Construct Validity and Reliability of Creativity and Innovation in Public Sector: A Rasch Measurement Model Approach for Pilot Study

Saharah Sapiyi¹, Nur Riza Mohd Suradi², Zainol Mustafa³

^{1,2,3} Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Malaysia ²nrms@ukm.edu.my

Abstract

A pilot study is imperative to test the questionnaire items, confirm and check the research instrument's reliability to obtain the best items. This pilot research aimed to test the reliability of the developed public sector instrument and identify its weakness. The instrument was purposefully designed to recognise the factors that affect creativity and innovation in the Malaysian public sector and their influence on government agencies' performance. The instrument included 90 items and was distributed to 120 civil servants from several ministries mostly located in Putrajaya and Kuala Lumpur, Malaysia. The goal of this instrument was to measure five study constructs: individual creativity (IC), team creativity (TC), organisational innovation (OI), innovation processes (IP), and organisational performance (OP). The method employed to analyse the validity and reliability of the items and respondents in this study was derived from the Rasch Measurement Model Approach, which is far more valid and well-grounded than only relying on Cronbach's Alpha output produced. The Winsteps version 3.73 was used to verify the items' functionality in aspects such as the item's reliability and separation of the item-respondent, polarity item, item fit in measuring constructs, item difficulty level, the respondent's ability, and the standardised residual correlations. It also enabled the removal of items based on polarity items' statistics and the item's suitability. At the end of the analysis, it was established that there was a total of 9 items that were discarded because they did not meet the inspection criteria specified per the Rasch Model. A total of 81 items were recorded on the final instrument that could be used to measure the five constructs.

Keywords: Creativity and Innovation, Public Sector, Validity, Reliability, Rasch Measurement Model Approach

1. INTRODUCTION

The phase of innovation embraces of two chief activities: creativity and innovation. Creativity entails creating fresh, serviceable ideas, and it includes translating these ideas into new products and processes (Sarooghi, Libaers & Burkemper, 2015). Amabile and Pratt (2016) defined creativity as the production of novel and beneficial concepts by an individual or small group of individuals working together, whilst according to Damanpour and Schneider (2009), innovation is the successful execution of creative ideas within an organisation (Chaubey and Sahoo, 2019). Public sector performance can be improved through innovation (World Bank, 2018), contributing potentially to economic growth (Currall et al., 2014). The private sector's victory in assuming creativity and innovation in their business can be an example to the public sector. The instruments employed in this study were individual creativity (IC), team creativity (TC), organisational innovation (OI), innovation processes (IP), and organisational performance (OP). By gauging IC, TC, OI, IP, and OP, this study can help accomplish the goals and enhance the Malaysian public sector's performance. Hence, this pilot study was attended to ensure that the questionnaire instrument had good validity and reliability. The researcher then analysed the validity and reliability of the questionnaire instrument using the Rasch Model method. The items could be thoroughly monitored and examined using the Rasch Model approach rather than merely relying on Cronbach's Alpha. Through this approach, the researchers conducted several analyses, including the inspection and verification of each item's functionality.

2. DATA ANALYSIS BASED ON THE RASCH MEASUREMENT MODEL

There were many diagnostic methods applied by researchers in the Rasch Measurement Model. The intention was to verify and evaluate the validity and reliability of the constructed questionnaire instrument. Among them were to;

- a. Test the reliability and the index of item and respondent separation;
- b. Identify the polarity item that measures the constructs;
- c. Examine the suitability of the item instrument (item fit);
- d. Determine the item difficulty level and the ability of the respondents; and
- e. Determine the standardised residual correlations

This pilot study was administered using a quantitative method by distributing the creativity and innovation questionnaire to selected respondents. A sum of 120 government servants from individual ministries in Putrajaya and Kuala Lumpur, Malaysia took part in the pilot study survey. All the 120 government officials elected had directly joined the creativity and innovation team at least once, along with their services. These pilot study's outcomes would then be evaluated following the Rasch Measurement Model method using Winsteps version

3.68.2. The item designed consisted of 90 items, comprising five principal constructs; IC, TC, OI, IP and OP.

3. RESULTS AND FINDINGS

Following the Rasch Measurement Model approach, the researchers attended a test on the functionality of the item in terms of (i) the item reliability and the separation of item-respondents; (ii) identify the polarity items that measure the constructs of the study based on the value of the Point Measurement Correlation or value analysis of PTMEA CORR; (iii) the suitability (fit) item that measures the constructs of the study; (iv) the map of item- respondent difficulty level in this study and (v) the standardised residual correlations. The description and explanation for each item tested on the functionality are as follows.

3.1 Reliability and Item Separation

Reliability quantifies a measuring instrument's accuracy and stability in measuring a concept in a study (W.Creswell, John, 2018). In the Rasch Model, reliability is estimated both for person and item (Bond & Fox, 2015). Based on the Rasch Measurement Model approach, the value of Cronbach's Alpha (α) that its reliability can be accepted is between 0.71 – 0.99, where this value is at its best (71% - 99%) as described in Table 1 (Bond & Fox, 2007).

