible curve with C · C ≤ −1 and

a > 0. Then the homology class [C] is one of the following:

(1) L−
∑
Eij ,

(2) 2L−
∑
Eij ,

(3) 3L− 2Em −
∑

ij ̸=mEij ,
(4) 4L− 2Em1

− 2Em2
− 2Em3

−
∑

ij ̸=mi
Eij ,

(5) 5L− Em1
− Em2

−
∑

ij ̸=mi
2Eij ,

(6) 6L− 3Em −
∑

ij ̸=m 2Eij .

Corollary 2.9. Given a tamed almost-complex structure J on the symplectic blow-up of CP2

at n disjoint balls of capacities c1, . . . , cn, 0 ≤ n ≤ 8, an embedded J-holomorphic sphere of self-
intersection C · C ≤ −2 that intersects each of the exceptional classes E1, . . . , En non-negatively
must represent one of the classes listed in Proposition 2.8.

Proof. Let [C] = aL−
∑
riEi. Then 0 ≤ Ei · C = ri. Since any J-holomorphic representative of

[C] must have positive symplectic area, and since ⟨[ω̃c], [C]⟩ = a −
∑
ciri, the coefficient a must

be strictly positive. □

Theorem 2.10 (Stability chambers). For each integer 1 ≤ n ≤ 8, the stability chambers of the
set C(n) of admissible capacities are the convex polyhedral regions defined by the linear functionals
ℓA where A is one of the homology classes of self-intersection A ·A ≤ −2 listed in Proposition 2.8.



EMBEDDINGS OF SYMPLECTIC BALLS 11

Proof. Exceptional classes in S≤−1
n (Σ) define the boundary of the set C(n) of admissible classes

while classes of self-intersection ≤ −2 define interior walls in C(n). The proposition then follows
directly from Theorem 2.7 and Corollary 2.9. □

Remark 2.11. Using the adjunction inequality for immersed curves, it is easy to see that the
classes listed in Proposition 2.8 are precisely the spherical classes represented by blow-ups of im-
mersed holomorphic spheres of degree d ≤ 6 in CP2. This supports Conjecture 1.7.

2.4.1. Stability chambers for n = 1 or n = 2 balls in CP2. For n = 1, the space of admissible
capacities is the interval (0, 1), while for n = 2, it is the polygon 0 < c2 ≤ c1 < c1 + c2 < 1. Since
none of the classes in Proposition 2.8 have self-intersection less than or equal to −2 when n ≤ 2,
the entire space of admissible capacities is itself a stability chamber.

2.4.2. Stability chambers for n = 3 balls in CP2. The space of admissible capacities consists
of triples c = (c1, c2, c3) satisfying 0 < c3 ≤ c2 ≤ c1 < c1 + c2 ≤ 1. The −2 class A =
L−E1 −E2 −E3 is the only negative homology class of self-intersection A ·A ≤ −2 contained in
the list of Proposition 2.8. The linear functional ℓA separates the space of admissible capacities
into two chambers, namely c1 + c2 + c3 < 1 and c1 + c2 + c3 ≥ 1.

2.4.3. Stability chambers for n = 4 balls in CP2. For n = 4, the chambers are defined by the 5
classes L−Ei−Ej −Ek and L−E1−E2−E3−E4. Because of the normalization 0 < c4 ≤ · · · ≤
c1 < 1, the symplectic areas of these classes are linearly ordered:

1− c1 − c2 − c3 − c4 < 1− c1 − c2 − c3 ≤ 1− c1 − c2 − c4 ≤ 1− c1 − c3 − c4 ≤ 1− c2 − c3 − c4
Consequently, there are exactly 6 stability chambers that we label and order accordingly:

C5 ≺ C4 ≺ C3 ≺ C2 ≺ C1 ≺ C0

Note that these chambers correspond to the conditions on the capacities that are listed in Theo-
rem 1.2 and Theorem 1.4, with C0 being the chamber in which c2 + c3 + c4 ≥ 1, and C5 being the
chamber for which c1 + c2 + c3 + c4 < 1. From now on, in order to simplify notation, we will write
c ≺ c′ whenever c belongs to a chamber that preceeds the chamber of c′.

2.4.4. Stability chambers for n = 5 balls in CP2. The space of admissible capacities consists of
5-tuples c = (c1, . . . , c5) satisfying 0 < c5 ≤ · · · ≤ c1 < c1 + c2 ≤ 1 and

∑
ci < 2. There

are 33 chambers defined by the 16 classes L − Ei1 − Ei2 − Ei3 , L − Ei1 − Ei2 − Ei3 − Ei4 , and
L− E1 − E2 − E3 − E4 − E5. This time, the symplectic areas of these classes cannot be linearly
ordered, so that the cell decomposition of the space of admissible capacities has a more complicated
structure.

2.5. Stratifications of Confn(CP2), Jc(Σ), Jc([Σ]), A(n,Σ), and A(n, [Σ]).

2.5.1. Stratification of configuration spaces. Consider CP2 with its usual complex structure. For
n ≤ 4, the configuration space Confn(CP2) decomposes as a disjoint union of strata dtermined
by genericity conditions. For n = 1 and n = 2, there is only one stratum as any two points lie on
a single line. As explained in the Introduction, Conf3(CP2) decomposes into two disjoint strata

Conf3(CP2) = F0 ⊔ F123

while Conf4(CP2) decomposes into six strata

Conf4(CP2) = F0 ⊔ F234 ⊔ F134 ⊔ F124 ⊔ F123 ⊔ F1234

where

F0 = {P ∈ Conf4(CP2) | no three points of P are colinear}
Fijk = {P ∈ Conf4(CP2) | only the points pi, pj , pk are colinear}
F1234 = {P ∈ Conf4(CP2) | the four points of P are colinear}.
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In the case n = 3, we define F1 := F0 ⊔ F123 and for n = 4, we recursively define

F1 = F0 ⊔ F234, F2 = F1 ⊔ F134, F3 = F2 ⊔ F124, F4 = F3 ⊔ F123, and F5 = Conf4(CP2)

so that we have inclusions F0 ⊂ F1 ⊂ · · · ⊂ F5.

2.5.2. Stratification of spaces of almost complex structures. Let J (ω̃c) be the space of all com-
patible almost complex structures on M̃c. Recall that given an admissible set of capacities
c = (c1, . . . , cn), we defined in Sections 2.1 and 2.3, respectively, the spaces

Jc(Σ) = {J ∈ J (ω̃c) | the submanifold Σ is holomorphic}

Ac(Σ) = {J is compatible with some ω′ ∈ Ωc(Σ) and Σ is J-holomorphic} .

In order to compare the PGL(3) action on Confn(CP2) with the action of Dh(Σ) on Ac(Σ), it
will be convenient to consider larger spaces of almost-complex structures by relaxing the conditions
on the J-holomorphic representatives of the classes [Σ]. We define:

Jc([Σ]) := {J ∈ J (ω̃c) | the classes [Σ] = {E1, . . . , En} have J-holomorphic representatives},
Ac := {J is compatible with at least one symplectic form ω′ ∈ Ωc} ,

Ac([Σ]) := {J ∈ Ac | the classes [Σ] = {E1, . . . , En} have J-holomorphic representatives}.

Taking the union over all admissible capacities, we also define

A(n,Σ) :=
⋃

c∈C(n)

Ac(Σ), A(n, [Σ]) :=
⋃

c∈C(n)

Ac([Σ]), and A(n) :=
⋃

c∈C(n)

Ac.

For n ≤ 4, these spaces decompose into disjoint strata characterized by the existence of curves
representing the classes of self-intersection ≤ −2 listed in Proposition 2.8, namely, Lijk := L −
Ei−Ej −Ek and L1234 := L−E1−E2−E3−E4. For n = 1 and n = 2, there is only one stratum
as no such classes exist. For instance, for n = 3 we have

A(3,Σ) = A0(Σ) ⊔ A123(Σ),

where

A0(Σ) = {J ∈ A(3,Σ) | there is no embedded J-holomorphic representative of L123},
A123(Σ) = {J ∈ A(3,Σ) | L123 is represented by an embedded J-holomorphic sphere}.

Similarly, for n = 4, we have

A(4,Σ) = A0(Σ) ⊔ A234(Σ) ⊔ A134(Σ) ⊔ A124(Σ) ⊔ A123(Σ) ⊔ A1234(Σ),

where

A0(Σ) = {J ∈ A(4,Σ) | L123 and L1234 have no embedded J-holomorphic representatives},
Aijk(Σ) = {J ∈ A(4,Σ) | Lijk is represented by an embedded J-holomorphic sphere},
A1234(Σ) = {J ∈ A(4,Σ) | L1234 is represented by an embedded J-holomorphic sphere}.

In the case n = 3, we further define A1(Σ) := A0(Σ) ⊔ A123(Σ), and for n = 4, we recursively
define

(16) A1(Σ) = A0(Σ) ⊔ A234(Σ), A2(Σ) = A1(Σ) ⊔ A134(Σ), A3(Σ) = A2(Σ) ⊔ A124(Σ),

A4(Σ) = A3(Σ) ⊔ A123(Σ), and A5 = A(4,Σ)

so that we have inclusions A0(Σ) ⊂ A1(Σ) ⊂ · · · ⊂ A5(Σ).
The spaces Jc(Σ), Jc([Σ]), andA(n, [Σ]) admit analogous stratifications that we index similarly.

In particular, for any index I we have inclusions

JI(Σ) ⊂ JI([Σ]) ⊂ AI(Σ) ⊂ AI([Σ]) ⊂ AI ⊂ A(n).

Note that for the spaces Jc(Σ) and Jc([Σ]) some strata may be empty as the symplectic area of
the defining classes may not be strictly positive for some choices of capacities c.
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2.5.3. The equivalence between homotopy orbits. If G is a topological group and X is a G-space,
we write

XhG := EG×G X

for the homotopy orbit (i.e. the Borel construction) of the G-action. The complex automor-
phism group PGL(3) acts on Confn(CP2) preserving its stratification. The diffeomorphism group
Dh(Σ) = Diffh(M̃n,Σ) acts on A(n,Σ) while Dh = Diffh(M̃n) acts on A(n, [Σ]). Similarly, the
symplectomorphism group Gc(Σ) = Symp(M̃c,Σ) acts on Jc(Σ) while Gc = Symp(M̃c) acts on
Jc([Σ]). Each of these actions preserves the corresponding stratification.

Proposition 2.12. For any admissible capacities c, the action of Gc(Σ) on Jc(Σ) yields a homo-
topy decomposition of the symplectic stabilizer BGc(Σ), that is,

(
Jc(Σ)

)
hGc(Σ)

≃ BSymp(M̃c,Σ).

Proof. This follows from the fact that the space Jc(Σ) is contractible. □

Proposition 2.13. Given a set of capacities c, let I be a multi-index representing a union of non-
empty strata in Jc(Σ), and let JI(Σ) ↪→ JI([Σ]) be the corresponding inclusion. The canonical
map between homotopy orbits

JI(Σ)h Symp(M̃c,Σ)
→ JI([Σ])h Symp(M̃c)

is a homotopy equivalence.

Proof. Let Gc(Σ) = Symph(M̃n,Σ) and Gc = Symph(M̃c). Consider the locally trivial fibration

JI(Σ)→ JI([Σ])→ Cc([Σ])

that assigns to J ∈ JI([Σ]) the unique J-holomorphic configuration of disjoint exceptional spheres
in classes E1, . . . , En. Since Gc acts transitively on Cc([Σ]) with stabilizer Gc(Σ), taking homotopy
orbits gives another fibration

JI(Σ)→ JI([Σ])hGc → Cc([Σ])hGc ≃ BGc(Σ)

that extends to the longer Puppe sequence

Ω
(
JI([Σ])hGc

)
→ Gc(Σ)→ JI(Σ)→ JI([Σ])hGc → BGc(Σ).

Since the homotopy fiber of the evaluation map Gc(Σ) → JI(Σ) is Ω
(
JI(Σ)hGc(Σ)

)
, we conclude

that JI(Σ)hGc(Σ) ≃ JI([Σ])hGc . □

Proposition 2.14. Given a set of capacities c, let I be a multi-index representing a union of
non-empty strata in Jc(Σ), and let JI(Σ) ↪→ AI(Σ) ↪→ AI([Σ]) be the corresponding inclusions.
The canonical maps between homotopy orbits

JI(Σ)h Symp(M̃c,Σ)
→ AI(Σ)hDiff(M̃n,Σ)

and AI(Σ)hDiff(M̃n,Σ)
→ AI([Σ])hDiffh(M̃n)

are weak equivalences.

Proof. Let Dh(Σ) = Diffh(M̃n,Σ) and Gc(Σ) = Symp(M̃c,Σ). Consider the space of pairs

PI(Σ) = {(ω, J) ∈ Pc(Σ) | ω ∈ Ωc(Σ), J ∈ JI(Σ)}.

The projection onto the first factor is a Dh(Σ)-equivariant fibration

JI(Σ)→ PI(Σ)→ Ωc(Σ).

Since Dh(Σ) acts transitively on Ωc(Σ), taking homotopy orbits gives another fibration

JI(Σ)→ PI(Σ)hDh(Σ) → Ωc(Σ)hDh(Σ) ≃ BSymp(M̃c,Σ)

that extends to the longer Puppe sequence

Ω
(
PI(Σ)hDh(Σ)

)
→ Symp(M̃c,Σ)→ JI(Σ)→ PI(Σ)hDh(Σ) → BSymp(M̃c,Σ).
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Since the homotopy fiber of the evaluation map Symp(M̃c,Σ) → JI(Σ) is Ω
(
JI(Σ)hGc

)
, we con-

clude that JI(Σ)hGc ≃ PI(Σ)hDh(Σ). Finally, since the projection PI(Σ) → AI(Σ) is a Dh(Σ)-
equivariant fibration with convex fibers, we also have the equivalence PI(Σ)hDh(Σ) ≃ AI(Σ)hDh(Σ).
This establishes the first homotopy equivalence.

For the second equivalence, let C([Σ]) be the space of all configurations of n disjoint, embedded,
symplectic spheres representing the exceptional classes [Σ]. There is a fibration

AI(Σ)→ AI([Σ])→ C([Σ])
The group Dh acts transitively on C([Σ]) with stabilizer Dh(Σ). Taking the homotopy orbits, we
get another fibration

AI(Σ)→ AI([Σ])hDh
→ BDh(Σ)

that extends to the longer Puppe sequence

Ω
(
AI([Σ])hDh

)
→ Dh(Σ)→ AI(Σ)→ AI([Σ])hDh

→ BDh(Σ).

We conclude that AI([Σ])hDh
≃ AI(Σ)hD(Σ). □

2.6. The main geometric result and a proof of Theorems 1.1 and 1.2. As explained
in the Introduction, for n ≤ 4, the equivalences between spaces of configurations and spaces of
embeddings, and in particular Theorem 1.1 and Theorem 1.2, are consequences of Theorem 1.6
that we now reformulate in a more precise way.

Theorem 2.15. The actions of PU(3) and PGL(3) on the subspace Fi ⊂ Confn(CP2) and the
action of Dh on the subspace Ai([Σ]) ⊂ A(n, [Σ]) have homotopy equivalent homotopy orbits.
Moreover, there is a homotopy commutative diagram of fibrations

(17)
BSymp(CP2, ι(Bc)) B Symp(CP2)

(Fi)hPU BPU

≃ ≃

whenever the set of capacities c belongs to the stability chamber Ci.

Proof of Theorem 1.1 and Theorem 1.2. Any homotopy commutative square with vertical homo-
topy equivalences is a homotopy pullback, so that the homotopy fibers of its horizontal arrows are
homotopy equivalent. Applying this to the diagram (17) of Theorem 2.15, and considering the
fibration (5), we obtain homotopy equivalences

(18)
ℑEmbc ≃ hofiber BSymp(CP2,Bc) B Symp(CP2)

Fi ≃ hofiber (Fi)hPU BPU

≃ ≃ ≃

for any choice of capacities c in the stability chamber Ci. □

The proof of Theorem 2.15 and of its corollaries are broken into several steps. The analysis
of the PGL(3) action on Conf(c,CP2) is done in Section 3, while the Gc action on Jc([Σ]) is
described in Section 4. This is used in Section 5 to describe the homotopy orbit of Dh acting on
A(n, [Σ]). These results are put together in Section 5.2 where the proof of Theorem 2.15 is given.

