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Abstract

The dorsal (DRN) and median (MRN) raphe are important nuclei involved in similar functions,

including mood and sleep, but playing distinct roles. These nuclei have a different composi-

tion of neuronal types and set of neuronal connections, which among other factors, determine

their neuronal dynamics. Most works characterize the neuronal dynamics using classic mea-

sures, such as using the average spiking frequency (FR), the coefficient of variation (CV),

and action potential duration (APD). In the current study, to refine the characterization of neu-

ronal firing profiles, we examined the neurons within the raphe nuclei. Through the utilization

of nonlinear measures, our objective was to discern the redundancy and complementarity of

these measures, particularly in comparison with classic methods. To do this, we analyzed the

neuronal basal firing profile in both nuclei of urethane-anesthetized rats using the Shannon

entropy (Bins Entropy) of the inter-spike intervals, permutation entropy of ordinal patterns

(OP Entropy), and Permutation Lempel-Ziv Complexity (PLZC). Firstly, we found that classic

(i.e., FR, CV, and APD) and nonlinear measures fail to distinguish between the dynamics of

DRN and MRN neurons, except for the OP Entropy. We also found strong relationships

between measures, including the CV with FR, CV with Bins entropy, and FR with PLZC,

which imply redundant information. However, APD and OP Entropy have either a weak or no

relationship with the rest of the measures tested, suggesting that they provide complemen-

tary information to the characterization of the neuronal firing profiles. Secondly, we studied

how these measures are affected by the oscillatory properties of the firing patterns, including

rhythmicity, bursting patterns, and clock-like behavior. We found that all measures are sensi-

tive to rhythmicity, except for the OP Entropy. Overall, our work highlights OP Entropy as a

powerful and useful quantity for the characterization of neuronal discharge patterns.
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Author summary

The spiking activity of neurons in a certain population can be characterized by different

measures. Classic methods to do this characterization are the firing rate, which is the

number of spikes per second, the action potential duration, which measures the duration

of the spike, and the coefficient of variation, which quantifies the regularity in the inter-

spike intervals. In this work, we tested these linear methods and added three different

measures of complexity to characterize the neuronal activity of two groups of neurons in

the rat: the dorsal and median raphe. These nonlinear measures quantify the degree of

uncertainty or average information in the sequence of inter-spike intervals, and are called

Shannon entropy (Bins Entropy), Permutation entropy (OP Entropy), and Permutation

Lempel-Ziv Complexity (PLZC). We found that only the OP Entropy was sensitive to the

different activity from the DRN and MRN neurons. Additionally, OP Entropy has either a

weak or no relationship with the rest of the measures tested, providing complementary

information to the characterization of the neuronal activity. We also show that OP

Entropy is unaffected by other patterns in the signal, like rhythmicity or burst patterns,

concluding that OP Entropy is a good measure to characterize the neuronal activity.

1 Introduction

The raphe nuclei are located in the brain stem along its mid-line [1]. A large body of evidence

supports the role of the DRN (dorsal raphe nucleus) and MRN (median raphe nucleus) in an

extensive array of important functions, including stress response [2–5], pain control [6–9],

reproductive functions and behavior [10], food intake and obesity [11, 12], aggressiveness [13,

14], social interaction [15], motivation and reward [16, 17], fear [18, 19], learning and memory

[20–23], motor activity [12], and the sleep-wake cycle physiology [24–26]. Additionally, the

raphe nuclei play an important role in the physiopathology of several diseases, including major

depression [27–29], anxiety, panic, obsessive compulsive disorder, eating disorders, phobias,

drug addiction, and post-traumatic stress [30].

Despite the raphe nuclei participating in similar physiological functions, the DRN and

MRN play distinct roles in neurotransmission and physiological functions. For example, the

microinfusion of a selective agonist of the 5-HT1A receptor (8-OH DPAT) into the MRN

inhibits the activity of serotonergic neurons, which produces general behavioral hyperactivity;

contrary to what happens in the DRN with a decrease in certain behaviors, such as rearing and

grooming [12]. Also, lesions to the DRN increase reactivity and aggression evoked by pain,

while lesions to the MRN do not have such effect [6, 9]. Furthermore, both nuclei comprise

varying proportions of the same neurotransmitters, thereby influencing distinct roles. The

neuronal dynamics also depends on other local factors, including its connections; these nuclei

have different projections, and in turn, receive afferents from different regions. A comparison

of the DRN and MRN projections shows they are distributed in regions that, in most cases, do

not overlap in the anterior brain; instead, they project to complementary regions. For example,

the DRN projects to the medial prefrontal cortex, the amygdala, and the accumbens nucleus,

whereas the MRN projects to medial structures, including the medial septum and diagonal

band, zona incerta, and posterior hypothalamus [30, 31]. In summary, the differentiation

between DRN and MRN neurons is crucial for a more nuanced understanding of their roles in

neurobiology, behavior, and various physiological functions.

To date, most studies characterizing neuronal groups using electrophysiological extracellu-

lar recordings focus on: the frequency of neuronal discharge, the rhythmicity (measured by
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the auto-correlation of events), the regularity (measured by the coefficient of variation), and

the phase coherence (or phase locking) with hippocampal, cortical or other biological rhythms

[32–40]. For example, serotonergic neurons from the DRN have been described as clock-like,

exhibiting spontaneous activity, a slow 1 − 5 Hz firing-rate [41], regular spiking activity (coeffi-

cients of variation close to zero), wide action potentials (>1.4 ms), and to have rhythmic pat-

terns of discharge [41, 42], suggesting a “neuronal signature” of this neuro-chemical group.

However, there are serotonergic neurons with different electrophysiological properties as well

as non-serotonergic neurons in the DRN. In addition, neurons from the MRN have heteroge-

neous firing patterns [39, 43–46]. Therefore, there is a need to find new characteristics in the

neuronal recordings in order to better differentiate between different neuronal groups, and in

the case of the present paper, between DRN and MRN neurons.

The classical characterization of neurons mainly relies on analyzing the salient characteris-

tics of the distribution of inter-spike intervals (such as the distribution’s mode and coefficient

of variation) and applying linear methods (such as the auto-correlation or Z-coherence),

which miss the nonlinear components that are naturally present in the neuronal dynamics.

