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The Journal of Immunology

Consequences of Increased CD45RA and RC Isoforms for
TCR Signaling and Peripheral T Cell Deficiency Resulting
from Heterogeneous Nuclear Ribonucleoprotein
L-Like Mutation

Zuopeng Wu, Adele L. Yates,1 Gerard F. Hoyne,2 and Christopher C. Goodnow2

CD45 is the most abundant protein tyrosine phosphatase in the plasma membrane of T cells and serves a critical role in TCR

signaling. Different CD45 isoforms are made by alternative mRNA splicing depending on the stage of T cell development and ac-

tivation, yet their role remains unclear. Expression of CD45RA and RC isoforms is increased 20- to 200-fold on T cells from thunder

mice with a loss-of-function mutation in the RNA-binding protein, heterogeneous nuclear ribonucleoprotein L-like (hnRNPLL),

although total CD45 expression is unaltered. In this study, we test the hypothesis that this shift in CD45 isoform expression alters

TCR signaling, thymic selection, and accumulation of peripheral T cells. There was no discernable effect of the change in CD45

isoform expression upon Lck phosphorylation or T cell positive and negative selection, whereas these indices were strongly

affected by a decrease in the overall amount of CD45 in Ptprc mutant animals. The one exception to this conclusion was in

thymocytes from Ptprcloc/loc animals with 4% of normal CD45 protein levels, where Lck505 phosphorylation was increased 25% in

Hnrpll mutant cells, suggesting that high m.w. CD45 isoforms had lower Lck505 phosphatase activity in this context. In T cells

with no CD45 protein, hnRNPLL mutation still diminished peripheral T cell accumulation, demonstrating that hnRNPLL

regulates T cell longevity independently from its effects on CD45 splicing. The Journal of Immunology, 2010, 185: 000–000.

T
he membrane protein tyrosine phosphatase CD45 is
expressedon the surfaceof all leukocytesandplays a crucial
role in regulating TCR signal strength and selection of the

T cell repertoire in the thymus and periphery (1–6). CD45 has been
shown both to promote and to inhibit TCR signaling by dephos-
phorylating two regulatory tyrosine residues on the Src kinase p56lck,
an inhibitory phosphate on Lck Y505, and an activating phosphate
on Lck Y394 (1, 7, 8). CD45 is encoded by the Ptprc gene, which
contains three variably spliced exons (exons 4, 5, and 6) that encode
the CD45 RA, RB, and RC segments of the extracellular domain
containing numerous O-glycosylation sites (1). Ptprc mRNA in B
lymphocytes includes all three exons and encodes the highest mo-
lecular mass 220 kDa isoform, referred to as B220 or CD45RABC.
Naive circulating T cells express intermediate m.w. isoforms

including two segments (CD45RAB, BC) or one segment
(CD45RB). Memory T cells exclude all three variable exons and
express the lowm.w. CD45RO isoform, so the presence of CD45RO
or absence of CD45RB is widely used as a marker of memory or
activated T cells in man and other animals. Despite extensive re-
search, the functional significance of the regulated changes in CD45
isoform expression during T cell differentiation remains obscure.
The different CD45 isoforms can differentially associate in cis at

the cell surface with the CD4+ and CD8+ T cell coreceptors to
modulate access of the CD45 phosphatase domain to p56lck, which
is tightly associated with the coreceptors in the cytoplasm (9, 10).
CD45 can also homodimerize at the cell surface when expressed at
high levels, and dimerization is modulated by sialylation and O-
glycosylation of the variable exons in the extracellular domain (1).
The expression of the high m.w. isoforms shifts the balance to-
ward the expression of CD45 monomers due to the repulsive
activity exerted by the negative charge produced by the glycosy-
lated variable exons (1). High m.w. CD45 isoforms have also been
reported to bind more strongly to macrophage galactose-like lec-
tin, which inhibits TCR signaling (2). Comparison of human
T cells with CD45RO, RA or other isoforms has suggested a pro-
found difference in TCR signaling, although other differences in
the T cells may contribute to their different responses (11, 12).
Inherited human PTPRC single-nucleotide variants that alter the
splicing of protein tyrosine phosphatase, receptor type C exons 4
or 6 have been associated with differences in TCR signaling, ac-
tivated T cell numbers, and susceptibility to autoimmune or in-
fectious disease (3). Collectively, these results favor the view that
TCR signal strength and quality are modulated by developmen-
tally regulated CD45 splicing.
To address the function of CD45 isoforms in TCR signaling,