3. Homotopy orbits of the PGL(3) action on Confn(CP2)

3.1. The cases n = 1 and n = 2. The group PGL(3) acts transitively on Confn(CP2) for
n = 1, 2 so that we have fibrations

U(2) ≃ Stab(p1)→ PGL(3)→ CP2 and T2 ≃ Stab
(
(p1, p2)

)
→ PGL(3)→ Conf2(CP2)

and homotopy orbits(
Conf1(CP2)

)
hPGL(3)

≃ BU(2) and
(
Conf2(CP2)

)
hPGL(3)

≃ BT2.
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3.2. The case n = 3. The stratum F0 is open and dense in Conf3(CP2), while F123 has codimen-
sion 2. The group PGL(3) acts transitively on each stratum with stabilisers homotopy equivalent
to Kähler actions T2 and S1, respectively, so that F0 ≃ PGL(3)/T2 and F123 ≃ PGL(3)/S1.
The isotropy representation of S1 on the normal bundle of F123 is the standard representation of
weight 1. It follows that there is an invariant neighborhood N123 of F123 of the form PGL(3)×S1 C.
Applying the Borel construction to the orbit diagram, we obtain

N123 \ F123 N123

F0 Conf3(CP2)

=⇒
∗ BS1

123

BT2 BS1 ∨BT2 ≃
(
Conf3(CP2)

)
hPGL(3)

.

3.3. The case n = 4. The stratum F0 is open and dense in Conf4(CP2), while Fijk and F1234

are, respectively, of codimensions 2 and 4. The action of PGL(3) on F0 is transitive with trivial
stabilizers, so that F0 ≃ PGL(3). Similarly, PGL(3) acts transitively on Fijk with stabilizer S1

ijk,
so that Fijk ≃ PGL(3)/S1

ijk. The isotropy representation of S1
ijk on the normal bundle of Fijk is

the standard representation (of weight 1) and there is an invariant neighborhood Nijk of Fijk in
F \F1234 of the form PGL(3)×S1

ijk
C. Recall that we defined F1 = F0⊔F234, . . . , F5 = Conf4(CP2).

Applying inductively the Borel construction to the associated diagrams, we obtain

(19)
Nijk \ Fijk Nikj

Fr−1 Fr

=⇒

∗ BS1
ijk

Pr−1 Pr :=
(
Fr

)
hPGL(3)

so that
(
Fr

)
hPGL(3)

≃ BS1 ∨ · · · ∨ BS1 r times, 1 ≤ r ≤ 4.

We now consider the pushout diagrams obtained by adding the last stratum F1234

N1234 \ F1234 N1234

F4 Conf4(CP2)

=⇒

(N1234 \ F1234)hPGL(3) (N1234)hPGL(3)

P4 P5 :=
(
Conf4(CP2)

)
hPGL(3)

Recall that the cross-ratio

χ(z1, z2, z3, z4) := (z1, z2 : z3, z4) =
(z3 − z1)(z4 − z2)
(z3 − z2)(z4 − z1)

is a complete invariant of the PSL(2,C) action on the configuration space Conf4(CP1) of 4 distinct
ordered points on the complex line. It follows that the moduli space is

M0,4 := Conf4(CP1)/PSL(2) = C \ {0, 1}.

The action of PGL(3) on F1234 is not transitive as is preserves the cross-ratio of any 4 distinct
points on the same line. However, PGL(3) does act transitively on the level sets of the cross-ratio
with stabilizers H = C2 ⋉ C∗ ≃ S1. Consequently, there is a fibration

PGL(3)/H → F1234
χ−→M0,4

in which the projection χ is PGL(3) equivariant (with respect to the trivial action of PGL(3) on
M0,4). Choosing any parametrized line u : CP1 → CP2 yields a global equivariant section

su(w) = (u(w), u(0), u(1), u(∞)).

LetM(L) be the moduli space of parametrized lines in CP2. The group PSL(3) acts transitively
on M(L) with stabilizer HL = C2 × C∗ ≃ S1. There is an equivariant diffeomorphism

ϕ : F1234 →M(L)×M0,4
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given by ϕ(p) = (up, χ(p)) where up is the only curve sending (0, 1,∞) to (p2, p3, p4), and whose
inverse is ϕ−1(u,w) = su(w). Applying the Borel construction toM(L)×M0,4 gives

(F1234)hPGL(3) ≃ BH ×M0,4 ≃ BS1 ×M0,4.

Similarly, the isotropy representation on the normal bundle of any orbit in F1234 splits as the sum
of the trivial representation and two copies of the standard representation of weight 1. Applying
the Borel construction to

S3 → SN1234 → F1234

yields a fibration

S3 → (N1234 \ F1234)hPGL(3) → (F1234)hPGL(3) ≃ BS1 ×M0,4

which is homotopy equivalent to the product bundle of the Hopf fibration with M0,4,

S3 × {∗} → S2 ×M0,4 → BS1 ×M0,4.

We thus obtain a pushout diagram

(20)

S2 ×M0,4 BS1 ×M0,4

P4 ≃ BS1 ∨ BS1 ∨ BS1 ∨ BS1 P5 :=
(
Conf4(CP2)

)
hPGL(3)

.

4. Actions of symplectomorphism groups on almost complex structures

In this section, we study the action of symplectomorphisms on spaces of almost complex struc-
tures. In the cases n ≤ 3, these statements can also be deduced from scattered results found
in [1, 2, 6, 32]. This section provides a uniform treatment for all n ≤ 4.

4.1. Almost complex structures and configurations. We first recall some notation: n ∈
{1, 2, 3, 4}, M̃n is the smooth manifold underlying the complex blow-up of CP2 at n distinct
points, Σ = Σ1 ⊔ · · · ⊔ Σn ⊂ M̃n is the configuration of exceptional curves, c = (c1, . . . , cn) is an
admissible set of capacities with 0 < cn ≤ · · · ≤ c1 < 1, M̃c is the n-fold symplectic blow-up with
capacities c, and J (ω̃c) is the space of compatible almost complex structures on M̃c.

Given a configuration of embedded symplectic spheres S := S1 ∪ · · · ∪ Sm in M̃c, we set

Jc(S) = {J ∈ J (ω̃c) | the configuration S is J-holomorphic}.

Similarly, given a set of spherical homology classes A = {A1, · · · , Ak} ⊂ H2(M̃n;Z), we define

Jc([A]) = {J ∈ J (ω̃c) | there exists a J-holomorphic configuration C := C1 ∪ · · · ∪ Cm

of embedded spheres in M̃c such that [Ci] = Ai}.

In particular, for a configuration S, writing [S] := {[S1], · · · , [Sm]} for the corresponding set of
homology classes, we have

Jc([S]) = {J ∈ J (ω̃c) | there exists a J-holomorphic configuration C := C1 ∪ · · · ∪ Cm

of embedded spheres in M̃c such that [Ci] = [Si]}.

Given a configuration of spheres S ⊂ M̃c and an homological configuration A ⊂ H2(M̃n;Z) as
above, we define the space of almost complex structures realizing A relative to S as

Jc([A], S) := Jc([A]) ∩ Jc(S).
By definition, the strata introduced in Section 2.5, can be written as

J0(Σ) = Jc([En],Σ), Jijk(Σ) = Jc([Lijk],Σ), J1234(Σ) = Jc([L1234],Σ),

where En ⊂ H2(M̃n;Z) is the set of all symplectic exceptional classes.



EMBEDDINGS OF SYMPLECTIC BALLS 17

The above spaces of almost complex structures are closely related to spaces of symplectic
spherical configurations. Let Cc([S]) be the space of configurations of embedded symplectic
spheres in classes [S] that are simultaneously holomorphic for some J ∈ Jc([S]), and let C◦c([S])
be the subspace of configurations whose spheres intersect ω̃c-orthogonaly. Similarly, we write
Cc([A], S) for the space of configurations of homological type A ∪ [S] that are holomorphic for
some J ∈ Jc([A], S), and C◦c([A], S) for the subspace of configurations whose components intersect
ω̃c-orthogonaly.

Proposition 4.1. The space Jc([Σ]) is an open submanifold of J (ω̃c). The stratum J0([Σ]) is
open and dense in Jc([Σ]). If non-empty, the stratum Jijk([Σ]) is a codimension 2 submanifold.
In the case n = 4, the stratum J1234([Σ]) is a submanifold of codimension 4 whenever nonempty.

Proof. By the general theory of J-holomorphic curves in 4-manifolds, the space Jc([Σ]) is open
and dense in J (ω̃c). By [6, Proposition B1], the subspace Jc([Σ] ∪ [Lijk]) is a submanifold of
J (ω̃c) of codimension 2 contained in the open set Jc([Σ]). Likewise, in the case n = 4, the stratum
Jc([Σ] ∪ [L1234]) is a codimension 4 submanifold of Jc([Σ]). □

Corollary 4.2. The stratum J0([Σ]) is connected. □

Each stratum of Jc([Σ]) can be characterized by the existence of extended J-holomorphic
configurations whose orbits under the action of symplectomorphism groups can be described geo-
metrically.

4.1.1. Case n = 1. For any compatible J , the one-point blow-up of CP2 is a ruled surface in
which the exceptional class [Σ] is represented by a J-holomorphic section. Let F = L−E1 be the
homology class of a fiber. Pick a point p ∈ M̃1. The structures in the unique stratum J0([Σ]) are
characterized by the existence of configurations consisting of a J-holomorphic curve in the class [Σ]
together with the unique J-holomorphic fiber passing through p. We say that these configurations
are of homological type T0. Note that this kind of configurations admits a toric model.

4.1.2. Case n = 2. The structures in the unique stratum J0([Σ]) are characterized by the existence
of configurations consisting of representatives of the exceptional classes [Σ] = [Σ1] ⊔ [Σ2] together
with the J-holomorphic exceptional curve representing the class L12 := L − E1 − E2. We again
say that these configurations are of type T0. Again, that this kind of configurations admits a toric
model.

O

E1

F

(a) Moment image for n = 1.

O

E1

E2

L12

(b) Moment image for n = 2.

Figure 1. Toric configurations for n = 1 and n = 2 balls.

4.1.3. Case n = 3. An almost complex structure J ∈ J (Σ) belongs to the stratum J0([Σ]) if and
only if none of the classes Lijk is represented by a J-holomorphic embedded sphere. Since each
class L123 intersects negatively with either L12 = L−E1−E2 or L23 = L−E2−E3, the existence
of J-holomorphic spheres representing the classes L12 and L23 ensures that no J-holomorphic
representatives of L123 exist. Consequently, J-holomorphic configurations of type T0 consisting of
representatives of the exceptional classes [Σ] together with representatives of the classes L12 ∪L23
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characterize the stratum J0(Σ). Similarly, the stratum J123 is characterized by the existence of
J-holomorphic configurations of type T123 consisting of representatives of [Σ] together with an
embedded sphere in class L123. For n = 3, we thus write

J0([Σ]) = Jc(T0) = Jc([L12] ∪ [L23] ∪ [Σ]) J123([Σ]) = Jc(T123) = Jc([L123] ∪ [Σ])

Cc(T0) = Cc([L12] ∪ [L23] ∪ [Σ]) Cc(T123) = Cc([L123] ∪ [Σ])

Note that a configuration of type T0 can be realized as a union of invariant holomorphic spheres
under a Hamiltonian Kähler action of T2 on (M̃, ω̃c), see Figure 2a. On the other hand, there
are no toric configuration of type T123. However, there exists an almost toric fibration and a
configuration S123 whose projection on the base diagram form a subset of the boundary, see
Figure 2b.

O
E1

E2

E3

L− E1 − E2

L− E2 − E3

(a) Moment image of a toric configura-
tion S0.

×

O

E1

E2

E3

(b) An almost toric construction of a con-
figuration S123

Figure 2. Configurations for n = 3 balls.

4.1.4. Case n = 4. An almost complex structure J ∈ J ([Σ]) belongs to the stratum J0([Σ]) if and
only if none of the classes Lijk or L1234 is represented by a J-holomorphic embedded sphere. Since
these classes intersect negatively with either L12 or L34, the existence of J-holomorphic spheres
representing the classes L12 and L34 ensures that no J-holomorphic representatives of Lijk or
L1234 exist. Consequently, configurations of J-holomorphic spheres of type S0 := [Σ]∪ [L12]∪ [L34]
characterizes the almost complex structures in the stratum J0([Σ]), see Figure 3. Likewise, the
strata Jijk([Σ]) are characterized by the existence of configurations of type Sijk = [Σ] ∪ [Lmℓ] ∪
[Lijk], wherem is chosen from {i, j, k}, as shown in Figure 4a. For technical reasons, it is convenient
to take m = 1 when ℓ ̸= 1, and m = 4 when ℓ = 1. These configurations can be constructed from
almost toric fibrations as shown in Figure 4b. Finally, the stratum J1234([Σ]) is characterized
by the existence of J-holomorphic configurations of type [Σ] ∪ [L1234] as shown in Figure 5a and
Figure 5b. For n = 4, we will thus set

J0([Σ]) = Jc(T0) = Jc([L12] ∪ [L34] ∪ [Σ]) J234([Σ]) = Jc(T234) = Jc([L234] ∪ [L14] ∪ [Σ])

Cc(T0) = Cc([L12] ∪ [L34] ∪ [Σ]) Cc(T234) = Cc([L234] ∪ [L14] ∪ [Σ])

Jijk([Σ]) = Jc(Tijk) = Jc([Lijk] ∪ [L1ℓ] ∪ [Σ]) J1234([Σ]) = Jc(T1234) = Jc([L1234] ∪ [Σ])

Cc(Tijk) = Cc([Lijk] ∪ [L1ℓ] ∪ [Σ]) Cc(T1234) = Cc([L1234] ∪ [Σ])

where {i, j, k} ≠ {2, 3, 4}.

Lemma 4.3. Let T be any of the above types of configurations characterizing a stratum.

(1) There is a natural homotopy equivalence Jc(T )→ Cc(T ).
(2) The inclusion C◦c(T ) ↪→ Cc(T ) is a homotopy equivalence.

Proof. For n = 1, there is a unique configuration of type T0 for each J ∈ A0. For n ≥ 2, since
the homological configuration types only contain classes of negative self-intersections, positivity
of intersection implies that for J ∈ Jc(T ), there is a unique J-holomorphic configuration of type
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T . We thus get a well-defined fibration Jc(T ) → Cc(T ). Now, given a configuration, the set of
all J for which it is J-holomorphic is contractible. This proves the first statement. The second
statement follows from the Gompf isotopy lemma, see [12, Lemma 5.3]. □

E1

E2 E3

E4

L12 L34

Figure 3. A configuration S0 for k = 4

Ei

Ej

Ek

Lkℓ

Lijk

Eℓ

(a) A configuration Sijk.

×

O

Eℓ

Ek

Ei

Ej

Lkℓ

(b) An almost toric construction of Sijk.

Figure 4. Configurations of type Tijk for n = 4 balls.

E1 E2 E3 E4

L1234

(a) A configuration S1234

×

×

O

E1

E2

E3

E4

(b) An almost toric construction of a con-
figuration S1234.

Figure 5. Configurations of type T1234 for n = 4 balls.

Definition 4.4. A configuration of embedded symplectic spheres S = S1 ∪ · · · ∪ Sk in (M,ω) is
said to be standard if

(1) S is almost complex for some compatible J ∈ J (ω),
(2) the intersections between the components Si are transverse and symplectically orthogonal,
(3) [Si] · [Sj ] ≤ 1 for i ̸= j,
(4) Si ∩ Sj ∩ Sk = ∅ for every triple of distinct indices i, j, k,
(5) S is simply connected.

Proposition 4.5. Let St = S1t ∪ · · · ∪ Skt, t ∈ [0, 1], be a family of standard configurations in
(M,ω). Then there exist symplectomorphisms ϕt : M → M depending continuously on t, such
that ϕ0 = id and ϕt(S0) = St.
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Proof. From Moser’s stability theorem, there exists a continuous family of symplectic embeddings
ψt : (S0, ω|S0)→ (St, ω|St). By the generalization of Weinstein’s symplectic neighborhood theorem
to orthogonal configurations given in [17, Theorem 2], we can extend these maps to symplectic
embeddings ψt : U0 → Ut, where Ut is some tubular neighborhood of St modelled on a sym-
plectic plumbing of the symplectic normal bundles N(Sit). By Banyaga’s extension theorem [7,
Theorem II.2.3], there exists a symplectic isotopy ϕt that coincides with ψt on S0. □

Recall that E(M) ⊂ H2(M,Z) is the set of classes that can be represented by exceptional
spheres, i.e. symplectically embedded spheres of self-intersection −1.

