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A B S T R A C T

Unsustainable fishing, driven by bycatch and discards, harms marine ecosystems. Addressing this, we propose
a Coordinate-Aware Mask R-CNN (CAM-RCNN) method to enhance fish detection in commercial trawls.
Leveraging CoordConv and Group Normalization, our approach improves generalisation and stability. To tackle
class imbalance, a compound Dice and cross-entropy loss is employed, and image data are enhanced through
multi-scale retinex and colour restoration. Evaluating on two fishing datasets, CAM-RCNN excels in accuracy
and generalisation, achieving the best Average Precision (AP) for instance mask and BBOX prediction in both
source (39.7%, 40.2%) and target domains (24.4%, 24.2%). This method promotes sustainable fishing by
selectively capturing desired fish, reducing harm to non-target species.
1. Introduction

Over the last decades, substantial improvements in fisheries man-
agement have been made to achieve better sustainability of fish stocks
and global food security [1]. However, 33% of commercial marine fish
stocks face overfishing [2] and even well-managed fisheries still suffer
from unwanted catches, leading to discarding and bycatch [3]. When
unwanted fish are caught, unnecessary time is spent sorting them from
marketable fish, and those fish are then returned to the sea as discards,
dead. These fish may not be counted against the permitted quota. Ocean
biodiversity is also threatened if bycatch is of vulnerable species, such
as marine mammals, sharks, and rays [4,5].

Fishing would be significantly more sustainable if fishing gear was
more selective. Presently, regulations on the minimum size of mesh in
trawl nets allow small fish to avoid capture, but there are no solutions
to the problem of catching larger fish outwith quota, and bycatch. As a
first step to developing more selective systems, it is vital that fish can
be detected and identified prior to capture in the fishing apparatus.

Although sonar systems are used to detect fish schools and estimate
the amount of fish [6], these systems are limited in their ability to
identify species. They also mainly work for schooling species, which
occur in midwater and do not have so much of a discard problem.
In recent years, compelling progress has occurred in image processing
[7–9] and object detection [10,11], which makes it possible to detect
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species automatically from camera images [12]. In image processing,
instance segmentation can predict the pixel-wise masks and categories
of instances of interest. Numerous instance segmentation methods have
been proposed and state-of-the-art performance is likely to be pro-
vided by deep learning-based methods. Mask R-CNN [13] was the first
deep learning-based instance segmentation method which introduces
an additional branch to generate segmentation masks alongside bound-
ing box predictions. Nowadays, instance segmentation attracts much
attention from both academia and industry.

The characteristics of instance segmentation make it a promising
solution to detect and identify fishes automatically. In the deep sea, the
contrast of background and foreground is not salient enough and light
conditions can be poor due to insufficient underwater luminosity [14].
Moreover, the images captured in deep sea often suffer from degen-
eration due to the noise from artificial lighting sources and different
optical imaging devices [12,15], which makes it challenging for an
underwater instance segmentation model to generalise well in various
underwater scenes. To tackle this issue, we propose a coordinated-
aware Mask RCNN (CAM-RCNN) method, to improve the accuracy and
generalisation ability for detecting and identifying fish. The perfor-
mance of instance segmentation generalises well in different deep-sea
scenarios, under various light conditions. In particular, a coordinate-
aware design with Group Normalization (GN) is incorporated into an
vailable online 6 March 2024
925-2312/© 2024 The Authors. Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.neucom.2024.127488
Received 17 October 2023; Received in revised form 8 February 2024; Accepted 4
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

March 2024

https://www.elsevier.com/locate/neucom
https://www.elsevier.com/locate/neucom
mailto:dewei.yi@abdn.ac.uk
https://doi.org/10.1016/j.neucom.2024.127488
https://doi.org/10.1016/j.neucom.2024.127488
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2024.127488&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Neurocomputing 583 (2024) 127488D. Yi et al.

t
e
C
n
t
w
p

2

2

o
g
O
i
i
h
M
t
c
s
s
a

instance segmentation framework to achieve better generalisation abil-
ity. The coordinate-awareness is achieved by conducting CoordConv
operations so as to provide convolutional filters with awareness of
their Cartesian spatial position through adding supplementary input
channels. These extra channels convey the coordinates of the data ob-
served by the convolutional filter. For the sake of better generalisation,
stability, and training efficiency, GN is integrated into our method
which normalises the activations within a layer based on smaller groups
of channels to reduces the dependence on large batches for effective
normalisation. A compounded loss function is also proposed to improve
the prediction accuracy along with image enhancement, where Dice
loss is combined with Cross Entropy to handle class imbalance and
improve localisation accuracy by emphasising the spatial agreement
between predicted and target masks so as to contribute to better
localisation of objects in segmentation tasks. Our proposed method
is evaluated on two real-world underwater fishing image datasets,
which contain realistic imaging in a deep-sea environment. The main
contributions of our work are summarised as follows:

• To improve the generalisation ability of instance segmenta-
tion, we propose a novel Coordinate-Aware Mask R-CNN (CAM-
RCNN) method by incorporating the strengths of CoordConv
network and group normalisation.

• To address the issue of class imbalance and further improve the
accuracy, a compounded dice and cross entropy loss is intro-
duced to optimise our network, which can enhance detection
and recognition accuracy of minority classes.

• To further boost the generalisation ability, image data are en-
hanced by automated multi-scale retinex with colour restoration
approach during training. Inference augmentation is carried out
as well during testing.

• To demonstrate the superiority of our proposed method, we
conduct a comprehensive comparison against other advanced in-
stance segmentation methods on both source domain and target
domain for evaluating the accuracy and generalisation ability,
respectively. In addition, an ablation study is also performed to
identify the contributions of each components of our method. All
experiments are conducted on our deep sea fish datasets, which
were recently collected from the North Sea.