transgenic mouse strains have been produced on a CD450/0 genetic
background that expressed either a high (CD45RABC) or low
(CD45R0) m.w. isoform (6, 13–16), yielding varying conclusions
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about the extent to which the different isoforms are different or
comparable (16–18). A complexity with these experiments is that
the transgene-encoded proteinswere expressed on the cell surface at
10–30% of the normal levels. Recently, it was shown that relatively
small decreases in the amount of surface CD45 reduce dephosphos-
phorylation of the activating LckY394 site, whereas much larger
decreases are needed to compromise dephosphorylation of the in-
hibitory LckY505 residue. Consequently, transgenic mice with in-
termediate levels of CD45 on T cells exhibit hyperresponsive TCR
signaling (4). When comparisons have been made between trans-
genicmice expressing different isoforms at subnormal but relatively
comparable levels, although the transgenic mice show consistent
differences in TCR signaling or activation relative to that of wild-
type controls, it has been difficult to ascribe any functional differ-
ence to specific isoforms (16–18). Hence, the question remains un-
resolved as to whether there is a change in TCR signaling and T cell
selection due to altered splicing of CD45 isoforms in the context of
normal levels of CD45 expression.
The heterogeneous nuclear ribonucleoprotein L-like protein

(hnRNPLL; gene symbol Hnrpll) was recently discovered as a
trans-acting factor that regulates alternative splicing of the three vari-
able exons onPtprcmRNA (5, 19, 20). The RNA recognitionmotif 1
(RRM1) domain of hnRNPLL binds specifically to RNA containing
the activation-responsive motif sequence responsible for silencing
Ptprc exons 4–6 (5). Folding of this domain is destabilized by
a V136D missense mutation in the thunder mouse strain, disrupting
Ptprc exon 4–6 silencing and resulting in 20–200 times higher ex-
pression of CD45RA-, RB-, and RC-containing CD45 isoforms on
thymocytes andmatureT cells butwithout any change in total amount
of CD45 per cell (5). The hnRNPLLthunder mutant mouse thus pro-
vides a way to test whether there is a change in TCR signaling and
T cell selection due to altered splicing of CD45 isoforms in the
context of normal levels of CD45 expression. The hnRNPLLthunder

mutation does not affect the number of single-positive (SP) T cells
formed in the thymus, but there is a marked reduction in the numbers
of peripheral naive CD4+ and CD8+ T cells due to a T cell-intrinsic
decrease in persistence (5). Given the important function of CD45 in
TCR signaling and the role of TCR signaling in persistence of pe-
ripheral T cells, we therefore wished to test whether the diminished
accumulation of peripheral T cells caused by the hnRNPLLthunder

mutation was due to the large shift toward high m.w. CD45 isoforms.
In this paper, we address these issues by comparing T cells from
normal and hnRNPLLthunder mutant mice, in the context of either
a normal Ptprc gene, a targeted deletion in Ptprc exon 6 (6) that
results in complete absence of CD45 (CD450/0), or a Ptprc point
mutation that decreases CD45 surface protein to 4% of normal
amounts. We find that the abundance of CD45 on the cell surface is
critical for TCR signaling and selection, but there is no discernable
effect of increasing the proportion of high m.w. CD45 isoforms, at
either normal or limiting amounts of total CD45.Moreover, mutation
of hnRNPLL disrupts peripheral T cell accumulation even in the
absence of CD45 protein, indicating that hnRNPLL acts through an
independent mechanism to promote peripheral T cell longevity.

Materials and Methods
Mice

The thunder mutation has been described previously and was maintained
on a C57BL/6 background (5). The lochy mouse strain was derived from
the same N-ethyl-N-nitrosourea (ENU) screen as the thunder strain and
was maintained on a C57BL/6 background (21). CD450/0 mice have been
previously described (6) and were bred on a C57BL/6 background. The
3A9 TCR transgenic and TCR 3 insHEL mice have been previously de-
scribed (22, 23) and were bred with thunder mice to introduce the Hnrpll
mutation onto the B10.Br transgenic background. Diabetes incidence was

measured using urine glucose testing with Diastix (Siemens Australia,
Bayswater, Victoria, Australia) at weekly intervals or when a cage was
wet. To be recorded as diabetic, mice had to be Diastix 4+ on at least two
readings tested 1 wk apart. Nondiabetic mice were culled at 24 wk. All of
the animals were housed in the Australian Phenomics Facility, and proce-
dures were approved by the Australian National University Animal Exper-
imentation Ethics Committee.

Flow cytometry and intracellular flow cytometry

Lymphoid tissues were prepared as single-cell suspensions in ice-cold PBS/
10%FCSbuffer. Ab conjugateswere fromBDPharmingen (SanDiego,CA),
including anti-mouse pLckY505, or from Caltag Laboratories (Burlingame,
CA). Phospho-Src family (Tyr416) (100F9) rabbit Ab was from Cell Signal-
ing Technology (Danvers, MA) with the sheep anti-rabbit IgG F(ab9)2 FITC-
conjugated secondary Ab from Chemicon International (North Ryde, New
SouthWales, Australia). Cell surface staining follows the standard protocol.
Cell permeabilization/fixation buffer from eBioscience (San Diego, CA)
was used for intracellular staining. Data were acquired on a FACSCalibur
(BD Bioscience, North Ryde, New South Wales, Australia) and analyzed
with FlowJo (Ashland, OR) software.