The Score of Cronbach's Alpha	Reliability
0.9 - 1.0	Very good and effective with a high level of consistency
0.7 - 0.8	Good and is acceptable
0.6 - 0.7	Acceptable
<0.6	The item needs refinement
<0.5	The item needs to be discarded

 Table 1: Interpretation of Cronbach Alpha's Reliability Score

The statistical analysis utilising the Rasch Measurement Model approach was used to assess the individual items' reliability, concerning the reliability value and the value of the item separation. The

analysis determined that the reliability value obtained based on Cronbach's Alpha (α) value was 0.96, as shown in Table 2. The value received recorded that the instruments used were outstanding and practical, with a high consistency level. Thus, it could be used in the intended sample of the study.

Table 2: The Reliability Score (Cronbach's Alpha) for Pilot Study

PERSON RAW SCORE-TO-MEASURE CORRELATION	1.00
CRONBACH'S ALPHA (KR-20) PERSON RAW SCORE "TEST"	0.96
RELIABILITY	

The complete instrument's analysis was also performed by studying the items and respondents' reliability and separation values. Based on Table 3, the item's reliability value was 0.96, which indicated that it was perfect and effective with a high level of consistency (Bond & Fox, 2015). Meanwhile, the value of item separation was 4.82. As suggested by Linacre (2012), the value that shows a good index separation is a value that is greater or more than 2.0.

Table 3: Reliability and Item Separation Value for the Entire Construct Instruments: Pilot StudyINPUT: 120 PERSONS90 ITEMSMEASURED: 120 PERSONS90 ITEMS764 CATS3.68.2

SUMMARY OF 120 MEASURED PERSONS

 	RAW SCORE MNSQ	COUNT ZSTD	MEASUR	MODEL RE	IN ERRC	FIT)R	OU MNS	TFIT QZSTD
MEAN	467.0	88.9	.24	.09	1.12	4	1.17	3
S.D.	61.6	2.8	.55	.01	1.27	3.7	1.30	3.9
MAX.	636.0	90.0	1.47	.11	9.90	9.9	9.90	9.9
MIN.	267.0	80.0	-1.25	.03	.24	-7.4	.23	-7.4
REAL RMSE	.11	ADJ.SD	.54 SEPA	RATION	4.82 Pl	ERSON	RELIA	BILITY
MODEL RMSE	.09	ADJ.SD	.54 SEPA	RATION	5.70 Pl	ERSON	RELIA	BILITY
S.E. OF PERSON	MEAN = .0	05						

VALID RESPONSES: 98.8%

PERSON RAW SCORE-TO-MEASURE CORRELATION = .97 (approximate due to missing data) CRONBACH ALPHA (KR-20) PERSON RAW SCORE RELIABILITY = .96 (approximate due to missing data)

Based on table 4, the respondents' reliability value was 0.93, and the respondent's separation value was 3.64. It recorded that the respondents' reliability was excellent and effective at a high degree of consistency (Bond and Fox, 2015). The respondent's established separation value was 3.64, which is more than 2.0 is considered acceptable (Linacre, 2012).

Table 4: Reliability and Respondent Separation Value for the Entire Construct Instruments: Pilot Study

SUMMARY OF 90 MEASURED ITEMS	

	RAW SCORE MNSQ	COUNT ZSTD	MEASURI	MODEL E	INI ERRO	FIT R	OUT MNSÇ	TFIT ZSTD
MEAN	622.6	118.6	.00	.08	1.00	2	1.23	.1

S.D. MAX	75.8 796 0	4.0 120.0	.34 1 34	.01 11	.39 2.18	2.5 7.0	1.39 9.90	3.2	
MIN.	373.0	105.0	75	.02	.57	-3.5	.56	-3.6	
REAL RMSE	.09	ADJ.SD	.32 SEPA	RATION	3.64	ITEM	REL	IABILITY	.93
MODEL RMSE	.08	ADJ.SD	.32 SEPA	RATION	3.88	ITEM	REL	IABILITY	.94
S.E. OF ITEM M	1EAN = .04	1						I	

UMEAN=.000 USCALE=1.000

ITEM RAW SCORE-TO-MEASURE CORRELATION = -.25 (approximate due to missing data) 10673 DATA POINTS. LOG-LIKELIHOOD CHI-SQUARE: 30720.43 with 9880 d.f. p=.0000

3.2 Polarity Item by PTMEA CORR Value

The Point Measurement Correlation or value analysis of PTMEA CORR was performed to define the sample's polarity items to test how far the defined constructs would achieve its objective. In the PTMEA CORR portion, if the value is positive (+), it signifies that the individual item will achieve its aim of measuring the construct it needs to scale (Bond & Fox, 2007). In comparison, if the value is negative (-), the defined item does not calculate the construct to be assessed. The item must be revised or discarded because it does not address the question or too complicated for the respondents to answer. The two items in the PRMEA CORR section, which were items V118_A and KINDIV2, had negative PTMEA CORR values, which implied the revision or discarding of the items. Thus, based on the result, two items in the questionnaire were discarded from 90 items. The other items displayed positive PTMEA CORR values, which indicated that the items computed the constructs to be measured (Bond & Fox, 2007).

