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Abstract
We attempt to formalise the relationship between the poroelasticity theory and
the effective medium theory of micromechanics. The assumptions of these two
approaches vary, but both can be linked by considering the undrained response
of a material; and that is the main focus of the paper. To analyse the link-
age between poroelasticity and micromechanics, we do not limit ourselves to
the original theory of Biot. Instead, we consider a multi-porous extension of
anisotropic poroelasticity, where pore fluid pressure may vary within the bulk
medium of interest. As a consequence, any inhomogeneities in the material are
not necessarily interconnected; instead, theymay form isolated pore sets that are
described by different poroelastic parameters and fluid pressures. We attempt
to incorporate the effective methods inside Biot-like theory and investigate the
poroelastic response of various microstructures. We show the cases where such
implementation is valid and the others that appear to be questionable. During
micromechanical analysis, we derive a particular case of cylindrical transverse
isotropy—commonly assumed in conventional laboratory triaxial tests—where
the symmetry is induced by sets of aligned cracks.
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1 INTRODUCTION

The theory of poroelasticity describes the coupling between the deformation in a solid porous framework (or matrix) and
the changes in fluid pressure or content residing in the pores or cracks. The fundamental equations were derived by Biot
in a series of papers describing the consolidation of porous materials,1–3 although the name “poroelasticity” was first used
by Geertsma.4 The formal definition of poroelasticity relies on the assumption of statistically homogeneous continua (i.e.,
the ergodic hypothesis): in particular, a single connected solid phase comprising the matrix and a single connected pore
space containing the fluid.
Poroelasticity is important because most rocks, especially in the accessible upper crust of the Earth, spendmost of their

life cycle in the poroelastic regime: that is, fluid-saturated and stressed, contracting and expanding in response to natural
or man-made forces. As we enter the energy transition to deal with the climate emergency, it is imperative that we have a
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F IGURE 1 (A) SEM-BSE image of a faulted Hopeman sandstone specimen from a laboratory failure test.17 The field of view is
approximately 20 mm across. Black areas are void space, light grey is feldspar, and mid-grey is quartz. The void space can be characterised as
two types: thin cracks, mostly oriented parallel to the vertical axis in this image and concentrated around the through-going fault surface; and
more or less equant pores distributed in the regions around the fault. (B) Schematic view of the extended poroelasticity. Each pore set is
described by distinct fluid content change, pore pressure, storage, and Skempton-like coefficients. Distinct colours correspond to solid matrix
and isolated sets.

thorough understanding of how poroelasticity works, at scales varying from grains, pores and cracks to whole reservoirs
and fault zones. This understanding will help us deliver the sequestration of carbon dioxide, extract geothermal energy
and store hydrogen beneath the surface in a safe and cost-efficient way.
Isotropic poroelasticity describes the case where the single connected pore space has no preferred orientation. This

has proven useful for describing the deformational response of porous granular rocks, such as sandstones, to changes
in load or fluid pressure (e.g., ref. [5]). However, the assumption of isotropy is inappropriate, when the pore space is
made up of aligned cracks—a common feature in fractured rocks, especially around tectonic fault zones, and under
conditions of differential rather than hydrostatic loading—then we need the equations describing the anisotropic
behaviour.6–8 Even though the theoretical basis for describing anisotropic poroelasticity is well established, detailed
experimental verification at the laboratory scale remains relatively rare, and the isotropic assumption is often misused
(e.g., ref. [9]).
Another issue hinges on the time and length scales of fluid movement in the pore space, and whether it is use-

ful (or necessary) to consider the pore space as a single connected domain, and whether there is a constant pore
fluid pressure throughout. Consider the example shown in Figure 1A, a granular cemented sandstone deformed to
brittle failure in the laboratory. The pore space (shown in black) can be characterised as (at least) two distinct
domains: narrow preferentially aligned cracks and more equant (although irregularly shaped) voids. The critical ques-
tions are: how connected are these domains of pore space; and if they are connected, what is the time scale of
fluid flow between them? One method is to consider two end-member possibilities: firstly, that pores and cracks
are fully connected, and there is a single pore fluid pressure throughout1 (Figure 2, scenario C); and secondly, that
they are not connected at all and that pore fluid pressure varies at the scale of grains and pores and cracks10
(Figure 2, scenario A). However, there are other scenarios that lie between these end-member possibilities. For
example, as depicted in Figure 1B, a medium can consist of distinct pore sets (void spaces) that are isolated or
weakly connected. In this case, the fluid pressure is constant within a pore set, but may vary between pore sets
throughout the material (see also scenario B from Figure 2). Such a view underlines the dual-porosity extension
of anisotropic poroelasticity studied by for example, Zhang and Borja,11 Zhang et al.12 and the multi-porous (or
multiple-porosity) generalisation of poroelasticity proposed by for example, Aifantis13 Berryman,14 Mehrabian15 for
isotropy and hydrostatic confining pressure. As depicted in our conceptual model from Figure 2 (discussed further
in Adamus et al.16), the connections between pores continuously evolve over time and space. Consequently—at any
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2154 ADAMUS et al.

F IGURE 2 Schematic view of the conceptual model with scenarios described in the main text, where 𝑥 denotes the number of pores, 𝑛
stands for the number of pore sets, and 𝑡 denotes time. The drainage leads to the equilibrated fluid pressure; its value depends on the external
conditions present.

given instant—some pores (and sets thereof) will be connected, and flow between them is possible, whereas others—
at any given instant—will be isolated. In our parallel paper,16 we derive expressions of multi-porous extension of
anisotropic poroelasticity that describe the time-dependent deformation of a medium containing different pore sets,
each with distinct fluid pressure. In this paper, however, we consider fundamental expressions of instantaneous poroe-
lastic deformation. In other words, we focus on the spatial, not temporal, variations of fluid pressure and content
only. This way, we perform detailed analyses of particular scenarios from the conceptual model (e.g., A, B, or C in
Figure 2).
Further, a common approach in the past has been to rely on approximations from effective elasticity (effective medium

theory, EMT) either as a direct modelling approach or in the interpretation of laboratory experimental results (e.g.,
ref. [18]). EMT takes a microstructural approach to describe the pores and cracks and their impact on the bulk mate-
rial properties. However, the formal relationship between poroelasticity (sensu stricto; Biot) and effective elasticity
remains unclear. As noticed by Guéguen,19 there is an essential difference between the holistic approach of original
poroelasticity (connected porosity) and the individual approach of micromechanics (many isolated pores). This corre-
sponds to set-impact and pore-impact descriptions, respectively, seen from the perspective of the extended Biot theory.
In other words, a static bulk medium (macroscopic scale), where distinct sets (mesoscopic scale) contain individual
pores (microscopic scale), can be viewed at either a set scale or pore scale. The question arises whether (and, if so;
when) it is possible to combine the EMT with poroelastic expressions (e.g., ref. [18]). In other words, can we ana-
lytically describe scenarios A, B, C shown in Figure 2 (and similar) using EMT? In the case of many isolated pores
(e.g., cracks), Shafiro and Kachanov20 define the pore fluid pressure “polarisation”, the phenomenon that appears in
the effective medium approach. Pressure polarisation corresponds to different pressures in each pore: this situation
appears exceptionally in scenario A from Figure 2, where each pore is formally equivalent to a pore set (containing
a single pore). Nevertheless, other scenarios are less obvious since they do not present such a straightforward equiva-
lence. Therefore, in this paper, we analyse the poroelastic extension in view of micromechanics, thereby bridging the
gap between the original continuum-based analyses of Biot1 and the microstructural, isolated pore and crack models
of Kachanov and Sevostianov.21 In contrast to Dormieux et al.,22 we assume uniform stress boundary conditions and
utilise the concept that excess compliance is the superposition of a dry pore and fluid phase impacts.20 We consider
various microstructures for which the effective approach can be strictly or approximately valid within the poroelastic
extension.
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Last but not least, within the micromechanical analysis of extended poroelasticity, we consider a particular case of
effective transverse isotropy (TI). Specifically, we focus on the symmetry that is induced by TI-oriented penny-shaped
cracks embedded in the solid matrix.23 In the context of laboratory experiments, the aforementioned effective case is
often referred to as cylindrical transverse isotropy (CTI). Naturally, the TI-oriented cracks can be perceived as vertical
(axial) cracks that are random when viewed in the horizontal (radial) plane. However, we show that TI-oriented cracks
can also be analogous to vertically (axially) aligned cracks forming sets (either connected or isolated) that are equally
distributed around the vertical symmetry axis. Such a novel representation allows us to describe each set geometry and
permits the implementation of the extended poroelasticity (various pressures) within CTI.
Let us introduce some notions that are used throughout the paper repeatedly. A pore denotes an empty or saturated

void that may have any shape, including a thin crack. We define a pore set (or a set) as connected pores that may allow
fluid flow. Also, we define a pore subset as connected pores that make part of a pore set or are equal to a set. Further, we
refer to a pore group as multiple pores that are not necessarily connected. Finally, the notion “identical pores” denotes
voids of the same geometry, thus, having identical shape, orientation, and size. Due to the large number of symbols used
in the paper, a full list can be found in Nomenclature section.

2 EXTENDED POROELASTICITY IN VIEWOFMICROMECHANICS

Consider a medium containing connected pores, where fluid can flow. Assume that certain connected inhomogeneities
may be isolated from the others forming distinct sets of pores (𝑝). To describe the deformation of such a poroelastic
medium, we propose equations governing the strains of the entire porous material (𝜀𝑖𝑗) and the change of fluid content in
each set (𝜁(𝑝)), respectively. Taking into account the effect of 𝑛 different sets, we get

𝜀𝑖𝑗 =

3∑
𝑘=1

3∑
𝓁=1

𝑆𝑖𝑗𝑘𝓁𝜎𝑘𝓁 +
1

3

𝑛∑
𝑝=1

𝑆(𝑝)𝐵
(𝑝)

𝑖𝑗
𝑝

(𝑝)

𝑓
, (1)

𝜁(𝑝) =
1

3
𝑆(𝑝)

3∑
𝑘=1

3∑
𝓁=1

𝐵
(𝑝)

𝑘𝓁
𝜎𝑘𝓁 + 𝑆(𝑝)𝑝

(𝑝)

𝑓
, (2)

where 𝑆𝑖𝑗𝑘𝓁 denotes compliance of a porous skeleton and 𝜎𝑘𝓁 is the remote, uniform stress applied to the medium. A
particular set of pores is described by 𝑆(𝑝), 𝐵(𝑝)

𝑖𝑗
, and 𝑝

(𝑝)

𝑓
that stand for a storage coefficient, Skempton-like second-rank

tensor, and pore pressure, respectively. Throughout the paper, 𝑖, 𝑗 ∈ {1, 2, 3}. Following Biot1 convention, pressure has
the opposite sign as compared to stress.
Let us discuss the above expressions. They are designed to account for various 𝑛 sets of pores having anymicrostructure

(shape, orientation, and size). As mentioned earlier, pores within a particular set are connected to each other; however,
different sets are treated as isolated. Therefore, fluid cannot flow between such defined sets. Each porosity must be con-
sidered individually since it produces a particular fluid content change 𝜁(𝑝); when summed, giving total fluid content
change in the bulk volume, 𝜁𝑡𝑜𝑡 =

∑𝑛

𝑝=1
𝜁(𝑝). As a consequence of isolated sets, fluid pressure is not necessarily constant

either. It may vary spatially if the microstructure of each pore set differs, which is analogous to the pressure polarisation
effect.20 In turn, varying pressure affects storage and Skempton-like coefficients that need to be calculated for each set
separately. This fact comes from the definition of the aforementioned parameters, where strict relation to fluid pressure
is apparent.24 Similarly to the change of fluid content, the storage coefficients can also be summed to obtain the total
storage of the bulk volume, 𝑆𝑡𝑜𝑡 =

∑𝑛

𝑝=1
𝑆(𝑝). On the other hand, such a summation does not make sense in the context

of set pressures or Skempton-like tensors. One should treat them as poroelastic characteristics of each set, and nothing
more. Using the analogy of a stratified medium, it makes sense to sum the volume fractions of voids or thicknesses of
constituents, but adding the elasticity tensors or densities of layers is rather pointless. The aforementioned properties of
pore pressure or storage and Skempton-like coefficients are explained further in Appendix A. As expected, in the case of
a single set of pores (𝑛 = 1), expressions (1)–(2) reduce to the original Biot theory designed for constant fluid pressure,
single fluid content change, one storage coefficient, and one Skempton tensor.1,3,24
From the perspective of micromechanical linkage with (extended) poroelasticity, expression (1) is critical and needs

to be analysed further. In micromechanics, fluid flow is not considered and the strain-stress relation, analogous to (1), is
provided only. In other words, the inhomogeneity is treated either as dry or saturated. Therefore, in the context of the
linkage between both theories, expression (2) may seem to be redundant. However, as will become more clear shortly, a
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2156 ADAMUS et al.