In vitro stimulation

A total of 106 lymphocytes were resuspended in 1 ml prewarmed RPMI/
10% FCS medium with anti-CD3ε (2C11) (10 mg/ml for thymocytes) for
5 min and cross-linked with anti-hamster IgG (H+L) (50 mg/ml). The
response was terminated by adding ice-cold media after 20 min of stimu-
lation, and the cells were processed for surface and intracellular staining
and analyzed by flow cytometry immediately after stimulation.

Sequencing

Total RNA were isolated from spleen of wild-type and mutant mice using
TRIzol reagent (Invitrogen, Mulgrave, Victoria, Australia) and reverse-
transcribed to cDNA using SuperScript First-Strand cDNA Synthesis Kit
(Invitrogen). Transcripts or genomic sequence of candidate genes were
amplified by PCR using Elongase DNA polymerase kit (Invitrogen) and
were sequenced using BigDye terminator mix (Applied Biosystems, Mul-
grave, Victoria, Australia) in the Biomedical Research Facility of John Cur-
tin School of Medical Research.

Statistical analysis

Analysis was performed Student t test, paired t test, ratio t test, or log-rank
test.

Results
Consequence of hnRNPLL mutation for CD45 levels and
isoforms in an allelic series of Ptprc mutant mice

To examine the relationship among hnRNPLL-induced splicing of
CD45 isoforms, TCR signaling, and T cell selection, we analyzed
T cells from normal and hnRNPLLthu mutant mice that also carried
either a normal Ptprc gene, a targeted knockout of Ptprc exon 6 (6)
(Ptprc0/0), or a Ptprc point mutation that decreases CD45 surface
protein by 25-fold (Ptprcloc). Like thunder, the Ptprc point mutant
strain lochy (Ptprcloc) was identified in a flow cytometric blood
screen of pedigrees of ENU-mutagenized C57BL/6J mice (21).
Several individuals in pedigree ENU134 exhibited a low percentage
of CD8+ T cells in the peripheral blood, a high proportion of which
were CD44hi activated/memory cells (Fig. 1A). Further character-
ization of progeny revealed two segregating heritable traits (Fig. 1B,
1C): lochy, identified by lowB220 expression onCD19+B cells, and
nessy, with normal B220 expression. The cause of low T cells in
nessy was subsequently shown to be a missense mutation in the
condensin protein kleisin-b (24). Flow cytometric analysis of
(CD45.2 B6loc 3 CD45.1 NOD) F1 hybrids, where the allelic
products can be measured by staining with specific Abs to the
CD45 alleles, showed that there was a selective loss of CD45.2
and normal expression of CD45.1 in B and T cells, indicating
a cis-acting defect in the CD45.2 allele (data not shown). Sequenc-
ing of Ptprc cDNA from loc/locmice revealed a 5-nt insertion at the
start of exon 21 of the Ptprc gene (Fig. 1D), resulting from an
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intronic T→ A substitution that created a new splice acceptor 5 bp
upstream from the correct splice acceptor (Fig. 1E). The insertion
caused a frame shift and premature stop codon within the first cy-
toplasmic protein tyrosine phosphatase domain of CD45 (Fig. 1F).
No CD45 protein of normal or truncated m.w. was detectable by
Western blotting with B220 Abs (data not shown). Flow cytometric
staining, which is more sensitive, detected ∼2% of wild-type CD45
levels on B cells (data not shown) and 4% of wild-type levels on
T cells (Fig. 2A, 2B). These trace amounts were too little to analyze
by Western blotting, but on the basis of the residual thymic differ-
entiation observed below, we assume that the residual CD45 derives
from a trace amount of correctly spliced Ptprc mRNA.
A pan-CD45mAbwas used tomeasure the relative amount of total