The reminder of this paper is organised as follows. Section 2 reviews
he studies in instance segmentation and underwater object detection,
specially for marine animals. The overall framework of our proposed
AM-RCNN method is illustrated in Section 3, where the key compo-
ents of the proposed method are also introduced. Section 4 presents
he experimental results of our method and other advanced methods,
here an ablation study is conducted as well. Finally, we conclude this
aper along with future work in Section 5.

. Related work

.1. Underwater object detection

The success of deep learning in computer vision [16–19], provides
pportunities to apply the techniques to identify aquatic biological tar-
ets, particularly in the multi-target multi-class instance segmentation.
ne stream improves underwater object detection through modify-

ng network architecture. In [14], a simple cascaded deep network
s employed in fish recognition. It combines CNNs, PCA, block-wise
istograms, Spatial Pyramid Pooling (SPP), with linear Support Vector
achine (SVM) and features are learned from the training data and

herefore no domain knowledge of fish is required. While, it is a time-
onsuming model due to its large size. In order to provide pixel-wise
egmentation of fish, [20] use Mask RCNN architecture to detect and
egment fish simultaneously. While, the data of training and test sets
2

re similar with each other so the generalisation ability of the Mask
RCNN can be further validated. In addition, multi-domain supervision
is utilised to enhance the performance of identifying fish in [21,22]. Al-
though these approaches can increase the size of data, it may cause data
imbalance. In [23], a Gaussian mixture model (GMM) and optical flow
is applied to enhance the quality of the extracted feature in detecting
fish so that fish biomass and the assemblage can be monitored in water
bodies. One challenge of this method is that the parameters of GMM
need to be carefully tuned for the sake of balancing the rate of false
alarm and misdetection. Another steam improves underwater object
detection by employing better data prepossessing. [12] uses the Faster
R-CNN method with data augmentation to identify marine species,
which shows promising result when training and testing images come
from the same source. However, the diversity of augmented images are
insufficient, which may lead to inadequate generalisation ability when
training and testing images come from different domains. To segment
aquatic images in poor visibility, various image enhancing techniques
are integrated in [24], such as gamma correction and sharpening, to
enhance segmentation performance in such underwater circumstances.
While only a small number of images are tested. In addition, [25]
presents a novel automated MSRCR approach for image enhancement
which can be integrated into the instance segmentation framework.
Given its promising performance, this image enhancement method is
adopted into our proposed method. So far, most of existing work in
underwater object detection is conducted in coastal water. Different
from the coastal water, marine animal detection in deep sea has its
unique challenges. For example, fishes move freely and quickly in 3-
D space and they tend to hide behind other fishes [26]. In addition,
we needs artificial light source to visualise fish in deep sea and energy
loss during the propagation of light diminishes its intensity [27], which
introduce extraneous noises and bring the challenge for generalisation
ability.

To date, insufficient attention has been applied to the generalisation
ability of instance segmentation in an underwater environment, where
a model can perform well in the source domain but underperform in the
target domain. Therefore, in this paper, we focus on the generalisation
ability.

2.2. Marine animal segmentation and instance segmentation

Marine animal study has gained increasing research attention, which
raise significant demands for fine-grained marine animal segmentation
techniques [27]. In recent years, advance computer vision techniques
have been applied to various marine animal related studies, including
fish identification [26], marine animal monitoring [28], and underwa-
ter image enhancement [29], etc. Among these topics, marine animal
segmentation plays a vital role, which can provide important infor-
mation for identifying marine animals from underwater scenes. Such
information has great potentials for the fishery industry to conduct
more effective monitoring of the fishery resources. Different from
underwater object detection which identifies the bounding box on a
underwater object and label its category, marine animal segmentation
assigns pixel-wise prediction in an image. To achieve the sustainable
fishing, we need to treat multiple fish of the same specie as distinct
individual instance and therefore it is not enough to solely carry out
underwater object detection or marine animal segmentation. To solve
this problem, instance segmentation is introduced in this work as
discussed below.

Instance segmentation is the task of unifying object detection and
semantic segmentation, which is used to predict the pixel-wise masks
and generate the bounding box for categories of instances of interest.
Mask RCNN [13], the first instance segmentation networks which
introduces an additional branch to generate segmentation masks along-
side bounding box predictions. Inspired by Mask RCNN [13], many
advanced instance segmentation methods [30–32] have been proposed
to improve the performance of object detection and segmentation.

CenterMask [30] is a simple and effective anchor-free framework,
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which extends an anchor-free one-stage object detector with a spatial
attention-guided mask (SAG-Mask). With the spatial attention map,
the SAG-Mask produces a segmentation mask for each detected box
in order to identify relevant pixels and suppress noise. Such a design
imrpoves inference speed while reduces inference speed. CondInst [31]
leverages dynamic instance-aware structures, where network param-
eters are adapted based on the instance to be predicted rather than
instance-wise RoIs. Without RoI operations, CondInst can generate a
high-resolution instance mask with edges. This works when training
on the large-scale data and may not work very well when only a small-
scale data is available. SOLOv2 [32] is an improved version of SOLO,
which segments objects based on locations. SOLOv2 performs dynamic
instance segmentation on an input image without detecting BBOXs. Its
object mask contains mask kernel prediction and mask feature learning
to produce convolution kernels and feature maps, respectively.