Moreover, some reports describe neuronal characteristics with redundant measures; for exam-

ple, mean firing-rate and mean inter-spike interval (being the inverse of each other), or the

auto-correlation and the spectral components (being related by their Fourier transform),

which provide no new information about the spiking characteristics.

Nonlinear methods can address this problem and may reveal complementary information

from the recordings, which has been the case for the electroencephalogram (EEG) [47–50]. So,

we propose to use nonlinear methods to extend the characterization of neuronal activity. To

achieve this objective, our present study involved analyzing the firing profiles (the inter-spike

intervals) of individual neurons in both the DRN and MRN. We computed the entropy from

the time-series distribution of amplitudes (i.e., Bin Entropy) [51], Permutation Entropy [52],

and Permutation Lempel-Ziv complexity [53], comparing them with classic electrophysiologi-

cal methods, which include the average firing frequency rate (FR), action potential duration

(APD), and coefficient of variation (CV). We employed nonlinear measures and compared

them with the classic measures to discern potential redundancy in the information obtained.

Additionally, we assessed their sensitivity to the oscillatory properties of the firing patterns,

encompassing rhythmicity, bursting patterns, and clock-like behavior.

2 Results

We recorded a total of 169 neurons from both nuclei, corresponding 77 to the DRN and 92 to

MRN of the rat. We confirmed that the neurons were located within the limits of the corre-

sponding nuclei by reconstruction of the micropipette tracts, or by identification of the

recorded neuron with neurobiotin (Nb). Fig 1 shows examples of the recording, processing,

and recognition of Nb-labeled neurons.

The entire population of recorded neurons within the DRN (n = 77) display the following

electrophysiological characteristics. An APD of 3.07 ± 0.37 ms (mean ± SEM), FR 8.45 ± 1.94

Hz, and CV 0.65 ± 0.079. 79% percent of these neurons exhibit uni-modal interval histogram

(IH), 26% have a rhythmic pattern of discharge in the ACH, and 20% have a predominant

interval in the auto-correlation histogram (ACH). Moreover, a burst firing pattern is observed

in 4 neurons (5%), i.e., showing doublets or triplets with< 20 ms intervals and a prominent

decrease in the amplitude of higher order spikes [32]. On the other hand, the recorded neurons

in the MRN (n = 92) display the following electrophysiological characteristics. An APD of

2.56 ± 0.27 ms, FR of 10.52 ± 1.34 Hz, and CV of 0.76 ± 0.055. 75% of these neurons exhibit
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uni-modal IH, 21% a rhythmic pattern, and 35% a predominant interval in the ACH. Burst fir-

ing pattern is observed in 20 neurons (21%).

2.1 OP Permutation Entropy distinguishes DRN and MRN neuronal

activity

We first studied whether the nonlinear measures—OP Entropy, PLZC, and Bins Entropy—

can distinguish MRN from DRN neuronal dynamics compared to the classic measures—APD,

CV, and FR.

For the classic measures, it can be seen from Fig 2 that only the CV has just a tendency to

discriminate both nuclei (0.77 ± 0.05 for the MRN Vs. 0.61 ± 0.08 for the DRN, with a non-

Fig 1. Neuronal recording and identification example. A) Raw recording of a MRN neuron. B) Autocorrelation histogram,

interval histogram, and average waveform for the same neuron. C) Examples of neurons identified by neurobiotin. Antero-

posterior coordinate from Bregma -8 mm according to [54]. Calibration bars: 20 μm.

https://doi.org/10.1371/journal.pcbi.1012111.g001
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significant p = 0.06). The FR and APD are not significantly different between groups

(10.74 ± 1.39 Vs. 8.72 ± 2.08, p = 0.30; and 2.47 ± 0.29 Vs. 2.72 ± 0.40 ms, p = 0.33, respec-

tively). For the nonlinear measures, only the OP Entropy is significantly lower for the neurons

from the DRN than for those from the MRN (0.9970 ± 5.714 × 10−4 Vs. 0.9954 ± 8.460 × 10−4,

p< 0.05), which could be attributed to a sub-population of neurons with an OP Entropy lower

than 0.985. Bins Entropy and PLZC show non-significant differences between the values from

both groups (0.52 ± 0.02 Vs. 0.54 ± 0.03, p = 0.63; and 0.76 ± 0.005 Vs. 0.77 ± 0.008, p = 0.28,

respectively). Moreover, OP Entropy and PLZC values are significantly different than those

obtained from surrogates of the ISI sequences (for more information see S1 Fig).

We also explored different paired combinations of the measured variables and visualized

the resultant scatter plots. For each pair of measures, two shaded contours are plotted sur-

rounding the data-points belonging to the DRN (light blue) and MRN (orange). By doing this,

we can qualitatively see if the DRN and MRN neuronal populations have superimposed values

or the measures hold mostly different values (Fig 3).

Among the pairwise comparison of classic measures, the combination of FR and CV shows

that the values are similar for both nuclei (Fig 3A). The combination of APD with FR or CV

only partially separates both nuclei, where the DRN shows a group with high APD and low FR

(Fig 3B), and the MRN a group with low APD and high CV(Fig 3C).

When comparing the APD with nonlinear measures (Fig 3D, 3E and 3F), the combinations

show that some DRN neurons (highlighted by the shaded cyan area) have different values than

those from the superimposed MRN neurons (highlighted by the shaded orange area). For

example, it can be seen (Fig 3D) that neurons with OP Entropy lower than 0.985 have a short

APD and that these neurons belong to the DRN. By contrast, MRN neurons show OP Entropy

Fig 2. Comparison between classic measures (top) and nonlinear measures (bottom) from MRN and DRN neuronal sub-populations. Classic

measures (FR, firing frequency rate; APD, action potential duration; CV, coefficient of variation) are insensitive to the neuronal activity differences in the

nuclei, and only the permutation entropy (OP Entropy) among the nonlinear measures (PLZC, Permutation Lempel-Ziv complexity; Bins Entropy,

Shannon entropy of histogram of inter-spike intervals using 18 bins) is significantly different between both neuronal groups: *p< 0.05.

https://doi.org/10.1371/journal.pcbi.1012111.g002
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higher than 0.985. For Bins Entropy and PLZC the non-superimposed area predominates in

the upper part of the plots, for the neurons with larger APD from the DRN (Fig 3E and 3F).