CD45 on CD4+CD8+ double-positive (DP) thymocytes from
Hnrpllthu/thu and Hnrpll+/+ controls, either bearing wild-type Ptprc
genes (Ptprc+/+) or an allelic series comprising Ptprcloc/loc or exon 6
disrupted Ptprc (Ptprc0/0) and their heterozygous intermediates (Fig.
2A, 2B). The hnRNPLLthunder mutation had no effect on the overall
surface levels of CD45, regardless of the Ptprc genotype. This assay
was nevertheless sensitive to differences inCD45 abundance, because
it showed that therewas 40–50% lessCD45onPtprc0/+ andPtprcloc/+

heterozygotes, only 4% of wild-type CD45 on cells from Ptprcloc/loc

homozygotes, and no detectable CD45 on Ptprc0/0 animals by flow
cytometry. The same was true for CD4 SP spleen cells, except that
∼5–10% of Ptprc0/0 cells express CD45 as shown previously (6).
Although theHnrpllthu/thumutation did not alter the cell surface abun-
dance of CD45, it dramatically altered the isoforms expressed on DP
thymocytes (Fig. 2C). On DP thymocytes from Ptprc+/+, Ptprc0/+,

and Ptprcloc/+ mice, the hnRNPLL mutation increased expression of
CD45RA and RB isoforms 20- to 50-fold, and RC isoforms were
increased∼200-fold. Despite the large reduction of CD45 expression
inPtprcloc/locmice, it was still possible to detect increased expression
of the higher m.w. CD45 isoforms as a result of the Hnrpll thu/thu

mutation, whereas no expression of any of the CD45 isoforms was
detectable on the surface of Ptprc0/0:Hnrpllthu/thu DP cells (Fig. 2C).

Effects of Hnrpll-dependent shift in CD45 isoforms on
thymocyte differentiation and Lck phosphorylation

We used the Ptprc allelic series to investigate whether thymocyte
selection was altered by the Hnrpllthu/thu-induced change in CD45
isoforms. The Ptprc0/0 mutation arrested thymocyte differentiation
at the DP cell stage, thus leading to very low frequencies of
mature CD4+ and CD8+ SP T cells, and this was not altered when
combined with the Hnrpllthu/thu mutation (Fig. 3A). Higher fre-
quencies of SP thymocytes developed in Ptprcloc/loc mice, indicat-
ing that the 4% of normal CD45 present on these cells was
functional, which is in line with recent studies that showed as little
as 3% of total CD45 was sufficient to rescue positive selection in
the thymus (4). Ptprcloc/loc:Hnrpllthu/thu mice produced equivalent
frequencies of DP and mature CD4+ and CD8+ SP cells compared
with those of the Ptprcloc/loc mice (Fig. 3B–D). The thunder mu-
tation also had no effect on frequencies of SP cells in the thymus
of CD450/+ and CD45loc/+ mice with half the normal CD45 pro-
tein (Fig. 3B–D). Measured in this way, the shift to high m.w.
CD45 isoforms in Hnrpllthu/thu mice had no discernable effect
on the efficiency of positive selection.

FIGURE 1. Characterization of

Ptprcloc/loc mutation. A, Flow cyto-

metric analysis of peripheral blood.

Dots show the percentage of CD8+

T cells and the fraction that are

CD44hi in individual mice. Dotted

lines delineate the boundaries for 62

SD from themean.B, Flowcytometric

analysis of peripheral blood leuko-

cytes from a separate cohort of mice,

showing the percentage of CD8 cells

that are CD44hi and the geometric

mean fluorescent staining for B220 on

CD19+ cells. C, Pedigree of the Loch

Ness strain segregating the lochy and

nessy mutations into separate line-

ages. Filled red and blue symbols de-

note individuals with the lochy

or nessy flow cytometric phenotypes.

D, Ptprc cDNA sequence trace

showing five additional nucleotides in

Ptprcloc/loc mice. E, Ptprc genomic

DNA sequence trace showing T → A

nucleotide substitution in the intron

preceding Ptprc exon 21 and position

of the exon 21 splice acceptor de-

termined from cDNA sequencing. F,

Schematic of CD45 protein showing

consequences of lochy mis-splicing

for the protein sequence.
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Because p56lck is a primary target of CD45 in T cells, we ex-
amined whether the Hnrpllthu/thu mutation affected the phosphor-
ylation status of the two key tyrosine residues dephosphorylated
by CD45, using intracellular flow cytometry of thymocytes with
Abs specific for phosphorylated Lck Y505 (pY505) or Lck Y394
(pY394). This assay was sensitive to detect functional differences
in CD45 activity against Lck, because it reproducibly detected
increased pY505 and pY394 in thymocytes and peripheral T cells
from Ptprcloc/loc or Ptprc0/0 mice with low or no CD45 (Figs. 4, 5).
As an independent measure of TCR–Lck signal strength, we
measured expression of CD5 on DP cells, because this inhibitory
receptor is expressed at levels proportional to the strength of
CD45-dependent TCR signaling in DP thymocytes (25). CD5 ex-
pression was decreased on DP and CD4+ SP thymocytes from
Ptprc0/0 and Ptprcloc/loc mice (Fig. 4G, 4H).

