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Abstract

This paper presents a new method of generating chaotic maps that do not have
fixed points. The method uses an appropriate transformation of functions defined
on the unit square in such a way that the newly created projection has no fixed
points. In this way, countless new chaotic mappings can be created, both piece-
wise linear and nonlinear, that belong to the family of systems with hidden
attractors. The new family of maps is presented in three examples showing phase
diagrams, bifurcation diagrams, and space parameters of the Lyapunov exponent.
The discussed examples of mappings were created by appropriate logistic and tent
mapping transformations, and their combination. In addition, this paper analyzes
the applications of the new families of chaotic mappings in chaotic cryptography.
Furthermore, an algorithm for generating pseudorandom bit values (PRBG) is
also presented based on the examples of proposed mappings.

Keywords: chaos, piecewise map, equilibrium, fixed point, hidden attractor, logistic
map, tent map, chaotification, prbg, encryption
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1 Introduction

Chaos theory is one of the great discoveries of the 20th century. Since its discovery,
dynamical systems have played a key role in many aspects of science and engineering
[1]. Chaotic systems have been reported in various fields, e.g., chemical engineering
[2], economics [3], or even medicine [4]. One of the special areas were such systems
have found use is the so-called chaotic cryptography. In chaotic cryptography, chaotic
systems are a carrier of randomness, that is, using them as a high entropy source,
sequences of pseudo-random values are generated, which are then used to ensure secu-
rity, by masking an information signal. Of course, following the rules prevailing in
cryptography, the security of methods and algorithms depends on the so-called unique
keys, which in the context of chaotic cryptography, are the values of parameters and
initial conditions of the chaotic system. This means that a completely different random
stream will be generated by minimally changing the value of the initial condition or
parameter of the system. Thus, an uncountable number of different streams of pseudo-
random values can be generated. On the other hand, knowing the exact values of such
a key allows for fully recreating the generated pseudo-random sequence.

Chaotic cryptography deals with all threads of data security. The resulting algo-
rithms are used to encrypt any type of media, including text [5], image [6], audio [7],
and video [8], generating hash functions [9] and S-boxes [10] or even allowing encryp-
tion from the context of the so-called asymmetric cryptography [11]. In addition to
chaotic cryptography, chaotic systems are used in path planning [12] or optimization
algorithms [13]. However, it is clear that for a given chaotic system to be used in such
applications, it must meet certain criteria regarding its dynamical behavior. These
criteria include sufficiently large ranges of parameter values and initial conditions for
which chaos occurs. If the system generates a periodic solution instead of a chaotic
solution, then such an algorithm to encrypt information stops working properly, and
security is broken.

Several previous works have proposed nonlinear systems that are chaotic and that
possess some special property suitable for an encryption method. The proposed sys-
tems are either continuous [14–16], systems with derivatives of fractional order [17–20],
or discrete [21–23]. It is clear that using a continuous system requires the system to be
defined by at least three equations in order to generate chaos. Moreover, the solution
of continuous systems is heavily affected by the numerical method used, so accurate
reconstruction of the solution across devices is difficult. On the other hand, in the case
of discrete systems, only one equation is enough to obtain chaotic solutions, and the
time series solution is obtained by a simple iterative function. Moreover, the decay
of the correlation of maps is much faster than their continuous analogues. Thus, dis-
crete systems are undoubtedly a better variant, because of the computational cost of
generating subsequent solutions.

Among the discrete systems used in chaotic cryptography, such maps as the logis-
tic or asymmetric tent maps are very popular. However, often these systems do not
meet the basic criteria of wide parameter ranges of chaos. Another problem associated
with chaotic systems is the occurrence of so-called fixed points. The system stops gen-
erating chaotic solutions if such a point is chosen as the initial condition. Even worse
is the situation when the fixed point is stable. All the points belonging to its basin of
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attraction will be attracted to it after a sufficiently large number of iterations. When
selecting keys (based on initial conditions), the fixed point and the points belonging to
its basin of attraction should be omitted. For this reason, there are works in the litera-
ture on the construction of chaotic systems that do not have fixed points. These works
concern continuous [24–29] and discrete [30–39] systems, and are generally termed
systems with hidden attractors.