specific, undrained (𝜁(𝑝) = 0) version of expression (2) is necessary for comparison of the theories. Except for drained (dry)
or undrained end-member cases of poroelasticity, other scenarios do not have the analogy to micromechanics. Therefore,
due to no extra value in view of the direct poroelasticity-micromechanics linkage, the analysis of intermediate states or
time dependency is beyond the scope of this paper. Note that the time-dependent multi-porous extension of anisotropic
poroelasticity is discussed in our parallel article.16
Note that (1)–(2), in contrast to the derivations of for example, Mehrabian,15 allowmaterial to be anisotropic and do not

assume confining stress. The generalisation to anisotropy becomes crucial when coping with nonrandom pores or aligned
cracks—common geological scenarios—that, in turn, may lead to fluid pressure variations at the pore scale or regional
scale (the aforementioned polarisation). Further, it is important that expression (1) is also relevant to likely scenarios,
where pore-sets are not strictly isolated but possess certainweak connections among each other. Yet, these connections are
considered to be weak enough so that fluid pressure in each set can vary (e.g, dual porosity in gas reservoir). To account for
the set connections and time factor leading to eventual pore pressure equilibration, additional coupling terms in expres-
sion (2) should appear.16 Although, as noticed by researchers working on an isotropic extension of poroelasticity,14,15,25
these coupling terms are very small and can therefore be neglected. (Also, the low permeability of interconnections implies
a very long time required for pressure equilibration). The introduction of the coupling termswould lead to unwanted com-
plications of the micromechanical analysis; therefore, they are not invoked herein. Nevertheless, our derivations can be
treated as approximately valid for the above-mentioned weakly-connected pore sets.
Let us consider two limiting cases that simplify expressions (1)–(2) and allow us to grasp the physics contained in them.

In the ideal set-drained conditions, where for every set 𝑝(𝑝)

𝑓
= 0, expression (1) reduces to

𝜀𝑖𝑗 =

3∑
𝑘=1

3∑
𝓁=1

𝑆𝑖𝑗𝑘𝓁𝜎𝑘𝓁 . (3)

Hence, the physical meaning of the above compliance tensor is the following. It describes the elastic properties of an
effective medium containing drained sets of pores. Besides, such a medium may also contain some closed spaces either
dry or filled with fluid. Therefore, 𝑆𝑖𝑗𝑘𝓁 denotes compliances of a set-drained, but not necessarily dry, medium. In other
words, fluid pressure 𝑝

(𝑝)

𝑓
from expressions (1)–(2) corresponds to the pores that are able to be drained only. Pressure in

closed pores is implicitly included in the stress tensor from expression (3).
In the case of undrained conditions, where for every set, 𝜁(𝑝) = 0, expression (2) reduces to

𝑝
(𝑝)

𝑓
= −

1

3

3∑
𝑘=1

3∑
𝓁=1

𝐵
(𝑝)

𝑘𝓁
𝜎𝑘𝓁 . (4)

Upon inserting it inside expression (1), we obtain compliances of the undrained effective medium,

𝜀𝑖𝑗 =

3∑
𝑘=1

3∑
𝓁=1

(
𝑆𝑖𝑗𝑘𝓁 −

1

9

𝑛∑
𝑝=1

𝑆(𝑝)𝐵
(𝑝)

𝑖𝑗
𝐵

(𝑝)

𝑘𝓁

)
𝜎𝑘𝓁 =

3∑
𝑘=1

3∑
𝓁=1

𝑆𝑢
𝑖𝑗𝑘𝓁

𝜎𝑘𝓁 . (5)

Thus, 𝑆𝑢
𝑖𝑗𝑘𝓁

, stand for undrained compliances. The effect of fluids contained in pore sets corresponds to

Δ𝑖𝑗𝑘𝓁 ∶=

𝑛∑
𝑝=1

Δ
(𝑝)

𝑖𝑗𝑘𝓁
= −

1

9

𝑛∑
𝑝=1

𝑆(𝑝)𝐵
(𝑝)

𝑖𝑗
𝐵

(𝑝)

𝑘𝓁
. (6)

In Figure 3, we depict the impact of tensors Δ(𝑝) on a set-drained porous medium. Therein, we exemplify possible
microstructures to which our theoretical extension is pertinent. From now on, the notion of “fluid effect” refers to tensor
Δ or Δ(𝑝), depending on the context. In the next sections, the end-member strain-stress relations (3) and (5) are compared
with theirmicromechanical strain-stress counterparts. Such comparison is feasible due to neglecting of the small poroelas-
tic effects at the interconnections (aforementioned coupling terms); this way, the individualistic view of micromechanics
can be matched.
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ADAMUS et al. 2157

F IGURE 3 Illustration of the theoretical considerations. Light grey stands for a solid, dark grey for fluid, white colour denotes empty
space. To consider the influence of fluid on compliances, we insert two sets of undrained pores (B) and (C) inside set-drained skeleton (A).
This way the compliances of a skeleton, 𝑆𝑖𝑗𝑘𝓁, change due to the addition of tensors Δ(1) and Δ(2). As a consequence, undrained compliances,
𝑆𝑢

𝑖𝑗𝑘𝓁
, are obtained (D). In our schematic drawings, the skeleton contains dry and saturated closed spaces. Also, pores in each set have an

identical geometry and overlap slightly.

2.1 Micromechanical analysis: Unspecified microstructure

Let us perform a micromechanical analysis to get even more insight into expressions (1)–(2). We want to translate the
poroelastic (storage and Skempton-like) coefficients into compliances. The micromechanical description of expres-
sions (1)–(2) may be practical in the context of the reproducibility of laboratory measurements. First, we consider a single
saturated pore embedded in the solid matrix—viewed by EMT as a representative volume element (RVE). Second, we
analyse sets of identical pores embedded in the same volume. Finally, a more general case of pores of different shapes
and orientations in sets is discussed. In this section, we do not specify the microstructure but indicate only whether
pores are identical. Note that our assumption of the uniform stress requires the considered volume not to be too large so
that variations of the stress field are negligible on the scale of RVE. At the same time, in case of multiple pores, the RVE
should be much larger than the pore size to be statistically representative.11,12,26

2.1.1 Single undrained pore

Let us refer to the effectivemethod proposed by Shafiro andKachanov20 or Kachanov and Sevostianov21 that was designed
for undrained inhomogeneities. For a single undrained pore, the aforementioned micromechanical researchers propose

𝜀𝑖𝑗 =

3∑
𝑘=1

3∑
𝓁=1

[
𝑆0
𝑖𝑗𝑘𝓁

+ 𝜙
(
𝐻𝑖𝑗𝑘𝓁 + Δ𝐻𝑖𝑗𝑘𝓁

)]
𝜎𝑘𝓁 , (7)

𝑝𝑓 =

3∑
𝑘=1

3∑
𝓁=1

𝑄𝑘𝓁𝜎𝑘𝓁 , (8)
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2158 ADAMUS et al.

where 𝑆0
𝑖𝑗𝑘𝓁

are the compliances of the solid phase, 𝐻𝑖𝑗𝑘𝓁 are the excess compliances caused by a dry pore, Δ𝐻𝑖𝑗𝑘𝓁 are
the excess compliances caused by the fluid in the pore, 𝜙 is the volume fraction occupied by the pore, and 𝑄𝑖𝑗 denotes
components of the fluid polarisation tensor. Naturally, in this case, 𝜙 is also equal to the total volume fraction occupied
by all pores, 𝜙tot. Components Δ𝐻𝑖𝑗𝑘𝓁—to which we refer loosely as “saturated compliances”—are expressed in terms of
dry excess compliances and the fluid polarisation tensor, namely,

Δ𝐻𝑖𝑗𝑘𝓁 =

3∑
𝑚=1

𝐻𝑖𝑗𝑚𝑚𝑄𝑘𝓁 , (9)

where

𝑄𝑖𝑗 = −
𝐾𝑑

1 + 𝛿

3∑
𝑚=1

𝐻𝑖𝑗𝑚𝑚 , (10)

and

𝐾𝑑 =

(
3∑

𝑚=1

3∑
𝑛=1

𝐻𝑚𝑚𝑛𝑛

)−1

(11)

denotes the bulk modulus of the dry pore. 𝛿 is a factor introduced by O’Connell and Budiansky27 and generalised by
Shafiro and Kachanov,20 namely,

𝛿 =

1

𝐾𝑓

−
1

𝐾0

1

𝐾𝑑

(12)

where 𝐾𝑓 is the fluid bulk modulus and 𝐾0 is the bulk modulus of the solid phase. Note that 𝐾0 corresponds to Cheng’s
𝐾𝑠 (see Cheng24 or Cheng [28, p.90]) and can be calculated from solid phase compliances, namely,

𝐾0 =

(
3∑

𝑚=1

3∑
𝑛=1

𝑆0
𝑚𝑚𝑛𝑛

)−1

. (13)

Upon inserting expressions (10)–(12) into (9), we get

Δ𝐻𝑖𝑗𝑘𝓁 = −

(
1

𝐾𝑑
+

1

𝐾𝑓
−

1

𝐾0

)
𝑄𝑖𝑗𝑄𝑘𝓁 . (14)

For the case a dry pore, components Δ𝐻𝑖𝑗𝑘𝓁 are equal to zero.

2.1.2 Undrained sets with identical pores

Let us now consider a group of𝑚1 undrained pores (either connected or isolated) embedded in a solid matrix. Assuming
negligible interactions between the pores, we utilise expression (7) to get

𝜀𝑖𝑗 =

3∑
𝑘=1

3∑
𝓁=1

[
𝑆0
𝑖𝑗𝑘𝓁

+

𝑚1∑
𝑐=1

𝜙𝑐

(
𝐻𝑖𝑗𝑘𝓁𝑐

+ Δ𝐻𝑖𝑗𝑘𝓁𝑐

)]
𝜎𝑘𝓁 , (15)

where subscript 𝑐 is introduced to distinguish each pore in the group. If the pores are identical, then the volume fraction
and the excess compliances are the same for each pore. In such a case, subscript 𝑐 is no longer needed and (15) reduces to

𝜀𝑖𝑗 =

3∑
𝑘=1

3∑
𝓁=1

[
𝑆0
𝑖𝑗𝑘𝓁

+ 𝑚1𝜙
(
𝐻𝑖𝑗𝑘𝓁 + Δ𝐻𝑖𝑗𝑘𝓁

)]
𝜎𝑘𝓁 , (16)
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ADAMUS et al. 2159

where the total volume fraction of pores, 𝜙tot = 𝑚1𝜙. Hence, it does not matter whether each identical pore is treated sep-
arately or the entire group is considered as a single inhomogeneity; both approaches are equivalent due to

∑𝑚1

𝑐=1
𝜙𝑐 =

𝑚1𝜙𝑐 = 𝑚1𝜙 and 𝐻𝑖𝑗𝑘𝓁𝑐
= 𝐻𝑖𝑗𝑘𝓁 ⇒ Δ𝐻𝑖𝑗𝑘𝓁𝑐

= Δ𝐻𝑖𝑗𝑘𝓁. We refer to this special case of equivalence in the below text
repeatedly. Note that (16) is essentially the same as (7), only the value of 𝜙tot differs.
In the context of effective methods that use the non-interactive approximation discussed by Kachanov and

Sevostianov,21 themechanical response of a medium is not affected by possible connections between pores. Each inhomo-
geneity in a group is regarded individually and described in amanner that does not allow a distinction between connected
or isolated pores. This comes from the fact that Kachanov and Sevostianov21 do not consider fluid content changes; with
inhomogeneities being treated as undrained. However, in the context of the poroelasticity theory, fluid content can change
so that a clear distinction between pores that contain fluid that is stuck or allowed to flow is necessary.
In regards to the paragraph above, we distinguish the compliances of isolated pores from the compliances that account

for pores where fluid content varies. Hence, we divide the inhomogeneities into a group with isolated pores (𝑚0) and a
set with connected pores (𝑚 = 𝑚1 − 𝑚0), to obtain