By contrast with the effects of decreasing overall CD45 protein,
there was no significant effect of the altered CD45 splicing caused
by the Hnrpll mutation upon intracellular levels of pLckY505 or
pLckY394 in DP or CD4 SP cells with normal levels of CD45 or
in the absence of CD45. However, in DP cells from Ptprcloc/loc

mice, with 4% of normal CD45, there was a consistent 25% in-
crease in pY505 staining (p = 0.002) in cells with mutant Hnrpll
and high m.w. CD45 isoforms (Fig 4C). A smaller but consistent
increase in pY505 was observed in Ptprcloc/loc:Hnrpllthu/thu CD4
SP thymocytes (Fig. 4D). This increase in LckY505 phosphory-
lation was not accompanied by any change in LckY394 phos-
phorylation (Fig. 4E, 4F) nor in CD5 expression (Fig. 4G, 4H). A
more subtle ∼10% higher LckY505P mean fluorescence intensity
was observed in TCR-stimulated Ptprcloc/loc:Hnrpllthu/thu DP and
CD4 SP cells relative to that in Hnrpll+/+ wild-type counterparts
(Supplemental Fig. 1). Total Lck remained unchanged (Supple-
mental Fig. 2). There was no evidence for an effect of the
Hnrpllthu/thu mutation upon LckY505 or LckY394 phosphor-

FIGURE 2. Effects of Hnrpll mutation on T cell CD45 expression and

isoforms in a Ptprc allelic series. A, Representative flow cytometric his-

tograms comparing staining for total CD45 on DP thymocytes or CD4+

splenocytes from mice with the indicated Ptprc genotypes. The animals

shown had either wild-type Hnrpll (left and right panels) or Hnrpllthu/thu

allele (middle panel). B, Quantitation of data obtained as in A from mul-

tiple animals. Each symbol represents the value from one individual

mouse. CD45 relative expression was calculated using the geometric mean

fluorescence on T cells from each test animal divided by the average CD45

geometric mean of CD4+ T cells of n = 6 C57BL/6 mice. C, Representative

flow cytometric histograms from staining with specific Abs to CD45RA,

RB, or RC isoforms on DP cells in mice with the indicated Ptprc genotypes

and either Hnrpll+/+ (solid lines) or Hnrpllthu/thu mice (dotted lines).

FIGURE 3. Effects of Hnrpllmutation on T cell development in animals

with differing amounts of CD45. A, Representative flow cytometric

staining for CD4 and CD8 on thymocytes from mice of the indicated Ptprc

genotypes that were either Hnrpll+/+ (top panel) or Hnrpllthu/thu (lower

panel). B–D, Frequencies of DP cells (B), CD4+ SP cells (C), and CD8+ SP

cells (D) in the thymus of individual mice of the indicated Ptprc and

Hnrpll genotypes. Columns show the means, and each dot represents one

individual mouse. Each group contains n = ∼3–6 animals pooled from two

experiments. Circles and triangles represent data from different experi-

ments. Comparison of thu/thu and wild-type groups with the same Ptprc

genotype by Student t test showed no significant differences.
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ylation in peripheral naive or memory T cells expressing CD45 at
normal or 4% of normal levels (Fig. 5A, 5B). LckY505P levels and
CD5 expression tended to be lower in Hnrpllthu/thu peripheral CD4
T cells lacking any CD45 (Fig. 5A), presumably reflecting the
CD45-independent effects of the thu/thu mutation on peripheral
T cell persistence described below (see Fig. 7).

Changes in CD45 splicing do not affect positive or negative
selection of Ag-specific T cells

To examine the effect of the thunder mutation on positive and
negative selection of Ag-specific T cells in the thymus, we bred
the Hnrpllthu/thu mutation onto the 3A9 TCR transgenic back-
ground. The 3A9 TCR is I-Ak–restricted, directs T cell development
toward theCD4+ lineage, and recognizes the immunodominant 46–61
peptide of hen egg lysozyme (HEL) bound to I-Ak (22, 23). The
transgene carried by insHEL mice encodes a membrane-bound form
of lysozyme under transcriptional control of the rat insulin promoter.
The insHEL gene mirrors the pattern of proinsulin gene expression,
with high expression in all pancreatic islet b cells (22) and low ex-
pression in medullary thymic epithelial cells. To study negative selec-
tion of islet-reactive CD4+ T cells, we bred the 3A9 TCR transgenic
with insHEL transgenic mice to generate double-transgenic mice.
The developmental fate of theHEL-specific 3A9T cells in the thymus
and periphery of TCR and TCR 3 insHEL double-transgenic mice
was monitored by flow cytometry using the TCR clonotype-specific
mAb 1G12 (23). A modest decrease in TCR signaling due to the