Although these instance segmentation methods have been success-
fully used in autonomous driving, pedestrian detection, and crowd
analysis, etc., there is insufficient work done in underwater instance
segmentation, especially in deep sea fishing. In the deep sea, the
contrast of background and foreground is not salient enough and light
conditions can be poor.

3. Coordinate-Aware Mask R-CNN (CAM-RCNN)

This section introduces the details of our proposed CAM-RCNN for
underwater instance segmentation, which covers the main characteris-
tics of the proposed method. First, the overall framework of CAM-RCNN
is provided in Section 3.1. Second, we enforce coordinate-awareness by
introducing CoordConv and group normalisation is used to speed up
convergence. Consequently, coordination information can be obtained
to locate fishes. The detailed description of coordinate convolution
and group normalisation are provided in Section 3.2. Third, the loss
function of our proposed method are presented in Section 3.3. Fourth,
our proposed instance Non-Maximum suppression (NMS) is described
in Section 3.5. Moreover, inference augmentation is adopted in our
proposed method as well to further improve the accuracy and speed.

3.1. Framework of CAM-RCNN

The overview framework of our proposed CAM-RCNN is provided
in Fig. 1. Our method enhances the generalisation ability and ac-
curacy through three stages: pre-processing, network learning, and
post-processing. In pre-processing, we enhance the quality of raw im-
ages by using automated multi-scale retinex with colour restoration
(AMSRCR) approach. That is, an input raw underwater fish image
is enhanced by AMSRCR, where some examples of raw image and
enhanced images are provided in Figs. 3 and 4. In network learn-
ing, CoordConv layer and Group Normalisation are integrated into
our framework to accelerate convergence, and enhance the gener-
alisation in unseen data, respectively. Moreover, a compound dice
cross entropy loss is introduced to mask loss so as to guide network
optimisation. Such a design alleviates the class imbalance problem
and further improve the performance. In post-processing, Inference
Augmentation is adopted to enhance accuracy, where predictions are
conducted on both the original test image and its augmented images.
All of the modifications introduced in CAM-RCNN are motivated by
the enhance generalisation ability and prediction performance. More
specifically, our proposed CAM-RCNN method utilises the CoordConv
layer as the final convolutional layer in the mask head FCN. A GN
layer is introduced after each convolutional layer in the mask branch
FCN. Furthermore, we propose a compound dice and cross-entropy loss
to further boost the performance. The alterations we apply replicate
some of SOLOv2’s novel architecture components onto the baseline
Mask RCNN instance segmentation framework through merging. More
specifically, we analyse the innovative parts of SOLOv2 to identify
which would have a positive impact on generalisability. Finally, we
3

decide to alter the mask head of the classic Mask RCNN model by:
changing its deepest convolutional layer to CoordConv [33]; adding a
GN data normalisation layer after each convolutional (excluding the
deconvolutional) layer in the FCN; and replacing the default mask
loss function with the compound DBL loss function. Furthermore, we
introduce the novel Matrix Bounding Box Non-Maximum Suppression
(MBBNMS) technique in the region proposal branch of CAM-RCNN
which imitates the Matrix NMS algorithm of SOLOv2. Then, we delve
into the implementation and advantages of the SOLOv2 components
and incorporate in CAM-RCNN.

3.2. Coordinate-awareness with group normalisation (CAGN)

3.2.1. CoordConv
CoordConv extracts more precise spatial information by adding

auxiliary channels containing coordinate information. This addresses
the imprecise location issue caused by zero padding [34]. In particular,
these auxiliary channels are concatenated to an convolutional layer,
where the operations of two coordinates, i and 𝑗, are added. Concretely,
the i coordinate channel is a ℎ × 𝑤 matrix with the rank of one. The
matrix’s first row is filled by zeros, the second row is filled by ones,
and the third row is filled by twos, and so on. To the analogy, the
j coordinate channel is filled by rows with constant values. Since we
conduct convolution in 2D, two (i, j) coordinates are able to fully define
an input pixel. With considering the extendibility, our method also
allows for the insertion of an extra channel denoting the r coordinate.
The coordinate channels of 𝐶𝑖, 𝐶𝑗 , and 𝐶𝑟 can be denoted as follows.

𝐶𝑖 =

⎡

⎢

⎢

⎢

⎢

⎣

0 0 … 0
1 1 … 1
… … … …
𝑛 𝑛 … 𝑛

⎤

⎥

⎥

⎥

⎥

⎦

𝐶𝑗 =

⎡

⎢

⎢

⎢

⎢

⎣

0 1 … 𝑛
0 1 … 𝑛
… … … …
0 1 … 𝑛

⎤

⎥

⎥

⎥

⎥

⎦

(1)

𝐶𝑟 =
√

(𝐶𝑖 − ℎ∕2)2 + (𝐶𝑗 −𝑤∕2)2

here ℎ and 𝑤 are the height and width of the feature map. For
oth i and j coordinate, a final linear scaling is also conducted to
ormalise the value within the range of [−1, 1]. According to [35],
t finds that more than one CoordConv layers do not deliver notable
mprovement and therefore a single CoordConv layer is sufficient for
patially variant/position sensitive predictions. Hence, we modify just
single convolutional layer in the mask head of our architecture.