Many works deal with the lack of fixed points among the continuous systems. One
such work is [24]. Another such work is [25], where a new system was proposed and
applied to generate random bit sequences. References [26–28] presents electronic cir-
cuits implementations of systems without fixed points. Yet another model is presented
in [29].

Also, discrete systems may not have fixed points. This applies to both one-
dimensional (1d) and multi-dimensional systems as in paper [30]. Another 2d system
was presented in [31], where a memristor was used in its construction. A comparison of
different 1d and 2d mappings without fixed points is done in [32] by means of different
models with each other, presenting, e.g., bifurcation diagrams, Lyapunov exponents,
or entropy calculation. A piecewise-linear mapping is presented in [33], where the
authors showed how to use field-programmable gate arrays to implement it. Also, in
[34], the dynamics of a discrete linear system were analyzed. A modified logistic map
without fixed point is proposed in [35], and its dynamic characterization was presented
in [36]. A family of Bernoulli-like maps without fixed points were proposed in [37]. In
[38], recursions of the form of the Newton and Euler methods were used to show that
mappings of such a form are characterized by chaotic behavior, and at the same time,
they do not have fixed points. Yet another family of one-dimensional curves, which is
characterized by chaotic behavior and the lack of fixed points, is presented in [39].

Motivated by the constructions of maps in [39], this paper presents a new method
of generating countless examples of chaotic maps that do not have fixed points. The
new family of mappings is presented in three examples showing phase diagrams, bifur-
cation diagrams, and space parameters of the Lyapunov exponent. In addition, this
paper analyzes the applications of the new family of chaotic mappings in chaotic
cryptography. Furthermore, a new algorithm for generating pseudorandom bit values
(PRBG) is also presented based on the examples of proposed mappings.

The rest of this article is structured as follows. Section 2 presents the basic pre-
liminaries. Section 3 deals with the derivation and analysis of a new family of maps
without fixed points. The next Section 4 shows examples of maps along with their
analysis. Section 5 discusses the applications of the proposed family of mappings. The
work closes with the Conclusions section, and a discussion on future topics of interest.

2 Preliminaries

Let us consider a one-dimensional (1d) discrete dynamical system of the form

xk+1 = f(xk), (1)

where f is the mapping function, x(k) is the state of the map and k = 0, 1, . . . denotes
the iteration number. Furthermore, let us assume that the function f : [0, 1] → [0, 1].
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A fixed point, or equilibrium, of the map (1) is a state value of x∗ for which the
following relation holds

f(x∗) = x∗. (2)

The graphical interpretation of condition (2) means that the plot of the function
f(x) intersects the bisector line at the point (x∗, x∗).

The representation of the form (1) may be characterized by stable or chaotic behav-
ior. The necessary condition for the occurrence of chaos for (1) is the positive value of
the Lyapunov exponent λ given by the formula

λ = lim
n→∞

1

n

n−1∑
i=0

ln |f ′(xi)|. (3)

3 The Proposed Family of Maps

In [39] the authors suggested that the map (1) has no fixed points when it is of the
form

xk+1 =

{
f1(xk), 0 ≤ xk ≤ p
f2(xk), p < xk ≤ 1

, (4)

where
f1(x) > x, ∀x ∈ [0, p] (5)

f2(x) < x, ∀x ∈ [p, 1]. (6)

This geometric approach considered placing each of the 2 sub-functions above and
below the bisector in the 2d plane, to guarantee the absence of equilibria.. The problem
with (4) is the appropriate definition of the functions f1 and f2. This paper shows
how to transform the function f : [0, 1] → [0, 1] to the form (4) fulfilling conditions
(5) and (6).