FIGURE 4. Effects of Hnrpll mutation on Lck phosphorylation and CD5

expression in thymocytes. A and B, Representative histogram overlays of

Hnrpll+/+ (solid lines) and Hnrpllthu/thu (dotted lines) thymocytes, gated on

DP or CD4+ SP cells, showing intracellular staining for Lck pY505 (A) or

Lck pY394 (B). Intracellular staining with isotype control Ab shown by

shaded histograms. C–H, Relative levels of intracellular Lck pY505, Lck

pY394, and cell surface CD5 in DP thymocytes (C, E, G) and CD4+ SP

thymocytes (D, F, H) from Hnrpll+/+ (solid bar with open dots) or

Hnrpllthu/thu mice (open bars with filled dots) with the indicated Ptprc

genotype. Bars show means, and symbols show individual animals, with

the values calculated using the geometric mean fluorescence on T cells

from each test animal divided by the average geometric mean fluorescence

of the Ptprc+/+:Hnrpll+/+ mice analyzed in that experiment. Each dot

represents one individual mouse. Each group contains n = ∼4–11 animals

pooled from five experiments. Circles, triangles, squares, crosses, and

diamonds represent data from different experiments. Results of a statistical

comparison of thu/thu and their wild-type counterparts with the same Ptprc

genotype by ratio t test or log-rank paired t test are shown.

FIGURE 5. Effects of Hnrpllmutation on Lck phosphorylation and CD5

expression in peripheral T cells. A–F, Relative levels of intracellular Lck

pY505 (A, B), Lck pY394 (C, D), and cell surface CD5 (E, F) in naive

(CD62L+CD44lo) (A, C, E) or memory (CD62L–CD44hi) (B, D, F) CD4+

splenocytes from Hnrpll+/+ (solid bars with open dots) or Hnrpllthu/thu

(open bars with filled dots) mice with the indicated Ptprc genotype.

Symbols show values for individual animals calculated using the geometric

mean fluorescence on T cells from each test animal divided by the average

geometric mean of Ptprc+/+:Hnrpll+/+ naive CD4+ T cells in the same

experiment. Each group contains n = ∼4–11 animals pooled from five

experiments. Circles, triangles, squares, crosses, and diamonds represent

data from different experiments. Results of a statistical comparison of thu/

thu and their wild-type counterparts with the same Ptprc genotype by ratio

t test or log-rank paired Student t test are shown.
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Zap70mrd/mrd catalytic site mutation, which caused only a 50% de-
crease in SP cell formation on a polyclonal TCR gene background,
nevertheless caused a 50-fold decrease in positive selection of 1G12+

SP thymocytes when introduced into 3A9 TCR transgenic mice (26).
We therefore used this sensitive assay to examine whether changes in
CD45 isoform expression influenced positive or negative selection.
In TCR transgenic mice not expressing the insHEL transgene,

the positive selection of mature CD4+1G12+ cells occurred equal-
ly in the presence or absence of the Hnrpllthu/thu mutation and
there were equivalent numbers of mature CD4+1G12+CD692

T cells in the thymus of wild-type and thunder TCR transgenic
mice (Fig. 6A, 6C). Similarly, there was no difference in thymic
deletion of the islet-reactive CD4+1G12+ cells in the thymus
of Hnrpll+/+ and Hnrpllthu/thu TCR 3 insHEL transgenic mice
(Fig. 6B, 6C). There was also no difference in the percentage of
wild-type or thunder TCR 3 insHEL transgenic mice that devel-
oped diabetes (Fig. 6D). Although there appeared to be a trend for
earlier onset among the few Hnrpll mutant animals that became
diabetic, the number of animals that developed diabetes was low
in both groups and the interquartile range for their ages at onset
(thu/thu, 45- to 74-d-old; wild-type, 48- to 83-d-old) overlaps that
for a much larger cohort of wild-type TCR3 insHEL animals (48-
to 93-d-old, n = 276). The shift to high m.w. CD45 isoforms in
Hnrpllthu/thu thymocytes therefore does not demonstrably affect

TCR signaling for positive or negative selection or the incidence
of autoimmune diabetes.

Diminished accumulation of Hnrpllthu/thu peripheral T cells is
independent of CD45

Inaddition to itseffectsonCD45isoformexpression, theHnrpllthu/thu

mutation decreases peripheral T cell survival and accumulation (5).
We therefore examined Ptprc0/0:Hnrpllthu/thu animals to see if this
effect of theHnrpllmutationwas abolished in T cells lacking CD45.
In this analysis, the subset of peripheral T cells in Ptprc0/0mice that
escape the targeted exon 6 insertion and express cell surface CD45
(6) was excluded by flow cytometric staining with a pan-CD45 Ab.
Fewer CD4 and CD8 cells were present in Ptprc0/0 mice with wild-
type hnRNPLL, but their numberswere further decreased inPtprc0/0

mice that also carried the Hnrpllthu/thu mutation (Fig. 7A–C).
Hnrpllthu/thu mutation therefore diminishes peripheral T cell accu-
mulation independently of its effect on CD45 isoforms.