.2.2. Group normalisation
It is commonly known that normalising the inputs speeds up train-

ng [36], makes optimisation easier, and allows extremely deep net-
orks to converge. The general formulation of feature normalisation

an be given by:

̂ 𝑖 =
1
𝜎𝑖
(𝑥𝑖 − 𝜇𝑖), 𝜇𝑖 =

1
𝑚

∑

𝑘∈𝑆𝑖

𝑥𝑘, 𝜎𝑖 =
√

1
𝑚

∑

𝑘∈𝑆𝑖

(𝑥𝑘 − 𝜇𝑖)2 + 𝜖 (2)

where 𝑥𝑖 is the feature computed with 𝑖th index. Given a image, 𝑖 =
(𝑖𝑁 , 𝑖𝐶 , 𝑖𝐻 , 𝑖𝑊 ) is a 4D vector indexing the features in (𝑁,𝐶,𝐻,𝑊 ).

is the batch axis, 𝐶 is the channel axis, and 𝐻 and 𝑊 are the
patial height and width axises. In addition, 𝜇𝑖 and 𝜎𝑖 are the mean and
tandard deviation (std) of 𝑖th index. 𝜖 is a constant term with a small
alue. 𝑆𝑖 is the set of pixels, where the mean and std are calculated and
is the size of the set. In a GN layer, the set of 𝑆𝑖 is defined as follows.

𝑖 = {𝑘|𝑘𝑁 = 𝑖𝑁 , ⌊
𝑘𝐶
𝐶∕𝐺

⌋ = ⌊

𝑖𝐶
𝐶∕𝐺

⌋} (3)

where 𝐺 is the number of groups, which is a pre-defined hyper-
arameter. 𝐶∕𝐺 is the number of channels per group. ⌊∙⌋ is the floor
peration so ‘‘⌊ 𝑘𝐶

𝐶∕𝐺 ⌋ = ⌊

𝑖𝐶
𝐶∕𝐺 ⌋’’ represents that the indexes 𝑖 and 𝑘 are in

the same group of channels, assuming each group of channels are stored
in a sequential order along the 𝐶 axis. GN computes 𝜇 and 𝜎 based on
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Fig. 1. The overall framework of the proposed CAM-RCNN model. Opposed to the MRCNN model, CAM-RCNN adopts: the novel MBBNMS applied on the region proposals of the
RPN; a CoordConv as the last convolutional layer in the FCN of its mask prediction branch; and 4 GN layers after each convolutional layer in the mask head FCN.
the (𝐻,𝑊 ) axes and a group of 𝐶
𝐺 channels. Given 𝑆𝑖 in Eq. (3), the

pixels in the same group are normalised together by the same 𝜇 and 𝜎
in a GN layer.

Here, we introduce the GN layer to our CAM-RCNN model in an at-
tempt to achieve faster training and inference times, reduced error rate
and a better generalisation performance. In summary, GN is a group-
wise normalisation that works by grouping channels and normalising
the characteristics inside every group, which improves accuracy and
stability over BN-based method as mentioned in [36]. Compared to BN,
GN does not use the batch dimension and therefore does not affect by
batch size. In our method, the employed GN layers divide the channels
into groups of 32.

3.3. Loss function

The overall loss includes two main kinds of losses: mask loss and
multi-task loss. For the mask loss, a compound dice and cross entropy
loss is proposed to produce fine instance masks. For multi-task loss,
it can be further separated into classification loss and BBOX loss. The
detailed description for different types of losses are provided as follows.

3.3.1. Mask loss
The prediction of instance mask is implemented by using a com-

pound loss function, which combines dice loss and cross entropy loss
together. The compound dice and cross entropy loss is named DCE,
which achieves a synergy effect on improving generalisation ability and
accuracy. In our network, DCE function is used to compute mask loss
as below.
𝐿𝑚𝑎𝑠𝑘 = 𝐿𝐷𝐶𝐸 (𝑦, �̂�)

=
𝑦 + �̂� − 2𝑦�̂�

− 𝑦 log(�̂�) + (1 − 𝑦) log(1 − �̂�)
(4)
4

𝑦 + �̂� + 𝜖
where 𝑦 is ground truth of mask and �̂� is the predicted mask. In
addition, 𝜖 is the smoothing factor, which is set to 𝑒−7. For mask loss,
there is a prediction mask produced for each class and therefore the
𝐿𝑚𝑎𝑠𝑘 loss is specified as the average binary cross entropy loss for
segmentation. In addition, dice loss is employed due to its efficiency
and consistency for instance mask prediction during training.

3.3.2. Multi-task loss
The multi-task loss can be further divided into classification loss

(𝐿𝑐𝑙𝑠) and BBOX loss (𝐿𝑏𝑏𝑜𝑥). For each training RoI, it is labelled with
a ground-truth class 𝑢 and a ground-truth BBOX regression target 𝑣. A
multi-task loss on each labelled RoI to jointly train for classification and
BBOX regression is given by

𝐿(𝑝, 𝑢, 𝑡𝑢, 𝑔𝑢) = 𝐿𝑐𝑙𝑠 + 𝐿𝑏𝑏𝑜𝑥

= 𝐿𝑐𝑙𝑠(𝑝, 𝑢) + 𝐿𝑏𝑏𝑜𝑥(𝑡𝑢, 𝑔𝑢)

= − log 𝑝𝑢 +
∑

𝑖∈𝑥,𝑦,𝑤,ℎ
𝐿𝑠𝑚𝑜𝑜𝑡ℎ
1 (𝑡𝑢𝑖 − 𝑔𝑢𝑖 )

(5)

where 𝑝 is the predicted class of a given RoI and 𝑢 is its true class. 𝑝𝑢 is
the probability of true class 𝑢. The BBOX loss 𝐿𝑏𝑏𝑜𝑥 is defined over the
ground truth of BBOX for class 𝑢, 𝑔𝑢 = (𝑔𝑥, 𝑔𝑦, 𝑔𝑤, 𝑔ℎ) and a predicted
BBOX 𝑡𝑢 = (𝑡𝑢𝑥, 𝑡

𝑢
𝑦, 𝑡

𝑢
𝑤, 𝑡

𝑢
ℎ). For the BBOX regression, the smooth 𝐿1 loss is

used as shown in Eq. (6).