Let us consider a function f : [0, 1] → [0, 1]. Now consider the following function
compositions of f :

1◦: (1− a)
(
−f

(
x
p

)
+ 1

)
+ a for x ∈ [0, p],

2◦: bf
(

x−p
1−p

)
for x ∈ (p, 1],

where a, b, p ∈ (0, 1) are parameters.
The composition 1◦ is a transformation of the domain of the function f into the

interval [0, p], then reflection about the x-axis is applied and, finally, its set of values is
defined as [a, 1]. In turn, composition 2◦ transforms the domain of the function f into
the interval (p, 1) and defines its set of values in the interval [0, b]. Both compositions
create a new function, which we denote as F . Then F : [0, 1] → [0, 1] and is in the form

F (x) =

 (1− a)
(
−f

(
x
p

)
+ 1

)
+ a, x ∈ [0, p]

bf
(

x−p
1−p

)
, x ∈ (p, 1]

. (7)

Example function f and its compositions 1◦ and 2◦ are shown in the left and
right graphs of Figure 1, respectively. The right graph shows that if the appropriate
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Fig. 1: An example of function f (left) and the corresponding function F of the form
(7) (right). The parameters a, b and p in the right figure correspond to the parameters
from mapping (7), a = 0.4, b = 0.6, p = 0.5.

relationship between the parameters a, b, and p is maintained, then the function F
does not intersect the line y = x.
Remark 1. It is obvious that not every f function is suitable as a base function. A
good example is the function shown in Figure 2. This graph shows that if the basis
function f is the function that takes the largest values in the neighbourhood of the
points x = 0 or x = 1 (in the case of Figure 2, the relation f(0) = f(1) = 1 holds),
then the intersection of the line y = x by the function F is very likely.
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Fig. 2: An example of the base function f (left) and the function F (right) that
intersects the line y = x, a = 0.4, b = 0.6, p = 0.5.

Let us consider now the following discrete piecewise map

xk+1 = F (xk) =

 (1− a)
(
−f

(
xk

p

)
+ 1

)
+ a, 0 ≤ xk ≤ p

bf
(

xk−p
1−p

)
, p < xk ≤ 1

, (8)

where a, b, p ∈ (0, 1) and f is a function that f : [0, 1] → [0, 1].
The goal is to determine the relationship between the parameters a, b and p in

such a way that the mapping (8) does not have fixed points. It should be noted that
by controlling the parameters a, b and p, the mapping (8) may not have fixed points,
or have a certain number of them.
Remark 2. In order to facilitate the construction of mappings of the form (8), the
following conditions should be met by the f function:

1. f(1) = f(0) = 0,
2. there is at least one point x ∈ (0, 1) such that f(x) = 1.

Condition 1. means that F (0) = F (p) = 1 and limx→p+ F (p) = F (1) = 0.
On the other hand, condition 2. means that parameters a and b are in the range

(0, 1). This results from the fact that the map F , like the function f , is defined on the
unit square.

These conditions are conducive for the function F not to intersect the line y = x
but still allow for its flexible definition. Examples of such mappings are shown in the
next section of this paper. In turn, an example of a function f that does not meet
these conditions is shown in Figure 2.

Moreover, it is worth noting that the function f does not have to be continuous
for map (8) to have no fixed points.
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Remark 3. Note that the mapping (8) depends directly on the parameters a, b and
p. However, the function f can also depend on some other parameters, as is often the
case with chaotic mappings. Thus, the number of parameters for mapping (8) can be
significantly greater. This situation occurs, for example, in the case of examples of tent
maps 4.1.
Remark 4. The mapping (8) can be modified to the following form

xk+1 = F (xk) =

 (1− a)
(
−f1

(
xk

p

)
+ 1

)
+ a, 0 ≤ xk ≤ p

bf2

(
xk−p
1−p

)
, p < xk ≤ 1

, (9)