Discussion
In this study, we employed a loss-of-function mutation in the CD45
splicing silencer, hnRNPLL, to examine the consequences of dra-
matically increasing the proportion of high m.w. CD45 isoforms on

FIGURE 6. Effects of Hnrpll mutation on positive and negative selec-

tion in 3A9 TCR transgenic mice. A, Representative flow cytometric plots

of thymocytes from Hnrpll+/+ and Hnrpllthu/thu 3A9 TCR transgenic mice,

showing CD4 and CD8 (upper panel) or staining for CD69 and 3A9 TCR

clonotype (1G12+) gated on CD4+ SP cells (lower panel). B, Corre-

sponding analysis to A in Hnrpll+/+ (left lane) and Hnrpllthu/thu (right lane)

3A9 TCR 3 insHEL double-transgenic mice. C, Number of 3A9 TCR

clonotype 1G12+CD4+CD692 mature T cells in the thymus of individual

animals of the indicated genotypes Hnrpll+/+ (filled squares, n = 9 TCR+

insHEL2 and n = 8 TCR+insHEL+) or Hnrpllthu/thu (open circles, n = 9

TCR+insHEL2 and n = 8 TCR+insHEL+) mice. There was no difference in

the means between the TCR+insHEL2 p = 0.0554 and TCR+insHel+ mice

p = 0.4529 using a Student t test. D, Diabetes incidence in Hnrpll+/+ (filled

square, n = 18) or Hnrpllthu/thu (open circle, n = 44) 3A9 TCR 3 insHEL

double-transgenic mice. There was no significant difference in diabetes

incidence between the Hnrpll+/+ and Hnrpllthu/thu TCR 3 insHel double-

transgenic mice using a log-rank test (p = 0.3258).

FIGURE 7. Effect of Hnrpll mutation on accumulation of peripheral

T cells in the absence of CD45. A, Representative flow cytometric plots

showing spleen cells stained for CD4 and CD8 in mice of the indicated

Ptprc genotypes that were eitherHnrpll+/+ (top row) orHnrpllthu/thu (bottom

row). B, Number of splenic CD4+ cells in the mice of the indicated geno-

types. CD45+ cells were excluded from analysis of Ptprc0/0 animals. Each

dot represents one individual mouse, and bars denote means. Hnrpll+/+ and

Hnrpllthu/thu counterparts of a given Ptprc genotype were compared by

Student t test. The percentage decrease in mean CD4 cell number in groups

of Hnrpllthu/thumice relative to theirHnrpll+/+ counterpart for a given Ptprc

genotype is shown. C, Percentage of CD452 T cells in peripheral blood of

individual Ptprc0/0 mice that were either Hnrpll+/+ (open symbols) or

Hnrpllthu/thumice (filled symbols). All p values were calculated by Student t

test. The percentage decrease in mean CD4 or CD8 cell frequency in

Hnrpllthu/thu mice is shown.
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T cell signaling and selection in vivo. This approach allowed the
overall cell surface abundance of CD45 to be maintained at phys-
iological levels, whereas combining the mutation with different
Ptprc mutations tested the consequences of shifting CD45 iso-
forms when there were limiting amounts of cell surface CD45.
Despite the use of assays that were internally validated to detect
differences in CD45 activity and a 20- to 200-fold increase in
CD45RA- and RC-bearing isoforms on hnRNPLL mutant thymo-
cytes, there was no discernable effect upon whole-cell Lck phos-
phorylation, CD5 induction, or positive and negative selection.
The only setting where an effect of the Hnrpll mutation and al-
tered CD45 splicing was observed was a 25% increase in
LckY505 phosphorylation in Ptprcloc/loc:Hnrpllthu/thu mice thymo-
cytes with 4% of normal CD45. These results reinforce and extend
previous studies indicating that the efficiency of TCR signaling for
T cell development depends upon the total amount of CD45 pro-
tein expressed but is unaffected by the expression of different
CD45 isoforms. The limited in vivo effect of the different isoforms
constrains models for the function of different isoforms and raises
a conundrum of why CD45 alternative splicing has evolved and
appears conserved across many species.
CD45 is required throughout all of the stages of T cell de-

velopment in the thymus, and CD45 mRNA undergoes alternative
splicing in a developmental and activation-dependent manner (1).
The ectodomain of CD45 is highly glycosylated, and it has been
proposed that it could contribute a considerable negative charge to
the surface of the thymocytes that could potentially interfere with
the interaction between the TCR and the selecting peptide/
MHC ligand. In the thymus, DP cells predominantly express the
CD45R0 isoform, which may allow CD45 access to the TCR
signaling complex to favor positive selection of thymocytes. Our
findings showed that expression of the CD45 isoforms was largely
irrelevant to the outcome of positive selection, but what mattered
was the total amount of CD45 protein expressed at the cell sur-
face. Consistent with McNeill et al. (4), we conclude from our
results that the level of CD45 expressed by thymocytes rather than
CD45 isoforms is more important for the outcome of T cell dif-
ferentiation in the thymus.
The 25% increase in LckY505 phosphorylation in Hnrpllthu/thu