When looking at the relationship between the CV and nonlinear measures (Fig 3G, 3H and

3I), results vary. The combination of CV and OP Entropy can distinguish some DRN from

MRN neurons (Fig 3G). There is a group of neurons with OP Entropy lower than 0.985 that

purely contain DRN neurons with small CV, whereas for higher values of OP Entropy both

neuronal populations are mixed (as in Fig 2G). On the other hand, we cannot see differences

between DRN and MRN neurons when looking at the combination of CV and Bins Entropy

or PLZC (Fig 3H and 3I). Similarly, the combination of FR with nonlinear measures (Fig 3J,

3K and 3L) shows partial separations between the nuclei only when combined with OP

Entropy (Fig 3J), where OP Entropy values below 0.98 contain neurons from the DRN with

low FR.

Finally, the combinations between the entropies (Fig 3M, 3N and 3O) show separate char-

acteristics for some of the neurons from the DRN and MRN populations. When using OP

Entropy and Bins Entropy (Fig 3M), a light blue area can be seen containing neurons with low

OP Entropy and high Bins Entropy; and when using PLZC with OP Entropy, DRN neurons

with low OP Entropy show a range of PLZC values (Fig 3O).

From these results, we can conclude that the APD combined with nonlinear measures

(Fig 3D, 3E and 3F) are likely to provide complementary information to characteize the two

raphe neuronal populations. Additionally, the OP Entropy can also separate the discharge pat-

tern of these neuronal populations in combination with other variables, like the CV, FR, Bins

Entropy, and PLZC.

Fig 3. Scatter plots of values from the linear and nonlinear measures for the DRN (shaded cyan areas) and MRN (shaded orange areas). The plotted

pairwise measures are those from Fig 2.

https://doi.org/10.1371/journal.pcbi.1012111.g003

PLOS COMPUTATIONAL BIOLOGY Dorsal and median raphe neuronal firing dynamics characterized by nonlinear measures

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012111 May 28, 2024 6 / 22

https://doi.org/10.1371/journal.pcbi.1012111.g003
https://doi.org/10.1371/journal.pcbi.1012111


2.2 Relationship between classic and nonlinear measures

In order to explore in more detail the relationship between the different measures for both

nuclei, we plotted all possible paired combinations of the variables and studied the relationship

between them (Fig 4 and Table 1), by the use of multilevel linear model fitting. In some cases, a

log scale transformation was performed before fitting. When a linear model significantly fits in

a log-log scale transformed combination of variables, the relation was considered nonlinear.

For the classic measures, there is a statistically significant negative nonlinear relationship

between the FR and the CV (p< 0.001, Fig 4A), but there is neither a linear relationship

between the FR and APD, nor between the CV and the APD (p = 0.61 in Fig 4B and p = 0.14 in

Fig 4C).

When comparing classic to nonlinear measures, we can see significant (p< 0.001) nonlin-

ear relationships between the CV and Bins Entropy (Fig 4H) and between the FR and PLZC

(Fig 4L). With less statistical significance (p< 0.05), we also find nonlinear relationships

between the APD and OP Entropy (Fig 4D) and between the FR and OP Entropy (Fig 4J) The

exponents for these nonlinear relationships are βH = −1.59 [i.e., CV / ðbin entropyÞbH ],

βL = −9.27 [i.e., FR / ðPLZCÞbL], βD = 0.46 [i.e., APD / 1 � OP entropyð Þ
bD], and βJ = −53.55

[i.e., FR / 1 � OP entropyð Þ
bJ ]. We cannot see other linear or nonlinear relationships between

the classic and nonlinear measures, which is summarized in Table 1.

Regarding the nonlinear measures, we found significant linear relationships between them.

It can be seen that the Bins Entropy and OP Entropy have a weak linear relationship

(p = 0.024, rM = 0.17; Fig 4M), similar to the one between OP Entropy and PLZC (p = 0.022,

Fig 4. Pairwise measures used to characterize neuronal dynamics from inter-spike intervals coming from 169 neurons of the raphe nuclei. The best fit

for the values in panel A happens in log-log scale, meaning that a nonlinear relationship exists between CV and FR, with an exponent βA = −0.50 [i.e., CV

proportional to FRbA ] and a Pearson correlation coefficient rA = −0.32. Similarly, the best fit for the values in panels D, H, J, and L also happens in the log-

log scale, where the respective exponents are βD = 0.46 [i.e., APD / 1 � OP entropyð Þ
bD ] with rD = 0.18, βH = −1.59 [i.e., CV / bin entropyð Þ

bH ] with rH =

−0.65, βJ = −53.55 [i.e., FR / 1 � OP entropyð Þ
bJ ] with rJ = −0.25, and βL = −9.27 [i.e., FR / PLZCð Þ

bL ] and rL = −0.54. Contrary, the best fit for panels M,

N, and O happens in a linear scale, meaning linear relationships with slopes given by αM = 4.11 × 10−3 and rM = 0.17, αN = 0.07 and rN = 0.31, and αO = 0.02

and rO = 0.16, respectively.

https://doi.org/10.1371/journal.pcbi.1012111.g004
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rO = 0.16; Fig 4O). By contrast, PLZC and Bins Entropy are positively correlated (p< 0.001,

rN = 0.31; Fig 4N).

In Table 1 we summarize the statistical results for all the linear combinations of the classic

and nonlinear measures.

2.3 Sensitivity of the classic and nonlinear measures to rhythmic pattern

Next, we examined the impact of neuronal firing rhythmicity on both classic and nonlinear

measures. Specifically, certain neurons in the DRN and MRN exhibit predominant firing fre-

quencies within the range of 1 up to 60 Hz, as illustrated in Fig 5A. These neurons display peri-

odic firing patterns and exhibit an ACH characterized by regular peaks, as depicted in Fig 5B.