Proposition 4.6 ([28, Theorem 1.2.7 (iii)]). Let (M,ω) be a symplectic 4-manifold with an or-
thogonal configuration S of k embedded symplectic spheres S = S1 ∪ · · · ∪ Sk, and suppose that
A ∈ E satisfies A · Si ≥ 0 for all 1 ≤ i ≤ k. Then there is an open, dense, and connected subset
J ([A], S) ⊂ J (S) such that A is represented by an embedded J-holomorphic curve. □

Proposition 4.7 ([9, Proposition 2.1]). Let (M,ω) be a closed rational or ruled symplectic 4-
manifold and let Z ⊂ M be a closed symplectic sphere. Then, for any choice of capacities c =
c1, . . . , cn, the space Emb(c,M \Z) of symplectic embeddings B(ci)⊔ · · · ⊔B(cn) ↪→ (M \Z, ω) in
the complement of Z is connected whenever it is non-empty. □

Proposition 4.8. Let (M,ω) be a rational, ruled, symplectic 4-manifold and let Z be an embedded
symplectic sphere in the class of a section of nonpositive self-intersection. Then any other embedded
symplectic sphere Z ′ homologous to Z is Hamiltonian isotopic to Z.

Proof. By [2, Corollary 2.8], the space J ([Z]) is connected, which implies that the space C([Z])
of embedded symplectic spheres in class [Z] is also connected. By Proposition 4.5, the group
Symph(M,ω) acts transitively on C([Z]), and it follows from [2, Corollary 2.7] that we have
equalities Symph(M,ω) = Symp0(M,ω) = Ham(M,ω). □

Proposition 4.9. Let (M,ω) be a closed rational or ruled symplectic 4-manifold. Let Z be an
embedded symplectic sphere of self-intersection −2 or −3. Then the group Symph(M,ω) acts
transitively on the set of embedded symplectic spheres homologous to Z.

Proof. The proof depends on whether A = [Z] is a characteristic element of the intersection
lattice H2(M,Z). (Recall that an element A ∈ H2(M,Z) is characteristic if for all B ∈ H2(M ;Z),
A ·B = B ·B mod 2.)

When the class A is not characteristic, it follows from [11, Proposition 5.15] and [11, Proposition
5.17] that A is Cremona equivalent to

(1) B − F if A ·A = −2 and M = S2 × S2,
(2) E1 − E2 if A ·A = −2 and M = CP2#nCP2, n ≥ 2,
(3) 2E1 − L if A ·A = −3 and M = CP2#nCP2, n ≥ 1.

In the first case, the statement of the proposition follows directly from Proposition 4.8. In the two
other cases, let Z0 and Z1 be two symplectic, embedded spheres representing the class A. We can
find (n− 1) orthogonal exceptional classes V1, . . . , Vn−1 that have zero intersection with A. By an
inductive application of Proposition 4.6, we can find an almost structure Ji, i = 0, 1, for which the
classes Vj are represented by holomorphic spheres Σij and for which Zi is also holomorphic. We
can find a Hamiltonian isotopy ft, t ∈ [0, 1], that takes the exceptional curves Σ1j to Σ0j , so that
there is no lost of generality in assuming Σ0j = Σ1j . By positivity of intersections, the spheres
Σj in classes Vj are disjoint from the curves Zi and can be blown down to obtain a rational ruled
surface (M,ω) that is diffeomorphic to S2 × S2 if A · A = −2 or to CP2#CP2 if A · A = −3.
In both cases, the blow-down curves Zi are sections that are disjoint from a collection of (n− 1)
symplectic balls Bj ⊂ M . By Proposition 4.8, there is an Hamiltonian isotopy ψt, t ∈ [0, 1],
taking Z1 to Z0. By Proposition 4.7, there is an Hamiltonian isotopy ϕt, t ∈ [0, 1], with support
in M \ Z0, taking the balls ψ1(Bj) back to the balls Bj . Moreover, we can arrange that ϕ1 ◦ ψ1
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is the identity near the balls Bj , so that ϕ1 ◦ ψ1 lifts to a symplectomorphism g ∈ Symph(M,ω)
that takes Z1 to Z0.

When the class A is characteristic, it follows again from [11, Proposition 5.15] and [11, Propo-
sition 5.17] that A is Cremona equivalent to either

(1) L− E1 − E2 − E3 if A ·A = −2 and M = CP2#3CP2,
(2) L− E1 − E2 − E3 − E4 if A ·A = −3 and M = CP2#4CP2.

Let (M̃, ω̃) be the symplectic blow-up of (M,ω) at a ball B0 of capacity ϵ > 0 away from two
spheres Z0 and Z1 in class A, and let E0 be the class of the new exceptional divisor Σ0. Then the
exceptional classes Li0 := L− E0 − Ei, i ̸= 0, are pairwise orthogonal and have zero intersection
with A. In particular, A is no longer characteristic. Note that blowing down disjoint divisors
representing the classes L0i yields a rational ruled surface (M,ω) whose fiber is in the homology
class L − E0 so that the blown down curves Zi are in the class of a section. The previous
argument then shows the existence of some symplectomorphism g̃ ∈ Symph(M̃, ω̃) taking Z̃1 to
Z̃0. Composing with a Hamiltonian isotopy supported away from Z̃0, we can assume that g̃ is the
identity near the exceptional divisor Σ0. Blowing down Σ0 gives the required symplectomorphism
g ∈ Symph(M,ω) that takes Z1 to Z0. □

Proposition 4.10. Let T be any of the above types of configurations characterizing a stratum.
In the case n = 1, the subgroup Gc,p := Symph(M̃c, p) fixing p ∈ Σ acts transitively on the space
C◦c(T ) of orthogonal configurations of type T . For 2 ≤ n ≤ 4, the full group Gc = Symph(M̃c) acts
transitively on the space C◦c(T ) of orthogonal configurations of type T .

Proof. We first consider the action of Gc,p on orthogonal configurations of type T0 in the case n = 1.
Since the stratum Jc(T0) is path-connected, Lemma 4.3 implies that C◦c(T0) is also connected. By
Proposition 4.5, it follows that the group Gc,p acts transitively on C◦c(T0). The exact same argument
shows that for 2 ≤ n ≤ 4, the full group Gc acts transitively on C◦c(T0).

Next, we consider two orthogonal configurations Ci, i = 0, 1, of type T123 in M̃3, each consisting
of a set of disjoint exceptional divisors Σi and of some embedded sphere Zi in class L−E1−E2−E3.
By Proposition 4.9, there is an element g ∈ Symph(M̃3, ω̃c) such that g(Z1) = Z0 and which takes
Σ1 to g(Σ1). By Proposition 4.6, the space Jc([Σ], Z0) is connected. It follows that the spaces
Cc([Σ], Z0) and C◦c([Σ], Z0) are connected. Again, by Proposition 4.5, the group Symph(M̃3, ω̃c)

acts transitively on C◦c([Σ], Z0). Consequently, we can find f ∈ Symph(M̃3, ω̃c) taking g(Σ1) back
to Σ0 and leaving Z0 invariant, so that f ◦ g is the required symplectomorphism sending C1 to C0.

Note that the argument for configurations of type T123 applies mutatis mutandis to orthogonal
configurations of type T1234 in (M̃4, ωc).

We are left with orthogonal configurations of type Tijk = [Σ] ∪ [Lijk] ∪ [Lmℓ] in (M̃4, ωc). Let
C0 and C1 be two such configurations, and let Z0 and Z1 be their components in class Lijk. By
Proposition 4.9, there is an element g ∈ Symph(M̃3, ω̃c) such that g(Z1) = Z0. Since [Lmℓ] is
an exceptional class, Proposition 4.6 still implies that the space C◦c([Σ] ∪ [Lmℓ], Z0) is connected.
Applying Proposition 4.5 finishes the proof. □

Proposition 4.11. Let S be a standard configuration of type T0, Tijk, or T1234. In the case S is
of the type T234 assume further that c1 < 1/2. Let U = M̃4 \ S be its complement. Then group
Sympc(U) of symplectomorphisms with compact support in U is contractible.

Proof. We will only prove the statement for n = 4 balls as the cases 1 ≤ n ≤ 3 are similar and
simpler.

Since Symph acts transitively on standard configurations of types T0, Tijk, and T1234, it suffices
to prove the statement for one configuration of each types.
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If S is of type T0, then this is Proposition 3.3 in [24]. As we explain below, the argument can
be readily adapted to the other configuration types except T234 for which we have to impose the
extra assumption c1 < 1/2.

Let’s assume [ω̃c] is rational so that there is k ∈ N∗ such that k[ω] is integral. The first step
is to write some positive multiple mkPD[ω̃c] as a strictly positive integral combination of all the
homology classes represented by the components of S, so that mkPD[ω̃c] is represented by a
positive divisor D whose underlying set is S. For the case S is of type T1234, we have

PD[ω̃c] = L− c1E1 − c2E2 − c3E3 − c4E4

= (L− E1 − E2 − E3 − E4) + (1− c1)E1 + (1− c2)E2 + (1− c3)E3 + (1− c4)E4.

Now, let S be a holomorphic configuration of type T234 = Σ∪[L234]∪[L14]. For two nonnegative
integers a, b ∈ N,

(a+ b) PD[ω̃c] = (a+ b)(L− c1E1 − c2E2 − c3E3 − c4E4)

= a(L− E2 − E3 − E4) + b(L− E1 − E4)

+ (b− (a+ b)c1)E1 + (a− (a+ b)c2)E2 + (a− (a+ b)c3)E3 + (a+ b)(1− c4)E4

and because 0 < c4 ≤ · · · ≤ c1 < 1 and ci+ cj < 1, all coefficients are strictly positive iff a = b = 1
and c1 < 1/2, in which case

2PD[ω̃c] = 2(L− c1E1 − c2E2 − c3E3 − c4E4)

= (L− E2 − E3 − E4) + (L− E1 − E4)

+ (1− 2c1)E1 + (1− 2c2)E2 + (1− 2c3)E3 + 2(1− c4)E4.

Note that for the other types of configurations Tijk = Σ ∪ [Lijk] ∪ [L1ℓ], the coefficient of E1 is
2(1− c1) > 0 and the coefficients of the other classes Ei are (1− 2ci) > 0, so that we do not have
to impose the extra condition c1 < 1/2.

In all cases, since mkPD[ω̃c] = [D], there exists a Kähler potential ϕ : U → R+ so that
mkω̃c = ddϕ, making the complement U a Stein domain biholomorphic to C when S = S1234 or
to C×C∗ when S = Sijk. From there on, the argument is identical to the proof of Proposition 3.3
in [24]. □

Remark 4.12. It is likely that the extra condition c1 < 1/2 for configurations of type T234 in
Proposition 4.11 can be removed. For instance, a standard configuration S of type Tijk or T1234
is always almost-toric, and its complement U can be identified with a toric domain in C4. In
the case of T1234, U is always symplectically star-shaped, that is, there exists a Liouville vector
field X lifting the radial vector field X on the base diagram, and whose negative flow contracts
U into an T2-invariant symplectic ball. The contractibility of Sympc(U) then follows by adapting
the proof of Theorem 9.5.2 in [31]. For configurations of type Tijk, under any of the conditions
cℓ + ci + cj < 1, cℓ + ci + ck < 1, or cℓ + cj + ck < 1, there also exists a Liouville vector field
contracting U into D2 ×D2

∗. In particular, for the type T234, the statement holds even if c1 ≥ 1/2
as long as c1 + ci + cj < 1 for at least one pair of indices i, j.

Proposition 4.13. Let S ∈ C◦c(TI) be a standard configuration characterizing a stratum JI([Σ])
in Jc([Σ]). Suppose that S is holomorphic with respect to an integrable structure JS. Let Stabh(S)
be the symplectic stabilizer of S under the action of Symph(M̃c), Auth(JS) be the group of complex
automorphisms of JS preserving homology and let Isoh(ω̃c, JS) be the subgroup of Kahler isometries
acting trivially on homology. We have the following homotopy equivalences.

(1) In the case n = 1, Stabh(S) ≃ Auth(JS) ≃ Isoh(ω̃c, JS) ≃ U(2).

(2) In the case n = 2, Stabh(S) ≃ Auth(JS) ≃ Isoh(ω̃c, JS) ≃ T2.

(3) In the case n = 3,
(a) for S of type T0, Stabh(S) ≃ Auth(JS) ≃ Isoh(ω̃c, JS) ≃ T2,
(b) for S of type T123, Stabh(S) ≃ Auth(JS) ≃ Isoh(ω̃c, JS) ≃ S1

ijk.
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(4) In the case n = 4,
(a) for S of type T0, Stabh(S) ≃ Auth(JS) = Isoh(ω̃c, JS) = 1,
(b) for S of type Tijk, Stabh(S) ≃ Auth(JS) ≃ Isoh(ω̃c, JS) ≃ S1

ijk,
(c) for S of type T1234, Stabh(S) ≃ S1

1234 × F2, where F2 denotes the free group on two
generators, and Auth(JS) ≃ Isoh(ω̃c, JS) ≃ S1

1234.

In all cases, the identity component Stab0(S) of the symplectic stabilizer is homotopy equivalent
to the isometry group Isoh(ω̃c, JS).

Proof. Again, we will only prove the statement for n = 4 balls as the n ≤ 3 cases are similar. Note
that the statement for n = 1 and n = 2 follows, respectively, from the proofs of [2, Proposition 2.6
(iii)] and [32, Proposition 3.1], while for n = 3 it follows from [6, Corollary B.9 and Corollary B.12].

(4a) We first consider the open stratum. We can assume JS is a complex structure obtained by
blowing up CP2 at 4 generic points. It follows that the group Aut(JS) of complex automorphisms
is trivial. Now, the fact that Stabh(S) is contractible is proven by looking at a sequence of fibrations
that reduce the problem to symplectomorphism groups of pointed surfaces and automorphisms of
symplectic plumbings as described in [12, Section 4].

Let C0 = C12 ∪ C34 be the two curves in S in classes [L12] and [L34], so that S = Σ ∪ C0.
Restricting an element ϕ ∈ Stabh(Σ ∪ C0) to C0 gives

Fix(C0)→ Stabh(Σ ∪ C0)→ Symp(C0) ≃ ∗,
where Fix(C0) is the subgroup of elements fixing C0 pointwise and leaving Σ invariant. For
ϕ ∈ Fix(C0), its differential dϕ along C0 is a symplectic automorphism of the normal bundle
N (C0) so that we have a second fibration

H → Fix(C0)→ Aut(N (C0)) ≃ Map
(
(S2, ∗), (S1, ∗)

)
×Map

(
(S2, ∗), (S1, ∗)

)
≃ ∗,

whose fiber H is homotopy equivalent to the group H0 of symplectomorphisms ϕ acting as the
identity near C0 and leaving Σ invariant. Restricting ϕ ∈ H0 to the 4 curves in Σ yields a third
fibration

H1 → H0 → Symp(Σ, id near pi) ≃ ∗,
where pi = Σi ∩ C0. Taking differentials of elements ϕ ∈ H1 along Σ, we get a fourth fibration

Sympc(M̃ \ S) ≃ H2 → H1 → Aut(N (Σ), id near pi) ≃ ∗,

whose fiber is homotopy equivalent to symplectomorphisms of M̃ supported away from the con-
figuration S. By Proposition 4.11, this latter group is contractible, so that Stab(Σ ∪ C0) is also
contractible. This completes the argument for the open stratum J0.

(4b) We now consider a configuration S of type Tijk. We can assume that S is obtained by
blowing up CP2 at 3 points pi, pj , pk in the line [0 : z1 : z2], and at pℓ = [1 : 0 : 0]. It follows
that the group Aut(JS) of complex automorphisms acting trivially on homology is the subgroup
of PU(3) fixing pointwise the line at infinity together with the origin:

Aut(JS) =

A =


λ 0 0

0 a 0

0 0 a

 ∈ PU(3) | λ, a ∈ C∗

 .

In particular, it is homotopy equivalent to the circle S1 ⊂ PU(3) acting on CP2 by

t · [z0 : z1 : z2] = [tz0 : z1 : z2].

To show that the symplectic stabilizer Stabh(S) of the configuration is homotopy equivalent to
the same circle S1, let Cijk be the component of S in the class [Lijk], and consider the restriction
fibration

Fix(Cijk)→ Stabh(Σ ∪ Cijk)→ Symp(Cijk, id on {pi, pj , pk}) ≃ ∗.
Restricting the differential of ϕ ∈ Fix(Cijk) to the normal bundle N (Cijk) yields

H0 → Fix(Cijk)→ Aut(N (Cijk)) ≃ S1,
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where H0 ⊂ Stab(Cijk) is the subgroup of symplectomorphisms acting trivially near Cijk. Pro-
ceeding as before, it is easy to show that this subgroup is homotopy equivalent to Sympc(M̃c \S),
which is contractible. Consequently, Stabh(S) ≃ S1.

(4c) A configuration S of type T1234 is obtained by blowing up 4 points on the line at infinity
L := {[0 : z1 : z2]}. The automorphism group Auth(JS) is the subgroup of PSL(3,C) that fixes a
line pointwise, namely,

Aut(JS) =

A =


1 0 0

b a 0

c 0 a

 ∈ PU(3) | a ∈ C∗, b, c ∈ C

 ≃ S1.