𝜀𝑖𝑗 =

3∑
𝑘=1

3∑
𝓁=1

(
𝑆𝑖𝑗𝑘𝓁 + 𝑚𝜙Δ𝐻𝑖𝑗𝑘𝓁

)
𝜎𝑘𝓁 , (17)

where

𝑆𝑖𝑗𝑘𝓁 = 𝑆0
𝑖𝑗𝑘𝓁

+ 𝑚0𝜙
(
𝐻𝑖𝑗𝑘𝓁 + Δ𝐻𝑖𝑗𝑘𝓁

)
+ 𝑚𝜙𝐻𝑖𝑗𝑘𝓁 . (18)

If all pores are isolated, then 𝑚 = 0 and we obtain expression (3). If all pores are connected, then 𝑚 = 𝑚1. Note that
𝑚𝜙 corresponds to the volume fraction occupied by a single interconnected pore set, 𝜙(𝑝). Similarly, 𝐻𝑖𝑗𝑘𝓁 = 𝐻

(𝑝)

𝑖𝑗𝑘𝓁
that

implies Δ𝐻𝑖𝑗𝑘𝓁 = Δ𝐻
(𝑝)

𝑖𝑗𝑘𝓁
, 𝑄𝑖𝑗 = 𝑄

(𝑝)

𝑖𝑗
, and 𝐾𝑑 = 𝐾

(𝑝)

𝑑
. Inserting (14) into (17), we obtain strains in a medium containing

dry or saturated closed pores and a single interconnected set of identical pores, namely,

𝜀𝑖𝑗 =

3∑
𝑘=1

3∑
𝓁=1

⎡⎢⎢⎣𝑆𝑖𝑗𝑘𝓁 − 𝜙(𝑝)
⎛⎜⎜⎝

1

𝐾
(𝑝)

𝑑

+
1

𝐾𝑓
−

1

𝐾0

⎞⎟⎟⎠𝑄
(𝑝)

𝑖𝑗
𝑄

(𝑝)

𝑘𝓁

⎤⎥⎥⎦𝜎𝑘𝓁 . (19)

Term

𝜙(𝑝)
⎛⎜⎜⎝

1

𝐾
(𝑝)

𝑑

+
1

𝐾𝑓
−

1

𝐾0

⎞⎟⎟⎠ =∶ 𝑆(𝑝) (20)

is a definition of the storage coefficient.24 Also, comparing expressions (4) and (8) for 𝑛 = 1, we notice that the fluid
polarisation tensor is related to the Skempton-like tensor,

𝑄
(𝑝)

𝑖𝑗
= −

1

3
𝐵

(𝑝)

𝑖𝑗
, (21)

where

𝐵
(𝑝)

𝑖𝑗
∶=

3𝜙(𝑝)

𝑆(𝑝)

3∑
𝑚=1

𝐻
(𝑝)

𝑖𝑗𝑚𝑚
. (22)

Hence, if 𝑛 = 1, expression (19) is equivalent to (5). In other words, the fluid effect caused by a set of identical pores,

Δ
(𝑝)

𝑖𝑗𝑘𝓁
≡ 𝜙(𝑝)Δ𝐻

(𝑝)

𝑖𝑗𝑘𝓁
=

𝑚∑
𝑐=1

𝜙𝑐Δ𝐻𝑖𝑗𝑘𝓁𝑐
, (23)
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2160 ADAMUS et al.

F IGURE 4 Illustration of the total fluid effect according to two different approaches, Δ𝐼 and Δ𝐼𝐼 . In this example, two sets are embedded
in the solid matrix. Grey colour symbolises fluids, whereas white space denotes dry pores.

can be expressed in terms of either poroelastic (6) or elastic constants (23). The equivalence (23) and definitions (20)
and (22) are also valid for 𝑛 > 1 sets. Considering dry and saturated excess compliances separately for each set, we get

𝜀𝑖𝑗 =

3∑
𝑘=1

3∑
𝓁=1

(
𝑆𝑖𝑗𝑘𝓁 +

𝑛∑
𝑝=1

𝜙(𝑝)Δ𝐻
(𝑝)

𝑖𝑗𝑘𝓁

)
𝜎𝑘𝓁 =

3∑
𝑘=1

3∑
𝓁=1

(
𝑆𝑖𝑗𝑘𝓁 +

𝑛∑
𝑝=1

Δ
(𝑝)

𝑖𝑗𝑘𝓁

)
𝜎𝑘𝓁 , (24)

where

𝑆𝑖𝑗𝑘𝓁 = 𝑆0
𝑖𝑗𝑘𝓁

+

𝑛0∑
𝑐=1

𝜙(𝑐)
(
𝐻

(𝑐)

𝑖𝑗𝑘𝓁
+ Δ𝐻

(𝑐)

𝑖𝑗𝑘𝓁

)
+

𝑛∑
𝑝=1

𝜙(𝑝)𝐻
(𝑝)

𝑖𝑗𝑘𝓁
. (25)

The above expressions are the multiple-set generalisations of expressions (17)–(18), where isolated pores of the same
microstructure are denoted by a superscript (𝑐). Herein, we allow𝐻

(𝑐)

𝑖𝑗𝑘𝓁
≠ 𝐻

(𝑝)

𝑖𝑗𝑘𝓁
, Δ𝐻

(𝑐)

𝑖𝑗𝑘𝓁
≠ Δ𝐻

(𝑝)

𝑖𝑗𝑘𝓁
, and 𝑛0 ≠ 𝑛. Note that

expressions (24)–(25) correspond to the scenario depicted in Figure 3 (where 𝑛0 ≠ 0 and 𝑛 = 2).

2.1.3 Undrained sets with non-identical pores

Themicromechanical analysis of interconnected pores having different geometries is not straightforward; even if we again
assume no interactions between inhomogeneities. We propose two possible micromechanical descriptions, depicted in
Figure 4. One way is to consider each pore separately (at the microscopic scale) and sum their saturated compliances and
volume fractions (Figure 4A),which is the originalmethod of Shafiro andKachanov.20 We call it the pore-impact approach.
An alternative conjecture is to treat connected pores as one large inhomogeneity having specific volume fraction (at the
mesoscopic scale) and calculate its saturated compliances once per set only (Figure 4B).We call it the set-impact approach.
As shown in the previous section, both methods are equivalent if pores in a set are identical, namely

𝑚∑
𝑐=1

𝜙𝑐Δ𝐻𝑖𝑗𝑘𝓁𝑐
= 𝜙(𝑝)Δ𝐻

(𝑝)

𝑖𝑗𝑘𝓁
. (26)

Since the pore size affects the volume fraction only—whereas saturated compliances remain the same—the equa-
tion above also holds if pore sizes vary in a set. This can be seen if we rewrite the volume fraction of a set as

∑𝑚

𝑐=1
𝜙𝑐 =

𝑚𝜙𝑐 =∶ 𝜙(𝑝), where the bar denotes an average. Nevertheless, except for the two aforementioned cases, equation (26) is
not generally obeyed.
There are situations when pore-impact and set-impact approaches predict approximately equal fluid effects. Such sce-

narios happen if both product approximation𝜙𝑐Δ𝐻𝑖𝑗𝑘𝓁𝑐
≈ 𝜙𝑐 Δ𝐻𝑖𝑗𝑘𝓁𝑐

and relationΔ𝐻𝑖𝑗𝑘𝓁𝑐
≈ Δ𝐻

(𝑝)

𝑖𝑗𝑘𝓁
are satisfied, namely,
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ADAMUS et al. 2161

𝑚∑
𝑐=1

𝜙𝑐Δ𝐻𝑖𝑗𝑘𝓁𝑐
= 𝑚𝜙𝑐Δ𝐻𝑖𝑗𝑘𝓁𝑐

≈ 𝑚𝜙𝑐 Δ𝐻𝑖𝑗𝑘𝓁𝑐
≈ 𝜙(𝑝)Δ𝐻

(𝑝)

𝑖𝑗𝑘𝓁
. (27)

The product approximation holds if at least one variable is almost constant29 or if both variables are random and
independently distributed. On the other hand, Δ𝐻𝑖𝑗𝑘𝓁𝑐

≈ Δ𝐻
(𝑝)

𝑖𝑗𝑘𝓁
holds if Δ𝑯𝑐 ≈ const that also satisfies the product

approximation. Therefore, approximation (27) can hold in the case of slightly varying (from pore to pore) saturated
compliances that correspond to almost identical shapes and orientations of the inhomogeneities.21
Let us exemplify and discuss the pore-impact approach. The effect of fluid is no longer related to the sets of pores so

that the poroelastic parameters 𝑆(𝑝) and 𝐵
(𝑝)

𝑖𝑗
cannot be defined unless pores have identical shapes and orientations. This

can be seen if we compare the extended Biot description with the micromechanical approach, namely,

Δ
(𝑝)

𝑖𝑗𝑘𝓁
=

𝑚∑
𝑐=1

𝜙𝑐Δ𝐻𝑖𝑗𝑘𝓁𝑐
, (28)

which can be rewritten as

−
1

9
𝑆(𝑝)𝐵

(𝑝)

𝑖𝑗
𝐵

(𝑝)

𝑘𝓁
= −𝜙1

(
1

𝐾𝑑1

+
1

𝐾𝑓
−

1

𝐾0

)
𝑄𝑖𝑗1

𝑄𝑘𝓁1
− ⋯ − 𝜙𝑚

(
1

𝐾𝑑𝑚

+
1

𝐾𝑓
−

1

𝐾0

)
𝑄𝑖𝑗𝑚

𝑄𝑘𝓁𝑚
. (29)

Storage and Skempton-like coefficients can be defined in terms of excess compliances only if Δ𝑯𝑐 = const. In view of the
pore-impact approach, the geometry of the sets does not matter. Each pore is treated separately, and their fluid impacts
are summed. Therefore, using the pore-impact approach, one can dismiss consideration of the sets but rather consider a
total fluid effect,

Δ𝑖𝑗𝑘𝓁 =

𝑥∑
𝑐=1

𝜙𝑐Δ𝐻𝑖𝑗𝑘𝓁𝑐
, (30)

where 𝑥 denotes the total number of pores that may allow fluid flow. Hence, in general, the pore-impact description
is inconvenient from the perspective of the extended poroelasticity, where sets—and their poroelastic parameters—are
essential. Further, according to expression (29), each pore in a set—due to various geometries—is described by a different
fluid polarisation tensor 𝑄𝑖𝑗𝑐

that implies different fluid pressure. This is in contradiction to an extended Biot view that
assumes constant pressure in the set that naturally results in constant pressure in each interconnected pore. Another,
more practical, downside of this description is that each pore needs to be considered separately, which is difficult and
time-consuming to measure in the laboratory and is impossible to measure in the field. Nevertheless, the pore-impact
approach is in line with the effective methodology initiated by Eshelby,30 continued by O’Connell and Budiansky31 and
standardised by Shafiro and Kachanov,20 where saturation of each pore is considered separately. This approach can be
used successfully to calculate the total fluid effect of the poroelastic medium.
To utilise the latter method, which we refer to as a “set-impact” approach, we should treat a pore set as one mesoscopic

inhomogeneity. To do so, first, we need to express
∑𝑚

𝑐=1
𝜙𝑐𝐻𝑖𝑗𝑘𝓁𝑐

by a single volume fraction and one excess compliance
tensor. Hence, we utilise

𝜙(𝑝)𝐻
(𝑝)

𝑖𝑗𝑘𝓁
∶=

𝑚∑
𝑐=1

𝜙𝑐𝐻𝑖𝑗𝑘𝓁𝑐
, (31)

where 𝜙(𝑝) is the volume fraction of all pores in the set. Note that we can define

𝐻
(𝑝)

𝑖𝑗𝑘𝓁
∶=

∑𝑚

𝑐=1
𝜙𝑐𝐻𝑖𝑗𝑘𝓁𝑐∑𝑚

𝑐=1
𝜙𝑐

= 𝐻𝑖𝑗𝑘𝓁𝑐
. (32)

Herein, the bar denotes the average weighted by volume fractions. Second, we insert 𝐻(𝑝)

𝑖𝑗𝑘𝓁
inside (9)–(11) to get Δ𝐻

(𝑝)

𝑖𝑗𝑘𝓁
.