In the MRN, neuronal firing predominantly exhibits a theta rhythm (4 − 9 Hz), evident in the

ACH. Meanwhile, in the DRN, a lower frequency prevails (Fig 5A). These results are in line

with previous evidence showing that a subgroup of neurons, discharged rhythmically in syn-

chrony with the hippocampal theta rhythm; synchronization of the firing with the hippocam-

pal theta rhythm is greater in the MRN than in the DRN [37].

We classified the neurons from each nucleus into two categories: rhythmic and non-rhyth-

mic. As a result, we got 19 rhythmic neurons (out of 92: 21%) and 40 non-rhythmic neurons

(out of 92: 44%) in the MRN and we got 20 rhythmic neurons (out of 77: 26%) and 41 non-

rhythmic neurons (out of 77: 54%) in the DRN. Neurons having an ACH without defined

peaks or showing only a unique predominant interval in the ACH were excluded from this

analysis, as in the example of Fig 5D (33 in the MRN and 16 in the DRN). Hence, we con-

ducted a comparison between distinctly rhythmic patterns, with multiple discernible peaks in

the ACH (Fig 5B), and patterns that were clearly non-rhythmic (Fig 5C). Then, we tested if the

different measures are affected by rhythmic properties and explored the ability of each of the

measures in separating DRN and MRN within rhythmic and non-rhythmic subgroups.

When looking at the classic measures, it can be seen from Fig 5E that the FR, APD, and CV

are modulated by rhythmicity depending on whether the neurons are from the MRN or DRN.

Rhythmic neurons from the MRN group have a significantly higher FR than non-rhythmic

ones (16.96 ± 3.07 Hz and 7.43 ± 1.77 Hz respectively, p = 0.008), but rhythmic and non-rhyth-

mic neurons from the DRN have similar FR values (12.60 ± 3.49 Hz and 8.07 ± 2.11 Hz respec-

tively, p = 0.23). On the other hand, APD is significantly larger in rhythmic neurons from the

DRN than non-rhythmic ones (3.89 ± 0.50 ms Vs. 2.4661 ± 0.29 ms, respectively, p = 0.005),

but the APD shows no significant differences in the rhythmicity of MRN neurons (2.23 ± 0.12

ms Vs. 2.23 ± 0.21 ms, p = 0.998). Similarly, rhythmic neurons from the DRN have significantly

smaller CV than non-rhythmic ones (0.46 ± 0.11 and 0.74 ± 0.06 respectively, p = 0.01), but

are undifferentiated in the MRN (0.71 ± 0.12 Vs. 0.78 ± 0.073, p = 0.54).

Table 1. Statistical comparison between measures using linear multilevel models. F statistic t-test is used to test the relationship between the fixed effects. *p< .05, **p
< .005, ***p< .001.

Mean Freq. CV APD OP Entropy Bins Entropy PLZC

Mean Freq. < 0.001*** 0.338 0.001** 0.864 < 0.001***
CV < 0.001*** 0.136 0.132 < 0.001*** 0.909

APD 0.338 0.136 0.0192* 0.169 0.427

OP Entropy 0.001** 0.132 0.0192* 0.024* 0.035*
Bins Entropy 0.864 < 0.001*** 0.169 0.024* < 0.001***

PLZC < 0.001*** 0.909 0.427 0.035* < 0.001***
https://doi.org/10.1371/journal.pcbi.1012111.t001
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Regarding the nonlinear measures, it can be observed from Fig 5E that OP Entropy is the

only one insensitive to rhythmicity. For the DRN, the OP Entropy for non-rhythmic and

rhythmic neurons is 0.99 ± 0.0011 and 0.99 ± 0.0019 (p = 0.77), respectively. For the MRN, the

OP Entropy values are 0.99 ± 0.00048 and 0.99 ± 0.00082, respectively.

On the other hand, Bins Entropy significantly increases to 0.63 ± 0.059 in the rhythmic neu-

rons of the DRN versus the non-rhytmic neurons, which hold 0.47 ± 0.035 (p = 0.006). How-

ever, no differences are found for the MRN, with Bins Entropies of 0.50 ± 0.034 and

0.50 ± 0.059 (p = 0.956) for non-rhythmic and rhythmic neurons, respectively. Similarly,

PLZC is sensitive to rhythmic properties of the neuronal discharge, where rhythmic neurons

Fig 5. Sensitivity of the classic and nonlinear measures to rhythmic patterns in the neuronal discharge. A) Distribution of the frequencies of the

rhythmic neurons of the DRN and MRN. B) ACH of rhythmic neurons. C) ACH of a non-rhythmic neuron. D) Example of a single predominant

interval in the ACH. E) Relationship between classic and nonlinear measures with rhythmicity, where OP Entropy is the only measure insensitive to

the rhythmic pattern. The median is represented with horizontal black lines. *p< .05, **p< .005, ***p< .001.

https://doi.org/10.1371/journal.pcbi.1012111.g005
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have lower PLZC of 0.74 ± 0.011 than non-rhythmic neurons, with 0.78 ± 0.0068. However, it

was only statistically significant for the MRN (p< 0.001). No differences were found for the

DRN (0.77 ± 0.0088 Vs. 0.765 ± 0.012, p = 0.64).

When looking at the ability of linear and nonlinear measures to differentiate between DRN

and MRN neurons within rhythmic or non-rhythmic subgroups, it can be seen that only APD

and Bins Entropy achieve a significant difference in their values for rhythmic neurons. APD is

larger for the DRN (0.66 ± 0.058 ms) compared to the MRN (0.50 ± 0.039 ms, p = 0.012), and

Bins Entropy is higher for the DRN (0.50 ± 0.041 Vs. 0.63 ± 0.059, p = 0.04) compared to the

MRN. However, no measures separates the nuclei when looking at the non-rhythmic subgroup

of neurons.