where f1 and f2 are two different functions that satisfy the conditions for the f
function.
Remark 5. With the appropriate selection of parameters a, b, and p, mapping (8)
(and also (9)) will not have fixed points. However, nothing more can be said about
its dynamics. Everything depends on the function f (or f1 and f2 in (9)). Thus, all
cases other than fixed points can appear. This also applies to the occurrence of chaos.
Regardless of the type of behavior, the mapping trajectories (8) (and (9)) are always
bounded — they are contained in the interval [0, 1]. This means that both periodic and
chaotic solutions will be included in this interval. This is especially important in the
context of chaotic behavior, where a positive Lyapunov exponent and a bounded tra-
jectory will guarantee some kind of attractor. However, how complicated the dynamics
of maps (8) and (9) are can be seen by defining the function f (or f1 and f2 in the
case of (9)), as shown by the examples given in Section 4.

4 Examples

This section shows examples of mappings constructed from various basis functions in
the form (8) and (9).

4.1 Tent map

As a first example, consider the well-known asymmetric tent map

f(x) =

{
x
r 0 ≤ x ≤ r

1−x
1−r r < x ≤ 1

, (10)

where r ∈ (0, 1) and x ∈ [0, 1].
The tent map function (10) satisfies the assumptions required for the function f

in the Remark 2. After substituting (10) to (8) the dynamical system is of the form

xk+1 =


− 1−a

pr xk + 1 0 ≤ xk ≤ pr
1−a

p(1−r) (xk − p) + 1 pr < xk ≤ p
b

r(1−p) (xk − p) p < xk ≤ (1− p)r + p
b

(1−r)(1−p) (1− xk) (1− p)r + p < xk ≤ 1

, (11)
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Lemma 1. When the parameters a, b, p and r meet the conditions

a > pr and b < (1− p)r + p, (12)

then, the map (11) has no fixed point.

Proof. The mapping (11) has at least one fixed point when there is at least one
common point of the mapping with the line y = x. In particular, this point is the
splicing point of the subfunctions, which can be called the vertex of the mapping for
x ≤ p and for x > p. It is worth noting that the vertices of this mapping are extremum
points, that is, the minimum for x ≤ p and the maximum for x > p. The vertex
coordinates are equal to (pr, a) for x ≤ p and ((1− p)r + p, b) for x > p, respectively.
From these coordinates, the relationships a > pr and b < (1−p)r+p follow directly.

The phase diagrams of the mapping (11) for fixed values of the parameters a, b, p
and r are shown in Figure 3. The left graph shows a symmetric map, whereas in the
right graph, this map is no longer symmetric. However, it is clear from both graphs
that these maps do not have fixed points.

(a) a = 0.4, b = 0.6, p = 0.5 and r = 0.5. (b) a = 0.3, b = 0.5, p = 0.3 and r = 0.7.

Fig. 3: Phase diagrams of tent maps of the form (11).

In addition, to better illustrate the dynamics of the system, a 3d diagram in the
relation (xk, xk+1, xk+2) for selected parameter values was determined. These results
are presented in Figure 4a.

Furthermore, to better show the dynamics of the map (11), depending on the
value of the b parameter, a bifurcation diagram was determined, shown in Figure
4b. It clearly shows that the behavior of map (11) is very complicated, including the
occurrence of chaos, which will be further investigated. Furthermore, it is worth noting

8



that the transition to chaos from a two-period orbit does not occur by doubling the
period. There is the so-called crisis phenomenon.

(a) a = 0.4, b = 0.6, p = 0.5 and r = 0.5. (b) a = 0.4, p = 0.5 and r = 0.5.

Fig. 4: 3D phase diagram and bifurcation diagram of logistic-tent maps of the form
(11).