This way, the fluid effect in a set is obtained,

Δ
(𝑝)

𝑖𝑗𝑘𝓁
= 𝜙(𝑝)Δ𝐻

(𝑝)

𝑖𝑗𝑘𝓁
(33)
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2162 ADAMUS et al.

that can be rewritten as

−
1

9
𝑆(𝑝)𝐵

(𝑝)

𝑖𝑗
𝐵

(𝑝)

𝑘𝓁
= −𝜙(𝑝)

⎛⎜⎜⎝
1

𝐾
(𝑝)

𝑑

+
1

𝐾𝑓
−

1

𝐾0

⎞⎟⎟⎠𝑄
(𝑝)

𝑖𝑗
𝑄

(𝑝)

𝑘𝓁
. (34)

It is clear that such a description is fully compatible with the extended poroelastic description. There is only one fluid
polarisation tensor per set, which implies constant pressure, as expected. Expressions (19)–(22) remain valid, also for var-
ious geometries. We note that the treatment of the set as one mesoscopic inhomogeneity may be regarded as inconsistent
from the perspective of the effectivemedium theory. Therefore, at this stage, despite its obvious advantages, the set-impact
approach should be treated as a conjecture only.
Let us review the achievements of Section 2.1. First, we have pointed out a micromechanical analysis for the case of a

single isolated pore. We did not indicate the relationship between poroelastic Biot-like constants yet since we assumed
that a single pore cannot allow fluid flow. Instead, we used the derived expressions as a basis for the multi-pore sce-
narios. We have shown that the effect of fluids present in the interconnected identical pores is equivalent to the impact
of saturated compliances obtained from effective methods (23). Poroelastic coefficients can be defined in terms of these
compliances (20)–(22). Similarly, the impact of fluids may be considered in the sets of pores having various geometries.
Depending on the methodology involved, the fluid effect is either (30) or (33); both approaches can be approximately
equal in specific situations. Knowing the fluid impact, the strains of an undrained medium (5) can be described by both
approaches. Both effective methods can be utilised not only to take into account the strains caused by undrained con-
nected pores but to consider isolated pores that form the skeleton, 𝑆𝑖𝑗𝑘𝓁, as well. Nevertheless, there exists a significant
drawback to one approach. If the pore-impact method is utilised, then poroelastic parameters cannot be defined for a set
generally. On the other hand, if we use the set-impact approach, then definitions (20)–(22) are valid. Therefore, in general,
the fundamental equations (1)–(2) might be described using the latter micromechanical approach only.
Two essential related questions remain. First, which micromechanical description of a fluid effect is more accurate,

and when? Second, can we utilise the set-impact conjecture to describe the strains of partially-saturated medium and the
resulting change of fluid content? To address these questions, we need to perform detailed laboratory experiments and
compare the results with the theoretical predictions. However, this is beyond the scope of the current paper. Herein, we
describe bothmethodologies on specifiedmicrostructure and simulate numerically the fluid-effect discrepancies between
the methods; which gives us indicative answers only.

2.2 Micromechanical analysis: Specified microstructure

In the previous section, we have related the extended poroelasticity with micromechanics for unspecified excess compli-
ances. These excess compliances can be obtained for various geometries such as cracks, spheres, needles, and others,which
can be classified as ellipsoids.21 Herein, we describe a few microstructures that are commonly considered in geophysics
and tectonics and are interesting in the context of extended poroelasticity.

2.2.1 Penny-shaped cracks: Any orientations

Let us consider a medium with one set of penny-shaped cracks having different orientations. In such a case, we utilise

𝑚∑
𝑐=1

𝜙𝑐𝐻𝑖𝑗𝑘𝓁𝑐
=

1

4

(
𝛿𝑖𝑘𝛼𝑗𝑙 + 𝛿𝑖𝓁𝛼𝑗𝑘 + 𝛿𝑗𝑘𝛼𝑖𝓁 + 𝛿𝑗𝓁𝛼𝑖𝑘

)
+ 𝛽𝑖𝑗𝑘𝓁 , (35)

where 𝛿𝑖𝑗 is the Kronecker delta and

𝛼𝑖𝑗 ∶=

𝑚∑
𝑐=1

𝑍𝑇𝑐
𝑛𝑖𝑐

𝑛𝑗𝑐
, (36)

𝛽𝑖𝑗𝑘𝓁 ∶=

𝑚∑
𝑐=1

(
𝑍𝑁𝑐

− 𝑍𝑇𝑐

)
𝑛𝑖𝑐

𝑛𝑗𝑐
𝑛𝑘𝑐

𝑛𝓁𝑐
(37)
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ADAMUS et al. 2163

stand for crack density tensors,10 where 𝑛𝑖 is the normal to the crack surface. The above tensors contain

𝑍𝑇𝑐
∶=

32𝑒𝑐
3𝐸

(
1 − 𝜈2

)
(2 − 𝜈)

, 𝑍𝑁𝑐
∶= 𝑍𝑇𝑐

(
1 −

𝜈

2

)
, (38)

with

𝑒𝑐 =
𝑎3
𝑐

𝑉
, (39)

where𝑉 is the medium’s volume, 𝑎𝑐 is the crack radius, 𝐸 and 𝜈 denote Youngmodulus and Poisson ratio of a solid phase,
respectively. If we consider the pore-impact approach, the fluid effect is

𝑚∑
𝑐=1

𝜙𝑐Δ𝐻𝑖𝑗𝑘𝓁𝑐
= −

𝑚∑
𝑐=1

(
1

1 + 𝛿𝑐

)
𝑍𝑁𝑐

𝑛𝑖𝑐
𝑛𝑗𝑐

𝑛𝑘𝑐
𝑛𝓁𝑐

, (40)

where

𝛿𝑐 = 𝐾𝑑𝑐

(
1

𝐾𝑓
−

1

𝐾0

)
=

𝜙𝑐

𝑍𝑁𝑐

(
1

𝐾𝑓
−

1

𝐾0

)
=

𝛾𝑐𝜋𝐸

4(1 − 𝜈2)

(
1

𝐾𝑓
−

1

𝐾0

)
(41)

depends on the aspect ratio of each crack, 𝛾𝑐. If we consider the set-impact approach, we obtain 𝐻
(𝑝)

𝑖𝑗𝑘𝓁
by dividing the

right-side of expression (35) by

𝜙(𝑝) =
4𝜋

3𝑉

𝑚∑
𝑐=1

𝑎3
𝑐 𝛾𝑐 . (42)

Then, as prescribed earlier, we use 𝐻
(𝑝)

𝑖𝑗𝑘𝓁
inside (9)–(11) to get Δ𝐻

(𝑝)

𝑖𝑗𝑘𝓁
that enters (33).

2.2.2 Penny-shaped cracks: Orthogonal orientations

Let us consider a simple example of perpendicular cracks. Think of one interconnected set of cracks having identical
shapes and sizes; meaning that 𝛾𝑐, 𝑎𝑐 = const that implies 𝑍𝑁𝑐

, 𝑍𝑇𝑐
, 𝛿𝑐 = const. Assume that 𝑚1 cracks have surface

normals oriented towards the 𝑥1-axis, 𝑚2 towards the 𝑥2-axis, and 𝑚3 towards the 𝑥3-axis, where the total number
𝑚 = 𝑚1 + 𝑚2 + 𝑚3. This way, we can define 𝑚1𝑍𝑁𝑐

= 𝑍𝑁1, 𝑚2𝑍𝑁𝑐
= 𝑍𝑁2, 𝑚3𝑍𝑁𝑐

= 𝑍𝑁3. The fluid effect according to
the pore-impact (𝐼) description is (we show the non-zero 3 × 3minor only),

Δ𝐼 = −
1

𝑆𝑐

⎡⎢⎢⎢⎢⎣
1

𝑚1

𝑍2
𝑁1

0 0

0
1

𝑚2

𝑍2
𝑁2

0

0 0
1

𝑚3

𝑍2
𝑁3

⎤⎥⎥⎥⎥⎦
= −

1

1 + 𝛿

⎡⎢⎢⎢⎣
𝑍𝑁1 0 0

0 𝑍𝑁2 0

0 0 𝑍𝑁3

⎤⎥⎥⎥⎦ , (43)

where

𝑆𝑐 = 𝜙𝑐

(
1

𝐾𝑑𝑐

+
1

𝐾𝑓
−

1

𝐾0

)
,

1

𝐾𝑑𝑐

=
𝑍𝑁𝑐

𝜙𝑐
. (44)

The pore-impact approach disregards the connections between cracks, hence, the storage-like coefficient 𝑆𝑐 is obtained
for each pore. Note that in each subset, 𝑚𝑖 , cracks are identical, which is an exceptional situation. Therefore, instead of
treating each crack individually, we can rewrite the above expressions in terms of poroelastic constants that correspond
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2164 ADAMUS et al.

to three subsets (isolated or not!) of identical cracks. In other words,

Δ𝐼 = −
1

9𝑆(1)

⎡⎢⎢⎢⎢⎣

(
𝑆(1)𝐵

(1)
11

)2

0 0

0 0 0

0 0 0

⎤⎥⎥⎥⎥⎦
−

1

9𝑆(2)

⎡⎢⎢⎢⎢⎣
0 0 0

0
(
𝑆(2)𝐵

(2)
22

)2

0

0 0 0

⎤⎥⎥⎥⎥⎦
−

1

9𝑆(3)

⎡⎢⎢⎢⎢⎣
0 0 0

0 0 0

0 0
(
𝑆(3)𝐵

(3)
33

)2

⎤⎥⎥⎥⎥⎦
, (45)

where

𝑆(𝑖) = 𝑚𝑖𝜙𝑐

(
1

𝐾𝑑𝑐

+
1

𝐾𝑓
−

1

𝐾0

)
, 𝐵

(𝑖)
𝑖𝑖

=
3𝑍𝑁𝑖

𝑆(𝑖)
. (46)

On the other hand, the set-impact (𝐼𝐼) approach indicates

Δ𝐼𝐼 = −
1

𝑆

⎡⎢⎢⎢⎣
𝑍2

𝑁1
𝑍𝑁1𝑍𝑁2 𝑍𝑁1𝑍𝑁3

𝑍𝑁1𝑍𝑁2 𝑍2
𝑁2

𝑍𝑁2𝑍𝑁3

𝑍𝑁1𝑍𝑁3 𝑍𝑁2𝑍𝑁3 𝑍2
𝑁3

⎤⎥⎥⎥⎦ = −
1

9𝑆

⎡⎢⎢⎢⎣
𝑆2𝐵2

11
𝑆2𝐵11𝐵22 𝑆2𝐵11𝐵33

𝑆2𝐵11𝐵22 𝑆2𝐵2
22

𝑆2𝐵22𝐵33

𝑆2𝐵11𝐵33 𝑆2𝐵22𝐵33 𝑆2𝐵2
33

⎤⎥⎥⎥⎦ , (47)

where

𝑆 = 𝑚𝜙𝑐

⎛⎜⎜⎝
1

𝐾
(𝑝)

𝑑

+
1

𝐾𝑓
−

1

𝐾0

⎞⎟⎟⎠ ,
1

𝐾
(𝑝)

𝑑

=
1

𝐾𝑑𝑐

, 𝐵𝑖𝑖 =
3𝑍𝑁𝑖

𝑆
. (48)

We note that the set-impact approach leads to one storage coefficient and one Skempton tensor only; cracks are described
as connected. In our example, the connections between each 𝑚𝑖 subset are expressed as the non-zero off-diagonal terms
of Δ𝐼𝐼 . The aforementioned terms are absent in the former methodology, where cracks are treated separately. Importantly,
if each subset constitutes a detached set, then Δ𝐼 remains the same (connections do not matter) but Δ𝐼𝐼 reduces to Δ𝐼 (due
to sets with identical cracks). A significant influence of connections between subsets on the set-impact (𝐼𝐼) description
is clear.