Let C1234 ⊂ S be the curve in class [L1234]. Restricting an element ϕ ∈ Stabh(Σ∪C1234) to C1234

defines a map

(21) Stabh(Σ ∪ C1234)→ Symp(C1234, 4) ≃ F2,

where Symp(C1234, 4) is the group of symplectomorphisms fixing the four points {p1, p2, p3, p4},
and where F2 is the free group on two generators. We claim that this map is a fibration. To see
this, we first note that any Hamiltonian diffeomorphism ϕ ∈ Symp(C1234, 4) that is isotopic to
the identity through a Hamiltonian isotopy ϕt can be lifted to Stabh(Σ ∪ C1234) by extending ϕt
in a Weinstein neighborhood of C1234. It is thus sufficient to show that the restriction map (21)
is surjective at the π0 level.

For this, we look at the action of Symp(S2, 3) on a fourth point p4 ∈ S2 \ {p1, p2, p3}. This
yields a fibration

Symp(S2, 4)→ Symp(S2, 3)→ S2 \ {p1, p2, p3}
whose monodromy induces the isomorphism F2 ≃ π1(S2 \ {p1, p2, p3}) ≃ π0(Symp(S2, 4)). Given
a class [ϕ1] ∈ π0(Symp(S2, 4)), let ϕt be a path in Symp(S2, 3) connecting the identity to ϕ1 and
representing [ϕ1]. We can suppose that ϕt is the identity on 3 discs Di centered at the first three
points p1, p2, p3, and that ϕ = ϕ1 is also the identity on a disc D4 centered at p4. Identify S2

with a line L ⊂ CP2, and let N be a Weinstein neighborhood of L. Let B(ϵ1) ⊔ · · · ⊔ B(ϵ4) be
four symplectic balls of capacities ϵi in N whose intersections with L is contained in the interior of
the discs Di. We extend the Hamiltonian isotopy ϕt to a isotopy ϕt of N that is the identity near
the first three balls B(ϵi), and such that ϕ1 is also the identity near B(ϵ4). It follows that ϕ1 lifts
to a symplectomorphism ψ on the symplectic blow-up of the balls B(ϵi). By construction, this
symplectomorphism leaves the four exceptional divisors Σi fixed and sends the proper transform
C1234 of L to itself, that is, ψ ∈ Stab(S). Moreover, its restriction to C1234 represents the class
[ϕ1] ∈ π0(Symp(S2, 4)). This shows that the restriction map (21) is surjective whenever the
capacities ci are small enough. By the description of the stability chambers given in Section 2.4.3,
we can assume that the capacities c1, . . . , c4 are as small as we want, which concludes the proof
of the claim.

We now look at the fibration

Fix(C1234)→ Stabh(Σ ∪ C1234)→ Symp(C1234, 4) ≃ F2.

Restricting the differential of ϕ ∈ Fix(C1234) to the normal bundle N (C1234) yields

H0 → Fix(C1234)→ Aut(N (C1234)) ≃ S1,

where H0 ⊂ Stab(C1234) is the subgroup of symplectomorphisms acting trivially near C1234. The
same arguments as in the previous cases show that this subgroup is homotopy equivalent to
Sympc(M̃c \ S), which is contractible. Consequently, as topological spaces,

Stabh(S) ≃ S1 × F2.

In particular, Stab0(S) ≃ S1. □

Proposition 4.14. Let S be a configuration of type T1234. There is an injective homomorphism
S1 × F2 ↪→ Stabh(S) that induces a homotopy equivalence BS1 × BF2 ≃ BStabh(S).
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Proof. From Proposition 4.13 (4c), we know that Stabh(S)/ Stab0(S) = π0(Stabh(S)) ≃ F2, and
because F2 is free, there is a section σ : F2 ↪→ Stabh(S). Consider the diagram of exact sequences

(22)

S1 S1 ⋊ F2 F2

Stab0(S) Stabh(S) π0(Stabh(S))

Fix(C1234) Stabh(S) Symp(C1234, 4)

≃ ≃ ≃

≃ ≃

Looking at the lifts of the elements of F2 constructed in the proof of Proposition 4.13 (4c), it
follows immediately that given a ∈ F2 and t ∈ S1 ⊂ Stab0(S), the conjugate ata−1 restricts
to the image of t in the bundle automorphisms group Aut(N (C1234)). Consequently, F2 acts
trivially on S1 and there is an injective homomorphism S1 × F2 → Stabh(S) that is a homotopy
equivalence. □

Corollary 4.15. The group Symph(M̃c) acts on Jc([Σ]) preserving the stratification. Each of the
strata J0([Σ]) and Jijk([Σ]) is homotopy equivalent to the orbit of an integrable complex structure.
For a complex structure JS in the stratum J1234([Σ]), the homotopy fiber of the inclusion of its orbit
(Symph(M̃c) · JS) ↪→ J1234([Σ]) is homotopy equivalent to the free group F2, while the homotopy
fiber of the evaluation map Symph(M̃c)→ J1234([Σ]) is equivalent to S1 × F2.

Proof. Given a complex structure J in a stratum JI([Σ]) and the corresponding J-holomorphic
configuration S, this follows from the Symph(M̃c)-commutative diagram

JI([Σ]) Cc(TI) C◦c(TI)

Stabh(S)/ Isoh(JS) Symph / Isoh(JS) Symph /Stabh(S) Symph / Stabh(S)

≃ ≃

≃ ≃

together with Proposition 4.13. □

Using the same techniques, it is easy to show that the strata of the spaces Jc(Σ), A(n,Σ), and
A(n, [Σ]) are co-oriented submanifolds of the same codimensions than the strata of Jc([Σ]). By
Propositions 2.13 and 2.14, all the actions on these stratified spaces defined in Section 2.5.3 share
similar properties.

For convenience, we collect the main results of this section in a single statement.

Proposition 4.16. Let c be an admissible capacity and let Gc := Symp(M̃c).

(1) The stratum J0 ⊂ Jc([Σ]) is open, dense, and connected. It is homotopy equivalent to
the orbit of a complex structure J0 under the action of Gc. The homotopy fiber Fev of the
evaluation map ev : Gc → J0 at J0 is homotopy equivalent to Isoh(ω̃c, J0) ≃ Auth(J0),
that is, Fev ≃ U(2) if n = 1, Fev ≃ T2 if n = 2, 3, and Fev ≃ 1 if n = 4.

(2) Whenever nonempty, the stratum Jijk ⊂ Jc([Σ]) is a co-oriented submanifold of codimen-
sion 2. It is homotopy equivalent to the orbit of a complex structure Jijk under the action
of Gc. The homotopy fiber of the evaluation map ev : Gc → Jijk at Jijk is homotopy
equivalent to Isoh(ω̃c, Jijk) ≃ Auth(Jijk) ≃ S1

ijk.

(3) Whenever nonempty, the stratum J1234 ⊂ Jc([Σ]) is a co-oriented manifold of codimen-
sion 4. It contains a complex structure J1234 with automorphism group Isoh(ω̃c, J1234) ≃
Auth(Jijk) ≃ S1

1234. The homotopy fiber of the evaluation map ev : Gc → J1234 at J1234
is homotopy equivalent to S1

1234 × F2.

Moreover, similar statements hold for the action of Gc(Σ) on Jc(Σ), for the action of Dh(Σ) on
A(n,Σ), and for the action of Dh on A(n, [Σ]).



26 S. ANJOS, J. KĘDRA, AND M. PINSONNAULT

4.2. Integrable structures and isotropy representations. In this section we determine the
isotropy representations associated to the action of the symplectomorphism group Gc on Jc([Σ]).
To this end, we study the restrictions of the actions to the subspace J int

c ([Σ]) made of integrable
complex structures, and show that the isotropy representations of the restricted action can be
described through complex deformation theory. We then show that the homotopy orbits of the
action of Gc on J int

c ([Σ]) coincide with the homotopy orbits of the whole space Jc([Σ]). Our
discussion closely follows the exposition in [1], where similar considerations are applied to the
study of symplectomorphism groups of ruled 4-manifolds.

Given an integrable structure J we write H0,q
J (M) for the qth Dolbeault cohomology group with

coefficients in the sheaf of germs of holomorphic functions, and H0,q
J (TM) for the qth Dolbeault

cohomology group with coefficients in the sheaf of germs of holomorphic vector fields.

Theorem 4.17 ([1, Theorem 2.3]). Let (M,ω) is a symplectic 4-manifold and suppose J ∈ J int(ω)

is an integrable complex structure for which the cohomology groups H0,2
J (M) and H0,2

J (TM) are
zero. Then J int(ω) is a submanifold of J (ω) in the neighborhood of J . Moreover, the moduli
space of infinitesimal compatible deformations of J in J int(ω) coincides with the moduli space
of infinitesimal deformations of J in the set of all integrable structures, that is, it is given by
H0,1

J (TM). Finally, the tangent space of J int(ω) at J is naturally identified with the direct sum
TJ
(
(Diff [ω](M) · J) ∩ J (ω)

)
⊕H0,1

J (TM). □

The next theorem gives a sufficient condition for the Symp(M,ω)-orbit of an integrable structure
J to be homotopy equivalent to the partial orbit (Diff [ω](M) · J) ∩ J (ω) of Theorem 4.17.

Theorem 4.18 ([1, Corollary 2.6]). Let (M,ω, J) be a Kähler 4-manifold. Suppose the inclusion
Iso(ω, J) ↪→ Aut[ω](J) is a weak homotopy equivalence. Then the inclusion of the Symp(M,ω)-
orbit Symp(M,ω)/ Iso(ω, J) ↪→ (Diff [ω](M) · J) ∩ J (ω) is also a weak homotopy equivalence. □

Each stratum of Jc([Σ]) is characterized by the existence of a J-holomorphic sphere u : S2 →
(M̃n, J) representing a given homology class A. We define the universal moduli space

M(A,Jc) = {(u, J) ∈ C∞(S2, M̃n)× Jc([Σ]) | [u] = A, u is simple and J-holomorphic}.
This is a Fréchet manifold whose image under the projection πA :M(A,Jc)→ Jc([Σ]) is precisely
the stratum JA defined by the class A. The next theorem gives sufficient conditions under which
the projection πA is tranversal to the inclusion J int

c ([Σ]) ↪→ Jc([Σ]). Although the original
statement found in [1] is slightly weaker, the given proof establishes the following stronger form.

Theorem 4.19 ([1, Theorem 2.9]). Let (M,ω, J) be a Kähler 4-manifold for which the cohomology
groups H0,2

J (M) and H0,2
J (TM) are zero. Suppose that (u, J) ∈ M(A,J (ω)) is such that u∗ :

H0,1
J (TM) → H0,1(u∗(TM)) is surjective. Then the projection πA : M(A,J (ω)) → J (ω) is

tranversal at (u, J) to the inclusion J int(ω) ↪→ J (ω) and the infinitesimal complement to the
image JA of πA in a neighborhood of J can be identified with H0,1

J (TM)/ ker(u∗). □

Lemma 4.20. Let (M̃n, J) be the complex blow-up of CP2 at n distinct points.

(1) The cohomology groups H0,2
J (M̃n) and H0,2

J (TM̃n) are zero.
(2) Let u : S2 → (M̃n, J) be a J-holomorphic map representing any of the classes Lijk or

L1234. Then u∗ : H0,1
J (TM)→ H0,1(u∗(TM)) is surjective.

Proof. The first statement holds for any rational surfaces since H0,2
J (M) and H0,2

J (TM) are invari-
ant under pointwise blow-ups, and since H0,2

J (CP2) = 0 and H0,2
J (TCP2) = 0, see [20] and [18,

Exercise 10.5]. For the second statement, let A be one of the classes Lijk or L1234. We first note
that there always exist J-holomorphic representatives of a class F satisfying c1(F ) = 2, F ·F = 0,
and F · A = 1. Note that representatives of F foliate an open and dense subset of M̃n. Granted
this, the proof of [6, Lemma 7.11] applies mutatis mutandis to our case. □

Proposition 4.21. Let (M̃c, ω̃c) be the symplectic blow-up of CP2 at n ≤ 4 balls of capacity c.
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(1) For each integrable complex structure J ∈ Jc([Σ]), there is a homotopy equivalence

Symp(M̃c, ω̃c)/ Iso(ω̃c, JI) ↪→ (Diff [ω](M) · J) ∩ Jc([Σ]).

(2) The inclusion J int
c ([Σ]) ↪→ Jc([Σ]) is transverse to each stratum. In particular, the stratifi-

cation of Jc([Σ]) induces a stratification of J int
c ([Σ]) with strata of the same codimensions.

(3) The isotropy representation along the orbit of an an integrable structure J is isomorphic
to the action of Iso(ω̃c, JI) on H0,1

J (TM).
(4) For each stratum JI with normal bundle NI , the isotropy representation on the nor-

mal fiber NJ at an integrable J ∈ JI([Σ]) is isomorphic to the action of Iso(ω̃c, JI) on
H0,1

J (TM)/ ker(u∗).

Proof. The first statement follows from Proposition 4.16 together with Theorem 4.18. The other
statements follows directly from Lemma 4.20, Theorem 4.19, and Theorem 4.17. □

Among all strata in Jc, the only stratum that is not homotopy equivalent to a single orbit
under the action of the symplectomorphism group Gc is the codimension 4 stratum J1234. Its
orbit structure can be understood in the following way. Consider the map χ : J1234 → M0,4

that assigns to J the cross-ratio χ(p4, p1, p2, p3), where pi is the intersection of the J-holomorphic
representatives C1234 and Σi of the classes L1234 and Ei. Since there is a unique holomorphic
parametrization u : S2 → C1234 that sends (0, 1,∞) to (p1, p2, p3), this map is well defined.
Moreover, since ϕ ◦ u is ϕ∗J-holomorphic, χ is invariant under the action of Gc.

Proposition 4.22. The cross-ratio defines a fibration

Jχ → J1234
χ−→M0,4

whose fiber is homotopy equivalent to the orbit under Gc of an integrable complex structure.

Proof. Let Symp(S2, k) be the group of symplectomorphisms of S2 fixing a configuration of k
points. Given w ̸= 0, 1,∞, there is an evaluation fibration with local sections

Symp(S2, 4)→ Symp(S2, 3)→M0,4

Fix a retraction of Symp(S2, 3) ≃ {id}. Then any local section sz is given by the flow at time
t = 1 of some unique Hamiltonian on S2, say sz(ξ) = ϕz,ξ. Given J such that χ(J) = z, and
extending this Hamiltonian near the J-holomorphic curve C1234 defines a local section of χ near
z, namely, Sz(ξ) = (ϕz,ξ)∗J . This shows that χ is a fibration.

Let C be a standard configuration of type T1234 and consider the diagram of fibrations

(23)

Jχ(C) Jχ C(T1234) ≃ Gc/(S1 × F2)

∗ ≃ J (C) J1234 C(T1234) ≃ Gc/(S1 × F2)

M0,4 M0,4 ∗

χ χ

The homotopy fiber of the leftmost vertical fibration is F2, so that Jχ(C) ≃ F2. On the other
hand, the orbit Gc/ Iso is the total space of the fibration

F2 → Gc/ Iso→ Gc/(S1 × F2) ≃ C(T1234).

Consequently, the inclusion Gc/ Iso ↪→ Jχ is a homotopy equivalence as claimed. □

Proposition 4.23. For every admissible capacity c, and for every stratum JI([Σ]), the inclusion
J int
I ([Σ]) ↪→ JI([Σ]) is a homotopy equivalence.
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Proof. For the strata J0 and Jijk, Proposition 4.16 (1-2) and Proposition 4.21 (1) imply that for
each compatible almost complex structure J in the stratum JI we have equivalences

JI ≃ Symp(M̃c, ω̃c)/ Iso(ω̃c, JI) ≃ (Diff [ω](M) · J) ∩ Jc([Σ])

On the other hand, any complex integrable structure in J int
I is obtained by blowing up a configu-

ration of n points in CP2 that are either in F0 or in Fijk. Since PGL(3) acts transitively on these
sets, Dh acts transitively on J int

I , so that (Diff [ω](M) · J) ∩ Jc([Σ]) = J int
I .

For the stratum J1234, consider the ladder of fibrations

(24)

Jχ J1234 M0,4

J int
χ J int

1234 M0,4

χ

χ

By Proposition 4.22, each fiber is homotopy equivalent to an orbit. Consequently, the inclusion
J int
χ ↪→ Jχ is an equivalence and it follows that J int

1234 ↪→ J1234 is also a homotopy equivalence. □

Recall that given the stratification of Jc([Σ]), we recursively defined J0 ⊂ J1 ⊂ · · · by setting
J0 equal to the open stratum, and by successively adding strata of increasing codimensions. In
the discussion below, Ji stands for a union of strata, while we keep using JI when we refer to a
single stratum.