thymocytes with 4% of normal CD45 (Ptprcloc/loc; Fig. 4C, 4D)
indicates that the shift to higher m.w. CD45 isoforms is associated
with an apparent decrease in CD45 phosphatase activity against
Lck505 that is only detectable in thymocytes and only under con-
ditions of limiting amounts of CD45. This result is consistent with
in vitro evidence that high m.w. CD45 isoforms promoted less Lck
tyrosine kinase activity and TCR signaling, due to either less effi-
cient associationwithCD4 andTCR (27, 28) or stronger binding and
dimerization by lectins recognizing the O-linked carbohydrates,
such as macrophage galactose-like lectin (2). It contrasts with the
evidence that high m.w. isoforms promote more TCR signaling of
intracellular calcium or inositol 1,4,5-triphosphate compared with
CD45ROdue to their reduced propensity to homodimerize (29). The
failure to detect this difference in LckY505 phosphorylation in cells
with normal CD45 levels, nor in peripheral T cells with decreased or
normal CD45 levels, and the lack of a discernable effect on SP cell
formation indicate that the effect of the different isoforms is subtle
and readily compensated. Although we did not detect an effect of
altered CD45 splicing upon LckY505 phosphorylation in peripheral
T cells, our results do not exclude the possibility that the subtle
differences noted in thymocytes become significant under particular
stimulation conditions in mature T cells. Given the large number of
genes with alternative splicing in Hnrpll mutant T cells, we cannot
exclude the possibility that splicing changes in other genes might
mask the effect of the differences in CD45 isoforms.

Several studies have identified polymorphisms within different
CD45 exons and associated thesewith disease susceptibility (3). The
most common mutation is the C77G mutation in a splicing silencer
element in exon 4 that prevents excision of the exon so that het-
erozygous carriers express both CD45RA and CD45R0 isoforms.
The C77G allele has been associated with susceptibility to auto-
immune diseases, such as systemic lupus erythematosus, rheuma-
toid arthritis, multiple sclerosis, and HIV/AIDS (30–35). Other
CD45 alleles that have been characterized include an exon 4 allele
C59A and an exon 6 allele A138G (36, 37). Alterations in CD45
isoform expression on mature T cells could lead to altered TCR
signaling that could lead to the production of effector cytokines
and promote autoimmunity (16). The regulation of CD45 activity
is thought to be controlled by dimerization, because a mouse
expressing a mutation in the cytoplasmic wedge domain on CD45
(CD45E613R) develops autoimmune nephritis and a lymphoproli-
ferative syndrome (38). In this study, we have used a validated
model of autoimmune type 1 diabetes to investigate how changes in
CD45 isoform expression would affect negative selection of
autoreactive CD4+ T cells in vivo. The TCR 3 insHEL model is
highly sensitized to develop type 1 diabetes, because mice con-
taining only one mutant copy of a diabetes susceptibility gene (e.g.,
Aire) exhibit accelerated onset of type 1 diabetes (39). By contrast,
the expression of high m.w. CD45 isoforms in thunder TCR 3
insHel double-transgenic mice did not affect the proportion that
developed type 1 diabetes. We have also previously shown that
thunder 3A9 TCR transgenic cells can produce equivalent levels
of cytokines compared with those of wild-type cells (5). It may be
that human CD45 isoform polymorphisms combine with other ge-
netic mutations to perturb T cell function but on their own may not
be sufficient to trigger autoimmune disease. However, it should also
be noted that the association of the C77G allele with autoimmunity
has not been replicated in a number of studies (40–44).
The thunder mouse strain was originally identified by the low

frequency of CD4+ and CD8+ T cells circulating in the blood, and
we have established that the mutation affects the survival of naive
and memory T cells (S. Chan, E. Bertram, and C.C. Goodnow,
unpublished observations) (5). Survival and homeostasis of pe-
ripheral T cells depends on TCR signals (4, 5, 45), making it at-
tractive to hypothesize that the altered CD45 isoform expression
was responsible for diminishing T cell accumulation. The results
here nevertheless disfavor that hypothesis, because the thunder
mutation decreased the number of peripheral T cells, even when no
CD45 was present. Future analysis will need to focus on the many
other hnRNPLL-regulated targets revealed by microarray analysis
(5), which may illuminate a novel mechanism by which hnRNPLL
controls the accumulation and longevity of circulating T cells.
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