Table 5: Point Measure Correlation (PMEA CORR) Value

INPUT: 120 PERSONS 90 ITEMS MEASURED: 120 PERSONS 90 ITEMS 764 CATS 3.68.2 PERSON: REAL SEP.: 4.82 REL.: .96 ... ITEM: REAL SEP.: 3.64 REL.: .93

ITEM STATISTICS: CORRELATION ORDER

ENTF OUTF	RY 7 FIT F	FOTA PT-ME	L EASU	I RE EXAC	MODEL CT MATCI	H				INFIT 	
NUM	BER	SCC	RE	COUNT	MEASUI	RE S.E.	MNSQ	ZSTD MNSQ) ZST	ГD CORR. Н	EXP.
OBS%	6 EX	P% DI	SPL	ACE ITEN	А						G
					+ 	+	+	+	+	+	
	90	373	107	.31	.09 2.18	6.4 2.31	7.0 39	.50 22.4	34.1	.00 V118_	_A 0
	1	523	120	.25	.07 2.09	6.9 2.89	9.9 10	.56 16.7	29.0	.00 KINI	OIV2
0	83	411	107	.27	.08 1.91	5.7 2.00	6.1 .00	.56 22.4	30.1	.00	
KIND	IV6R	.0	105	00	001176	4 711 02		551.00.0	21 5	00137117	• •
	89	431	105	.02	.08 1.76	4./ 1.83	5.0 .03	5 .55 22.9	31.5	.00 V11/_	_A 0
	86	473	108	.05	.07 2.15	7.0 3.03	9.9 .04	.62 20.4	25.7	.00 V114_	_A 0

	18	796	120	1.34	.02 1.79	1.4 9.90	9.9 .09	.30 40.0 37.2	.02 KPASU24
	87	401	105	.25	.08 1.69	4.4 1.73	4.6 .13	.56 16.2 30.9	.00
KINL 	7 7	0 601	120	.59	.08 1.60	4.1 1.63	4.3 .15	.54 28.3 32.6	.00
KINI 	DIV12 8	0 600	120	.56	.08 1.49	3.3 1.49	3.2 .15	.51 35.8 35.4	.00
KINI	DIV13	0	105	22	0011.42	2 711 20	2 41 10	51 21 4 27 0	00
 KINI	88 DIV47	405 0	105	.22	.09 1.43	2.7 1.39	2.4 .19	.51 51.4 57.2	.00
 KINI	6 DIV10	645 0	120	.25	.08 1.41	2.2 1.56	2.9 .20	.50 35.8 38.1	.00
	81	569	110	28	.07 1.72	4.5 2.15	5.8 .21	.57 26.4 26.4	.00
	15	680	120	62	.11 1.18	1.2 1.28	1.8 .26	.41 55.8 44.9	.00
KINI	DIV20 38	0 658	120	1.31	.02 1.84	1.5 9.90	9.9 .28	.33 40.8 32.9	.02
KOR	GN44	0	120	1.01		2.241.40			
	85	503	109	19	.08 1.47	3.2 1.49	3.4 .28	.56 27.5-31.1	.00 V113_A 0
	4	559	120	.49	.07 1.47	3.3 1.58	3.9 .29	.56 26.7 30.0	.00 KINDIV7
	2	653	120	30	.09 1.23	1.6 1.23	1.5 .29	.46 32.5 39.8	.00 KINDIV4
	82 NV2E	599	109	54	.07 1.45	3.0 1.90	4.5 .30	.54 31.2 29.1	.00
	84	601	108	56	.07 1.49	3.0 1.95	4.4 .30	.54 26.9 30.8	.00
KINI	DIV8F	80 618	120	34	09 1 23	1 8 1 25	19 31	49 36 7 37 2	00
KINI	DIV15	0	120	.54	.09 1.25	1.0 1.25	1.9 .51	.+7 50.7 57.2	.00
 KINI	9 DIV14	601 0	120	36	.09 1.26	1.8 1.24	1.7 .32	.49 37.5 37.4	.00
	5	647	120	51	.09 1.16	1.3 1.23	1.8 .32	.46 38.3 38.4	.00 KINDIV9
	11	653	120	.05	.09 1.19	1.4 1.15	1.1 .33	.47 40.8 39.5	.00
KINL	13	687	120	55	.11 1.05	.5 1.04	.4 .36	.41 47.5 43.0	.00
KINI	DIV18	0 602	120	75	11/1 03	311.03	2 28	40150.0 43.51	00
KINI	DIV19	092	120	75	.11 1.05	.5 1.05	.5 .50	.40 50.0 45.5	.001
0	3	657	120	54	.09 1.08	.5 1.06	.4 .39	.46 37.5 40.7	.00 KINDIV5
	20	686	120	31	.08 1.16	1.3 1.16	1.3 .41	.52 40.8 33.7	.00 KPASU26
	12	660	120	43	.10 1.00	.0 1.00	.0 .43	.43 44.2 41.6	.00
	$\frac{40}{\text{CN48}}$	599	120	.07	.08 1.13	1.0 1.14	1.0 .44	.53 44.2 34.9	.00
	16	685	120	.10	.10 .96	2 .95	3 .48	.43 46.7 40.9	.00
KINI	DIV22	0	120	- 42	00 08	- 1 00	- 1 /10	47 42 5 38 8	001 KDASI120
0	23	147	120	- .+ ∠	.09 .70	1 .27	-,1 ,47	ס.סג גדן ד.	.00 KI ASU29