Proposition 4.24. For every admissible capacity c, the inclusion J int
c ([Σ]) ↪→ Jc([Σ]) is a ho-

motopy equivalence.

Proof. Both spaces are partitioned into the same number of strata, namely, J int
c ([Σ]) =

⊔
I J int

I

and Jc([Σ]) =
⊔

I JI , the corresponding strata J int
I and JI are homotopy equivalent, their normal

bundles N int
I , NI , are homotopy equivalent, and the gluing data are isomorphic. The statement

then follows inductively from applying [27, Theorem p.80] to the homotopy equivalent excisive
triads

(
J int
i ([Σ]), N int

i , J int
i−1([Σ])

)
→
(
Ji([Σ]), Ni, Ji−1([Σ])

)
obtained by adding one stratum at

a time. For more details see [1, Theorem 1.1]. □

4.3. Existence of homotopy pushout squares. Let J be an integrable structure that belongs
to the stratum of highest codimension J int

I ⊂ J int
c ([Σ]). Although the orbit OJ := (Gc · J) is

a smooth Gc-invariant submanifold of finite codimension, it is not known whether one can find
a Gc-invariant tubular neighborhood. However, the action of Gc on J int

c ([Σ]) admits slices. As
explained in [1, Appendix C], this implies that for any tubular neighborhood NJ of OJ , and for
any compact set K ∈ Gc, there is a smaller tubular neighborhood NJ(K) sent by the action of K
into NJ . This is enough to define a A∞-action of Gc on NJ which is equivalent to the left Gc-action
on a standard tube Gc ×HJ

NJ , where NJ ≃ H0,1
J (TM̃n) is the normal fiber at J endowed with

the isotropy representation of HJ = Iso(ωc, J). We summarize the previous discussion in the next
proposition.

Proposition 4.25. Let J ∈ J int
c ([Σ]) be an integrable structure and let HJ = Iso(ωc, J). Suppose

its Gc-orbit OJ is of codimension (k+1). Then there exists a tubular neighborhood NJ of OJ such
that the projection (NJ \ OJ) → OJ has the weak homotopy type of the projection Gc ×HJ

Sk →
Gc/HJ of a standard tube. Moreover, one can define a A∞-action of Gc on NJ which is weakly
homotopy equivalent to the left Gc-action on Gc ×HJ

Sk → Gc/HJ .

Proof. The first part of the statement is analogous to Proposition C.6 in [1, Appendix C]. The
second part follows from formula (A.1) in the same reference. □

Proposition 4.26. Let J ∈ J int
c ([Σ]) be an integrable structure that belongs to a stratum J int

I

of highest codimension. Let SJ be the corresponding J-holomorphic configuration of type TI . Let
u : S2 → SJ be a J-holomorphic parametrization of the component in the homology class (Lijk or
L1234) characterizing the stratum JI .
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(1) If the stratum JI is of codimension 2, the homotopy orbit
(
J int
c ([Σ])

)
hGc
≃ BGc(Σ) is

equivalent to the homotopy pushout

∗ ≃
(
S1
)
h Iso(ω̃c,J)

BStab(SJ) ≃ S1

(
J int
c ([Σ]) \ J int

I

)
hGc

BGc(Σ)

where
(
S1
)
h Iso(ω̃c,J)

is the homotopy orbit of the isotropy representation of Iso(ω̃c, J) on

the unit sphere in H0,1
J (TM̃n) ≃ C.

(2) If the stratum JI is of codimension 4, the homotopy orbit
(
J int
c ([Σ])

)
hGc
≃ BGc(Σ) is

equivalent to the homotopy pushout

M0,4 ×
(
S3
)
h Iso(ω̃c,J)

BStab(SJ) ≃M0,4 × S1

(
J int
c ([Σ]) \ J int

I

)
hGc

BGc(Σ)

where
(
S3
)
h Iso(ω̃c,J)

is the homotopy orbit of the isotropy representation of Iso(ω̃c, J) on

the unit sphere in H0,1
J (TM̃n)/ ker(u

∗) ≃ C2.

Proof. Suppose the stratum JI is of codimension 2. Let NI be a tubular neighborhood of J int
I

and consider the the pushout diagram describing the union J int
c ([Σ]) = (J int

c ([Σ]) \ J int
I ) ∪ NI ,

namely,

NI \ J int
I NI

J int
c ([Σ]) \ J int

I J int
c ([Σ])

By Proposition 4.16, each stratum JI = J int
ijk of codimension 2 is homotopy equivalent to an

orbit under the action of Gc, and Iso(ω̃c, J) ≃ Stab(SI). By Proposition 4.25, the upper map
NI \ J int

I → NI is equivalent to the projection Gc ×HJ
S1 → Gc/HJ , where HJ = Iso(ω̃c, J) ≃ S1

acts with weight one. Applying the Borel construction relative to the action of Gc proves the
statement.

Now consider the only stratum of codimension 4, i.e. J int
I = J int

1234. Applying the Borel
construction relative to the action of Gc to the diagram of inclusions, we get

NI \ J int
I NI

J int
c ([Σ]) \ J int

I J int
c ([Σ])

=⇒

(
NI \ J int

I

)
hGc

(
NI

)
hGc
≃M0,4 × S1

(
J int
c ([Σ]) \ J int

I

)
hGc

(
J int
c ([Σ])

)
hGc
≃ BGc(Σ)

To better understand the upper map
(
NI\J int

I

)
hGc
→
(
NI

)
hGc
≃M0,4×S1, consider the fibration

(25) Y → NI \ JI
χ−→M0,4

obtained by composing the projection NI \JI → JI with the cross-ratio map χ. Its fiber Y is itself
a fibration over Jχ with fiber homotopy equivalent to S3. Since Jχ is homotopy equivalent to an
orbit Gc/S1, the homotopy orbit

(
Y
)
hGc

is equivalent to
(
S3
)
hS1 , and since the action of S1 on

S3 is free, we get
(
S3
)
hS1 ≃ S2. On the other hand, the action of Gc onM0,4 being trivial, taking

the homotopy orbits of the inclusion Y → NI \ JI in the fibration (25) gives another fibration

S2 ≃
(
S3
)
hS1 →

(
NI \ J int

I

)
hGc
→M0,4.
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Since S2 is connected, and since M0,4 ≃ S1 ∨ S1, this last fibration must be trivial. This shows
that the map

(
NI \ J int

I

)
hGc
→
(
NI

)
hGc

is homotopy equivalent to the product map

M0,4 × S2 ≃M0,4 ×
(
S3
)
h Iso(ω̃c,J)

→M0,4 × S1.

□

5. Homotopy orbits of the Diffh(M̃n) action on A(n, [Σ])

5.1. Homotopy orbits for actions on almost complex structures. We are now in a position
to determine the homotopy orbits associated to the actions of diffeomorphism groups on spaces
of almost complex structures. We state the results for the action of Dh = Diffh(M̃n) on A(n, [Σ])
but, by Proposition 2.14, the same statements hold for the action of Dh(Σ) = Diffh(M̃n,Σ) on
A(n,Σ).

5.1.1. Homotopy orbits for n = 1 and n = 2. For any admissible capacity c, the group Dh acts on
the unique stratum A0([Σ]). From Proposition 4.16 (1) and Proposition 2.14, the homotopy orbit
is

A0([Σ])hDh
≃ BGc ≃ BAuth(J0) ≃ B Iso(ω̃c, J0),

that is, BU(2) in the case n = 1, and BT2 in the case n = 2.

5.1.2. Homotopy orbits for n = 3. The group Dh acts on A(3, [Σ]) = A0([Σ]) ⊔ A123([Σ]) pre-
serving the stratification. By the Stability Theorem 2.7 and the description of chambers given in
Section 2.4.2, we have equality Ac([Σ]) = A0([Σ]) whenever the capacities satisfy c1+ c2+ c3 ≥ 1.
By Proposition 4.16, the stratum A0([Σ]) is homotopy equivalent to a single orbit with stabilizer
equivalent to a torus T2. Consequently, the homotopy orbit A0([Σ])hDh

is homotopy equiv-
alent to BT2. On the other hand, we know from Proposition 2.14 that the homotopy orbit
Ac([Σ])hDh

= A0([Σ])hDh
is equivalent to BSymp(M̃c,Σ). Since A0([Σ]) and Dh are independent

of c, the homotopy orbit A0([Σ])hDh
of the open stratum is always homotopy equivalent to BT2.

When c1 + c2 + c3 < 1, we have equality Ac([Σ]) = A0([Σ]) ⊔ A123([Σ]) = A(3, [Σ]). By
Proposition 4.16, the stratum A123([Σ]) is homotopy equivalent to a single orbit with stabilizer
equivalent to a circle S1. By Proposition 4.26, applying the Borel construction to the diagram of
inclusions gives

N (A123) \ A123 N (A123)

A0([Σ]) A(3,Σ)

=⇒
∗ ≃

(
S1
)
h Iso(ω̃c,J)

(A123)hDh
≃ BS1

A0([Σ])hDh
≃ BT2 A(3,Σ)hDh

≃ BT2 ∨ BS1.

Again, we know from Proposition 2.14 that the homotopy orbit Ac([Σ])hDh
= A(3, [Σ])hDh

is
equivalent to BSymp(M̃c,Σ) whenever c1 + c2 + c3 < 1. Consequently,

(26) BGc = BSymp(M̃c,Σ) ≃

{
BT2 if c1 + c2 + c3 ≥ 1

BT2 ∨ BS1 if c1 + c2 + c3 < 1

5.1.3. Homotopy orbits for n = 4. The group Dh acts on the chain of inclusions

A0([Σ]) ⊂ A1([Σ]) . . . ⊂ A5([Σ]) = A(4, [Σ]).
For 1 ≤ r ≤ 4, Proposition 4.16, Proposition 2.14, and Proposition 4.26 give a sequence of pushout
diagrams of inclusions and of homotopy orbits

(27)
N (Aijk) \ Aijk N (Aijk)

Ar−1([Σ]) Ar([Σ])

=⇒
∗ ≃

(
S1
)
h Iso

(Aijk)hDh
≃ BS1

ijk

Ar−1([Σ])hDh
Ar([Σ])hDh

≃ Ar−1([Σ])hDh
∨ BS1

ijk

By induction, we have (Ar)hDh
≃ BS1 ∨ · · · ∨ BS1 (1 ≤ r ≤ 4 times).
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Adding the last stratum A1234, and recalling that M0,4 ≃ BF2, Proposition 4.26 gives one
more pair of diagrams of inclusions and homotopy orbits

(28)
N (A1234) \ A1234 N (A1234)

A4([Σ]) A5([Σ]) = A(4,Σ)

=⇒
BF2 × (S3)hS1

1234
BF2 × BS1

1234

A4([Σ])hDh
A5([Σ])hDh

where (S3)hS1
1234
≃ S2.

By Proposition 2.14, the homotopy orbit Ac([Σ])hDh
is BSymp(M̃c,Σ), and by the Stability

Theorem 2.7, it only depends on the stability chamber c belongs to. The description of the
stability chambers given in Section 2.4.3 shows that for c in the chamber Cr, the space Ac([Σ])

is the union of strata Ar([Σ]). Consequently, Ar([Σ])hDh
= BSymp(M̃c,Σ) whenever c is in the

stability chamber Cr. Therefore,

(29) BGc ≃



∗ if c2 + c3 + c4 ≥ 1

BS1 if c2 + c3 + c4 < 1 and c1 + c3 + c4 ≥ 1;

BS1 ∨BS1 if c1 + c3 + c4 < 1 and c1 + c2 + c4 ≥ 1;

BS1 ∨BS1 ∨BS1 if c1 + c2 + c4 < 1 and c1 + c2 + c3 ≥ 1;

BS1 ∨ BS1 ∨ BS1 ∨ BS1 if c1 + c2 + c3 < 1 and c1 + c2 + c3 + c4 ≥ 1.

5.2. Comparison with configuration spaces of points. We are finally in a position to prove
the main geometric result of this paper. We only consider the case of 4 balls as the proofs for the
other cases are similar and simpler.

Proof of Theorem 2.15. Comparing the pushout diagrams (19) and (20) describing the homotopy
orbits of PGL(3) acting on Confn(CP2) with the diagrams (27) and (28) describing the homotopy
orbits of Dh acting on A(3, [Σ]), we see that the top rows are always equivalent. We now show that
the leftmost downward arrows induced by the inclusion of a deleted neighborhood of a stratum
into the union of the other strata are also equivalent. This amounts to showing that, when adding
a stratum FI or AI , the gluing data for the inclusion

N (FI) \ FI ↪→ Fi−1

are equivalent to the gluing data of the inclusion

N (AI) \ AI ↪→ Ai−1([Σ]).

By Proposition 4.21, the isotropy representation on the normal fiber of N (AI) \ AI at JI ∈ AI

is isomorphic to the action of Iso(ω̃, JI) on the space of infinitesimal deformations H0,1
JI

(TM̃4).
Suppose JI is obtained from the Fubini-Study structure JFS by blowing-up CP2 at a configuration
of 4 distinct points p ∈ FI . As explained in [18, Exercise 10.5], since the Fubini-Study structure
is rigid, all such deformations correspond to blow-ups at other configurations in the normal fiber
U of FI over p. Under this identification, the infinitesimal action of Iso(ω̃, JI) on TpU is, by
construction, isomorphic to the complex representation H0,1

JI
(TM̃4). This shows that the gluing

data for the strata in A(4, [Σ]) and in Conf4(CP2) are isomorphic.
The homotopy orbits of the PU(3)-action on the subspaces Fi ⊂ Confn are models of the

homotopy orbits of the PGL(3)-action. Similarly, by Proposition 2.14, the homotopy orbits of
the Gc-action on Ji([Σ]) are equivalent to the homotopy orbits of the Dh-action on Ai([Σ]). By
Proposition 4.13, the stabilisers of the corresponding PU(3)-orbits in Confn and of the Gc-orbits
in Jc([Σ]) are canonically identified with the same Kähler subgroups of PU(3). Combining this
with the previous discussion, we obtain an identification of the geometric realizations

(Fi)hPU = (Jc([Σ]))hGc
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that fits into a sequence of homotopy equivalences for each set of capacities c belonging to the
stability chamber Ci:

BSymp(CP2, ι(Bc)) ≃ BSymp(M̃c,Σ) by the identification (4)
≃ (Jc(Σ))hGc(Σ) by Proposition 2.12
≃ (Jc([Σ]))hGc by Proposition 2.13
= (Fi)hPU.

As explained in Section 2 of [23], the first equivalence is obtained from the equivalences

(30) Symp(M̃c,Σ)←↩ SympU(2)(M̃c,Σ)
Bl−→ SympU(2)(CP2, ι(Bc)) ↪→ Symp(CP2, ι(Bc)),

where SympU(2)(M̃c,Σ) ⊂ Symp(M̃c) is the subgroup of all those symplectomorphisms that act lin-
early in a small neighborhood of the union of the exceptional divisors Σ and SympU(2)(CP2, ι(Bc))
inside Symp(CP2) is the subgroup of those symplectomorphisms that act in a U(2)-linear way
in a neighborhood of the balls ι(Bc). Observe that the first and the last equivalences in (30) are
deformation retractions, while the middle one is a canonical homeomorphism.

From the equivalence BSymp(CP2) ≃ BPU(3) induced from the inclusion PU(3) ↪→ Symp(CP2),
we obtain a homotopy commutative diagram

(31)
BSymp(CP2, ι(Bc)) B Symp(CP2)

(Fi)hPU BPU(3)

≃ ≃

This concludes the proof of Theorem 2.15. □

Remark 5.1. In a number of cases, the homotopy type of the symplectic stabilizer Symp(M̃c,Σ)
can be computed by combining the Stability Theorem, the computation of the stability chambers of
Section 2.4, and Lemma 2.2, with a few results on symplectomorphism groups of some monotone
symplectic manifolds. For instance, in the cases n = 1 and n = 2, since there is a unique
stability chamber, the homotopy type of embedding spaces is independent of the choice of capacities.
Consequently,

ℑEmbn(c,CP2) ≃ lim−→ℑEmbn(c,CP2) ≃ Confn(CP2)

which agree with the results obtained in [32]. Similarly, in the cases n = 3 and n = 4, taking the
limit as the capacities approach zero shows that ℑEmbn(c,CP2) ≃ Confn(CP2) for all capacities
c in the chamber

∑
i ci < 1 corresponding to "small" balls. For the other extremal chambers

corresponding to "big" balls (c1 + c2 + c3 ≥ 1 in the case n = 3, c2 + c3 + c4 ≥ 1 in the case
n = 4), we can choose the capacities to be equal to ci = 1/3. The symplectic blow-up is then
monotone, so that we have a homotopy equivalence of the symplectic stabilizer Symp(M̃c,Σ) with
the symplectomorphism group Symph(M̃c). It is shown in [12] that the latter group is contractible
in the case n = 4, and that it is homotopy equivalent to T2 in the case n = 3, in accordance with
(26) and (29).