𝐿𝑠𝑚𝑜𝑜𝑡ℎ
1 (𝐸𝑟𝑟) =

{

0.5(𝐸𝑟𝑟)2 𝑖𝑓 |𝐸𝑟𝑟| < 1
|𝐸𝑟𝑟| − 0.5 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(6)

where 𝐿𝑠𝑚𝑜𝑜𝑡ℎ
1 is smooth 𝐿1 loss, which is less sensitive to outliers. 𝐸𝑟𝑟

is the error between predicted BBOX 𝑡𝑢 and the ground truth of BBox
𝑔𝑢.
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3.4. Image enhancement

It is common that there is a discrepancy exists between recorded
colour images and the direct observation of underwater scenes. To
tackle the issue, Automated Multi Scale Retinex with Color Restoration
(AMSRCR) approach [25] is integrated into our proposed method to
enhance the image quality and model generalisation ability, which
can automatically determine the higher and lower clipping points for
MSRCR, as shown in Eq. (7), by using variance of the histogram and
occurrence frequency of pixels.

𝑅𝑖(𝑥, 𝑦) = 𝐺[𝛽 log[𝛼𝐼 ′𝑖 (𝑥, 𝑦)](log[𝐼𝑖(𝑥, 𝑦)] − log[𝐹 (𝑥, 𝑦) ∗ 𝐼𝑖(𝑥, 𝑦)]) + 𝑏] (7)

where 𝐼𝑖(𝑥, 𝑦) is the image distribution in the 𝑖th colour spectral band.
𝐹 (𝑥, 𝑦) is the surround function and 𝑅𝑖(𝑥, 𝑦) is the associated retinex
output. 𝛽 is a gain constant and 𝛼 is a factor to control non-linearity
strength. In addition, the value of final gain is denoted as 𝐺 and the
value of offset is denoted as 𝑏, where 𝛽, 𝛼, 𝑏, and 𝐺 are set to 46. 125,
−30, 192, respectively. The examples of AMSRCR enhanced image is
presented in the second column of Figs. 3 and 4.

3.5. Instance NMS for inference augmentation

To deliver both mask and BBOX detections, we integrate BBOX into
Matrix NMS in our method to produce instance NMS. More specifically,
we first utilise the ‘‘coordinate trick’’ strategy [13] to perform NMS
independently per class. Then, we add an offset to all the boxes. The
offset is only dependent on the class, which is large enough to ensure
boxes from different classes do not overlap with each other. Next, we
sort the scores of the predicted BBOXs in descending order and also
the BBOXs as per their sorted scores. After that, we use IoU for BBOXs
instead of the mask IoU of Matrix NMS to derive our instance NMS.

Our instance NMS plays the role to suppress a predicted mask
along with combining inference augmentation. The decay factor of the
predicted mask is affected by two aspects. For the sake of brevity,
we denote the predicted mask as 𝑚𝑗 . The first aspect is that 𝑚𝑗 is
applied the penalty when the confidence score 𝑠𝑖 of prediction 𝑚𝑖 is
greater than the confidence score 𝑠𝑗 of prediction on 𝑚𝑗 . The penalty
of each prediction 𝑚𝑖 on 𝑚𝑗 could be easily computed by 𝑓 (𝑖𝑜𝑢𝑖,𝑗 ). The
second aspect is the suppressed probability of 𝑚𝑖. Since the suppressed
probability of 𝑚𝑖 is not easy to be computed directly, we approximate
the probability by the most overlapped prediction on 𝑚𝑖 by Eq. (8) due
to positive correlation between the suppressed probability and the IoUs.

𝑓 (𝑖𝑜𝑢.,𝑖) = min
∀𝑠𝑘>𝑠𝑖

𝑓 (𝑖𝑜𝑢𝑘,𝑖), 𝑓 (𝑖𝑜𝑢𝑖,𝑗 ) = exp(−
𝑖𝑜𝑢2𝑖,𝑗
𝜎

) (8)

𝑒𝑐𝑎𝑦𝑗 = min
∀𝑠𝑖>𝑠𝑗

𝑓 (𝑖𝑜𝑢𝑖,𝑗 )
𝑓 (𝑖𝑜𝑢.,𝑖)

, 𝑠𝑗 = 𝑠𝑗 ∙ 𝑑𝑒𝑐𝑎𝑦𝑗 (9)

here 𝑠𝑖 and 𝑠𝑗 are the confidence scores of predictions 𝑚𝑖 and 𝑚𝑗 ,
espectively. The final decay factor and the updated score are computed
y Eq. (9).

For inference augmentation, let 𝐼 be a given input image and 𝜏
e a transformation operation. If one chooses 𝜏 = {𝜏1, 𝜏2,… , 𝜏

|𝜏|} as
candidate set of augmentations and the inference augmentation can

e formulated as follows.