	25	721	120	40	.09 .99	1 .99	.0 .50	.49 37.5	35.0	.00 KPASU31
	17	714	120	39	.09 1.04	.3 .98	1 .51	.50 44.2	37.0	.00 KPASU23
	21	702	120	34	.09 1.00	.0 .97	2 .51	.50 45.8	36.7	.00 KPASU27
	31	683	120	35	.07 1.12	.9 1.09	.7 .52	.55 41.7	32.0	.00 KPASU37
	39 3N46	600 0	120	.26	.08 1.01	.1 .98	1 .54	.54 41.7	34.4	.00
	19	717	120	.08	.10 .90	8 .93	5 .54	.47 37.5	37.2	.00 KPASU25
	32	709	120	36	.09 .95	3 .93	5 .55	.50 41.7	34.7	.00 KPASU38
	22	718	120	16	.09 .93	5 .92	6 .55	.49 43.3	36.5	.00 KPASU28
	26	737	120	17	.10 .89	9 .91	7 .55	.45 41.7	40.9	.00 KPASU32
	24	727	120	.12	.09 .88	-1.0 .89	9 .57	.47 39.2	38.1	.00 KPASU30
	30	722	120	41	.09 .89	8 .89	8 .57	.48 45.8	36.4	.00 KPASU36
 PRES'	64 Tasi	587 0	120	.09	.07 .94	4 .96	3 .59	.55 32.5	32.7	.00
	28	730	120	10	.10 .84	-1.5 .87 -	1.1 .60	.47 44.2	35.3	.00 KPASU34
0	27	730	120	41	.10 .85	-1.3 .85 -	1.2 .60	.47 44.2	39.3	.00 KPASU33
 KORO	33 GN39	655 0	120	.07	.08 .82	-1.3 .89	8 .60	.50 40.8	35.8	.00
	65	563	120	.13	.08 .90	7 .90	7 .61	.55 36.7	35.4	.00 V91_A 0
 0	29	731	120	09	.10 .81	-1.7 .83 -	1.5 .61	.47 43.3	35.7	.00 KPASU35
 KORO	34 GN40	566 0	120	.42	.07 .89	9 .91	7 .63	.56 31.7	30.0	.00
	56	603	120	.03	.08 .84	-1.1 .79 -	1.5 .64	.51 47.5	36.8	.00 V82_A 0
 INOV	46 ASI1	622 0	120	.13	.08 .79	-1.5 .89	7 .65	.52 45.8	34.8	.00
	67	576	120	.13	.07 .90	7 .93	5 .65	.60 41.7	30.3	.00 V93_A 0
	66	564	120	.09	.07 .86	-1.1 .88	9 .66	.58 40.0	32.4	.00 V92_A 0
 KORO	35 GN41	599 0	120	.32	.08 .77	-1.8 .80 -	1.5 .66	.53 39.2	33.7	.00
 INOV	48 ASI3	568 0	120	.11	.08 .81	-1.5 .81 -	1.5 .67	.55 38.3	33.7	.00
	59	576	120	.30	.07 .80	-1.5 .86 -	1.0 .67	.55 39.2	33.3	.00 V85_A 0
 KORO	37 GN43	617 0	120	.13	.09 .73	-2.0 .73 -	2.0 .68	.50 47.5	38.4	.00