Fixed points and periodic solutions are just one of the behaviors that can charac-
terize a dynamical system (11). However, the occurrence of chaos is significant in its
behavior. The necessary condition for its occurrence is the positive value of the Lya-
punov exponent λ given by the formula (3). Figure 5 shows the parameter space of
the Lyapunov exponent obtained for map (11) with different parameter values. The
black color in this graph represents parameter values (a, b) for which the system has
stable periodic behavior. The other colors, however, represent parameters which lead
the system to chaos. It is worth noting that set of parameters leading to chaos is a
single open set, i.e., parameters leading to chaos are not close to parameters leading
to periodic behavior, except at the boundary between chaotic and periodic parameter
regions. In addition, the left graph is symmetrical, resulting from the mapping (11)
and the selected parameter values.

9



(a) p = 0.5, r = 0.5. (b) p = 0.3, r = 0.7.

Fig. 5: Parameter spaces showing the Lyapunov exponent of tent maps of the form
(11).

4.2 Logistic map

As a second example, let us consider the well-known logistic map

f(x) = rx(1− x), (13)

where r ∈ [0, 4] and x ∈ [0, 1].
For r = 4, the logistic map function (13) satisfies the assumptions required for the

function f in the Remark 2. After substituting (13) to (8) the dynamical system is of
the form

xk+1 =

{
4(1−a)

p2

(
xk − p

2

)2
+ a 0 ≤ xk ≤ p

−4b
(p−1)2

(
xk − 1+p

2

)2
+ b p < xk ≤ 1

. (14)

The phase diagrams of the mapping (14) for fixed values of the parameters a, b and
p are shown in Figure 6. As in the previous example, the left graph shows a symmetric
map, whereas in the right graph, this map is no longer symmetric. However, it is clear
from both graphs that these projections do not have fixed points.
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(a) a = 0.4, b = 0.6, p = 0.5. (b) a = 0.3, b = 0.5, p = 0.3.

Fig. 6: Phase diagrams of logistic maps of the form (14).

In addition, like in the first example, a 3d phase diagram in the relation
(xk, xk+1, xk+2) for selected parameter values was also determined. These results are
presented in Figure 7a.

Furthermore, like in the first example, to better show the dynamics of the map
(14), depending on the value of the b parameter, a bifurcation diagram was also deter-
mined, shown in Figure 7b. It clearly shows that the behavior of map (14) is very
complicated, including the occurrence of chaos, which will be further investigated. It
is also worth noting that the bifurcation diagram shows the presence of fixed points
for a certain range of b parameter values. This case is a consequence of the mapping
(14) intersecting the line y = x (a similar situation occurs in the right graph of Figure
2). Another interesting phenomenon can also be observed from this diagram — anti-
monotonicity, which occurs when the system follows the path of doubling the period
and then switches to a path of halving the period.

As in the first example, using (3), the values of the Lyapunov exponent λ for map
(14) were determined. Figure 8 shows the parameter space of the Lyapunov exponent
obtained for map (14) with different parameter values. The black color in this graph
represent parameter values for which the system has stable periodic behavior. The
other colors, however, represent parameters which lead the system to chaos. Contrary
to the first example, the region of parameters leading to chaotic behavior is formed by a
large number (possibly infinite) of open sets, i.e., parameter regions of chaotic solutions
are intertwined with regions of parameters leading to stable solutions. Moreover, the
fractal nature of this figure can be observed. The periodic regions form a self-similar set
of open sets, the so-called ”shrimps” [40–42]. The left graph, as in the first example, is
also symmetrical, which results from the form of mapping (14) and selected parameter
values.
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(a) a = 0.4, b = 0.6, p = 0.5. (b) a = 0.4, p = 0.5.

Fig. 7: 3D phase diagram and bifurcation diagram of logistic maps of the form (14).

(a) p = 0.5. (b) p = 0.3.

Fig. 8: Parameter spaces showing the Lyapunov exponent of logistic maps of the form
(14).