2.2.3 Penny-shaped cracks: TI orientations

As mentioned in the Introduction, the effective TI can be obtained by distributing TI-oriented penny-shaped cracks in
the isotropic solid phase.23 Following the rock physics nomenclature, we refer to such a particular case briefly as CTI.
Commonly, the microstructure that leads to CTI is described as vertical cracks that are not aligned but are randomly
distributed around the symmetry axis. Its excess compliances are expressed by a general formula for cracks (35), where
additionally 𝛼11 = 𝛼22, 𝛽1111 = 𝛽2222, and 𝛽1122 = 𝛽1111∕3. Also, note that 𝛼𝑖𝑗 and 𝛽𝑖𝑗𝑘𝓁 are symmetric with respect to all
rearrangements of indices.
Due to the random orientation of cracks viewed in horizontal plane, the link between the geometry of particular pores

and crack density tensors is unclear. In other words, it is not easy to obtain values of crack density tensors—that satisfy the
CTI relations—by inserting each particular crack radius and surface normals. Therefore, the microstructure that induces
CTI is treated holistically—as one large group of vertical cracks, where the orientation of a specific crack is unknown.
Optionally, the horizontal cracking can be considered—coefficients 𝛼33 and 𝛽3333 increase, whereas the CTI relations
remain obeyed. If certain cracks are connected, then they allow fluid flow, and the poroelasticity theory can be used.
In the case that all cracks are interconnected (single set), the original Biot theory is applicable (one Skempton tensor
and single storage coefficient). The situation of an isolated set of horizontal inhomogeneities (two sets in total) can be
furnished by poroelastic extension (two Skempton-like tensors and two storage coefficients). Both scenarios are depicted
in Figures 5A,B.
What if the medium is CTI but pore pressure in vertical cracks is not constant? In other words, what if—although

TI oriented—the vertical pores are forming a few or dozens of isolated sets? To furnish such a situation, we propose to
specify the geometry of each pore and use these geometries to recreate the crack density tensors that satisfy CTI relations.
To do so, we assume 𝑛 sets of aligned vertical cracks that are embedded in the isotropic solid phase and are equally
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ADAMUS et al. 2165

F IGURE 5 Some CTI scenarios of the poroelastic medium are illustrated. In each case, we include horizontal cracking that is optional;
its absence does not affect the effective symmetry. First two figures represent classic cases of random transverse-isotropic orientations of
vertical cracks. (A) depicts interconnected vertical and horizontal cracks; they form one set only. (B) presents an isolation of vertical and
horizontal inhomogeneities; they form two distinct sets. The last two figures represent vertical cracks that are not random but aligned in
𝑛 = 3 directions. The alignments are isolated horizontally by 𝜃 and are responsible for the CTI inducement. (C) illustrates the scenario where
all sets are detached (4 sets in total), whereas (D) depicts the interconnected case (one set only). In the context of pore-impact approach or dry
excess compliances, case (A) and (C) is equivalent to (B) and (D), respectively. The discrepancies arise if the set-impact approach is used,
where connections do matter. CTI, cylindrical transverse isotropy.

distributed around the symmetry axis. In other words, each vertical set is isolated from the other by an angle equal to
𝜃 = 𝜋∕𝑛 radians. According to Herman’s theory,32 a fourth-rank tensor is transversely isotropic when it is invariant to
at least five-fold rotation about the symmetry axis. Thus, the smallest number of symmetry planes distributed equally
around the symmetry axis that would satisfy Herman’s requirement is three. By analogy, if a pore set corresponds to the
symmetry plane, equally distributed sets could also lead to TI symmetry. In fact, as we prove in Appendix B, 𝑛 ≥ 3 sets are
sufficient to obtain TI symmetry induced by aligned cracks—this agrees with Herman’s theory. However, each set must
have an equal number of cracks of the same size; that is a necessary condition to be satisfied. On the other hand, two
orthogonal symmetry planes lead to orthotropy. As indicated by Schoenberg and Helbig,33 𝑛 = 2 embedded sets induce
such symmetry that supports our crack-set symmetry-plane analogy. In the case of set-induced orthotropy, there is no
requirement for an equal crack number or size in each set.
Let us provide an example to illustrate the general proof from Appendix B. Consider three sets of vertical and aligned

cracks. Sets are isolated by 𝜃 = 𝜋∕3 and their surface normals 𝒏(𝑝) are

𝒏(1) = [cos(𝜃), sin(𝜃), 0] , 𝒏(2) = [cos(2𝜃), sin(2𝜃), 0] , 𝒏(3) = [cos(3𝜃), sin(3𝜃), 0] . (49)

Assume that sets are identical, meaning that the number of cracks and their shapes are the same in each set. Thus, we
can state that

𝑚∑
𝑐=1

𝑍𝑁𝑐
= 𝑍

(𝑝)
𝑁 = 𝑍𝑁 (50)

and analogous description holds for 𝑍𝑇𝑐
. Crack density tensors of the effective medium are
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2166 ADAMUS et al.

𝛼𝑖𝑗 =

𝑛∑
𝑝=1

𝛼
(𝑝)

𝑖𝑗
= 𝑍𝑇

𝑛∑
𝑝=1

𝑛
(𝑝)

𝑖
𝑛

(𝑝)

𝑗
, (51)

𝛽𝑖𝑗𝑘𝓁 =

𝑛∑
𝑝=1

𝛽
(𝑝)

𝑖𝑗𝑘𝓁
= (𝑍𝑁 − 𝑍𝑇)

𝑛∑
𝑝=1

𝑛
(𝑝)

𝑖
𝑛

(𝑝)

𝑗
𝑛

(𝑝)

𝑘
𝑛

(𝑝)

𝓁
. (52)

We get

𝛼11 = 𝑍𝑇

(
1

4
+

1

4
+ 1

)
=

3𝑍𝑇

2
, (53)

𝛼22 = 𝑍𝑇

(
3

4
+

3

4
+ 0

)
= 𝛼11 , (54)

𝛽1111 = (𝑍𝑁 − 𝑍𝑇)

(
1

16
+

1

16
+ 1

)
= (𝑍𝑁 − 𝑍𝑇)

9

8
, (55)

𝛽2222 = (𝑍𝑁 − 𝑍𝑇)

(
9

16
+

9

16
+ 0

)
= 𝛽1111 , (56)

𝛽1122 = (𝑍𝑁 − 𝑍𝑇)

(
3

16
+

3

16
+ 0

)
=

1

3
𝛽1111 , (57)

which indicate CTI. Note that such symmetry would not appear if sets were not identical. Also, it is apparent that 𝛼33 =

𝛽3333 = 𝛽1133 = 0 and

𝛼∗
11

=
4

3
𝛽∗
1111

, (58)

where

𝛼∗
𝑖𝑗

∶=

𝑚∑
𝑐=1

𝑛𝑖𝑐
𝑛𝑗𝑐

, (59)

𝛽∗
𝑖𝑗𝑘𝓁

∶=

𝑚∑
𝑐=1

𝑛𝑖𝑐
𝑛𝑗𝑐

𝑛𝑘𝑐
𝑛𝓁𝑐

(60)

can be defined as crack fabric tensors (sensu ref. [34]). Relationship (58) is characteristic of any set-induced CTI, which
can be proven as follows. For any 𝑛 ≥ 3 vertical sets, relation 𝛽1133 = 𝛽∗

1133
= 0must be true. As a consequence,

𝛼∗
11

=

3∑
𝑘=1

𝛽∗
11𝑘𝑘

= 𝛽∗
1111

+
1

3
𝛽∗
1111

+ 0 =
4

3
𝛽∗
1111

, (61)

as required.
Inserting (51)–(52) into expression (35), we get total excess compliances for a dry effective medium. Using condensed

6 × 6matrix notation used by Schoenberg and Sayers35 or Kachanov and Sevostianov,21 we obtain

𝑛∑
𝑝=1

𝜙(𝑝)𝐻
(𝑝)

𝑖𝑗𝑘𝓁
=

𝑛

8

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3𝑍𝑁 + 𝑍𝑇 𝑍𝑁 − 𝑍𝑇 0 0 0 0

𝑍𝑁 − 𝑍𝑇 3𝑍𝑁 + 𝑍𝑇 0 0 0 0

0 0 0 0 0 0

0 0 0 4𝑍𝑇 0 0

0 0 0 0 4𝑍𝑇 0

0 0 0 0 0 𝑍𝑁 + 7𝑍𝑇

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (62)

which is universal for 𝑛 ≥ 3.
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ADAMUS et al. 2167

Interestingly, CTI can be also obtained if—additionally to the 𝑛 vertical sets—we insert a horizontal set. For ease of
representation, assume that these horizontal cracks are identical, namely,

∑𝑚

𝑐=1
𝑍𝑁𝑐

= 𝑍𝑁𝐻
. Nevertheless, we allow them

to differ from vertical ones. We get additional excess compliances,

𝜙(hor)𝐻
(hor)

𝑖𝑗𝑘𝓁
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 0 0 0 0 0

0 0 𝑍𝑁𝐻
0 0 0

0 0 0 𝑍𝑇𝐻
0 0

0 0 0 0 𝑍𝑇𝐻
0

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (63)

The necessary TI relations are still satisfied. Additionally, condition 𝛽1133 = 0must be obeyed.
The procedure of obtaining the excess compliances responsible for the effect of fluid, Δ𝐻𝑖𝑗𝑘𝓁, is analogous to the case of

orthogonal cracking, discussed in the previous section. If 𝑛 sets are isolated, then pore-impact and set-impact approaches
are equivalent due to identical cracks in each set. If sets are not isolated, then they are treated as interconnected sub-
sets that form a single porosity; both micromechanical approaches must differ. Importantly, the possible connections
between subsets do not influence the above dry-case derivations. Isolated and non-isolated scenarios are illustrated in
Figures 5C,D.

2.2.4 Spheres

Let us now consider pores that have the shape of a sphere. Naturally, such a shape leads to isotropic dry excess compliance
(the orientation of a pore does not influence𝐻𝑖𝑗𝑘𝓁). In turn,

𝑯
𝑐
= const ⇒ Δ𝑯𝑐 = const ⇒ Δ𝐻𝑖𝑗𝑘𝓁𝑐

= Δ𝐻
(𝑝)

𝑖𝑗𝑘𝓁
. (64)

Even though orientations and shapes are identical, the sizes can vary, 𝜙𝑐 ≠ const. The fluid effect of pores is

Δ𝐼𝑖𝑗𝑘𝓁
=

𝑥∑
𝑐=1

𝜙𝑐Δ𝐻𝑖𝑗𝑘𝓁𝑐
= Δ𝐻

(𝑝)

𝑖𝑗𝑘𝓁

𝑥∑
𝑐=1

𝜙𝑐 =

𝑛<𝑥∑
𝑝=1

𝜙(𝑝)Δ𝐻
(𝑝)

𝑖𝑗𝑘𝓁
= Δ𝐼𝐼𝑖𝑗𝑘𝓁

. (65)

In other words, for any set of multiple spheres, both descriptions of a fluid impact are equivalent. If sizes and num-
bers of spheres forming distinct sets are different, then 𝜙(𝑝) ≠ const ⇒ 𝑆(𝑝) ≠ const. On the other hand, Skempton-like
coefficients are identical for each set; they are explicitly impacted by𝑯(𝑝) = const only.

2.2.5 Non-spheroidal shapes

So far, we have described a few microstructures of spheroidal pores or cracks in the context of fluid effect and extended
poroelasticity. However, as mentioned earlier, excess compliances can also be obtained for ellipsoids; therefore, the
linkage between poroelasticity and effective methods is also allowable in the case of these more general shapes.
Furthermore, such a linkage may exist for non-ellipsoidal shapes. As discussed by Grechka and Kachanov,36 excess
compliances can be obtained for various—not necessarily penny shaped—cracks. In the case of non-flat pores, the
approximations for non-ellipsoids are summarised in Kachanov and Sevostianov [21, Chapter 4.3]. Herein, we invoke the
case of superspheres that may represent concave or convex pores. A surface of a supersphere of unit radius is described
by 𝑥

(2𝑘)
1

+ 𝑥
(2𝑘)
2

+ 𝑥
(2𝑘)
3

= 1, where parameter 𝑘 is a concavity factor. For 𝑘 < 0.5, the shape is concave, for 𝑘 > 0.5, it is
convex, and for 𝑘 = 1 it is sphere. The excess compliances are approximately zero for 𝑘 < 0.2. If 𝑘 ∈ [0.2, 1], we get

𝐻𝑖𝑗𝑘𝓁𝑐
≈

5𝑘 − 1

4

𝑉𝑠

𝑉1(𝑘)
𝐻𝑠

𝑖𝑗𝑘𝓁𝑐
,
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2168 ADAMUS et al.