	63	606	120	.11	.07 .79	-1.5 .82	-1.3	.68	.56 43.3	31.9	.00 V89_A 0
	53	605	120	05	.08 .76	-1.8 .76	-1.8	.68	.50 48.3	37.3	.00
	60	585	120	.26	.08 .77	-1.7 .81	-1.4	.69	.54 41.7	33.5	.00 V86_A 0
	71	630	120	.05	.09 .70	-2.0 .69	-2.1	.69	.48 47.5	40.1	.00 V97_A 0
	74	635	120	.04	.09 .69	-2.0 .67	-2.2	.69	.47 51.7	42.1	.00 V100_A 0
	73	636	120	.04	.09 .69	-2.1 .68	-2.2	.69	.48 48.3	41.4	.00 V99_A 0
	49 4 \$ 1 5	638 0	120	06	.08 .74	-2.0 .77	-1.8	.69	.51 44.2	34.5	.00
	41	618	120	.24	.08 .72	-2.0 .77	-1.7	.69	.53 42.5	33.5	.00
KORC	3N49 42	0 649	120	.14	.09 .68	-2.1 .71	-2.0	.70	.50 49.2	36.6	.00
KORC	GN50 36	0 627	120	.21	.08 .69	-2.4 .74	-2.1	.70	.52 45.0	34.0	.00
KORC	GN42 43	0 635	120	.16	.09 .68	-2.2 .71	-2.1	.71	.50 46.7	36.0	.00
KORC	3N51 47	0 609	120	.09	.08 .71	-2.2 .71	-2.1	.71	.51 47.5	36.1	.00
	ASI2 75	0 634	120	.00	.09 .67	-2.2 .64	-2.5	.71	.48 50.8	41.9	.00 V101_A 0
	68	603	120	07	.08 .72	-2.3 .73	-2.2	.72	.53 45.8	34.5	.00 V94_A 0
	69	644	120	08	.09 .67	-2.3 .65	-2.6	.72	.47 51.7	41.9	.00 V95_A 0
	72	638	120	.00	.09 .66	-2.5 .64	-2.7	.73	.50 52.5	38.1	.00 V98_A 0
	62	626	120	12	.08 .69	-2.4 .69	-2.4	.73	.51 49.2	36.4	.00 V88_A 0
	55	591	120	.08	.08 .69	-2.4 .69	-2.4	.73	.52 48.3	36.2	.00 V81_A 0
	77	628	120	.00	.08 .68	-2.3 .68	-2.3	.73	.52 42.5	36.3	.00 V103_A 0
	45 3N53	654 0	120	.07	.08 .64	-2.5 .67	-2.5	.73	.51 51.7	34.9	.00
	78	639	120	13	.08 .67	-2.4 .65	-2.6	.73	.53 45.8	37.3	.00 V104_A 0
	52 4 S I 8	617	120	07	.09 .68	-2.3 .66	-2.5	.74	.49 49.2	39.7	.00
	80	621	120	03	.08 .68	-2.4 .67	-2.4	.74	.54 45.8	35.9	.00 V106_A 0
	79	625	120	03	.08 .68	-2.4 .68	-2.4	.74	.55 43.3	34.8	.00 V105_A 0
	70	638	120	07	.09 .66	-2.6 .64	-2.8	.74	.48 47.5	38.5	.00 V96_A 0
	51 ASI7	624 0	120	.08	.08 .64	-2.6 .64	-2.5	.75	.51 51.7	38.1	.00

	58	616	120	10	.08 .67 -2.7 .67 -2.7 .75	.53 50.0 34.4	.00 V84_A 0
	76	623	120	.00	.08 .64 -2.6 .64 -2.6 .75	.52 46.7 38.2	.00 V102_A 0
	44	643	120	03	.08 .63 -2.9 .63 -2.9 .76	.54 48.3 34.6	.00
	54	599	120	.07	.08 .63 -2.8 .63 -2.9 .77	.51 51.7 36.9	.00 V80_A 0
	61	619	120	07	.08 .63 -3.1 .62 -3.1 .78	.51 45.0 35.3	.00 V87_A 0
	50	633	120	05	.08 .59 -3.1 .58 -3.2 .79	.51 52.5 37.6	.00
INOV	ASI6 57	50 617	120	.00	.08 .57 -3.5 .56 -3.6 .81	.52 52.5 34.8	.00 V83_A 0
 					+++++++	+ +	+
MEA	N	622.6	118.6	.00	 .08 1.002 1.23 .1	41.3 35.8	I
S.D.		75.8	4.0	.34	.01 .39 2.5 1.39 3.2	8.6 3.7	

3.3 Item Fit in Measuring the Constructs

Item fit is decided by Mean Square (MNSQ) infit and outfit. Bond and Fox (2015) pointed out that the MNSQ infit and outfit should be in the range of value 0.60 to 1.40 to guarantee the items are suitable for measuring constructs. Nevertheless, the outfit index MNSQ is more significant in advance compared to infit MNSQ to determine the congruity of items measuring a construct. If the MNSQ infit or outfit values more than 1.40 logits, it indicates a confusing item. If the MNSQ value is less than 0.60 logit, it suggests that respondents assume the item is too easy (Linacre, 2012). The infit and outfit MNSQ value should also be within -2.00 to +2.00 (Bond and Fox, 2015).

If this requirement is not met, the object should be either corrected or dismissed. Table 5 shows the misfit order featuring 17 items having the largest MNSQ and two items of value resulting from the smallest MNSQ item analysis statistics: misfit order. Seventeen items that exceeded the value of 1.40 in column outfit MNSQ were KPASU24, KORGN44, V114_A, KINDIV2, V118_A, KINDIV1R, KINDIV6R, KINDIV8R, KINDIV3R, V117_A, KINDIV45, KINDIV12, KINDIV7, KINDIV10, KINDIV13, V113_A, and KINDIV47. At the same

time, INOVASI6 and V83_A were items below 0.60. Based on Table 6, 19 items were not in the specified range, and the items should be revised.