𝐼𝐴 = 1
|𝜏|

|𝜏|
∑

𝑡=1
𝐹𝑁𝑀𝑆 [𝛩𝑡𝑎𝑟𝑔𝑒𝑡(𝜏𝑖(𝐼))] (10)

𝑁𝑀𝑆 [𝐼𝑛𝑠𝑗 ] = 𝐼𝑛𝑠𝑗 ; 𝑖𝑓 𝑓 (𝑖𝑜𝑢𝑖,𝑗 ) < 𝑠𝑗 (11)

here 𝛩𝑡𝑎𝑟𝑔𝑒𝑡 is the neural network to generate predicted masks and
BOXs. 𝐼𝑛𝑠𝑗 represents the information of mask and BBOX for 𝑗th

nstance.
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4. Experimental evaluation

4.1. Datasets

In the dataset, the aquatic images are collected from different de-
ployments conducted in the North Sea, which are named Sparkling Star
and Shetland deployments. The former consists of a single deployment
carried out in 2019. The latter is a more recent collected images in
2022. The images of Sparkling Star dataset contain aquatic animal
instances amounting to 638, where there are 502 instances for source
domain train and 136 instances for source domain test, correspond-
ingly. The images of Shetland dataset includes 156 instances for target
domain test. The example of instance and images are presented in
the first and second columns of Fig. 4. There are six categories of
aquatic animals included in the Sparkling Star and Shetland deploy-
ment datasets: Cod, Dogfish, Flatfish, Decapod, Squid, and Jelly. In our
datasets there are 409 images and 103 images from source domain used
for source train and source test, respectively. For the target test set, the
aquatic images of target test set are completely unseen and look quite
different compared to source train set, which is used to demonstrate the
generalisation ability of our method. Some examples of Cod, Dogfish,
Flatfish, Decapod, Squid, and Jelly are presented in Fig. 2 for source
domain images and target domain images.

In addition, data augmentation is used to increase the number
of data for training and testing so as to help perform regularisation
and prevent overfitting. For data augmentation in training time, it is
frequently used with picture data, where the replicas of images from
the training dataset are produced using image manipulation techniques
like zooms, flips, shifts, etc. For data augmentation in testing time, it
entails making numerous enhanced copies of each picture in the test set,
having the model estimate for each, and then delivering an ensemble
of those predictions. In this paper, both training and testing data are
augmented to boost performance. The augmentation operations and
scale jitter are set based on [13].

4.2. Evaluation metrics

To evaluate our method comprehensively, we assess the perfor-
mance of both instance mask prediction and BBOX detection in under-
water environments. We report the standard COCO metrics including
Average Precision (AP), AP50, and AP75. AP is measured by averaging
over different thresholds of IoU from 0.5 to 0.95 with a step size of
0.05. That is, AP is calculated by averaging the APs over all object
categories, which is six categories in our case and all 10 IoU thresholds
from 0.5 to 0.95 with a step size of 0.05. Such averaging over IoUs and
categories provides a thorough evaluation rewards models with better
performance. The definition of AP is given by

𝐴𝑃 = 1
10

∑

𝑖∈[0.5∶0.95]
𝐴𝑃𝑖

𝑃𝑖 =
1

|𝑁𝑐 |

∑

𝑐∈𝑁𝑐

|𝑇𝑃𝑐 |

|𝐹𝑃𝑐 | + |𝑇𝑃𝑐 |

(12)

where 𝑁𝑐 is the number of classes. 𝑇𝑃𝑐 and 𝐹𝑃𝑐 are true positives and
false positives of class 𝑐.

4.3. Implementation details

The implementation of our method is based on PyTorch, which is a
deep learning framework. For the backbone network, the pre-trained
ResNet-101 [13] is chosen due to its competent performance [13].
Stochastic Gradient Descent (SGD) is used to optimise instance seg-
mentation networks. The threshold is set to 0.5 for BBOX/segmentation
predictions. Following the work in [13,30,31], the networks are trained
for 4908 iterations. The initial Learning Rate (LR) is set to 0.001, except
CenterMask whose learning rate is set to 0.0001 since a higher value
causes exploding gradients. As suggested in [37], we resize the raw in-
put image to the resolution of 1024 × 768. For the hard configurations,
we run all experiments on a PC with CPU: Intel 2.60 GHz i7-10750H,
GPU: GeForce RTX 2060, and RAM: 16 GB.
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Fig. 2. The samples of source domain and target domain underwater images, including Cod, Decapod, Dogfish, Flatfish, Jelly, Squid. The first two columns are the examples of
source images and the last two columns are the examples of target images.

Fig. 3. Qualitative comparison in the source domain between: (a) raw image, (b) AMSRCR ground truth annotation, and (c) CAM-RCNN model AMSRCR prediction images
respectively on the Shetland deployment test set. The prediction is performed using our best CAM-RCNN model. The first row is on source domain and second row is on target
domain.
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Fig. 4. Qualitative comparison in target domain between: (a) raw image, (b) AMSRCR ground truth annotation, and (c) CAM-RCNN model AMSRCR prediction images respectively
on the Shetland deployment test set. The prediction is performed using our best CAM-RCNN model. The first row is on source domain and second row is on target domain.
4.4. Performance of instance segmentation

This section provides the instance segmentation results of evalu-
ated in source domain and target domain aquatic datasets. We first
discuss the results of source domain among different methods. Then,
we explore the results of target domain for different methods.

4.4.1. Source domain comparative results
we compared our CAM-RCNN method with other methods in source

domain. CAM-RCNN adopts a single CoordConv and multiple GN layers
in its mask head. To deliver both mask and BBOX detections, we
integrate BBOX into Matrix NMS in our method to produce instance
NMS. From Table 1 and Fig. 3, there are two observations drawn:

• Our proposed method outperforms other competent methods in
terms of instance mask and BBOX detection, which can achieve
39.7% of AP for instance mask and 40.2% of AP for BBOX
detection.

• Our proposed method is robust for different thresholds. When
setting threshold to 50 and 75 respectively, our method still
provide the best results for BBOX detection, which are 56.6% and
49.1% respectively. For instance segmentation, 𝐴𝑃50 can reach
the best results of 57.6% and 𝐴𝑃75 can provide a promising result
of 44.8%.