2.4 Nonlinear measures are insensitive to burst patterns

Some neurons in DRN (5%) and MRN (21%) display a burst firing pattern. An example of this

firing pattern is shown in Fig 6A. In order to study how this pattern of activity can affect the

Fig 6. Sensitivity of the classic and nonlinear measures to the presence of bursts in the neuronal discharge. A)

Example of a raw neuronal recording with bursts (indicated with numbers). A zoomed view of these bursts is shown in

the circular boxes. B) Comparison of the six measures studied on their sensitivity to bursts—nonlinear measures

appear insensitive to bursts. The CV is the only measure that shows a higher value for the bursting neurons in both

nuclei. The median is represented by horizontal black lines. *p< .05, **p < .005, ***p < .001.

https://doi.org/10.1371/journal.pcbi.1012111.g006
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classic and nonlinear measures we compared neurons with and without burst pattern activity

for each of the variables and for both nuclei (Fig 6B). We encountered that of the classic mea-

sures only the CV is sensitive to burst activity having the neurons with burst a higher CV for

DRN (1.07 ± 0.19 Vs. 0.58 ± 0.05; p< 0.05) as well as for the MRN (1.07 ± 5.31 Vs. 0.69 ± 1.90;

p< 0.01). None of the other measures are affected by the presence of burst pattern of activity

(FR for DRN: 4.59 ± 5.31 Vs. 10.13 ± 1.90, p = 0.36; FR for MRN: 15.61 ± 5.31 Vs. 9.81 ± 1.90,

p = 0.98; APD for DRN: 2.13 ± 1.26 Vs. 3.41 ± 0.50, p = 0.37; APD for MRN: 2.44 ± 0.34 Vs.

2.45 ± 0.16, p = 0.98; OP Entropy for DRN: 0.992 ± 3.3 × 10−3 Vs. 0.995 ± 0.82 × 10−3, p = 0.27;

OP Entropy for MRN: 0.996 ± 0.77 × 10−3 Vs. 0.997 ± 0.35 × 10−3, p = 0.27; PLZC for DRN:

0.76 ± 0.25 × 10−1 Vs. 0.77 ± 0.63 × 10−2, p = 0.67; PLZC for DRN: 0.74 ± 1.17 × 10−2 Vs.

0.77 ± 0.54 × 10−2, p = 0.05; Bins Entropy for DRN: 0.9921 ± 0.11427 Vs. 0.54697 ± 0.02813,

p = 0.52. Bins Entropy for MRN: 49.86 × 10−2±0.50 × 10−1 Vs. 52.31 × 10−2±0.23 × 10−1,

p = 0.61).

2.5 A high Bins Entropy characterize clock-like neurons

Clock-like neurons had been determined to have APD larger than 1.4, CV lower than 0.30,

rhythmic pattern in the ACH, and low FR (< 5 Hz), and this type of neuron have also been

shown to be serotonergic [34, 36, 55, 56]. In this work, neurons considered as clock-like were

separated from the non clock-like following the previous characteristics, and their spiking

activity were compared using nonlinear measures. We found 7 neurons with the aforemen-

tioned clock-like characteristics only in the DRN (which had 77 neurons).

As shown in Fig 7, clock-like neurons showed a higher Bins Entropy compared with the

non-clock-like group (0.51 ± 0.03 Vs. 0.78 ± 0.07, p = 0.002). The OP Entropy and PLZC were

not statistically different between those groups (OP Entropy: 0.995 ± 8.45 × 10−4 Vs.

0.997 ± 2.59 × 10−3, p = 0.42; PLZC: 0.77 ± 0.0064 Vs. 0.79 ± 0.019, p = 0.38).

3 Discussion

In the present work, we characterize the dynamics of neuronal activity from the DRN (dorsal

raphe nucleus) and MRN (median raphe nucleus) using 3 classic measures—FR, APD and

CV—and 3 more recently developed nonlinear measures—OP Entropy, Bins Entropy and

PLZC. We first summarize the evidence provided by the classical measures of the DRN and

Fig 7. Characterization of the clock-like and non-clock-like neurons using nonlinear measures: (A) OP Entropy, (B) Bins Entropy and (C) PLZC. Clock-like

neurons show high Bins Entropy whereas non-clock-like sub-group shows a widespread distribution. OP, Ordinal Patterns; PLZC, Permutation Lempel-Ziv complexity.

The median is represented by horizontal black lines and the mean with green lines. **p< .005.

https://doi.org/10.1371/journal.pcbi.1012111.g007
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MRN, and then we discuss the contribution of the nonlinear measures to the characterization

of raphe neuronal dynamics.

3.1 Classic characterization of raphe neurons

Most of the studies that contributed to the characterization of DRN neurons are focused on

serotonergic neurons. Early studies detected regularly spontaneously firing neurons in the

DRN in anesthetized rats using extracellular recording techniques [34, 36, 55, 56]. Serotoner-

gic neurons of the DRN characteristically show spontaneous activity with a slow (1–5 Hz) and

regular discharge frequency described as clock-like [55]. This unique firing pattern would

serve as a “neuronal signature” for this neurochemical group of brainstem cells [1]. The extra-

cellular action potentials (APs) of these neurons exhibit a prominent positive deflection, fol-

lowed by a negative or negative/positive deflection. The first positive deflection plus the first

negative deflection has a duration greater than 1.4 ms [33, 34].

Hajos et al. in 1995 [33] described that during their regular discharge these neurons show

spike bursts (from 2 to 4 spikes) [32, 33]. In these bursts, the spikes have a short interval

(range: 2.4–11.5 ms), and the secondary spikes show a decrease in amplitude. In addition,

non-serotonin neurons with varied electrophysiological properties are also present in the

DRN. This heterogeneous population of neurons show a less regular pattern of firing, with fir-

ing rates in the range of 0.1–30 Hz [34–36, 55].

In contrast to the DRN, few studies describe the electrophysiological characteristics of the

MRN. These studies of the MRN were carried out in vitro [46, 57, 58] or in vivo using anesthe-

tized animals [33, 37–39]. The studies carried out by Kocsis et al.(2006) [38] and Viana di

Prisco (2022) [39] showed a great diversity in the MRN neurons: a group of serotonergic neu-

rons which characteristics similar to the clock-like neurons of the DRN, a fast-firing serotoner-

gic group of neurons rhythmic with theta, and a more heterogeneous non-serotonergic group

of neurons. Therefore, the electrophysiological criteria used in previous studies to identify

putative serotonergic neurons would be appropriate only as a rough preliminary classification

of MRN neurons emphasizing the need for new measures for the classification of neuronal

activity.