6. A rational model for ℑEmbn(c,CP2)

The purpose of this section is to compute an algebraic model for the configuration space
ℑEmbn(c,CP2) of n embedded symplectic balls in CP2. It is done by computing a relative
model of the following fibration

(32) Symp(M, ι(Bc))→ Symp0(M,ω)→ ℑEmbn(c,M).

Since the isotropy subgroup Symp(M, ι(Bc)) is homotopy equivalent to Symp(M̃c,Σ) = Gc(Σ)
by (4), we will use the simpler notation Gc(Σ) for Symp(M, ι(Bc)) in what follows. The above
fibration induces the following one

(33) Symp(CP2) ℑEmbn(c,CP2) BGc(Σ)
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which is the pull-back of the universal fibration

Symp(CP2)→ ESymp(CP2)→ BSymp(CP2)

with respect to the map B i : BGc(Σ) → BSymp(CP2) induced by the inclusion of the isotropy
subgroup. Its relative model is given by

Λ(β, γ)→
(
Λ(β, γ)⊗ Λ(β, γ), dE

)
→ Λ(β, γ)

where |β| = 3, |γ| = 5 and dEβ = β, dEγ = γ. Notice that BGc(Σ) is simply connected and the
rational homology of Symp(CP2) is of finite type (because Symp(CP2) ≃ PSU(3)). Consequently,
the fibration (33) satisfies the hypothesis of [13, Theorem 15.3 and Proposition 15.5] and its relative
model is given by

(34) M(BGc(Σ))→ (M(BGc(Σ))⊗ Λ(β, γ), D)→ Λ(β, γ),

where D(β) = B i∗(β) and D(γ) = B i∗(γ), according to [15, Theorem 2.70]. So we need
to compute the minimal model of the classifying space of the isotropy subgroup and the map
B i∗ : M(BSymp(CP2))→ M(BGc(Σ)) induced on the minimal models by the inclusion. We will
first compute the map induced on the cohomology and then deduce the map on the minimal
models.

Any circle action S1 → Symp(CP2) factors as follows

S1 → T2 → PSU(3)→ Symp(CP2),

where T2 → PSU(3) is a maximal torus [35]. Moreover, the inclusion PSU(3)→ Symp(CP2) is a
homotopy equivalence. Thus after a possible conjugation by an element of PSU(3) we can assume
that the maximal torus consists of elements represented by matrices of the form

eis 0 0

0 eit 0

0 0 e−i(s+t)

 ∈ SU(3).

Since PSU(3) = SU(3)/Z/3Z and since we are interested in real or rational homotopy, we can
replace PSU(3) by SU(3) in all considerations.

It is well known that the cohomology of the classifying space of a compact Lie group is iso-
morphic to the subalgebra of the cohomology of the maximal torus invariant with respect to the
action of the Weyl group. Thus, in our case, we have

H∗(B SU(3)) ∼= H∗(BT2)S3 ∼= Λ(t1, t2)
S3

where S3 denotes the symmetric group and deg(ti) = 2.
The action of the symmetric group can be described as follows. The group H2(BT2) is canon-

ically isomorphic to the dual of the Lie algebra of T2. Let t1, t2 ∈ t∗ be the dual basis induced by
the splitting T2 = S1 × S1. Let

e1 = [1, 0] = t1, e2 = [0, 1] = t2 and e3 = [−1,−1]

be the outward pointing normals to the facets of the polytope representing CP2 equipped with
the standard toric action. The Weyl group S3 acts on the dual Lie algebra R2 ∼= H2(BT2) as
the permutation group of {e1, e2, e3}. Since the cohomology H∗(BT2) of the classifying space is
generated by its cohomology in degree 2, the action extends naturally to the whole algebra. The
invariant subalgebra is a free algebra generated by

σ2 = −e1e2 − e2e3 − e3e1 = t21 + t22 + t1t2

σ3 = −e1e2e3 = t21t2 + t1t
2
2.

We get that
H∗(B SU(3)) = Λ(σ2, σ3).
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Any homomorphism S1 → T2 is of the form eiz 7→
(
eaiz, ebiz

)
, where a, b ∈ Z are integers.

Such a homomorphism is injective if and only if gcd(a, b) = 1. It follows that on the cohomology
the circle action induces the homomorphism Λ(t1, t2) = H∗(BT2)→ H∗(BS1) = Λ(t) given by

t1 7→ at and t2 7→ bt.

Any homomorphism S1 → G to a compact Lie group G factors, after a possible conjugation by an
element of G, through a homomorphism to the maximal torus. Since conjugation by an element
of the group acts trivially on cohomology we get that H∗(B SU(3))→ H∗(BS1) is given by

(35) σ2 7→
(
a2 + b2 + ab

)
t2 and σ3 7→ (a2b+ ab2)t3

Suppose that H ⊆ Symp(CP2) is a subgroup generated by n circle actions and such that it is an
amalgamated free product of tori, that is a pushout of tori over a point as in the previous section.
Then its classifying space BH is weak homotopy equivalent to the wedge product of the classifying
spaces of the tori. Therefore, by [15, Example 2.47], an algebraic model for BH is generated by
elements T1, . . . , Tn of degree 2 corresponding to the circle actions, such that TiTj = 0 if the
generators Ti and Tj correspond to circle actions which are not in the same maximal torus.

It follows that the minimal model of BGc(Σ) is of the form

(36) (Λ(T1, . . . , Tk)⊗ ΛW,dB) ,

where |Ti| = 2, the generators of the algebra ΛW have degree ≥ 3, dBTi = 0 and dB |W is injective,
due to the formality of the space [15, Exercise 2.3].

Notice that H2(H) ∼= Rn is generated by Ti’s. Moreover, each inclusion S1 → H induces the
coordinate function H2(BH) ∼= Rn → R = H2(BS1). Thus in order to compute the induced
homomorphism

H2(B Symp(CP2)) = H2(B SU(3))→ H2(BH)

it is enough to compute it for the generating circle actions as follows.
Suppose that the i-th circle action S1 → Symp(CP2) is up to a conjugation a homomorphism

S1 → T2 given by the integers (ai, bi). Then H2(BT2)→ H2(BS1) is given by

t1 7→ aiTi and t2 7→ biTi

It follows that (B i)∗ : H∗(B SU(3)) ∼= Λ(σ2, σ3)→ H∗(BH) is defined by

σ2 = t21 + t22 + t1t2 7→

(
n∑

i=1

aiTi

)2

+

(
n∑

i=1

biTi

)2

+

(
n∑

i=1

aiTi

)(
n∑

i=1

biTi

)
(37)

σ3 = t1t
2
2 + t21t2 7→

(
n∑

i=1

aiTi

)(
n∑

i=1

biTi

)2

+

(
n∑

i=1

aiTi

)2( n∑
i=1

biTi

)
(38)

Since BSU(3) is rationally equivalent to the product of Eilenberg-Maclane spaces K(Q, 4) ×
K(Q, 6), the set of homotopy classes of maps BSU(3)→ BH is in bijective correspondence with
H4(B SU(3);Q) × H6(B SU(3);Q). Moreover, we have the following commutative diagram of
bijections

[BH,BSU(3)] H4(BH;Q)×H6(BH,Q)

[Λ(σ2, σ3),M(BH)] Hom(H∗(B SU(3);Q), H∗(BH,Q)),

where [Λ(σ2, σ3),M(BH)] denotes the space of homotopy classes of morphism between minimal
models of BSU(3) ≃ BSymp(CP2) and BH. It follows that the map B i∗ : Λ(σ2, σ3) → M(BH)
induced on the minimal models is, up to a homotopy, given by formulas (37) and (38) after suitable
cancellations are made. As explained above, it follows from [15, Theorem 2.70] that the differential
in the relative model (34) is given by D(β) = B i∗(σ2) and D(γ) = B i∗(σ3). Consequently the
relative model (34) is the minimal model of ℑEmbn(c,CP2). More precisely we get the following
result.
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Theorem 6.1. The minimal model of the embedding space ℑEmbn(c,CP2) is given by

(Λ(T1, . . . , Tn)⊗ ΛW ⊗ Λ(β, γ), d),

where |Ti| = 2, |β| = 3, |γ| = 5, the generators of the algebra ΛW have degree ≥ 3, dTi = 0, d|W
is injective and d|Λ(β,γ) is given by the following formulas depending on the configurations:

(1) For a configuration of 3 balls:
(a) if c1 + c2 + c3 ≥ 1 then

d(β) = (a1T1 + a2T2)
2
+ (b1T1 + b2T2)

2
+ (a1T1 + a2T2) (b1T1 + b2T2) ,

d(γ) = (a1T1 + a2T2) (b1T1 + b2T2)
2
+ (a1T1 + a2T2)

2
(b1T1 + b2T2) .

(b) if c1 + c2 + c3 < 1 then

d(β) = (a1T1 + a2T2)
2
+ (b1T1 + b2T2)

2
+ (a1T1 + a2T2) (b1T1 + b2T2) + (a23 + a3b3 + b23)T

2
3 ,

d(γ) = (a1T1 + a2T2) (b1T1 + b2T2)
2
+ (a1T1 + a2T2)

2
(b1T1 + b2T2) + (a23b3 + a3b

2
3)T

3
3 .

(2) For a configuration of 4 balls:

d(β) =

n∑
i=1

(a2i + aibi + b2i )T
2
i ,

d(γ) =

n∑
i=1

(a2i bi + aib
2
i )T

3
i ,

where n = 1, 2, 3, 4 depending on the capacities.

□

In our concrete situation, in order to compute the model it is enough to find the integers (ai, bi)
for each circle action from its geometric properties.

Remark 6.2. Since the embedding space ℑEmb(c,CP2) is a homogeneous space of a connected
topological group modulo a connected isotropy subgroup (32), it is a simple space [15, Proposi-
tion 1.62]. The latter means that its fundamental group is abelian and acts trivially on higher
homotopy groups. In particular it is nilpotent. It is, moreover, of finite type and hence its ratio-
nal homotopy type, e.g., ranks of homotopy group and the Lie algebra structure on the rational
homotopy of the loop space, is encoded in its minimal model [15, Section 2.5.1].

7. The rational cohomology ring of ℑEmbn(c,CP2)

The main goal of this section is to prove Theorem 1.4, which involves computing the rational co-
homology ring of the space of unparametrized balls ℑEmb4(c,CP2). We accomplish this using the
computation of its rational model, as obtained in the previous section. Furthermore, we show that
using the same approach, we recover the cohomology ring of ℑEmb3(c,CP2) in the two distinct
cases of big balls and smalls balls. In the former case, ℑEmb3(c,CP2) is homotopy equivalent to
the flag manifold PU(3)/T2, whereas in the latter case, it is equivalent to the configuration space
Conf3(CP2). Notably, the cohomology ring in the latter case has previously been determined
by Ashraf and Berceanu in [3], using methods entirely different from ours. Specifically, they use
an algebraic model of the configuration space, independently established by Kriz [21] and Totaro
[34], which we explain in section 7.2.1. The analysis of the 3 balls case also serves to illustrate our
methods within a simpler context before addressing the more intricate 4 balls case.

7.1. The rational cohomology ring of ℑEmb3(c,CP2). In this section let c = (c1, c2, c3). We
consider two cases:
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7.1.1. The case c1 + c2 + c3 ≥ 1. It follows from (26) that Gc(Σ) ≃ T2, and according to The-
orem 1.1, ℑEmb3(c,M) is homotopy equivalent to the flag manifold PU(3)/T2 ≃ U(3)/T3. We
construct an algebraic model for the homotopy fibration,

(39) Symp(CP2)→ ℑEmb3(c,CP2)→ BGc(Σ),

using Theorem 6.1. Notably, the stabilizer T2 denotes the standard toric action on CP2 equipped
with the monotone symplectic form, yielding coefficients a1 = 1, a2 = 0, b1 = 0, and b2 = 1.
Hence, we obtain

M(ℑEmb3(c,CP2)) = (Λ(T1, T2)⊗ Λ(β, γ), d)

where
d(Ti) = 0, d(β) = T 2

1 + T 2
2 + T1T2, and d(γ) = T1T

2
2 + T 2

1 T2.

Computing the cohomology of this model reveals that the cohomology groups in degrees 1 and 3
are trivial (β is not closed), while in degree 2, there are clearly 2 generators, namely T1 and T2.
In degree 4, since the class T 2

1 + T 2
2 + T1T2 is exact, the rank of H4(ℑEmb3(c,CP2)) is 2, and we

can select, for example, T 2
2 and T1T2 as generators of this cohomology group. The group in degree

5 vanishes because the class γ is not closed, and neither are the classes T1β and T2β, and there is
no linear combination of these that yields a closed class. Specifically, d(T1β) = T 3

1 + T1T
2
2 + T 2

1 T2
and d(T2β) = T1T

2
2 +T 2

1 T2+T
3
2 . Moreover, this, along with the exactness of T1T 2

2 +T 2
1 T2, implies

that in degree 6, the classes T 3
1 and T 3

2 are also exact, resulting in a rank of 1 for the cohomology
group. For instance, we can choose T1T 2

2 as a generator of this group. Finally, it is not difficult to
check that the cohomology groups of degree k, where k ≥ 7, are trivial, yielding the cohomology
ring

H∗(ℑEmb3(c,CP2),Q) = Λ(T1, T2)/(T
2
1 + T 2

2 + T1T2, T
3
1 ),

where |Ti| = 2, i = 1, 2. Moreover, this ring coincides with the standard presentation of the
rational cohomology ring of the flag manifold, H∗(U(3)/T3;Q).

7.1.2. The case c1+c2+c3 < 1. In this situation, it follows from (26) that BGc(Σ) ≃ BT2∨BS1,
where the torus is the same as in the previous case, and the circle does not commute with any of
the circles contained in the torus. Consequently, by [15, Example 2.47], we have

M(BGc(Σ)) = (M(BT2)⊕M(BS1), 0) = Λ(T1, T2, T3)/(T1T3, T2T3).

The integers (ai, bi), with i = 1, 2, in Theorem 6.1, are the same as in the previous case. As for
the third action, as we are going to see, we do not need to specify the values of the coefficients,
so let us denote them simply by (a, b). It follows that an algebraic model of the fibration (39) is
given by

M(ℑEmb3(c,CP2)) = (Λ(T1, T2, T3)/(T1T3, T2T3)⊗ Λ(β, γ), d),

where
d(Ti) = 0, d(β) = T 2

1 + T 2
2 + T1T2 + (a2 + ab+ b2)T 2

3 and

d(γ) = T1T
2
2 + T 2

1 T2 + (a2b+ ab2)T 3
3 .

Note that a2+ b2+ab does not vanish unless a = b = 0. Next, we compute the cohomology of this
model. Clearly it vanishes in degree 1, and there are 3 generators in degree 2, namely T1,T2 and
T3. Since the class β is not closed, the cohomology in degree 3 is trivial. In degree 4, the class
T 2
1 + T 2

2 + T1T2 + (a2 + ab+ b2)T 2
3 is exact, and T1T3 = T2T3 = 0, so the rank of this cohomology

group is 3. Its generators can be, for example, T 2
2 , T 2

3 , and T1T2. Considering the differentials

d(T1β) = T 3
1 + T1T

2
2 + T 2

1 T2,

d(T2β) = T 2
1 T2 + T 3

2 + T1T
2
2 ,

d(T3β) = (a2 + ab+ b2)T 3
3 and

d(γ) = T1T
2
2 + T 2

1 T2 + (a2b+ ab2)T 3
3
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it is easy to verify that there are no nontrivial closed classes in degree 5. Furthermore, these
differentials reveal that the classes T 3

1 , T 3
2 , T 3

3 , and T1T 2
2 +T 2

1 T2 are exact. Hence, the rank of the
cohomology group of degree 6 is 1, which can be generated by T1T 2

2 . Now consider the class

η := (a2 + ab+ b2)T3γ − (a2b+ ab2)T 2
3 β.