4.3 Logistic-Tent map

As a next example, consider two different functions, f1 and f2, where f1 is the logistic
map function (13) and f2 is the tent map function (10). Then the dynamic system (9)
takes the form
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xk+1 =


4(1−a)

p2

(
xk − p

2

)2
+ a 0 ≤ x ≤ p

b
r(1−p) (xk − p) p < x ≤ (1− p)r + p

b
(1−r)(1−p) (1− xk) (1− p)r + p < x ≤ 1

, (15)

The phase diagrams of the map (15) for fixed values of the parameters a, b, p and r
are shown in Figure 9. Both maps shown are not symmetric. However, as the previous
examples show, the maps do not have fixed points.

(a) a = 0.4, b = 0.6, p = 0.5 and r = 0.5. (b) a = 0.3, b = 0.5, p = 0.3 and r = 0.7.

Fig. 9: Phase diagrams of logistic-tent maps of the form (15).

In addition, like in the previous examples, 3d phase diagram in the relation
(xk, xk+1, xk+2) for selected parameter values was also determined. These results are
presented in Figure 10a.

Furthermore, like in the previous examples, to better show the dynamics of the
map (15), depending on the value of the b parameter, a bifurcation diagram was also
determined, shown in Figure 10b. It clearly shows that the behavior of map (15) is
very complicated, including the occurrence of chaos, which will be further investigated.
Moreover, as in the first example, it can be observed that the transition to chaos from
a two-period orbit does not take place by doubling the period. Therefore, also in this
mapping there is the so-called crisis phenomenon.
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(a) a = 0.4, b = 0.6, p = 0.5 and r = 0.5. (b) a = 0.4, p = 0.5 and r = 0.5.

Fig. 10: 3D phase diagram and bifurcation diagram of logistic-tent maps of the form
(15).

Also, in this example, using (3), the values of the Lyapunov exponent λ for map
(15) were determined. Figure 11 shows the parameter space of the Lyapunov exponent
obtained for map (15) with different parameter values. The black color in this graph
represents parameter values for which the system has stable periodic behavior. The
other colors, however, represent parameters which lead the system to chaos. Like in
the second example, this parameter space is formed by a number of open sets for
parameters that lead to chaos and periodicity. However, different from the shrimps
observed in Figure 8, these open sets for the periodic regions seem to be formed along
a single convex curve, contrasting the shrimps as in Figure 8 that appear on the ”top”
of a double set of convex curves. Moreover, the fractal nature of this figure can be
observed.

5 Applications

The area where the proposed mappings can find many applications is chaotic cryptog-
raphy. This type of cryptography uses chaotic mappings as the source of randomness
to keep data secret. However, from the point of view of chaotic cryptography, the
dynamic system should meet several assumptions, including, among others: a suffi-
ciently large range of parameters and initial conditions for which chaos occurs and a
reasonable computational cost of obtaining successive values from the dynamic system.
The first criterion for the proposed mappings is met, which is proved by the presented
analysis of the Lyapunov exponent. It is worth noting that compared to other dynam-
ical systems, an example in equation (11) has much compact ranges of parameters
for which chaos occurs. In addition, unlike other chaotic systems used in cryptogra-
phy, such as logistic or tent mapping, the proposed mappings can have parameters
set so to not have fixed points. So far, only some works in chaotic cryptography have
addressed this problem of avoiding systems with fixed points. Finally, it is known that
the parameter regions leading a nonlinear system to a fixed point are typically larger
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(a) p = 0.5, r = 0.5. (b) p = 0.3, r = 0.7.

Fig. 11: Parameter spaces showing the Lyapunov exponent of logistic-tent maps of
the form (15).

than the parameter regions leading the same system to higher-period periodic orbits.
This can be seen by the Feigenbaum rute to chaos, or by the homoclinic bifurcations
[43]. By creating systems that have no fixed point, we are creating systems that can
be set to chaos by smaller variations of parameters. Not only that, Figures 4b and
10b show that chaos in these systems appears without the period doubling route. A
period 2 orbit looses stability giving rise to the chaotic attractor. All in all, systems
with no fixed point enlarge the sets of parameters for which chaotic behavior can be
observed. The second criterion means that the computational complexity of the map-
ping used is such that the computation time of the entire cryptographic system is
reasonable. Meeting this criterion may be problematic for continuous systems, where
at least three mathematical equations are needed to define the system and require
appropriate numerical methods to determine successive values. In addition, one sees
that the mappings proposed do not need to use complex mathematical operations.