3.2 Nonlinear measures in neuronal characterization

Nonlinear measures had been used to compare neuronal dynamics in different neurological

pathologies [59], finding that their values change in different states [60, 61] and reporting that

neuronal entropy depends on the level of alertness in humans and animals. It was also recently

used to compare informational complexity in spike trains across species [62]. Another study

[63] compared FR with the Shannon Information Transmission Rate in the responses of lateral

geniculate nucleus neurons of the cat to spatially homogeneous spots of various sizes with tem-

porally random luminance. They found that the behavior of these two rates can differ quantita-

tively. This suggests that the energy used for spiking does not translate directly into the

information to be transmitted. They also compared FR with Information Rates for two type of

cells in the lateral geniculate nucleus: X-ON (neurons excited by light onset) and X-OFF cells

(neurons excited by light offset). They found that, the FR and Information Rate for X-ON cells

often behave in a completely different way, while for X-OFF cells these rates are much more

highly correlated. These results suggest that for X-ON cells a more efficient “temporal code” is

employed, while for X-OFF cells a straightforward “rate code” is used.

A recent work by Estarellas et al. (2020) [64], used nonlinear measures to investigate the

encoding and information transmission in time series of sensory neurons. They found that

depending on the frequency, specific combinations of neuron/class and coupling-type allow a
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more effective encoding, or a more effective transmission of the signal. However, our work is

the first study proposing nonlinear measures for neuronal characterization of the raphe nuclei

using novel informational complexity measures.

We show that compared to the other classic and nonlinear measures, the OP Entropy is the

only measure that characterizes differently the inter-spike intervals from the DRN and MRN

neuronal groups (Fig 2), pointing to OP Entropy being the strongest candidate for neuronal

activity categorization.

3.3 Neuronal characterization by multiple complementary measures

When performing a neuronal characterization, we need to capture as much information of the

spiking activity as possible, without providing redundant or overlapping information. A mea-

sure that captures the same information as another measure is redundant and not very

informative.

To assess the level of redundancy among the 6 measures, we made 15 pairwise comparisons

(Fig 3) and analyzed whether a functional relationship between the measures could be found

(Fig 4 and Table 1). Specifically, we sought for the best fit out of linear and power-law relation-

ships between the pairs of measures. Our results show that when we look at the classic mea-

sures that are normally used to analyze extracellular neuronal activity, the APD gives

complementary information when compared to the FR or CV (Fig 4B and 4C), which means

that the use of APD with either FR or CV improves the characterization of the spiking activity.

Moreover, we find that FR and CV are nonlinearly related (Fig 4A), making their values

redundant.

When we look at the possible redundancies between the classic and nonlinear measures, we

find 4 nonlinear relationships out of the 9 possible pairs of measures. On the one hand, there

are weak nonlinear relationships between the APD with the OP Entropy (Fig 4D; r = 0.18;

p = 0.019) and between the FR with the OP Entropy (Fig 4J; r = −0.25; p = 0.001). This means

that it is preferable to avoid using these pairs of measures together because they can provide

redundant information about the neuronal dynamics of the inter-spike intervals (18% of the

variation in APD is explained by variation in OP Entropy and 25% of the variation in FR is

explained by variation in OP Entropy). On the other hand, there is a strong nonlinear relation-

ship between the CV with the Bins Entropy (Fig 4H; r = −0.65; p< 0.001) and between the FR

with the PLZC (Fig 4L; r = −0.54; p< 0.001). These strong relationships imply that these mea-

sures should not be used together.

When we look at the possible redundancies between the nonlinear measures, we only find

weak linear relationships between the entropy measures (Fig 4M, 4N and 4O; Table 1). Because

the only relationship with a strongly significant p-value is between the Bins Entropy and PLZC

(Fig 4N; r = 0.31; p< 0.001), we are confident that this is the pair of measures that provides

redundant information about the neuronal dynamics.

3.4 Measures’ sensitivity to oscillatory properties in the spiking dynamics:

Rhythmicity, bursts, and clock-like behavior

We show that OP Entropy is insensitive to any of the oscillatory patterns we selected from the

DRN and MRN neurons. These patterns included rhythmic and non-rhythmic behavior in

each nucleus (Fig 5), neurons with and without bursts (Fig 6), and clock-like versus non-

clock-like activity in the DRN (Fig 7). In particular, the OP Entropy is insensitive to the rhyth-

mic patterns present in the time series, whereas all the other measures change depending on

whether the neuronal activity is rhythmic or not (Fig 5). Additionally, none of the nonlinear

measures is sensitive to burst patterns (Fig 6).
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Regarding the characterization of clock-like putative serotonergic neurons using nonlinear

measures, we found that these neurons display a high Bins Entropy (Fig 7B). That could be

because the clock-like group was selected by a low CV, which as can be seen in Fig 4H is nega-

tively related with the Bins Entropy. As can be seen in Fig 7A, the OP Entropy, which is the

measure that was significantly different between DRN and MRN, does not separate the clock-

like neurons from the rest. And also, none of those neurons are in the subgroup with low levels

of OP Entropy. This means that the difference in OP Entropy levels between DRN and MRN

can not be attributed to clock-like neurons. On the other hand, the measure that significantly

separates the clock-like neurons is the Bins Entropy. However, this measure is not different in

DRN and MRN. Additionally, when we look at the distributions they overlap, meaning that we

can not use the levels of Bins Entropy as a marker for clock-like neurons.

3.5 OP Entropy considerations

The OP Entropy values across our results show high values (Figs 2, 3, 4, 5E, 6B and 7A), even

for rhythmic or clock-like neurons (Figs 5E and 7A). We checked our results and saw that the

ISI sequences, even for these rhythmic or clock-like neurons, have a strong stochastic compo-

nent, which supports the resultant high entropy values.