It is clear that dη = 0, so this class is closed and gives a generator in degree 7. Additionally, the
differentials

d(T1γ) = T 3
1 T2 + T 2

1 T
2
2 , d(T 2

1 β) = T 4
1 + T 2

1 T
2
2 + T 3

1 T2

d(T2γ) = T 2
1 T

2
2 + T1T

3
2 , d(T 2

2 β) = T 2
1 T

2
2 + T 4

2 + T1T
3
2

d(T3γ) = (a2b+ ab2)T 4
3 , d(T1T2β) = T 3

1 T2 + T1T
3
2 + T 2

1 T
2
2

together with the relations T1T3 = T2T3 = 0 and

d(βγ) = (T 2
1 + T 2

2 + T1T2 + (a2 + ab+ b2)T 2
3 )γ − β(T1T 2

2 + T 2
1 T2 + (a2b+ ab2)T 3

3 )

imply that the cohomology in degree 8 is trivial. Finally, it is clear that d(T3η) = 0, so the class
T3η is closed, and it is not difficult to see that it is not exact. Thus, it represents a generator in
degree 9.

Moreover, one can show that there are no more nontrivial classes in this degree. In particular,
clearly ηT1 = ηT2 = 0. Since d(T3βγ) = ηT 2

3 , it follows that the class ηT 2
3 vanishes in cohomology.

Furthermore, all cohomology groups of degree k, for k ≥ 10, vanish. Consequently, we conclude
that

H∗(ℑEmb3(c,CP2);Q) = Λ(T1, T2, T3, η)/(T
2
1+T

2
2 + T1T2 + (a2 + ab+ b2)T 2

3 ,

T1T3, T2T3, T
3
1 , ηT1, ηT2),

where |Ti| = 2, i = 1, 2, 3 and |η| = 7.

7.1.3. Another approach. It is interesting to compare our result with the one obtained by S.
Ashraf and B. Berceanu in [3, Theorem 1.3], where they used a completely different approach to
the problem. They showed that the cohomology ring of the space Conf3(CP2) is given by

(40) H∗(Conf3(CP2);Q) = Λ(α1, α2, α3, ζ)/(α
2
i + α2

j + αiαj , α
3
1, ζ(αi − αj), i ̸= j),

where |αi| = 2, i = 1, 2, 3, and |ζ| = 7. We confirm that we indeed obtain the same result
by establishing a ring isomorphism H∗(Conf3(CP2);Q) → H∗(ℑEmb3(c,CP2);Q), defined as
follows H∗(Conf3(CP2);Q)→ H∗(ℑEmb3(c,CP2);Q), defined by

α1 7→ T1 + c T3,

α2 7→ T2 + c T3,

α3 7→ −T1 − T2 + c T3,

ζ 7→ η,

where c =

√
a2 + ab+ b2

3
.

By computing the image of the relations in (40) under this map, we obtain

α2
1 + α2

2 + α1α2 7→ T 2
1 + T 2

2 + T1T2 + 3c2T 2
3 + 3cT1T3 + 3cT2T3,

α2
1 + α2

3 + α1α3 7→ T 2
1 + T 2

2 + T1T2 + 3c2T 2
3 − 3cT2T3,

α2
2 + α2

3 + α2α3 7→ T 2
1 + T 2

2 + T1T2 + 3c2T 2
3 − 3cT1T3,

α3
1 7→ T 3

1 + 3cT 2
1 T3 + 3c2T1T

2
3 + c3T 3

3 ,

ζ(α1 − α2) 7→ η(T1 − T2),
ζ(α1 − α3) 7→ η(2T1 + T2),

ζ(α2 − α3) 7→ η(T1 + 2T2),

which imply the relations in H∗(ℑEmb3(c,CP2);Q).
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7.2. The rational cohomology ring of ℑEmb4(c,CP2). In this section let c = (c1, c2, c3, c4).

Proof of Theorem 1.4. Recall from Section 6 that the homotopy fibration

(41) Symp(CP2)→ ℑEmb4(c,CP2)→ BGc(Σ),

can be used to compute a rational model of ℑEmb4(c,CP2). Since the homotopy type of BGc(Σ)
depends on the sizes of the capacities ci, it follows that the algebraic model of the fibration also
depends on these capacities. We need to consider five different cases:

− If c2 + c3 + c4 ≥ 1 then Gc(Σ) is contractible, so ℑEmb4(c,CP2) ≃ Symp(CP2) ≃ PU(3).
Therefore,

H∗(ℑEmb4(c,CP2),Q) = Λ(β, η),

where Λ(β, η) denotes an exterior algebra on generators β of degree 3 and η of degree 5;
− If c2 + c3 + c4 < 1 and c1 + c3 + c4 ≥ 1, then it follows from (29) that BGc(Σ) is

weak homotopy equivalent to BS1. Then Theorem 6.1 implies that a rational model for
ℑEmb4(c,CP2) is given by

M(ℑEmb4(c,CP2)) = (Λ(T )⊗ Λ(β, γ), d)

where |T | = 2, |β| = 3 and |γ| = 5. Moreover, the differential satisfies

d(T ) = 0, d(β) = (a2 + b2 + ab)T 2 and d(γ) = (a2b+ ab2)T 3,

where the circle action is given by the integers (a, b). The cohomology of this algebraic
model is the rational cohomology of the space, so in degree 2, there is one generator,
namely T , and the cohomology groups of degrees 3 and 4 vanish since β is not closed
(a2 + b2 + ab does not vanish unless a = b = 0). Then in degree 5, there is one generator
since the class η := (ab2 + ba2)Tβ− (a2 + b2 + ab)γ is closed, as one can easily verify. It is
clear that the cohomology in degree 6 is trivial (T 3 is exact), and d(Tη) = 0, so the rank
of H7(ℑEmb4(c,CP2)) is 1. Moreover, since d(γβ) = T 2η, it follows that T 2η is exact
and Hk(ℑEmb4(c,CP2),Q) = 0 for k ≥ 8. Hence,

H∗(ℑEmb4(c,CP2),Q) = Λ(T, η)/(T 2)

where |T | = 2 and |η| = 5;
− if c1 + c3 + c4 < 1 and c1 + c2 + c4 ≥ 1 then BGc(Σ) ≃ BS1 ∨BS1 (see (29)). Therefore,

by [15, Example 2.47 ], its algebraic model is given by

M(BGc(Σ)) = (M(BS1)⊕M(BS1), 0) = Λ(T1, T2)/(T1T2),

where |Ti| = 2, i = 1, 2. Assuming the two circle actions are given by the integers (ai, bi),
i = 1, 2, let mi = a2i + b2i + aibi and ni = a2i bi + aib

2
i . Note that mi ̸= 0. Using Theorem

6.1 again, one obtains

M(ℑEmb4(c,CP2)) = (Λ(T1, T2)/(T1T2)⊗ Λ(β, γ), d)

where

d(Ti) = 0, d(β) = m1T
2
1 +m2T

2
2 and d(γ) = n1T

3
1 + n2T

3
2 .

The cohomology of this algebraic model clearly contains 2 generators in degree 2, namely
T1 and T2, and it vanishes in degree 3 because β is not closed. Then in degree 4, there
is only one class since the class m1T

2
1 +m2T

2
2 is exact and T1T2 = 0. Next, it is easy to

check that the class η := m1m2γ−n1m2T1β−n2m1T2β is closed, and since it is not exact,
it represents a generator in degree 5. Therefore, we obtain two classes in degree 7 that
are closed, namely T1η and T2η. The cohomology groups in degrees 6 and 8 are trivial
because, on one hand, d(Tiβ) = miT

3
i , so the classes T 3

i with i = 1, 2 are exact, and on
the other hand, d(γβ) = (n1T

3
1 +n2T

3
2 )β−γ(m1T

2
1 +m2T

2
2 ), so the class γβ is not closed.

The latter also implies that the rank of the cohomology group in degree 9 is 1, generated,
for example, by the class T 2

1 η. Since d(mjTiβγ) = mjmiγT
3
i − nimjT

4
i β = ηT 3

i for i ̸= j,
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it follows that the remaining cohomology groups are trivial. Therefore, the cohomology
ring in this case is given by

H∗(ℑEmb4(c,CP2),Q) = Λ(T1, T2, η)/(m1T
2
1 +m2T

2
2 , T1T2),

where |T1| = |T2| = 2 and |η| = 5;
− If c1 + c2 + c4 < 1 and c1 + c2 + c3 ≥ 1, it follows from (29) that in this case BGc(Σ) ≃
BS1 ∨BS1 ∨BS1, and the computation of the cohomology ring is similar to the previous
case. The minimal model for BGc(Σ) in this situation is given by

M(BGc(Σ)) = (M(BS1)⊕M(BS1)⊕M(BS1), 0) = Λ(T1, T2, T3)/(TiTj , i ̸= j)

where |Ti| = 2, i = 1, 2, 3. Consequently, a rational model for the space of unparametrized
balls is given by

M(ℑEmb4(c,CP2)) = (Λ(T1, T2, T3)/(TiTj , i ̸= j)⊗ Λ(β, γ), d)

where

d(Ti) = 0, d(β) =
3∑

i=1

miT
2
i and d(γ) =

3∑
i=1

niT
3
i .

with mi and ni defined above. The computation of the cohomology ring of this model is
similar to the previous case, so we leave it to the interested reader. It yields the following
ring

H∗(ℑEmb4(c,CP2),Q) = Λ(T1, T2, T3, η)/(m1T
2
1 +m2T

2
2 +m3T

2
3 , TiTj if i ̸= j),

where |Ti| = 2, i = 1, 2, 3, and |η| = 5;
− Finally, if c1 + c2 + c3 < 1 and c1 + c2 + c3 + c4 ≥ 1, the classifying space BGc(Σ) is again

a wedge of classifying spaces of circles. More precisely, BGc(Σ) ≃ BS1 ∗BS1 ∗BS1 ∗BS1.
Therefore, it is clear that the rational cohomology ring in this case is given by

H∗(ℑEmb4(c,CP2),Q) = Λ(T1, T2, T3, T4, η)/

(
4∑

i=1

miT
2
i , TiTj if i ̸= j

)
,

where |Ti| = 2, i = 1, 2, 3, 4, and |η| = 5.

Note that in all cases, the cohomology ring does not depend on the integers (ai, bi) giving the
circle actions. By setting αi :=

√
miTi, we obtain the cohomology ring presentations of Theorem

1.4. This completes the proof of the theorem. □

7.2.1. The space of embeddings ℑEmb4(c,CP2) in the case of small balls. In this case, according to
Theorem 1.2, the space ℑEmb4(c,CP2) is weakly homotopy equivalent to Conf4(CP2). However,
Theorem 1.4 does not directly give the cohomology ring of ℑEmb4(c,CP2). This is due to the
complexity arising when c1 + c2 + c3 + c4 < 1, making it challenging to find the minimal model of
BGc(Σ) compared to earlier cases. Although the classifying space of the stabilizer still exhibits the
homotopy type of a pushout, in this instance, the pushout diagram is not over a point, preventing
us to describe its model as previously done. Nevertheless, from Theorem 1.2 we can derive the
rank of the rational cohomology groups Hk(BGc(Σ);Q), where k ≥ 0, as follows.

Proposition 7.1. If c1 + c2 + c3 + c4 < 1 the rational cohomology groups of the classifying space
of the stabilizer BGc(Σ) are given by

(42) Hq(BGc(Σ);Q) ≃



Q if q = 0

0 if q = 1

Q4 if q = 2

0 if q = 3

Q5 if q = 2k ≥ 4

Q2 if q = 2k + 1 ≥ 5.
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Proof. The homotopy pushout decomposition of the classifying space of the stabilizer can be
understood using a finite dimensional model given in terms of configuration spaces. More precisely,
from the equivalence between diagrams (20) and (28) we obtain a Mayer-Vietoris sequence

0→ H1(P5)→ H1(P4)⊕H1(BS1 ×M0,4)→ H1(S2 ×M0,4)→ H2(P5)→ · · ·
where P5 ≃ BGc(Σ). Since M0,4 ≃ S1 ∨ S1,

Hq(M0,4) ≃


Q if q = 0

Q2 if q = 1

0 if q ≥ 2.

The map S2 ×M0,4 → BS1 ×M0,4 induces a surjection in cohomology, so the Mayer-Vietoris
sequence splits and we get

0→ H1(P5)→ H1(P4)⊕H1(BS1 ×M0,4)→ H1(S2 ×M0,4)→ 0

0 0⊕ Q2 Q2

0→ H2(P5)→ H2(P4)⊕H2(BS1 ×M0,4)→ H2(S2 ×M0,4)→ 0

Q4 Q4 ⊕ Q Q

0→ H3(P5)→ H3(P4)⊕H3(BS1 ×M0,4)→ H3(S2 ×M0,4)→ 0

0 0⊕ Q2 Q2

0→ H4(P5)→ H4(P4)⊕H4(BS1 ×M0,4)→ 0

Q5 Q4 ⊕ Q

0→ H5(P5)→ H5(P4)⊕H5(BS1 ×M0,4)→ 0

Q2 0⊕ Q2

Consequently, we obtain the desired cohomology groups. □

We now use an algebraic model of Conf4(CP2) constructed independently by Kriz [21] and
Totaro [34] for configuration spaces to obtain the rational cohomology ring of BGc(Σ). Specifically,
for M a smooth complex projective variety of complex dimension m, they constructed a rational
model E(M,n) for Confn(M). Let us remind their construction.

Let Ω ∈ H2m(M) denote a fixed orientation class in M . For an arbitrary basis {ai}i=1,2,...,q, in
H∗(M), take the dual basis {bj}j=1,2,...,q, (ai ∪ bj = δijΩ) and construct the diagonal class of M
by ∆ =

∑q
i=0 ai ⊗ bi ∈ H∗(M2).

For a ̸= b ∈ {1, . . . , n}, let p∗a : H∗(M) → H∗(Mn) and p∗ab : H
∗(M2) → H∗(Mn) be the

pullbacks of the projection maps

pa :Mn −→M, pa(x1, . . . , xa, . . . , xn) = xa,

and
pab :M

n −→M2, pab(x1, . . . , xa, . . . , xb, . . . , xn) = (xa, xb),

respectively.

Definition 7.2 ([21]). Denote by H∗(Mn)[Gab] the algebra over H∗(Mn) with generators Gab,
1 ≤ a ̸= b ≤ n, of degree 2m− 1. The Kriz model E(M,n) for Confn(M) is the differential graded
algebra (DGA) given by the quotient of

H∗(Mn)[Gab],

modulo the following relations

(1) Gab = Gba,
(2) p∗a(x)Gab = p∗bGab for x ∈ H∗(M),
(3) GabGbc +GbcGca +GcaGab = 0.
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The differential d of degree +1 is given by

d(p∗a(x)) = 0

and
d(Gab) = p∗ab(∆).

Kriz proved

Theorem 7.3 ([21]). Let M be a complex projective manifold of dimension m. Then the DGA
E(M,n) is a rational model, in the sense of Sullivan, of the configuration space Confn(M).

We are interested in the model of Confn(CP2). The cohomology algebra of M = CP2 is given
by H∗(M,Q) = Q[x]/⟨x3⟩ where deg x = 2, that is, xi, with i = 0, 1, 2 is a basis of H2i(M ;Q)
and all other cohomology groups are zero. As an example, first we construct the Kriz model
E(CP2, 3). Using the Künneth formula we find the canonical basis of H2i(M3): xj⊗xp⊗xq, such
that i = j + p+ q. Let us denote the generators of H2(CP2)⊗3, namely x⊗ 1⊗ 1, 1⊗ x⊗ 1 and
1⊗1⊗x, by α1, α2 and α3, respectively. Then we add the exterior part generated by G12, G13, G23,
where the generators have degree 3 and satisfy the following relations

(1) Gab = Gba,
(2) αi

aGab = αi
bGab,

(3) GabGbc +GbcGca +GcaGab = 0,

where 1 ≤ a ̸= b ̸= c ≤ 3 and i = 1, 2, by Definition 7.2. The differential is given by

d(αa) = 0

and
d(Gab) = p∗ab(∆) = α2

a + αaαb + α2
b ,

with 1 ≤ a ̸= b ≤ 3.
In fact, Ashraf and Berceanu used this model in [3] to derive an explicit presentation of the

cohomology ring of Conf3(CP2). However, to our knowledge, no such presentation exists for
H∗(Conf4(CP2);Q). On the other hand, using the algebraic model described above, along with
the software SageMath, we can understand the rational cohomology ring H∗(Conf4(CP2);Q) and
use it to compute the rational cohomology ring of the classifying space of the stabilizer Gc(Σ).