5.1 PRBG

To illustrate the use of the proposed family of maps in applications, a Pseudo-Random
Bit Generator (PRBG) will be designed. The proposed PRBG generates 15 bits per
iteration, using the modulo operator for hashing, a transformation to binary represen-
tation, and an exclusive or (XOR) operation between the most and least significant
bits of the binary hash.

Starting with a given map from the ones proposed, its key parameters and initial
condition x0 are set. Then, in each iteration k, 15 bits are generated from the state
xk of the map, using the following operations,
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Hk = rem
(
⌊1012xk⌋, 230

)
(16)

Mk = de2bi(Hk) (17)

Bk = XOR(Mk,1:15,Mk,16:30) (18)

were ⌊·⌋ denotes the highest integer smaller than its argument, which for positive
numbers equals to the integer part of the argument, rem(·, 230) denotes the remainder
of division by 230, de2bi(·) denotes the decimal to binary conversion, and XOR(·, ·)
denotes the element-wise exclusive OR operation. The de2bi(·) function constitutes a
blowup operation, where a single number is transformed into a sequence of 15 bits.
Whereas such operation applied directly to the chaotic trajectory would generate
strongly correlated binary sequences, the rem(·, 230) operation in (16) is responsible
to decorrelate xk from xk−1. The benefit is obvious, to increase the binary key length.
Then, the XOR operation is dedicated to ensure no correlation is present between
each block of 15 bits, basically providing the mixing step of the encryption. The
notation a : b denotes the elements of a vector in positions a, a+1, ..., b, following the
notation common to MATLAB. So in each iteration, the value of the chaotic map xk is
multiplied by 1012 and its integer part is divided by 230. The remainder of the division
Hk is an integer in the interval [0, 230 − 1]. This integer is then transformed into its
binary representation Mk, which has a fixed length of 30 bits. Finally, an exclusive
OR operation is performed between the first 15 bits, and the last 15 bits of Mk. So
(18) denotes the exclusive or operations XOR(Mk,1,Mk,16), XOR(Mk,2,Mk,17), ...,
XOR(Mk,15,Mk,30). The final vector Bk has a length of 15 bits, which is the output
of the PRBG for the k-th iteration. The resulting bitstream is obtained by appending
all Bk, as

Bitstream = {B1,B2, ...} (19)

Since 15 bits are generated per iteration, if a bitstream of length N is required, the
chaotic map used must be iterated k = 1, ..., ⌈N

15⌉ times, where ⌈·⌉ denotes the smallest
integer higher than its argument.

The PRBG is tested using all three maps (11), (14), (15) as chaotic sources. For
each map, a set of 1000 bitstreams of length 106 are generated, for random initial
condition x0. This results in an appended bitstream of length 109 for each map. The
parameters are chosen as a = 0.4, b = 0.6, p = 0.5, r = 0.5, for (11), a = 0.3, b = 0.5,
p = 0.3, for (14), and a = 0.3, b = 0.7, p = 0.3, r = 0.7, for (15). The bitstreams are
tested through the National Institute of Standards and Technology (NIST) statistical
test suite [44]. This is a common statistical package used to verify if a bitstream can
be considered statistically similar to a random sequence, with respect to 15 statistical
tests. The tests were performed using their default parameter values. The results are
shown in Table 1, and are all positive, meaning that the PRBGs pass all the statistical
tests. Thus, the proposed PRBG using the maps developed in the previous section can
be a viable option for use in applications relevant to randomness or security.