F IGURE 6 Discrepancy between original and extended poroelasticity based on three subsets that induce CTI symmetry. If subsets are
connected, then original Biot theory can be used (solid line). Isolated subsets require extended theory (non-solid lines). Schematic 2d views of
the two cases are shown. Dashed line stands for vertical set with azimuth 𝜑(1) = 10◦, dashed-dotted line indicates 𝜑(2) = 130◦, and dotted line
𝜑(3) = 250◦. We consider set-drained (A) and undrained (B) conditions. CTI, cylindrical transverse isotropy.

where 𝐻𝑠
𝑖𝑗𝑘𝓁𝑐

are the excess compliances of a sphere. 𝑉1 and 𝑉𝑠 denote the volume of a supersphere21, Expres-
sion 4.3.14] and a unit sphere, respectively. Subsequently, saturated compliances and fluid effects can be obtained.
For 𝑘 < 1, the excess compliance tensor is approximately isotropic, which means that both micromechanical
approaches (pore-impact and set-impact) are approximately equal. Similarly to the aspect ratio that is essential
for ellipsoids, the concavity factor is crucial for superspheres—it has a strong effect on the pore contribution to
the effective elasticity. As shown by Chen et al.,[37 the effect of both can be combined in the case of oblate or
prolate superspheres. Note that the excess compliance tensor of an oblate or prolate supersphere is not approx-
imately isotropic due to the effect of 𝛾; hence, the two micromechanical approaches will generate different
results.

3 NUMERICAL SIMULATIONS

In this section, we first show the differences between original and extended Biot theories applied to subsets of
pores being connected or isolated, respectively. We utilise a scenario of identical pore shapes so that the choice
of a micromechanical description does not influence the isolated case. Second, we focus on the discrepancies
between pore-impact and set-impact approaches. To simplify the problem, we assume a single porosity only. In
our simulations, we utilise the properties of Berea sandstone reported by Beeler et al.9 and Wong,18 where for the
solid phase 𝐸 = 87GPa, 𝜈 = 0.11, and fluid compressibility 1∕𝐾𝑓 = 0.45GPa−1. Additionally, in the second part, we
compare the Berea sandstone with a much different solid phase, 𝐸 = 125GPa and 𝜈 = 0.25, typical for basalts.38
Results of our numerical experiments should not be treated as conclusive but indicative of certain repeatable
phenomena.

3.1 Original versus extended poroelasticity

Assume three vertical subsets of𝑚 = 100 cracks each, having identical sizes and shapes, where 𝑒𝑐 = 1∕9𝑚 and 𝛾𝑐 = 0.01.
Let these subsets be equally distributed around the vertical axis. This way, CTI symmetry is induced. We assume a slight
misalignment of subsets with the coordinate axes; crack azimuths with respect to 𝑥1-axis are 𝜑(1) = 10◦, 𝜑(2) = 130◦, and
𝜑(3) = 250◦. Knowing the stresses, the description of a porous medium behaviour can differ significantly depending on
the connections between the subsets.
If all subsets are connected, they form a single porosity and the original Biot theory is used. Using the set-impact

approach, we obtain a single storage coefficient 𝑆 ≈ 0.0261GPa−1 and non-zero Skempton components 𝐵11 = 𝐵22 ≈

1.16 , 𝐵33 ≈ 0.01. As a consequence, we can describe fluid content change 𝜁 (drained case) or pore pressure 𝑝𝑓 (undrained
case) as a function of stress, as shown by solid lines in Figures 6A,B.
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ADAMUS et al. 2169

If all subsets are isolated, they form three distinct pore sets and the extended theory must be used. We obtain 𝑆(1) =

𝑆(2) = 𝑆(3) ≈ 0.0087GPa−1 and

𝑩(1) ≈

⎡⎢⎢⎢⎣
0.08 0.79 0

0.79 2.24 0

0 0 0.01

⎤⎥⎥⎥⎦ , 𝑩(2) ≈

⎡⎢⎢⎢⎣
1.36 −2.27 0

−2.27 0.96 0

0 0 0.01

⎤⎥⎥⎥⎦ , 𝑩(3) ≈

⎡⎢⎢⎢⎣
2.04 1.48 0

1.48 0.28 0

0 0 0.01

⎤⎥⎥⎥⎦ . (66)

As expected, in Figures 6A,B, there are three (non-solid) lines depicting the relations of fluid content changes or pore
pressure with the 𝜎11 uniaxial stress. Due to the low aspect ratio, the values of these parameters depend strongly on the
orientation of the subsets (the orientation would not matter in the case of spheres). The largest fluid content change and
pressure occur if the long axes of the cracks are almost perpendicular to the stress direction. By analogy, the smallest values
correspond to the case of the crack long axes being almost parallel to the stress. Therefore, in Figures 6A,B, the subset
𝜑(3) = 250◦ presents the largest values of 𝜁(𝑝) and 𝑝

(𝑝)

𝑓
. Here, the crack axes aremisaligned with 𝑥2 by only 20◦. The subset

𝜑(1) = 10◦ has the lowest values of 𝜁(𝑝) and 𝑝
(𝑝)

𝑓
. Here, the crack axes are misaligned with 𝑥1 by only 10◦. The remaining

subset 𝜑(2) = 130◦ presents moderate fluid content change and pore pressure due to relatively large misalignments with
both 𝑥1 and 𝑥2 axes. Note that in the undrained conditions

𝑆 =

𝑛∑
𝑝=1

𝑆(𝑝) (67)

and

𝐵𝑖𝑗 = 𝐵
(𝑝)

𝑖𝑗
⇒ 𝑝𝑓 = 𝑝

(𝑝)

𝑓
. (68)

As shown in Appendix A, equation (67) holds in any circumstances. On the other hand, (68) is obeyed due to 𝐾
(𝑝)

𝑑
being constant through sets that is usually not true. In our case, constant bulk moduli of pore sets are a consequence
of identical pore shapes (𝛾𝑐 = const)—the requirement of induced CTI. Additionally, in drained conditions of this specific
scenario, the constant volume fraction of each pore-set leads to 𝑆(𝑝) = const that implies 𝜁 =

∑𝑛

𝑝=1
𝜁(𝑝) (see Appendix A);

as depicted in Figure 6A.

3.2 Pore-impact versus set-impact approach

To check the discrepancies between the twomicromechanical descriptions, we performedmultiple simulations for various
amounts of 𝑥 pores forming single porosity, where 𝑥 = 3 × 𝑚, 𝑚 ∈ [1, 1000], 𝑚 ∈ ℕ. Such a number of voids embedded
in a matrix might be considered as RVE for a relatively large laboratory sample containing thousands of micropores.
For each 𝑥, we quantify the aforementioned discrepancy as a relative difference (𝑅) between pore-impact and set-impact
approaches,

𝑅
𝑓
𝐼 ∶=

||Δ𝐼 − Δ𝐼𝐼||||Δ𝐼|| × 100% , (69)

where || ⋅ || denotes a Frobenius norm and superscript 𝑓 stands for the effect of fluid. We consider different shapes (aspect
ratio 𝛾𝑐), orientations, and sizes of pores (density 𝑒𝑐 = 𝑎3

𝑐∕𝑉). Each characteristic can be identical (𝑖), slightly varying (𝑠),
random (𝑟), or can form a certain pattern (𝑝) in the pore set. For instance, the case of pores having identical shapes, random
orientations, and non-random sizes, would be denoted by 𝑖𝑟𝑝, where the first letter always refers to shape, the second to
orientation, and the third to pore size. Following the above-mentioned rule, we simulate nine possibilities, denoted as
𝑖𝑖𝑖, 𝑠𝑠𝑠, 𝑟𝑟𝑟, 𝑟𝑖𝑖, 𝑖𝑟𝑖, 𝑖𝑖𝑟, 𝑝𝑖𝑖, 𝑖𝑝𝑖, 𝑖𝑖𝑝. To obtain identical characteristics (e.g. shapes), we randomly choose (from a uniform
distribution) the value of the first pore characteristic (e.g., 𝛾1 = 0.1) and then assign the same value to the rest of the pores.
To get slightly varying shapes or sizes, we randomly choose the variations up to 10%with respect to the first pore. To obtain
slightly varying orientation, we simulate a random rotational axis, and we rotate this axis by angles that vary again up to
10%. To get random characteristic, we again use a uniform distribution to draw the characteristic for the first pore, and we
repeat such a random simulation𝑚 times. A pattern 𝑝means that we randomly choose a characteristic, copy its values for
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2170 ADAMUS et al.

TABLE 1 Chosen scenarios of microstructure with corresponding 𝑅
𝑓

𝐼 (in %). Generated pores with density 𝑒𝑐 ∈ (0, 1∕𝑚) are embedded in
a Berea sandstone (𝐸 = 87GPa , 𝜈 = 0.11) or basalt (𝐸 = 125GPa , 𝜈 = 0.25).

Berea sandstone Basalt
𝜸 ∈ (𝟎, 𝟐) 𝜸 ∈ (𝟎, 𝟎.𝟐) 𝜸 ∈ (𝟎, 𝟎.𝟐)

case mean max sd mean max sd mean max sd
rrr 9.71 25.76 1.77 49.13 70.48 1.89 53.78 81.11 1.95
ppp 10.01 82.15 16.25 34.76 85.94 17.94 38.64 88.75 19.72
sss 0.23 3.59 0.44 0.95 4.09 0.78 1.03 4.01 0.83
rii 15.27 34.95 6.79 22.46 32.05 1.69 29.17 50.44 1.69
iri 7.54 50.86 13.00 42.40 59.81 6.31 44.62 58.01 4.82
iir <10−12 <10−12 <10−13 <10−12 <10−12 <10−13 <10−12 <10−12 <10−13

pii 10.89 80.98 16.81 15.37 48.99 12.10 18.63 61.92 14.73
ipi 5.31 75.69 11.15 30.31 73.00 16.51 32.56 71.88 16.90
iip <10−11 <10−11 <10−11 <10−11 <10−11 <10−11 <10−11 <10−11 <10−11

Note: Mean and maximum discrepancies, along with standard deviations, are presented (calculated based on a thousand simulations for each scenario).

𝑚 pores (first subset), draw the value again for other 𝑚 pores (second subset), and finally draw the characteristic for the
rest of the pores (third subset). All procedures described above must be looped for changing value of 𝑚. In other words,
they are repeated 1000 times till each possibility of𝑚 is furnished. Having simulated certain shapes, 𝛾𝑐, orientations, and
densities, 𝑒𝑐, we use these values to calculate𝐻𝑖𝑗𝑘𝓁𝑐

and 𝜙𝑐. To do so, we follow the effective medium theory summarised
by Kachanov and Sevostianov.21 Note that dry excess compliances are impacted by shape and orientation, whereas pore
volume fraction is influenced by shape and size. Having𝐻𝑖𝑗𝑘𝓁𝑐

and 𝜙𝑐, we use equations from this paper to get Δ𝐼 and Δ𝐼𝐼

that lead to 𝑅
𝑓
𝐼 . The goal of the simulations is to confirm the cases when the equivalence (26) or the approximation (27)

occurs and to show which characteristics affect 𝑅𝑓
𝐼 the most.