4.4.2. Target domain comparative results
Our method significantly outperforms other advanced methods,

which shows great generalisation ability in target domain. Table 2
depicts the comparative results in target domain, where we obtains two
observations from it.

• With regard to the generalisation ability in target domain, CAM-
RCNN provides significantly improved results both on instance
7

Table 1
Quantitative Results of instance mask and BBOX of Different Methods in Source Domain.
We denote BBOX AP as APbb.

Model AP AP𝟓𝟎 AP𝟕𝟓 AP𝐛𝐛 AP𝑏𝑏
𝟓𝟎 AP𝑏𝑏

𝟕𝟓

CenterMask [30] 33.1 46.2 41.4 34.2 46.0 39.1

CondInst [31] 28.7 38.0 35.2 28.5 38.0 33.3

MRCNN [13] 37.8 52.6 47.3 38.4 52.2 45.0

SOLOv2 [32] 39.2 51.6 47.7 – – –

Cascade RCNN [38] 16.7 36.8 14.4 18.0 38.6 14.9

YOLACT [39] 15.8 29.5 14.0 19.4 39.4 19.9

POINT-REND [40] 34.3 58.0 35.4 28.2 54.9 24.2

INSTABOOST [41] 21.3 35.3 20.0 16.9 35.2 13.2

BOXINST [42] 3.5 17.0 0.2 46.3 65.4 48.6

CAM-RCNN 39.7 57.6 44.8 40.2 56.6 49.1

mask and BBOX prediction. More specifically, the AP, AP50, and
AP75 of instance mask have the best results, which can reach
24.4%, 31.5%, and 30.2%, respectively. The AP, AP50, and AP75
of BBOX prediction also provide the best results, which are 24.2%,
31.3%, and 27.5%, respectively.

• In terms of AP75, our CAM-RCNN method can provide much
better result in target domain, which can achieve the best per-
formance of 30.2%. This demonstrates its superiority on general-
isation compared to other methods.

4.4.3. Wilcoxon signed-rank test
Following [43,44], we employed the Wilcoxon signed-rank test to

assess the presence of performance disparities between our proposed
method and other state-of-the-art techniques. The results, outlined
in Table 3, demonstrate that our method exhibits the highest mean
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Table 2
Quantitative Results of instance mask and BBOX of Different Methods in Target Domain.
We denote BBOX AP as APbb.

Model AP AP𝟓𝟎 AP𝟕𝟓 AP𝐛𝐛 AP𝑏𝑏
𝟓𝟎 AP𝑏𝑏

𝟕𝟓

CenterMask 14.9 19.8 18.2 15.9 19.6 18.8

CondInst 8.8 11.2 10.9 8.9 11.1 10.8

MRCNN 18.5 24.9 22.6 18.8 24.4 22.8

SOLOv2 14.5 19.8 16.7 – – –

Cascade MRCNN [38] 4.9 11.1 3.0 5.0 11.2 3.3

YOLACT [39] 8.0 18.5 4.2 7.5 18.1 3.7

POINT-REND [40] 14.3 25.7 13.7 9.6 23.2 6.0

INSTABOOST [41] 8.0 15.6 7.9 6.3 14.9 3.6

BOXINST [42] 5.1 16.5 2.0 20.0 26.4 24.2

CAM-RCNN 24.4 31.5 30.2 24.2 31.3 27.5

Table 3
Wilcoxon Signed-Rank Test Between Our CAM-RCNN and other State-Of-The-Art
Method.

Model mAP mAP𝑏𝑏 𝑝-value

CAM-RCNN 32.1 32.2 –

CAM-RCNN vs. CenterMask [30] 24.0 25.1 4.8828e−04

CAM-RCNN vs. CondInst [31] 18.8 18.7 4.8828e−04

CAM-RCNN vs. MRCNN [13] 28.2 28.6 0.0024

CAM-RCNN vs. Cascade RCNN [38] 10.8 11.5 4.8828e−04

CAM-RCNN vs. YOLACT [39] 11.9 13.5 4.8828e−04

CAM-RCNN vs. POINT-REND [40] 24.3 18.9 9.7656e−04

CAM-RCNN vs. INSTABOOST [41] 14.7 11.6 4.8828e−04

CAM-RCNN vs. BOXINST [42] 4.3 33.2 0.0269

Table 4
The results of AP, training time, and inference speed for various methods. We denote
frame per second as FPS.

Model AP Training time (s) Inference speed
(FPS)

CenterMask [30] 14.9 3072 4.3

CondInst [31] 8.8 2925 4.4

MRCNN [13] 18.5 2706 4.1

SOLOv2 [32] 14.5 3106 3.6

CAM-RCNN 24.4 2754 4.1

Average Precision (AP) and AP𝑏𝑏 values in both source and target
domains. Additionally, the statistical significance, with 𝑝-values con-
sistently below 0.05, indicates that the median performance difference
between our CAM-RCNN and the comparative state-of-the-art methods
is confidently non-zero. Our CAM-RCNN consistently outperforms other
methods in terms of mean mAP and mAP𝑏𝑏 across both source and
target domains. This superior performance is attributed to our designed
CAGN module, embedded within the mask generation branch, which
adeptly captures crucial location information for precise segmenta-
tion. Furthermore, the compounded DCE loss function enhances the
method’s segmentation accuracy. The generalisation capacity is further
strengthened by AMSRCR and inference augmentation techniques.

4.4.4. Trade-off on training time, inference speed and AP
According to the experimental results, our method shows the best

trade-off among training time, inference speed, and AP. More specifi-
cally, the following observations can be drawn from Table 4.