Finally, Table 2 lists the number of operations required per iteration of the PRBG,
as well as the ratio of operations required for a single bit. The number 1012 can be
precomputed when the PRBG is initialized, and thus is not counted as an additional
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Table 1: NIST test results for the proposed PRBG using different maps.

Map (11) Map (14) Map (15)

No. Test Ratio Result Ratio Result Ratio Result

1 Frequency 993/1000 Pass 989/1000 Pass 988/1000 Pass
2 BlockFrequency 987/1000 Pass 987/1000 Pass 989/1000 Pass
3 CumulativeSums 993/1000 Pass 985/1000 Pass 990/1000 Pass
4 Runs 997/1000 Pass 990/1000 Pass 990/1000 Pass
5 LongestRun 993/1000 Pass 985/1000 Pass 988/1000 Pass
6 Rank 992/1000 Pass 989/1000 Pass 985/1000 Pass
7 FFT 988/1000 Pass 989/1000 Pass 986/1000 Pass
8 NonOverlappingTemplate 990/1000 Pass 988/1000 Pass 989/1000 Pass
9 OverlappingTemplate 986/1000 Pass 989/1000 Pass 987/1000 Pass
10 Universal 990/1000 Pass 987/1000 Pass 988/1000 Pass
11 ApproximateEntropy 989/1000 Pass 986/1000 Pass 994/1000 Pass
12 RandomExcursions 600/609 Pass 606/612 Pass 618/628 Pass
13 RandomExcursionsVariant 603/609 Pass 600/612 Pass 623/628 Pass
14 Serial 991/1000 Pass 989/1000 Pass 993/1000 Pass
15 LinearComplexity 983/1000 Pass 989/1000 Pass 990/1000 Pass

operation. The ratio is 1.27 operations per bit, so around a 30% increase compared to
the minimum of 1 operation per bit. Of course, the operations listed all have different
complexities, and their execution time is dependent upon the hardware and software
used. So this ratio should only be viewed as an index of good balance for the number
of operations required per bit, but not as a solid indicator of fast performance, as this
would be affected by other implementation parameters. Note that the Table 2 only
lists the operations required to generate the bits, after xk is obtained, so the ratio of
1.27 does not count the operations required to compute the map’s value, as different
maps can be considered as a source of the PRBG.

Table 2: Number of oper-
ations required for a single
iteration of the PRBG.

Operation Total

Multiplication 1
⌊·⌋ 1

rem(·, 230) 1
de2bi(·) 1
XOR(·, ·) 15

Overall 19

Per Bit 19
15 ≈ 1.27
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6 Conclusions

In this work, families of piecewise maps without equilibria were proposed. The maps
were based on the logistic and tent classic maps, and their phase portraits consisted of
two pieces of different curvatures, and thus a single discontinuity, so that no intersec-
tions with the bisection appeared. The numerical analysis of their behavior revealed
wide chaotic ranges, as well as periodic regions with self-similar patterns, commonly
referred to as ”shrimps”. Other phenomena were also observed, like crisis, antimono-
tonicity, and a period doubling route to chaos. So overall, the maps exhibited rich
dynamics. The maps were also successfully applied to the design of a PRBG that
can generate 15 bits per iteration, by mixing the most and least significant bits of a
modulo based hash value.

From the numerous bifurcation and Lyapunov exponent diagrams, it can be seen
that the proposed maps do indeed showcase compact and predominant areas of chaotic
behavior in the space parameters. Still, there are periodic windows of period-2 or higher
appearing, but typically the parameter regions leading to those orbits are smaller
than the regions of parameters that would lead to a fixed point. In future studies,
it is of interest to design maps that will have no N -periodic behavior appearing. To
design such maps, one has to consider the absence of intersections with the bisector
for all the N -level compositions of the map with itself. This task is more complex to
the one considered here, and in previous works that design no-equilibria maps was
not significantly analyzed. One way to approach this problem would be to consider
nonlinear functions with curves that are easily tunable, like exponential and sinusoidal
functions. This task is currently under study by our research group.
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