Finally, it is important to note that all the complexity analysis performed in this work were

done using D = 3 for the ordinal patterns (OP). We were not able to test whether the differenti-

ation improved if D> 3 because we are limited in the length of the time series (N = 225). It is

probable that a larger D may reveal a stronger differentiation in OP Entropy and PLZC values

for the MRN and DRN neurons, as more information would be included in each OP. Similarly,

we could not analyse higher-order correlations in the ISI sequence, self-similarity, or other

temporal scales by changing the OP embedding delay τ (i.e., sample the ISI values within each

OP window non-consecutively). This limitation remains even if we choose to encode the ISI

sequence with overlapping OPs. To overcome this limitation, we need much longer ISI

sequences (N� 225).

We conclude that nonlinear measures, and specially OP Entropy, contribute significantly to

enrich the characterization of raphe nuclei neurons and is a promising measure to distinguish

sub-populations based in neuronal dynamics.

4 Methods

4.1 Ethics statement

All of the experimental procedures were conducted in accordance with the Guide for the Care

and Use of Laboratory Animals (8th edition, National Academy Press, Washington DC, 2010)

and approved by the Institutional Animal Care Commission (Exp. Nº 070153-000841-18).

Institutional Ethics Committee: https://www.chea.edu.uy/node/29. Adequate measures were

taken to minimize pain, discomfort or stress of the animals, and all efforts were made to use

the minimal number of animals necessary to produce reliable scientific data.

4.2 Experimental procedures

Sixty four male Wistar rats (250–310 gr) were used in this study. They were obtained from

URBE (Reagents and Biomodels Experimentation Unit), Facultad de Medicina, Universidad

de la República. The animals were maintained with food and water available ad libitum and

kept under controlled conditions (temperature 22 ± 2˚C, 12-h day–night cycle, lights on at

7:00 A.M.).
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4.3 Recording procedures

Rats were anesthetized with urethane (1.5 gr/kg, i.p.) and positioned in a stereotaxic frame

(David Kopf Instruments, USA). Following a scalp incision, skull landmarks were visualized

and coordinates were determined from Paxinos and Watson, 2008 [54]. A small hole was

drilled in the skull for unit recording of DRN and MRN neurons (AP −8 mm, L 2.6 mm, H 6–7

for DRN and H 7–9 for MRN; from Bregma). Micropipettes were lowered at an angle of 26˚

for DRN and 20˚ for MRN to avoid the sagittal vein. Extracellular neuronal recordings were

carried out using standard procedures with glass micropipette of 10–20 MO, filled with 2M

NaCl [65–68] or with 2% Neurobiotin (Nb, Vector Laboratories) in 0.5M NaCl solution (14

rats) [69]. Two screw electrodes were placed in the frontal and parietal cortices, and two

twisted nichrome electrodes were placed in the dorsal hippocampus (coordinates: AP, -4.4

mm; L, -2.6 mm; H, 3.4 mm) to monitor the electrocorticogram (ECoG).

Neuronal signals were amplified by an AC-coupled amplifier (Dagan 2400A), filtered

between 0.3 Hz-10 kHz and digitized at 20 kHz. Single unit activity was acquired and processed

using Spike 2 software (Cambridge Electronic Design, UK). The baseline discharge of raphe

neurons was recorded for 3 to 10 min. Neurobiotin was administered by iontophoresis with

the following protocol: anodic current, 5 nA, 200 ms on / 200 ms off, for 5 minutes [67]. In

order to visualize the ECoG, the signal was amplified (×1000), filtered (0.1–100 Hz), acquired

(512 Hz, 16 bits) and processed with Spike 2. The ECoG was used to check the electrocortical

state of anesthesia. Only the neurons recorded in the slow wave state or Non-REM urethane

[70] were selected for the analyses.

4.4 Histological and immunofluorescence procedures

Two types of procedures were performed depending on the experiment. First, in the experi-

ments where the rats did not receive Nb, after finishing the recording experiments and dissect-

ing the brain, it was left immersed in 10% formalin for 48 hours and then was sectioned into

slices of 100 μm using a vibratome in order to determine the location of the recording elec-

trodes. The path of the micropipette and the location were recognized by light microscopy,

and photographs were taken with a histological magnifying glass.

Second, at the end of those experiments in which a neuron was labeled with Nb, the animals

were perfused transcardially with NaCl 0.9% heparinized and then 4% paraformaldehyde

(PFA). The brains were removed and post-fixation was performed in 4% PFA for 24 hours.

Afterwards they were left in immersion in 30% sucrose for 48 hours. They were finally cut into

blocks and frozen on dry ice. Coronal sections 30 μm of thickness were obtained by a cryostat

and stored with cryoprotection solution at -20˚C.

The identification of the neuron labeled with Nb was performed by two immunohisto-

chemical procedures. In the first procedure, after washing the sections with phosphate buffered

saline (PBS), neurons were incubated with PBS plus 0.3% Triton X-100 (PBST) for 90 min.

Then, they were incubated with 1% H2O2 for 30 min. After washing with PBS, the sections

were incubated with peroxidase-avidin-biotin complex (ABC 1: 200, Vector Labs) for 120 min

and then were exposed to diaminobenzidine (DAB, 0.02%) for 10 min. Then, the sections were

washed again and were mounted and coated with glycerol. Finally, photomicrographs were

taken in light microscope (Olympus model) to visualize the Nb labeled neuron. In the second

procedure, an immunofluorescence was performed. The sections were incubated in 0.5%

sodium borohydride for 25 min; thereafter, they were incubated in PBS. Then, they were incu-

bated with streptavidin-Alexa Fluor 555 conjugate (1:5000, Molecular Probes) in PBST 0.3%

for 2.5 h. Finally sections were mounted and observed under an epifluorescence microscope in

order to find the neuron labeled with Nb (examples are shown in Fig 1). On occasion, more
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than one neuron was labeled with Nb, but the location of the recorded neuron was clearly

identified.

4.5 Data analysis

We sorted the single units according to amplitude and waveform criteria. We examined the

lack of spikes during the refractory period (<2 ms), confirming the absence of contamination

by other units. Then, we obtained the Inter-Spike Interval (ISI) sequence. Initially, the ISI

sequence from the different neurons had different lengths, so we made their length equal to

the smallest number of ISIs registered: N = 225. To make a surrogate analysis of the ISI

sequences, we randomly shuffled the ISI values to create 100 different realizations.