Table 6: Item Fit Based on MNSQ Value

INPUT: 120 PERSONS 90 ITEMS MEASURED: 120 PERSONS 90 ITEMS 764 CATS 3.68.2

PERSON: REAL SEP.: 4.82 REL.: .96 ... ITEM: REAL SEP.: 3.64 REL.: .93 ITEM STATISTICS: MISFIT ORDER

EN] PT-]	TRY MEAS	TOTA SURE	L EXA	N CT MAT	MODEL 'CH					INFIT 	OUTFIT
NU	MBEF	R SCO	ORE	COUNT	Г MEAS	URE S.	E. MNSQ	ZSTD N	ANSQ	ZSTD CORR	. EXP.
OBS	5% EX	XP% D	ISPL	ACE ITI	EM						G
1											
					+	+	+	+	+	+	
	18	796	120	1.34	+ .02 1.79	+ 1.4 9.90	+ 9.9 A .09	+ .30 40.0	+ 37.2	+ .02 KPASU	 24 0
 	18 38	796 658	120 120	1.34 1.31	+ .02 1.79 .02 1.84	+ 1.4 9.90 1.5 9.90	+ 9.9 A .09 9.9 B .28	+ .30 40.0 .33 40.8	+ 37.2 32.9	+ .02 KPASU .02 KORGN	 24 0 144 0

I	1	523	120	.25	.07 2.09	6.9 2.89	9.9 D10	.56 16.7	29.0	.00	KINDIV2	0
I	90	373	107	.31	.09 2.18	6.4 2.31	7.0 E39	.50 22.4	34.1	.00	V118_A	0
İ	81	569	110	28	.07 1.72	4.5 2.15	5.8 F.21	.57 26.4	26.4	.00	KINDIV1	R 0
İ	83	411	107	.27	.08 1.91	5.7 2.00	6.1 G.00	.56 22.4	30.1	.00	KINDIV6	R 0
İ	84	601	108	56	.07 1.49	3.0 1.95	4.4 H.30	.54 26.9	30.8	.00	KINDIV8	R 0
İ	82	599	109	54	.07 1.45	3.0 1.90	4.5 I.30	.54 31.2	29.1	.00	KINDIV3	R 0
i	89	431	105	.02	.08 1.76	4.7 1.83	5.0JJ.03	.55 22.9	31.5	.00	V117 A	0
i	87	401	105	.25	.08 1.69	4.4 1.73	4.6K.13	.56 16.2	30.9	.00	KINDIV4	50
İ	7	601	120	.59	.08 1.60	4.1 1.63	4.3 L.15	.54 28.3	32.6	.00	KINDIV12	20
i	4	559	120	.49	.07 1.47	3.3 1.58	3.9 M.29	.56 26.7	30.0	.00	KINDIV7	0
i	6	645	120	.25	.08 1.41	2.2 1.56	2.9 N.20	.50 35.8	38.1	.00	KINDIV1	00
İ	8	600	120	.56	.08 1.49	3.3 1.49	3.2 O.15	.51 35.8	35.4	.00	KINDIV1	30
İ	85	503	109	19	.08 1.47	3.2 1.49	3.4 P.28	.56 27.5	31.1	.00	V113_A	0
i	88	405	105	.22	.09 1.43	2.7 1.39	2.4 Q.19	.51 31.4	37.2	.00	KINDIV4	70
İ	15	680	120	62	.11 1.18	1.2 1.28	1.8 R.26	.41 55.8	44.9	.00	KINDIV2	00
İ	9	601	120	36	.09 1.26	1.8 1.24	1.7 S.32	.49 37.5	37.4	.00	KINDIV14	40
İ	10	618	120	.34	.09 1.23	1.8 1.25	1.9 T .31	.49 36.7	37.2	.00	KINDIV1:	50
İ	2	653	120	30	.09 1.23	1.6 1.23	1.5 U.29	.46 32.5	39.8	.00	KINDIV4	0
İ	5	647	120	51	.09 1.16	1.3 1.23	1.8 V.32	.46 38.3	38.4	.00	KINDIV9	0
İ	11	653	120	.05	.09 1.19	1.4 1.15	1.1W.33	.47 40.8	39.5	.00	KINDIV1	60
İ	20	686	120	31	.08 1.16	1.3 1.16	1.3 X .41	.52 40.8	33.7	.00	KPASU26	50
İ	40	599	120	.07	.08 1.13	1.0 1.14	1.0 Y.44	.53 44.2	34.9	.00	KORGN4	8 0
İ	31	683	120	35	.07 1.12	.9 1.09	.7 Z.52	.55 41.7	32.0	.00	KPASU37	0
İ	В	BETTE	R FIT	TING	OMITTED		·	+	+	+	-	
I	49	638	120	06	.08 .74	-2.0 .77	-1.8 .69	.51 44.2	34.5	.00	INOVASI	50
	41	618	120	.24	.08 .72	-2.0 .77	-1.7 .69	.53 42.5	33.5	.00	KORGN4	90
	36	627	120	.21	.08 .69	-2.4 .74	-2.1 .70	.52 45.0	34.0	.00	KORGN42	20
	68	603	120	07	.08 .72	-2.3 .73	-2.2 .72	.53 45.8	34.5	.00	V94_A 0	
	42	649	120	.14	.09 .68	-2.1 .71	-2.0 z .70	.50 49.2	36.6	.00	KORGN5	00
	47	609	120	.09	.08 .71	-2.2 .71	-2.1 y .71	.51 47.5	36.1	.00	INOVASI	20
	43	635	120	.16	.09 .68	-2.2 .71	-2.1 x .71	.50 46.7	36.0	.00	KORGN5	10
	71	630	120	.05	.09 .70	-2.0 .69	-2.1 w .69	.48 47.5	40.1	.00	V97_A 0	
l	74	635	120	.04	.09 .69	-2.0 .67	-2.2 v .69	.47 51.7	42.1	.00	V100_A	0
l	62	626	120	12	.08 .69	-2.4 .69	-2.4 u .73	.51 49.2	36.4	.00	V88_A 0	
l	73	636	120	.04	.09 .69	-2.1 .68	-2.2 t .69	.48 48.3	41.4	.00	V99_A 0	
l	55	591	120	.08	.08 .69	-2.4 .69	-2.4 s .73	.52 48.3	36.2	.00	V81_A 0	
l	80	621	120	03	.08 .68	-2.4 .67	-2.4 r .74	.54 45.8	35.9	.00	V106_A	0
l	79	625	120	03	.08 .68	-2.4 .68	-2.4 q .74	.55 43.3	34.8	.00	V105_A	0
l	52	617	120	07	.09 .68	-2.3 .66	-2.5 p .74	.49 49.2	39.7	.00	INOVASI	80
l	77	628	120	.00	.08 .68	-2.3 .68	-2.3 o .73	.52 42.5	36.3	.00	V103_A	0
l	78	639	120	13	.08 .67	-2.4 .65	-2.6 n .73	.53 45.8	37.3	.00	V104_A	0
l	58	616	120	10	.08 .67	-2.7 .67	-2.7 m .75	.53 50.0	34.4	.00	V84_A 0	
	69	644	120	08	.09 .67	-2.3 .65	-2.6 1.72	.47 51.7	41.9	.00	V95_A 0	
	75	634	120	.00	.09 .67	-2.2 .64	-2.5 k .71	.48 50.8	41.9	.00	V101_A	0
	45	654	120	.07	.08 .64	-2.5 .67	-2.5 j .73	.51 51.7	34.9	.00	KORGN5	30
	70	638	120	07	.09 .66	-2.6 .64	-2.8 i .74	.48 47.5	38.5	.00	V96_A 0	
l	72	638	120	.00	.09 .66	-2.5 .64	-2.7 h .73	.50 52.5	38.1	.00	V98_A 0	
l	51	624	120	.08	.08 .64	-2.6 .64	-2.5 g .75	.51 51.7	38.1	.00	INOVASI	70
ī	76	623	120	00	.08 .64	-2.6 64	-2.6lf 75	52 46 7	38.2	00	V102 A	01