To perform the tests, apart from the solid phase and fluid compressibility, we also need to define shape and size ranges.
We choose two different ranges of pore shapes. Range 𝛾𝑐 ∈ (0, 2) considers both oblate and prolate spheroids, whereas
𝛾𝑐 ∈ (0, 0.2) corresponds to crack-like pores only. We select 𝑒𝑐 ∈ (0, 1∕𝑚) so that the maximum volume fraction of a set

𝜙(𝑝) = 4𝜋𝛾𝑐𝑚𝑒𝑐 (70)

is equal for any𝑚 and can reach around 25% (if 𝛾𝑐 ≈ 2). During the simulations, it occurred that the choice of the size range
had negligible impact on 𝑅

𝑓
𝐼 . Let us discuss the results presented in Table 1. We notice that both random and patterned

characteristics lead to significant discrepancies that can reach up to 88% (𝑝𝑝𝑝). In general, randompores generate a higher
mean𝑅

𝑓
𝐼 , but the results do not vary asmuch as in the case of patterns. The comparison between 𝑟𝑟𝑟 and𝑝𝑝𝑝 is also shown

in Figure 7. It is clear that the number of pores has a negligible impact on 𝑝𝑝𝑝 but significantly reduces oscillations of 𝑅𝑓
𝐼

for 𝑟𝑟𝑟. Results for 𝑠𝑠𝑠 support the approximation (27). In other words, 𝑅𝑓
𝐼 is very low if the pore microstructure varies up

to 10% in the set. Looking at 𝑟𝑖𝑖, 𝑖𝑟𝑖, and 𝑖𝑖𝑟 (alternatively, 𝑝𝑖𝑖, 𝑖𝑝𝑖, 𝑖𝑖𝑝), we can evaluate the impact of each characteristic
on 𝑅

𝑓
𝐼 . For instance, 𝑟𝑖𝑖 can indicate the influence of shape, since identical orientations and sizes have no contribution to

the discrepancy.We notice that shape or orientation has a significant impact on 𝑅
𝑓
𝐼 , whereas the effect of size is negligible,

as expected from the theoretical considerations (equivalence (26)). Also, the results depend strongly on the choice of the
𝛾𝑐 range, but little on the choice of the solid matrix.
Although the relative discrepancy between fluid effects can be very high, it is good to relate it to the impact of dry

pores. Perhaps, there are cases when 𝑅
𝑓
𝐼 is large but excess compliances of pores are negligible; then, the choice of

micromechanical approach would not matter. Hence, we propose to also utilise

𝑅
𝑓

𝑑
∶=

||Δ𝐼 − Δ𝐼𝐼||||∑𝑥

𝑐=1
𝜙𝑐𝐻𝑐|| × 100% , 𝑅𝐼

𝑑
∶=

||Δ𝐼||||∑𝑥

𝑐=1
𝜙𝑐𝐻𝑐|| × 100% , 𝑅𝐼𝐼

𝑑
∶=

||Δ𝐼𝐼||||∑𝑥

𝑐=1
𝜙𝑐𝐻𝑐|| × 100% , (71)

where subscript 𝑑 denotes the effect of dry pores. In Figure 8, we use these additional measures in the context
of 𝛾𝑐. Therein, we simulate 𝑖𝑟𝑟 for 𝑚 = 100 and show how a fixed aspect ratio affects the discrepancies. Even
tough 𝑅

𝑓
𝐼 > 10% for 𝛾𝑐 up to ∼ 0.4, the choice of Δ𝐼 or Δ𝐼𝐼 is essential only for very low aspect ratios. Note that
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ADAMUS et al. 2171

F IGURE 7 Discrepancy between pore-impact and set-impact approaches based on a thousand simulations for each𝑚. Black colour
corresponds to the scenario of random geometries (𝑟𝑟𝑟), whereas grey indicates geometries with non-random pattern (𝑝𝑝𝑝). Berea sandstone,
𝛾𝑐 ∈ (0, 2), and 𝑒𝑐 ∈ (0, 1∕𝑚).

F IGURE 8 Various measures of discrepancy between pore-impact and set-impact approaches and its sensitivity to aspect ratio.
Simulations for 𝑥 = 300 pores having identical shapes, random orientations, and random sizes (𝑖𝑟𝑟). Discrepancy for each 𝛾𝑐 is averaged over
a hundred iterations (curve smoothing). Berea sandstone and 𝑒𝑐 ∈ (0, 1∕𝑚).

discrepancy 𝑅
𝑓

𝑑
> 10% occurs for 𝛾𝑐 up to∼ 0.02. Hence, the choice of fluid effect computation is essential only for cracks.

In general, the fluid effect (either Δ𝐼 or Δ𝐼𝐼) is not so important to consider if aspect ratios are not low. 𝑅𝐼
𝑑

> 10% or
𝑅𝐼𝐼

𝑑
> 10% occurs for 𝛾𝑐 up to ∼ 0.04 or ∼ 0.05, respectively. If we simulate 𝑖𝑝𝑝 instead of 𝑖𝑟𝑟, the discrepancies occur to

be even lower. As discussed in Section 2.2.4, 𝛾𝑐 = 1 implies Δ𝐼 = Δ𝐼𝐼 ; hence, 𝑅
𝑓
𝐼 and 𝑅

𝑓

𝑑
tend to zero for quasi-spherical

pores.
To sum up, our simulations indicate that 𝑅𝑓

𝐼 depends mostly on the following (in descending order of importance).

1. Shape and orientation—the effect is large, especially if the aspect ratio is small.
2. Number of pores—only important if shape and orientation are random.
3. Solid phase—little impact only.
4. Pore size—negligible effect, if any.
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2172 ADAMUS et al.

Also, it happens it is not essential to consider the fluid effect in the case of prolate pore shapes. In turn, in general, the
choice of the micromechanical approach matters only for the case of cracks.

4 DISCUSSION

The extension to the anisotropic poroelasticity theory presented in this paper can be particularly useful in the case of
isolated sets of cracks embedded in the porous solid. Although perfect isolation of the sets can be regarded as an ideal-
isation, the scenario of weak connections between the sets seems not to be unlikely (see e.g., Figure 1A). It could lead
to pore pressure variations viewed at a shorter time scale. Therefore, we predict that we will encounter the problem of
varying pressure during laboratory experiments under undrained or quasi-undrained conditions.We plan to perform such
experiments in the near future in order to test this.
Further, one may expect to utilise our extension at the large field scale, where quasi-static, low-frequency conditions

are assumed. Such conditions are typical for deep reservoirs, seismic measurements or stress regimes in fault zones. The
so-called dual-porosity extension (two isolated, isotropic pore-sets) was already considered in the context of flow patterns
of fluids during reservoir pump down.14 Following Backus,29 the seismic wavelength is sufficiently long to consider thin
layers as an effective anisotropic medium. By analogy, we may treat such material as having multiple pore sets isolated
from each other but influencing the overall response. Similarly, assuming low-frequency stresses in the fault zone, distinct
sets may lead to different fluid content changes.
The micromechanical description of the poroelastic medium can be viewed either holistically (set-impact) or individu-

ally (pore-impact). The former approach describes connected pores, where the sole connections have a small mechanical
impact, but lead to uniform pressure within a set. The latter method assumes the absence of connections between pores
that leads to varying pressure at the pore scale (pressure polarisation). Effective elasticity computed using both approaches
may differ, but such discrepancy matters only in the case of crack-like pores. Such a difference might be understood as a
relatively small influence of the interconnections between pores that are considered indirectly in the set-impact approach
but are neglected in the pore-impact approach. In this study, however, we do not take into account the type of interconnec-
tivity that may play a role in case of for example, occluded pores.39,40 Note that the set-impact approach can be considered
inconsistent with the EMT perspective (meso instead of micro-scale) but always provides the required poroelastic coef-
ficients. We believe that it can be used freely if not largely inconsistent with the pore-impact approach. In the case it
is inconsistent, and cracks are considered, we recommend caution; in such scenarios, the correctness of the set-impact
approach ought to be verified in laboratory experiments. In the context of conventional triaxial tests indicating varying
pressures, we recommend using the induced CTI symmetry that utilises the pore-impact approach.
If the poroelastic coefficients are related tomicrostructures—by assuming the undrained case—thenwe conjecture that

these coefficients can be implemented in expressions (1)–(2), where any (not necessarily undrained) scenario is considered.
In other words, it is possible that micromechanics can be indirectly linked to intermediate poroelastic states, where time
dependence plays a role. The comprehensive, time-dependent considerations beyond expressions (1)–(2), where varying
permeabilities and interset fluid flows are taken into account, can be found in our parallel paper.16

5 CONCLUSIONS

We have considered an extension of anisotropic poroelasticity theory, where we regard various scenarios of pore inter-
connections. The original approach of a single interconnected set of inhomogeneities is generalised to numerous sets
that are isolated from each other. Fluid content change can vary from set to set; when summed, giving the total fluid
content change of the effective medium. Each set is described by a distinct storage coefficient and Skempton-like tensor.
Summed storages lead to a total storage coefficient, whereas Skempton-like coefficients should be regarded as the poroe-
lastic characteristics of a particular set only. Our idea of the theory extension originates from the concept of the so-called
pore pressure polarisation at the instant of load application (Figure 2, scenario A).
Also, we invoke the classic micromechanical description of the fluid effect on pores, where each pore is treated sepa-

rately (pore-impact approach). We show that the pore-impact approach can be used successfully to obtain Skempton-like
and storage coefficients, only if pores have identical shapes and orientations in a set. If they have not, then we propose
an alternative description (set-impact approach) that always leads to those coefficients. This way, a bridge between
micromechanics (effective methods) and poroelasticity (extended Biot theory) is provided. Although, in general, the
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ADAMUS et al. 2173

classic micromechanical description cannot be implemented into Biot theory, it may be used as a fluid-effect reference
(Δ𝐼 vs. Δ𝐼𝐼). The discrepancies between the two approaches are shown numerically. The choice of the micromechanical
approach matters, especially in the case of cracks. In our considerations, the non-interactive approximation is assumed.
This can lead to errors in the case of high pore concentrations. Therefore, the expressions provided herein should be
treated either as relevant for moderate pore densities only or as the basis for future investigations on the interactive cases.
Further, we have proved that TI excess compliance tensor (CTI symmetry) can be obtained by inserting 𝑛 ≥ 3 vertical

(axial) and aligned sets of cracks that are distributed equally around the symmetry axis. Set-induced symmetry occurs
to be a particular case of CTI, where 𝛽1133 = 0 must be obeyed. Optionally, the horizontal (radial) set of cracks can be
inserted, which does not affect the symmetry conditions.

NOMENCLATURE
Gre ek l e t t e r s
Scalars

𝛾 aspect ratio
𝛿 fluid factor
𝜁 fluid content change
𝜃 angle between vertical crack sets
𝜈 Poisson ratio of a solid phase
𝜙 volume fraction
𝜑 azimuthal angle
𝜓 non-zero angle

Tensors

𝛼𝑖𝑗 2nd rank crack density tensor
𝛽𝑖𝑗𝑘𝓁 4th rank crack density tensor
Δ𝑖𝑗𝑘𝓁 fluid effect

𝛿𝑖𝑗 Kronecker delta
𝜀𝑖𝑗 strain tensor
𝜎𝑖𝑗 stress tensor

Roman l e t t e r s
Scalars

𝐼 pore impact approach
𝐼𝐼 set impact approach
𝑎 ratio of a circular crack
𝑐 closed or connected pore
𝑑 dry pore
𝐸 Young modulus of a solid phase
𝑒𝑐 density of a single crack
𝐾0 bulk modulus of a solid phase
𝐾𝑑 bulk modulus of a dry pore
𝐾𝑓 bulk modulus of a fluid phase
𝑚 number of pores in a set (or subset)
𝑛 number of sets (or subsets)
𝑝 particular set (or subset)

𝑝𝑓 pore pressure
𝑅 relative discrepancy (error)
𝑆 storage coefficient
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2174 ADAMUS et al.