Theorem 7.4. Consider CP2 equipped with its standard Fubini-Study symplectic form and let
c1, c2, c3, c4 ∈ (0, 1) such that c1 + c2 + c3 + c4 < 1. Then the rational cohomology ring of the
classifying space of the stabilizer Gc(Σ) is given by

H∗(BGc(Σ);Q) = Λ(α1, α2, α3, α4, η1, η2)/I,

where |αi| = 2, |ηi| = 5 and I is the ideal given by

I =


α2
1 − α2

2 + α1αi − α2αi, α
2
2 − α2

i + α1α2 − α1αi, i = 3, 4

α2
3 − α2

1 + α4α3 − α1α4,

ηi(αj − αk), i = 1, 2, j, k = 1, 2, 3, 4,

η1η2


Remark 7.5. It follows from Theorem 7.4 that the generators of the cohomology modules of the
classifying space of the stabilizer, Hq(BGc(Σ);Q), are given by

− αi if q = 2;

− αk
1 , α

k−2
1 α2

2, α
k−1
1 α2, α

k−1
1 α3, α

k−1
1 α4 if q = 2k ≥ 4;

− η1α
k−2
1 , η2 α

k−2
1 if q = 2k + 1 ≥ 5,

which agrees with the computation of the cohomology groups in (42).
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Proof. The main idea to prove the theorem is to construct the algebraic model of the fibration

(43) ℑEmb4(c,CP2)→ BGc(Σ)→ BSymp(CP2) ≃ BPU(3).

In order to simplify the notation, let us denote the rational homotopy groups π∗(·)⊗Q simply by
π∗(·).

Recall that any fibration V ↪→ P → U for which the theory of minimal models applies gives
rise to a sequence

(44) (M(U), dU ) −→ (M(U)⊗M(V ), d) −→ (M(V ), dV ),

where the middle differential graded algebra is a model for the total space of the fibration. Let
d|U and d|V denote the restriction of the differential d to U and V , respectively. The theory of
minimal models implies that

d|U = dU and d|V = dV + d′

where d′ is a perturbation with image not contained in M(V ). Moreover, the linear part of d′ is
dual to the boundary map ∂∗ : π∗(U)→ π∗−1(V ).

Note that in our case, the spaces are either classifying spaces, which are simply connected, or
the space of unparameterized balls, which is simple. Therefore, by Remark 6.2, the theory of
minimal models applies. The model for the base of the fibration is

M(BPU(3)) = (Λ(Z,W ), 0)

where |Z| = 4 and |W | = 6. Therefore (44) implies that

M(BGc(Σ)) = (M(ℑEmb4(c,CP2))⊗ Λ(Z,W ), d)

where dZ = dW = 0 and
d| ℑEmb = dℑEmb + d′

where the image of d′ is not contained in M(ℑEmb4(c,CP2)). Given that the linear part of
d′ is dual to the boundary map ∂∗, it follows from the long exact homotopy sequence of the
fibration (43) that the image of the differential d for elements of degree 3 and 5 might contain
terms with Z and W , respectively, depending on whether ∂4 : π4(BPU(3)) → π3(ℑEmb) and
∂6 : π6(BPU(3))→ π5(ℑEmb) are trivial or not.

Claim: ∂4 and ∂6 are not trivial.
Consider the case where ∂4 is trivial. In this case, the long exact homotopy sequence

· · · → π4(BPU(3))
∂4−→ π3(ℑEmb) −→ π3(BGc(Σ)) −→ π3(BPU(3))→ . . .

implies an isomorphism between π3(ℑEmb) and π3(BGc(Σ)), since π3(BPU(3)) is trivial. Given
that ℑEmb4(c,CP2) ≃ Conf4(CP2), we use the Kriz model in the software SageMath [33] to
obtain the minimal model of Conf4(CP2), consequently obtaining the rank of its rational homotopy
groups in particular degrees we are interested in. Specifically, we find π3(ℑEmb) = Q6, implying
π2(Gc(Σ)) = π3(BGc(Σ)) = Q6. Additionally, we obtain π2(ℑEmb) = Q4. Consequently, from the
long exact homotopy sequence

· · · → π3(BPU(3))
∂3−→ π2(ℑEmb) −→ π2(BGc(Σ)) −→ π2(BPU(3))→ . . .

it follows that π1(Gc(Σ)) = π2(BGc(Σ)) = π2(ℑEmb) = Q4. Note that these 4 generators corre-
spond to the 4 circles appearing in the pushout diagram, which determines the homotopy type of
Gc.

Since Gc(Σ) is an H-space, according to the Cartan-Serre Theorem, its rational cohomology is
a free algebra, with the number of generators of dimension d being equal to the rank of πd(Gc(Σ)).
On the other hand, from the computation of the cohomology groups H∗(BGc(Σ);Q) in (42), it
follows that the E2 page of the Serre-Leray spectral sequence of the universal fibration

(45) Gc(Σ)→ EGc(Σ)→ BGc(Σ)

is as depicted in Figure 6.
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. . .

2 Q11 0 . . . 0 . . .

1 Q4 0 Q16 0 Q20 . . .

0 Q 0 Q4 0 Q5 Q2

0 1 2 3 4 5

Figure 6. E2-page of the spectral sequence of fibration (45).

The column Ep,0
2 contains the cohomology groups Hp(Gc(Σ)) while the row E0,q

2 contains the co-
homology groups Hq(BGc(Σ)). The 4 generators of degree 1 in H1(Gc(Σ)) give rise to 6 elements
in H2(Gc(Σ)), so there are only 5 new generators in H2(Gc(Σ)). If instead there were 6 new gener-
ators, corresponding to π2(Gc(Σ)) = Q6, then one element clearly would survive to the E∞-page of
the spectral sequence, which is not possible. So we conclude that π2(Gc(Σ)) = π3(BGc(Σ)) = Q5

and ∂4 is not trivial. A similar argument shows that ∂6 is not trivial as well.
Next, using SageMath once more, we confirm that there is only one way to define the differential

d| ℑEmb on elements of degree 3 such that their image contains a non-zero term with Z. Similarly,
the same holds for elements of degree 5 whose image contains a non-zero term with W . Further-
more, we verify that there are no non-linear terms in the image of the differential involving the
generators Z and W . Subsequently, the software provides the generators of the cohomology ring
H∗(BGc(Σ);Q) in degrees 2 and 5, along with their relations. To confirm that these generators
give a complete description of the cohomology ring, we use the Leray-Serre spectral sequence of
the homotopy fibration

(46) PU(3)→ ℑEmb4(c,CP2)→ BGc(Σ),

which yields the rational cohomology groups of ℑEmb4(c,CP2) in the E∞-page. As we will see
these results align with those obtained from the Kriz model using SageMath

(47) Hq(ℑEmb4(c,CP2);Q) ≃



Q if q = 0, 11

Q4 if q = 2, 4, 9

Q2 if q = 5, 10, 12

Q6 if q = 7

0 otherwise.

In the E2 page of the spectral sequence, the column Ep,0
2 contains H∗(PU(3);Q) = Λ(β, γ), where

|β| = 3 and |γ| = 5. The row E0,q
2 contains the cohomology algebra H∗(BGc(Σ);Q). Since the

cohomology of ℑEmb4(c,CP2) in dimension 3 is trivial, it follows that dkβ is non-zero for some k,
with the only possibility being k = 4. Moreover, given that H6(ℑEmb4(c,CP2);Q) is trivial, we
deduce that 4 elements in H6(BGc(Σ);Q) should be in the image of d4(βαi), where i = 1, 2, 3, 4,
and the 5th element is the image of d6γ. Recall that the cohomology module H6(BGc(Σ);Q)
is generated by α3

1, α1α
2
2, α

2
1α2, α

2
1α3, α

2
1α4. Therefore, we expect d4β = α2

1 and d6γ = α1α
2
2.

Consequently, d4(βαi) = α2
1αi, leaving no elements in dimension 6 on the Ek-page for k ≥ 7.

Furthermore, the relevant pages in the spectral sequence, where the differential is non-trivial, are
E4 and E6. The E4 page contains all elements in H∗(PU(3)) ⊗H∗(BGc(Σ)), while the non-zero
terms in the E6 page are illustrated in Figure 7
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. . .

5 γ 0 αiγ 0 (∗)γ ηiγ α1α
2
2γ α1ηiγ

... 0 0 0 0 0 0 0 0

0 Q 0 αi 0 (∗) ηi α1α
2
2 α1ηi

0 1 2 3 4 5 6 7

Figure 7. E6-page of the spectral sequence of fibration (46).

where (*) denotes the elements α2
2, α1α2, α1α3, α1α4. Therefore in the E∞-page of the spectral

sequence, depicted in Figure 8, we obtain the desired cohomology groups (47).

. . .

5 0 0 Q4 0 Q4 Q2 Q Q2

... 0 0 0 0 0 0 0 0

0 Q 0 Q4 0 Q4 Q2 0 Q2

0 1 2 3 4 5 6 7

Figure 8. E∞-page of the spectral sequence of fibration (46).

□
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[19] J. Kȩdra, Evaluation fibrations and topology of symplectomorphisms, Proc. Amer. Math. Soc. 133 (2005),

no. 1, 305–312. MR2086223
[20] K. Kodaira, Complex Manifolds and Deformation of Complex Structures, Classics Math., Springer,

Berlin, 2005. MR 2109686
[21] I. Kriz, On the rational homotopy type of configuration spaces. Ann. of Math. (2) 139 (1994), no. 2,

227–237.
[22] F. Lalonde and D. McDuff. J-curves and the classification of rational and ruled symplectic 4-manifolds.

Contact and symplectic geometry (Cambridge, 1994), 3–42, Publ. Newton Inst., 8, Cambridge Univ.
Press, Cambridge, 1996.

[23] F. Lalonde and M. Pinsonnault, The topology of the space of symplectic balls in rational 4-manifolds.
Duke Math. J., 122 (2004), no. 2, 347-397.

[24] Li, J., Li, T.-J., Wu, W., The symplectic mapping class group of CP2#nCP
2 with n ≤ 4, Michigan Math.

J., 64 (2015), no.2, 319–333.
[25] T. J. Li and A. Liu, Symplectic structure on ruled surfaces and a generalized adjunction formula. Math.

Res. Lett. 2 (1995), no. 4, 453–471.
[26] T-J. Li and A-K. Liu, Uniqueness of symplectic canonical class, surface cone and symplectic cone of

4-manifolds with B+ = 1. J. Differential Geom., 58 (2001), no. 2, 331–370.
[27] J. P. May, A Concise Course in Algebraic Topology, Chicago Lectures in Math., Univ. Chicago Press,

Chicago, 1999. MR 1702278
[28] D. McDuff, E. Opshtein, Nongeneric J-holomorphic curves and singular inflation, Algebr. Geom.

Topol.15 (2015), no.1, 231–286.
[29] D. McDuff. From symplectic deformation to isotopy. Topics in symplectic 4-manifolds (Irvine, CA, 1996),

85–99, First Int. Press Lect. Ser., I, Int. Press, Cambridge, MA, 1998.
[30] D. McDuff, Symplectic embeddings of 4-dimensional ellipsoids, J. Topol. 2 (2009), no. 1, 1–22.
[31] D. McDuff and D. Salamon. Introduction to Symplectic Topology. Oxford Mathematical Monographs,

3rd edition, 2017.
[32] M. Pinsonnault, Symplectomorphism groups and embeddings of balls into rational ruled 4-manifolds.

Compos. Math., 144 (2008), no. 3, 787–810.
[33] SageMath-9-6, William Stein, Marc Culler, Nathan Dunfield, Matthhias Görner and others (2022).
[34] B. Totaro, Configuration spaces of algebraic varieties, Topology 35 (1996), 1057–1067.
[35] D. M. Wilczyński. Group actions on the complex projective plane Trans. Am. Math. Soc. 303 (1987),

707–731.
[36] W. Zhang, The curve cone of almost complex 4-manifolds, Proc. Lond. Math. Soc. (3) 115 (2017), no. 6,

1227–1275. MR3741851



List of symbols

Auth(JS) – group of complex automorphisms of the complex structure JS preserving homology,
22

Ac – space of compatible almost complex structures on M̃c with at least one symplectic form in
Ωc, 12

Ac([Σ]) – space of almost complex structures in Ac such that classes [Σ] have J-holomorphic
representatives, 12

Ac(Σ) – space of almost complex structures J which are compatible with some form in Ωc(Σ)

and for which Σ is J-holomorphic, 9
Ai(Σ),Ai([Σ]) – unions of strata in A(n,Σ) , 12
A(n) :=

⋃
c∈C(n)Ac, 12

A(n, [Σ]) :=
⋃

c∈C(n)Ac([Σ]), 12
A(n,Σ) :=

⋃
c∈C(n)Ac(Σ), 12

B4(c) – closed standard ball of capacity c, 2
Bc := B4(c1) ⊔ . . . ⊔ B4(cn), 2

Confn(M) – space of n distinct and ordered points in M , 2
C(M,ω, n) – set of capacities c = (c1, . . . , cn) for which there exists a symplectic embedding

B4(c1) ⊔ · · · ⊔B4(cn) ↪→ (M,ω), 5
C([Σ]) – space of all configurations of n disjoint, embedded, symplectic spheres representing the

exceptional classes [Σ], 14
C(n) – admissible capacities C(CP2, ωFS , n), 10
Cc([A], S) – space of configurations of homological type A ∪ [S] that are holomorphic for some

J ∈ Jc([A], S), 17
Cc([S]) – space of configurations of embedded symplectic spheres in classes [S] that are

holomorphic for some J ∈ Jc([S]), 17
Cc(Σ) – space of configurations of disjoint symplectic spheres, 6
C◦c([A], S) – subspace of Cc([A], S) whose components intersect ω̃c-orthogonaly, 17
C◦c([S]) – subspace of Cc([S]) whose spheres intersect ω̃c-orthogonaly, 17

Diff [c](M̃,Σ) – group of diffeomorphisms of the blow-up M̃c that preserves the class [ω̃c] and
that leave the exceptional divisor Σ invariant, 9

Dh(Σ) = Diffh(M̃n,Σ) – group of diffeomorphisms of M̃n acting trivially on homology leaving
the exceptional divisor Σ invariant, 10

Dh = Diffh(M̃n) – group of diffeomorphisms of M̃n acting trivially on homology, 10

Embn(c;M) – space of symplectic embeddings of n disjoint balls, 2
Embfn(c,M) – embeddings with a fixed framing f at the centers, 7
E(M,ω) – set of exceptional classes, 5

F• – a stratum in a configuration space of points of CP2, 3

Gc(Σ) – stabilizer of the exceptional divisor Σ, Symp(M̃c,Σ), 10
46
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Gc := Symp(M̃c), 10

♡hG – homotopy orbit of ♡ with respect to the action of G, 13

Isoh(ω̃c, JS) – group of Kahler isometries acting trivially on homology, 22
ℑEmbn(c,M) – space of subsets of M that are images of maps belonging to Embn(c,M), 2

J (ω) – space of all compatible almost complex structures on (M,ω), 12
J int(ω) – space of all compatible integrable complex structures on (M,ω), 26
JI(Σ) ⊂ JI([Σ]) ⊂ AI(Σ) ⊂ AI([Σ]) ⊂ AI ⊂ A(n) – various strata of the spaces of almost

complex structures, 12
Jc(S) – space of compatible almost complex structures J such that the configuration S is

J-holomorphic, 16
Jc([A]) – space of compatible almost complex structures J such that there exists a

J-holomorphic configuration of embedded spheres with homological configuration A, 16
Jc([A], S) := Jc([A]) ∩ Jc(S), 16
Jc([S]) – space of compatible almost complex structures J such that there exists a

J-holomorphic configuration of embedded spheres with homological configuration [S], 16
Jc([Σ]) – space of compatible almost complex structures on M̃c such that the classes [Σ] have

J-holomorphic representatives, 12
Jc(Σ) – space of all compatible complex structures on M̃c for which there are embedded

J-holomorphic representatives corresponding to Σ, 6

M̃c – n-fold symplectic blow-up of M at the balls ι(Bc), 6
M̃n – n-fold complex blow-up of M , 5

NI – invariant neighborhood of FI , 15

Ωc – space of symplectic forms cohomologous to ω̃c, 9
Ωc(Σ) – subspace of Ωc for which Σ is symplectic, 9

SpFr(n,M) – space of symplectic frames at n ordered points in M , 7
Stab0(S) – identity component of Stabh(S), 23
Stabh(S) – symplectic stabilizer of the configuration S under the action of Symph(M̃c), 22
Symp(B4(c)) – group of symplectic reparametrisations of the disjoint union of balls , 8
Symp(M, ι(Bc)) – symplectomorphisms which map the image of each ball Bc to itself, 6
Symp(M, ι(Bc)id) – subgroup of symplectomorphisms which restrict to the identity on the image

ι(Bc), 6
Symp(M̃c,Σ) – stabilizer of the exceptional divisor Σ , 6
Symp0(M,ω) – identity component of the symplectomorphism group Symp(M,ω), 6

T• – homological type of configurations, 17
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