44	643	120	03	.08 .63 -2.9 .63	-2.9 e .76	.54 48.3	34.6	.00 KOR	GN52 0
54	599	120	.07	.08 .63 -2.8 .63	-2.9 d .77	.51 51.7	36.9	.00 V80_	_A 0
61	619	120	07	.08 .63 -3.1 .62	-3.1 c .78	.51 45.0	35.3	.00 V87_	_A 0
50	633	120	05	.08 .59 -3.1 .58	-3.2 b .79	.51 52.5	37.6	.00 INOV	VASI6 0
57	617	120	.00	.08 .57 -3.5 .56	-3.6 a .81	.52 52.5	34.8	.00 V83_	_A 0
MEAN S.D.	622.6 75.8	118.6 4.0	.00	+ + .08 1.002 1.23 .01 .39 2.5 1.39	+ 3 .1 9 3.2	+ 41.3	+ 35.8 3.7	+ 	

3.4 Item Difficulty and Respondent's Ability

Figure 1 presents the item difficulty and the distribution of respondents over all the logit scale. Item difficulty ranged from -0.75 to +1.34 logit. The respondents' ability was estimated from -1.25 to +1.47, which was marginally higher than the measure of item difficulty. The map dramatically eased the researcher to discover where most items were distributed, essentially to examine if this was parallel with the respondent spread.

Figure 1: Item Map of Creativity and Innovation in the Public Sector

3.5 Standardised Residual Correlations

Linacre (2012) asserted that the value of 0.7 and above is a good correlation since it symbolises that the constructed items are not singular and interdependent with other items. In this study, individual creativity, team creativity, organisational innovation, innovation processes and organisational performance items were evaluated to identify whether items depended on other items. Nevertheless, if two items' correlation value was more than 0.7, a high correlation value was indicated, and only one item was needed for measuring. Based on the analysis attended as in Table 7, 10 pairs of items displayed a value above 0.7. For construct measurement, only one item was chosen.

 Table 7: Analysis of Standardised Residual Correlations

 INPUT: 120 PERSONS
 90 ITEMS
 MEASURED: 120 PERSONS
 90 ITEMS
 764 CATS

3.68.2

LARGEST STANDARDISED RESIDUAL CORRELATIONS USED TO IDENTIFY DEPENDENT

ITEMS				
RESIDUL ENTRY	ENTRY			
CORRELN NUMBER I	TEM	NUMBER ITE		
	.94 .93 .92 .90 .88 .88 .88 .88 .88 .87 .87 .87	76 V102_A 28 KPASU34 79 V105_A 76 V102_A 77 V103_A 13 KINDIV18 61 V87_A 26 KPASU32 77 V103_A 42 KORGN50	77 V103_A 29 KPASU35 80 V106_A 80 V106_A 80 V106_A 14 KINDIV19 62 V88_A 27 KPASU33 79 V105_A 43 KORGN51	

4. DISCUSSIONS AND CONCLUSION

Following data analysis, each item was revised following the standard index and the criteria to fulfil the validity and reliability requirements of the Rasch measurement model. Based on the findings, nine items did not meet the criteria of analysis and should be discarded. Nonetheless, 19 items were sufficiently refined according to study context and weight. The comprehensive description of related items is shown in Table 8.