𝑢 undrained entity
𝑉 medium’s volume
𝑥 total number of pores in a medium
𝑥𝑖 coordinate axis
𝑍 crack excess compliance

Tensors

𝐵𝑖𝑗 Skempton tensor
𝐻𝑖𝑗𝑘𝓁 dry excess compliance tensor

Δ𝐻𝑖𝑗𝑘𝓁 saturated compliance tensor
𝑛𝑖 normal to crack surface

𝑄𝑖𝑗 pressure polarisation tensor
𝑆𝑖𝑗𝑘𝑙 compliance tensor of a porous skeleton
𝑆0
𝑖𝑗𝑘𝑙

compliance tensor of a solid phase
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APPENDIX A: PROPERTIES OF POROELASTIC PARAMETERS
Let us discuss some key properties of 𝑆(𝑝), 𝐵(𝑝)

𝑖𝑗
, 𝑝(𝑝)

𝑓
, and 𝜁(𝑝); poroelastic parameters describing distinct sets at a meso-

scopic scale. Herein, we show how these parameters relate to their bulk counterparts describing a medium with single
(instead of multiple) porosity, which is the original Biot’s case.
In undrained conditions, the storage coefficient is not dependent on pore pressure—which must be constant in the set

but may vary in the medium. Therefore, this coefficient does not have to be linked strictly with a pore set—as is the case
of the Skempton-like tensor or obviously the aforementioned pressure—but can also be viewed at other, single-pore or
bulk-medium scales. In other words, the storage coefficient is a scalar independent of the connection among pores. Thus,
we can use definition (20) along with (11) to express a total storage coefficient, 𝑆𝑡𝑜𝑡, as

𝑆𝑡𝑜𝑡 =

𝑛∑
𝑝=1

𝑆(𝑝) =

𝑛∑
𝑝=1

𝜙(𝑝)𝐾
(𝑝)

−1

𝑑
+

𝑛∑
𝑝=1

𝜙(𝑝)
(
𝐾−1

𝑓
− 𝐾−1

0

)
=

𝑛∑
𝑝=1

(
𝜙(𝑝)

3∑
𝑖=1

3∑
𝑗=1

𝐻
(𝑝)

𝑖𝑖𝑗𝑗

)
+

𝑛∑
𝑝=1

𝜙(𝑝)
(
𝐾−1

𝑓
− 𝐾−1

0

)
. (A.1)
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Let us refer to expression (31) to analogously define the relationship between dry excess compliances of multiple sets and
of the entire effective medium,𝐻𝑖𝑗𝑘𝓁. We can write

𝜙𝑡𝑜𝑡𝐻𝑖𝑗𝑘𝓁 =

𝑛∑
𝑝=1

𝜙(𝑝)𝐻
(𝑝)

𝑖𝑗𝑘𝓁
. (A.2)

Using the above, we can rewrite (A.1) as

𝑆𝑡𝑜𝑡 = 𝜙𝑡𝑜𝑡

(
3∑

𝑖=1

3∑
𝑗=1

𝐻𝑖𝑖𝑗𝑗 + 𝐾−1
𝑓

− 𝐾−1
0

)
= 𝜙𝑡𝑜𝑡

(
𝐾−1

𝑑
+ 𝐾−1

𝑓
− 𝐾−1

0

)
=∶ 𝑆 . (A.3)

We see that 𝑆𝑡𝑜𝑡 is equivalent to the storage coefficient of a medium with one interconnected porosity, 𝑆.
In contrast, the Skempton-like tensor and pore pressure must be associated with pore connections. They are linked

to each set and must be regarded as that; therefore, a total value of the above-mentioned parameters is not introduced.
Nevertheless, one may again seek a comparison between a bulk Skempton tensor (or pressure) calculated for a medium
with one interconnected porosity and set Skemptons (or pressures) obtained for the samemedium but with detached sets.
Bulk, interconnected Skempton can be expressed as

𝐵𝑖𝑗 ∶=
3
∑3

𝑘=1
𝐻𝑖𝑗𝑘𝑘

𝐾−1
𝑑

+ 𝐾−1
𝑓

− 𝐾−1
0

=
3𝜙𝑡𝑜𝑡

∑3

𝑘=1
𝐻𝑖𝑗𝑘𝑘

𝑆
=

3
∑𝑛

𝑝=1

(
𝜙(𝑝) ∑3

𝑘=1
𝐻

(𝑝)

𝑖𝑗𝑘𝑘

)
∑𝑛

𝑝=1
𝑆(𝑝)

, (A.4)

where we utilised relationship (A.2). If 𝐾(𝑝)

𝑑
is constant through sets, then 𝐵𝑖𝑗 reduces to

𝐵𝑖𝑗 =
3
∑𝑛

𝑝=1

(
𝜙(𝑝) ∑3

𝑘=1
𝐻

(𝑝)

𝑖𝑗𝑘𝑘

)
𝜙𝑡𝑜𝑡

(
𝐾

(𝑝)
−1

𝑑
+ 𝐾−1

𝑓
− 𝐾−1

0

) =

∑𝑛

𝑝=1
𝜙(𝑝)𝐵

(𝑝)

𝑖𝑗

𝜙𝑡𝑜𝑡
= 𝐵

(𝑝)

𝑖𝑗
, (A.5)

where bar denotes an average weighted by the volume fraction of each pore set. Due to relation (4), the same conclusions

regard interconnected pore pressure 𝑝𝑓 and set pressures 𝑝
(𝑝)

𝑓
—we obtain 𝑝𝑓 = 𝑝

(𝑝)

𝑓
if 𝐾(𝑝)

𝑑
= const.

In drained conditions, total fluid content change (additive scalar) can be written as

𝜁𝑡𝑜𝑡 =

𝑛∑
𝑝=1

𝜁(𝑝) =
1

3

𝑛∑
𝑝=1

(
𝑆(𝑝)

3∑
𝑘=1

3∑
𝓁=1

𝐵
(𝑝)

𝑘𝓁
𝜎𝑘𝓁

)
=

𝑛

3

3∑
𝑘=1

3∑
𝓁=1

𝑆(𝑝)𝐵
(𝑝)

𝑘𝓁
𝜎𝑘𝓁 . (A.6)

Herein, the bar indicates an arithmetic average. If 𝑆(𝑝) is constant through sets—that is equivalent to constant both 𝜙(𝑝)

and 𝐾
(𝑝)

𝑑
—we get

𝜁𝑡𝑜𝑡 =
𝑛

3
𝑆(𝑝)

3∑
𝑘=1

3∑
𝓁=1

𝐵
(𝑝)

𝑘𝓁
𝜎𝑘𝓁 =

1

3
𝑆

3∑
𝑘=1

3∑
𝓁=1

𝐵𝑘𝓁𝜎𝑘𝓁 =∶ 𝜁 (A.7)

that is a fluid content change of a single interconnected porosity.
Note that 𝐾(𝑝)

𝑑
depends on the pore shape only. Using definitions (11) and (32), we can write

𝐾
(𝑝)

𝑑
=

(
3∑

𝑖=1

3∑
𝑗=1

∑𝑚

𝑐=1
𝜙𝑐𝐻𝑖𝑖𝑗𝑗𝑐∑𝑚

𝑐=1
𝜙𝑐

)−1

, (A.8)

By dry excess compliance definition,21 each component 𝐻𝑖𝑗𝑘𝓁𝑐
depends on aspect ratio and pore orientation. However,

due to the component summation, the tensor (and the pore) orientation does not matter. Thus, from set to set

𝐾
(𝑝)

𝑑
= const ⇒

∑𝑚

𝑐=1
𝜙𝑐𝛾𝑐∑𝑚

𝑐=1
𝜙𝑐

= const . (A.9)
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To conclude, 𝐵𝑖𝑗 (or 𝑝𝑓) is weighted average of 𝐵
(𝑝)

𝑖𝑗
(or 𝑝

(𝑝)

𝑓
) and 𝜁 = 𝜁𝑡𝑜𝑡 if each set has the same composition of pore

shapes. In a typical geological scenario, pore shapes vary from set to set (𝐾(𝑝)

𝑑
≠ const) that leads to 𝑆 = 𝑆𝑡𝑜𝑡, 𝑝𝑓 ≠ 𝑝

(𝑝)

𝑓
,

𝐵𝑖𝑗 ≠ 𝐵
(𝑝)

𝑖𝑗
, and 𝜁 ≠ 𝜁𝑡𝑜𝑡.

APPENDIX B: PROOF OF CTI INDUCTION FOR 𝒏 ≥ 𝟑 VERTICAL SETS
Theorem B.1. Consider 𝑛 ≥ 3 (𝑛 ∈ ℕ) identical sets of aligned and dry circular cracks that are embedded in the isotropic
solid phase. If each crack set is vertical and isolated from the other by horizontal angle 𝜃 = 𝜋∕𝑛, then TI with a vertical
symmetry axis is induced.

Proof. Without loss of generality, assume that 𝑥3 is a vertical axis. Vertical cracks in each set are aligned, meaning that
their surface normals are equal to the normal of the 𝑝 set,

𝒏(𝑝) = [cos (𝑝𝜃), sin (𝑝𝜃), 0] . (B.1)

A TI excess compliance matrix,𝑯, is a sufficient condition for the effective medium to become TI. An excess compliance
matrix is TI with a vertical symmetry axis if components of crack density tensors

𝛼11 = 𝛼22 , 𝛽1111 = 𝛽2222 , 𝛽1111 = 3𝛽1122 . (B.2)

The above conditions define a particular case of TI symmetry, the so-called CTI. If each set is identical, meaning that the
number, sizes, and shapes of cracks are the same in each set, we can rewrite (36)–(37) as

𝛼𝑖𝑗 ∶=

𝑚∑
𝑐=1

𝑍𝑇𝑐
𝑛𝑖𝑐

𝑛𝑗𝑐
= 𝑍𝑇

𝑛∑
𝑝=1

𝑛
(𝑝)

𝑖
𝑛

(𝑝)

𝑗
, (B.3)

𝛽𝑖𝑗𝑘𝓁 ∶=

𝑚∑
𝑐=1

(
𝑍𝑁𝑐

− 𝑍𝑇𝑐

)
𝑛𝑖𝑐

𝑛𝑗𝑐
𝑛𝑘𝑐

𝑛𝓁𝑐
= (𝑍𝑁 − 𝑍𝑇)

𝑛∑
𝑝=1

𝑛
(𝑝)

𝑖
𝑛

(𝑝)

𝑗
𝑛

(𝑝)

𝑘
𝑛

(𝑝)

𝓁
. (B.4)

Thus, conditions (B.2) correspond to

𝑛∑
𝑝=1

cos2(𝑝𝜃) =

𝑛∑
𝑝=1

sin
2
(𝑝𝜃) ,

𝑛∑
𝑝=1

cos4(𝑝𝜃) =

𝑛∑
𝑝=1

sin
4
(𝑝𝜃) ,

𝑛∑
𝑝=1

cos4(𝑝𝜃) = 3

𝑛∑
𝑝=1

cos2(𝑝𝜃) sin
2
(𝑝𝜃) . (B.5)

To prove set-induced CTI symmetry, we need to show that conditions (B.5) are satisfied. □

Lemma B.2. If 𝑛 sets from Theorem B.1 are embedded in the solid phase, then conditions (B.5) are satisfied.

Proof. Lagrange trigonometric identity states that

𝑛∑
𝑝=1

cos(𝑝𝜓) = −
1

2
+

sin
[(

𝑛 +
1

2

)
𝜓
]

2 sin
(

𝜓

2

) (B.6)

for 𝜓 ≠ 2𝑘𝜋 (𝑘 = 0, 1, 2, … ). Therefore, if 𝜓 = 2𝜃 = 2𝜋∕𝑛, we obtain

𝑛∑
𝑝=1

cos(2𝑝𝜃) = 0 . (B.7)

If 𝜓 = 4𝜃 = 4𝜋∕𝑛, we get

𝑛∑
𝑝=1

cos(4𝑝𝜃) = 0 (B.8)
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that does not hold for 𝑛 = 2. We can rewrite relation (B.7) as

𝑛∑
𝑝=1

cos2(𝑝𝜃) =
𝑛

2

𝑛∑
𝑝=1

cos2(𝑝𝜃) = 𝑛 −

𝑛∑
𝑝=1

cos2(𝑝𝜃)

𝑛∑
𝑝=1

cos2(𝑝𝜃) =

𝑛∑
𝑝=1

[
1 − cos2(𝑝𝜃)

]
𝑛∑

𝑝=1

cos2(𝑝𝜃) =

𝑛∑
𝑝=1

sin
2
(𝑝𝜃)

(B.9)

or as
𝑛∑

𝑝=1

cos4(𝑝𝜃) = 𝑛 − 2

𝑛∑
𝑝=1

cos2(𝑝𝜃) +

𝑛∑
𝑝=1

cos4(𝑝𝜃)

𝑛∑
𝑝=1

cos4(𝑝𝜃) =

𝑛∑
𝑝=1

[
1 − cos2(𝑝𝜃)

]2
𝑛∑

𝑝=1

cos4(𝑝𝜃) =

𝑛∑
𝑝=1

sin
4
(𝑝𝜃) .

(B.10)

Assume that the last condition is satisfied, namely,

𝑛∑
𝑝=1

cos4(𝑝𝜃) = 3

𝑛∑
𝑝=1

cos2(𝑝𝜃) sin
2
(𝑝𝜃) (B.11)

that can be rewritten as

4

𝑛∑
𝑝=1

cos4(𝑝𝜃) = 3

𝑛∑
𝑝=1

cos2(𝑝𝜃)

𝑛 + 2

𝑛∑
𝑝=1

cos(2𝑝𝜃) +

𝑛∑
𝑝=1

cos2(2𝑝𝜃) = 3

𝑛∑
𝑝=1

cos2(𝑝𝜃)

𝑛∑
𝑝=1

cos(2𝑝𝜃) +

𝑛∑
𝑝=1

cos(4𝑝𝜃) = 0 .

(B.12)

The assumption (B.11) must be correct for 𝑛 ≥ 3 due to relations (B.7) and (B.8). □
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