• In terms of the trade-off on AP, training time, and inference speed,
our method significantly outperform other methods, which can
24.4% of AP with training time for 2754 s and the inference speed
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for 4.3 frame per second (FPS) on our laptop-based GPU.
Table 5
The ablation study on various components of our method for instance mask and BBOX
prediction in Source Domain. We denote BBOX AP as APbb and AMSRCR as AMS.

Various Components Source Domain

CAGN DCE AMS. IA AP AP𝟓𝟎 AP𝟕𝟓 AP𝐛𝐛 AP𝑏𝑏
𝟓𝟎 AP𝑏𝑏

𝟕𝟓

✓ 36.5 51.4 45.7 37.0 50.5 42.6

✓ ✓ 39.1 56.2 49.1 40.0 55.7 48.4

✓ ✓ ✓ 37.0 52.0 46.2 37.4 51.5 43.5

✓ ✓ ✓ ✓ 39.7 57.6 44.8 40.2 56.6 49.1

Table 6
The ablation study on various components of our method for instance mask and BBOX
prediction in Target Domain. We denote BBOX AP as APbb and AMSRCR as AMS.

Various Components Target Domain

CAGN DCE AMS. IA AP AP𝟓𝟎 AP𝟕𝟓 AP𝐛𝐛 AP𝑏𝑏
𝟓𝟎 AP𝑏𝑏

𝟕𝟓

✓ 18.7 25.5 23.2 19.0 25.0 22.4

✓ ✓ 19.4 25.8 24.1 20.2 25.3 24.5

✓ ✓ ✓ 21.0 27.7 25.5 21.1 27.2 23.9

✓ ✓ ✓ ✓ 24.4 31.5 30.2 24.2 31.3 27.5

• Here, we focus on AP, training time, and inference speed individ-
ually. In terms of AP, we can find that our method achieves the
best results. In terms of training time, MRCNN provides minimum
training time, which is 2706 s and the training time of our method
is only sightly higher which is 2754 s. In terms of inference speed,
CondInst has the fastest inference speed while it has much poor
results on AP and training time, which are 8.8% and 2925 s. In
contrast, our method is only sightly slower than CondInst which
only reduce 4.4 to 4.1 of FPS but the AP of our method can
achieve 24.4% and the training time is only required for 2754 s.

4.4.5. Ablation study
To identify the contributions of various components in our method,

extensive experiments of ablation study are carried out to determine
their functions in our proposed model. The performance of segmen-
tation and detection is provided in Tables 5 and 6, where the im-
provement is shown by adding one more components at each stage.
Tables 5 and 6 demonstrate the performance improvements of source
domain and target domain respectively, where coordinate-awareness
with group normalisation is denoted as CAGN, Dice binary cross en-
tropy loss is denoted as DCE, Automated Multi-Scale Retinex with Color
Restoration is denoted as AMS., inference augmentation is denoted as
IA.

For source domain, we can see that the performance of AP and
AP𝑏𝑏 are 36.5% and 37.0% when we introduce CAGN. It will bring
the performance gain as 2.6% if we introduce DCE. When AMS and
IA are brought into instance segmentation, it will further improve
performance 39.7% of AP and 40.2% of AP𝑏𝑏.

For target domain, it concentrates on generalisation ability to evalu-
ate the performance on the data which are significantly important from
previous seen data. The generalisation performance of AP and AP𝑏𝑏 are
18.7% and 19.0%. If we introduce DCE, AMS, and IA into instance
segmentation, the performance gain of them are 0.7%, 1.6%, and 3.4%
of AP for instance mask. For the BBOX detection, the performance gains
of them are brought as 1.2%, 0.9%, and 3.1% of AP𝑏𝑏.

5. Conclusion

This paper proposes a novel coordinate-aware instance segmenta-
tion method to detect and segment aquatic animals. Our proposed
CAM-RCNN method fully utilises the strengths of CoordConv and Group
Normalisation to ensure generalise well in various scenarios. More-
over, we propose a compound dice and cross-entropy loss to fur-
ther boost prediction performance. In addition, automated multi-scale
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retinex with colour restoration approach is also used to carry out image
enhancement to further boost the generalisation ability. Furthermore,
inference augmentation is employed with instance NMS to further
enhance the robustness and performance.

To evaluate the fish detection and species identification perfor-
mance of our method in deep sea scenarios, we collect two deep sea
datasets from North Sea in 2019 and 2022, as source domain dataset
and target domain dataset. An extensive comparison was conducted on
a number of advanced instance segmentation methods to identify the
superiority of accuracy and generalisation ability for our method. Ex-
perimental results show that our CAM-RCNN method had a noticeable
improvement in terms of generalisation ability and accuracy. Moreover,
an ablation study was carried out to investigate the contributions of
various components in our method. As a result, our CAM-RCNN method
obtained the best performance on both source domain and target
domain evaluation, where AP of instance mask and BBOX prediction
were 39.7% and 40.2% in the source domain; 24.4% and 24.2% in the
target domain, which were significantly better than other competent
methods.

In the future, we aim to cover a much broader spectrum of aquatic
animal classes along with pixel-level and instance-level annotations by
experts. We will also ensure that the data distribution across collected
data and instance classes will be more balanced. In addition, we will
develop a lightweight version of our method to trade off the training
and inference speeds so that our method can be deployed in low-cost
devices and running in real time. Ultimately, our system will be used in
real time to relay information to a gate system in fishing trawls, allow-
ing for the in-situ release, alive and well, of unwanted catches. This is
turn with contribute to the elimination of the problem of discards and
bycatch and improve the sustainability of fishing operations to enhance
food security and maintain biodiversity.
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