Constructs	Retained Item		Total Items	Item	Total Item
			Retained	Dropped	Dropped
Individual Creativity	V109_A,	V110_A,	20	KINDIV2	2
	KINDIV4,	KINDIV5,		KINDIV19	
	V111_A,	KINDIV7,			
	V112_A,	KINDIV9,			
	KINDIV10,	V113_A,			
	KINDIV12,	KINDIV13,			
	KINDIV14,	KINDIV15,			
	KINDIV16,	KINDIV17,			
	KINDIV18,	KINDIV19,			
	KINDIV20, V1	14_A			
Team Creativity	KPASU23,	KPASU24,	14	KPASU32,	2
	KPASU25,	KPASU26,		KPASU35	
	KPASU27,	KPASU28,			
	KPASU29,	KPASU30,			
	KPASU31,	KPASU33,			
	KPASU34,	KPASU36,			
	KPASU37, KPA	ASU38			

Organisational	KORGN39, KORGN40,	14	KORGN50	1
Innovation	KORGN41, KORGN42	,		
	KORGN43, KORGN44,			
	V115_A, KORGN46	,		
	V116_A, KORGN48	,		
	KORGN49, KORGN51	,		
	KORGN52, KORGN53			
Innovation	V70_A, V71_A, V72_A,	18	V88_A,	2
Processes	V117_A, V74_A, V75_A,		V118_A	
	V76_A, V77_A, V78_A, ,			
	V80_A, V81_A, V82_A,			
	V83_A, V84_A, V85_A,			
	V86_A, V87_A, V89_A			
Organisational	V90_A, V91_A, V92_A,	15	V102_A,	2
Performance	V93_A, V94_A, V95_A,		V105_A,	
	V96_A, V97_A, V98_A,			
	V99_A, V100_A, V101_A,			
	V103_A, V104_A,			
	V106_A			
	Total	81		9

Ergo, based on this analysis, an instrument's validity and reliability are quintessential features to consider when developing a novel study instrument. Overall, from this analysis, nine items dropped were questionable items on validity and reliability. Accordingly, based on the validity and reliability test conducted on this instrument, this instrument is relevant for other researchers' future studies. The completion of this research assisted researchers formed an exceptional public sector instrument. Employing this instrument would help the Innovation Coordinator measure the level of creativity and innovation in public sector organisations. For the public sector in Malaysia, this instrument would let agencies appreciate their creativity and innovation levels in their organisation. Besides, they could design and administer creativity and innovation plans to achieve a higher innovation culture level.

Acknowledgements

This research was orchestrated with Research University Grant (GUP-2019-041) from Universiti Kebangsaan Malaysia. The researchers would like to express gratitude to those who participated directly and indirectly in this study.

5. REFERENCES

- [1] Amabile, T. M., & Pratt, M. G. (2016). The dynamic componential model of creativity and innovation in organisations: Making progress, making meaning. *Research in Organisational Behavior*, *36*, 157–183. https://doi.org/10.1016/j.riob.2016.10.001
- [2] Bond, T. G., & Fox, C. M. (2007). Applying the Rasch model: fundamental measurement in the human sciences.
- [3] Lawrence Erlbaum Associates.
- [4] Bond, T. G., & Fox, C. M. (2015). *Applying the Rasch model: fundamental measurement in the human sciences.*

- [5] Routledge.
- [6] Chaubey, A., & Sahoo, C. K. (2019). Enhancing organisational innovation in Indian automobile industry.
- [7] International Journal of Innovation Science, 11(1), 82–101. https://doi.org/10.1108/ijis-02-2018-0022
- [8] Creswell, J. W., & Creswell, J. D. (2018). *Research design: qualitative, quantitative, and mixed methods approaches* (5th ed.). Sage Publications, Inc.
- [9] Currall, S. C. (2014). Organised innovation: a blueprint for renewing America's prosperity. Oxford University Press.
- [10] Damanpour, F., & Schneider, M. (2008). Characteristics of Innovation and Innovation Adoption in Public Organizations: Assessing the Role of Managers. *Journal of Public Administration Research and Theory*, 19(3), 495–522. <u>https://doi.org/10.1093/jopart/mun021</u>
- [11] Linacre, M. (2012). Winsteps Tutorial 3. Winstep Rasch Tutorial, June 2012, 1–33.
- [12] https://www.winsteps.com/a/winsteps-tutorial-3.pdf
- [13] Sarooghi, H., Libaers, D., & Burkemper, A. (2015). Examining the relationship between creativity and innovation: A meta-analysis of organisational, cultural, and environmental factors. *Journal of Business Venturing*, 30(5), 714–731. https://doi.org/10.1016/j.jbusvent.2014.12.003
- [14] World Bank Group. (2018). *Improving Public Sector Performance Through Innovation and Inter-Agency Coordination*. World Bank.