Classic measures. The action potential (AP) of each neuron were averaged and analyzed in

shape and duration. The APs were mostly triphasic, and the duration of the first two phases

was considered as the AP duration (APD) [32]. The frequency of spontaneous activity (FR)

and standard deviation was also calculated. Additionally, the pattern of spontaneous discharge

with interval (IH) and autocorrelation histograms (ACH) were analyzed. The coefficient of

variation (CV) was used to determine the regularity of the discharge frequency. These analyses

were performed in windows of 60–300 s of stable activity. Neurons with burst activity were

identified by looking at the raw recordings and IH.

OP Entropy. The degree of randomness in sets of consecutive inter-spike intervals (ISI) was

quantified by the Permutation Entropy [52], which we name OP Entropy, and is the Shannon

Entropy [51] of the Ordinal Pattern (OP) encoding of the ISI sequence. Specifically, the OP

Entropy is found from HðSÞ ¼ �
PD!

a¼1
pðaÞ log

a
½pðaÞ�, where p(α) is the probability of having

the OP symbol α in the encoded ISI sequence (i.e., the relative frequency of appearance of α)

and there can be D! different OPs. Specifically, OPs are obtained by splitting the ISI sequence

into non-overlapping windows with D consecutive data-points and calculating the number of

permutations (α) needed to organize the ISI magnitudes within each window in increasing

order.

We set D = 3, so that D! = 6. This means that the ISI sequence fxðiÞgNi¼1
, where N = 225 for

all neurons and x(i) is the i-th ISI value, is divided as: {x(1), x(2), x(3)}, {x(3), x(4), x(5)}, . . ., {x
(N − 2), x(n − 1), x(N)}. Then, each window is encoded into an OP, creating a sequence of

approximately N/D = 225/3 = 75 OPs, faðkÞgN=Dk¼1
, where each α(k) is the number of permuta-

tions needed to order the k-th window ({x(k), x(k + 1), x(k + 2)}) in increasing magnitude. To

remove possible cases where x(i) = x(i + 1) for some i, a negligible white-noise signal was

added to the ISI sequence before performing the OP encoding. Also, to double the number of

OPs available to calculate the histograms, a second encoding was done to the ISI sequence,

starting from x(2), i.e., {x(2), x(3), x(4)}, {x(4), x(5), x(6)}, . . .. As a result the statistical power

of each p(α) is given by (2 × (N/D))/D! = 25.

Bins Entropy. Is the Shannon Entropy [51] of the ISI histogram, which quantifies the degree

of randomness in the magnitudes of the ISIs. Its value is obtained from

Hb ¼ �
PNb

i¼1
pðiÞ logNb ½pðiÞ�, where Nb is the number of bins used to construct the histogram.

In this work we set to Nb = 18 to maintain a similar statistical power as with the OP entropy

(i.e., each bin has a priori an average of N/Nb values, which is equal to the N/D/D! bins of the

OP encoding).

Permutation Lempel-Ziv complexity. Lempel-Ziv complexity (LZC) is an information mea-

sure based on the Kolmogorov complexity—the minimal “information” contained in the

sequence [53]. This complexity has been used in the analysis of different types of neurophysio-

logical signals, among others for the study of the effects of anesthesia, seizures, and
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consciousness [71–73]. To estimate the complexity of a time series XðtÞ � fxt; t ¼ 1; � � � ;Tg
we used the Lempel and Ziv scheme proposed in 1976 [74]. In this approach, a sequence XðtÞ
is parsed into a number W of words by considering any sub-sequence that has not yet been

encountered as a new word. The Lempel-Ziv complexity cLZ is the minimum number of words

W required to reconstruct the information contained in the original time series. For example,

the sequence 100110111001010001011 can be parsed in 7 words: 1 � 0 � 01 � 101 � 1100 � 1010 �

001011, giving a complexity cLZ = 7. A way to apply the Lempel-Ziv algorithm can be found in

[75]. The LZC can be normalized based in the length T of the discrete sequence and the alpha-

bet length (α) as CLZ ¼ cLZ½logaT�=T. Although, initially Lempel and Ziv developed the method

for binary sequences, it could be used for any alphabet with finite length. In particular LZC

could be applied over the OP discretization, which is known as Permutation Lempel-Ziv com-
plexity [76].

4.6 Statistics

For the group comparisons shown in Figs 2, 5E, 6B and 7, we used Multilevel Bayesian models,

where the null hypothesis was rejected at p<0.05. We chose these models due to the hierarchi-

cal nature of the data and bimodal or multimodal and skewed nature of the distributions. A

variable number of neurons (from 1 to 7) were recorded per rat, with a total of 169 neurons in

64 rats. The rat was included in the model as a random effect, and the measure to be explored

(classic and nonlinear measures) as the fixed effect generating models of 2 levels. All models

were estimated using the open-source packages MCMCglmm v.2.30 on R v.3.6.1. The ggforce-

package was used for the shaded contours in Fig 3.

For the comparison between measures shown in Fig 4, we used Multilevel Linear models,

estimated by the maximum likelihood. F statistic t-test is used to test the relationship between

the fixed effects where the null hypothesis is the null model. For these models we also included

the rat as a random effect generating hierarchical models with 2 levels. In Fig 4, panels A, B, C,

D, F, H, J, K and L, the variables were first transformed to log scale before statistics, since this

scale was the likeliest to exhibit a relationship. For these models we used the lmer function

from the lme4-package in R. The r correlation was calculated by Pearson’s method.

Supporting information

S1 Fig. Surrogate analysis of OP Entropy. Comparison between OP Entropy (left panel) and

PLZC (right panel) values from the ISI sequence of all the neurons from the MRN and DRN

nuclei (from Fig 2), and the corresponding surrogate values, which are shown in green. OP

entropy and PLZC values are significantly different from those obtained by the inter-spike

interval surrogates (p< 0.001).

(EPS)

S1 Data. Inter-spike interval data of the MRN and DRN neurons.

(ZIP)
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