
74

A Model-agnostic XAI Approach for Developing Low-cost IoT
Intrusion Detection Dataset
Enoch Opanin Gyamfi1,2,*, Zhiguang Qin1, Daniel Adu-Gyamfi2, Juliana Mantebea Danso1, Judith
Ayekai Browne4, Dominic Kwasi Adom2, Francis Effirim Botchey1,3, Nelson Opoku-Mensah1,5

1School of Information and Software Engineering (SISE), University of Electronic Science and Technology of China,
Sichuan Province, P.R. China.
2Department of Cyber Security and Computer Engineering Technology (DCSCET), School of Computing and Infor-
mation Sciences (SCIS), C.K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana.
3Department of Computer Science, Koforidua Technical University, Koforidua, Ghana.
4School of Computer Science and Engineering (SCSE), University of Electronic Science and Technology of China
(UESTC), Sichuan Province, P.R. China.
5St. Monica’s College of Education, Mampong. Ashanti Region, Ghana.
Received 08 Oct. 2023; Accepted 10 Dec 2023; Available Online 21 Dec. 2023.

Abstract
This study tackles the significant challenge of generating low-cost intrusion detection datasets for Internet

of Things (IoT) camera devices, particularly for financially limited organizations. Traditional datasets often de-
pend on costly cameras, posing accessibility issues. Addressing this, a new dataset was developed, tailored
for low-cost IoT devices, focusing on essential features. The research employed an Entry/Exit IoT Network at
CKT-UTAS, Navrongo, a Ghanaian University, showcasing a feasible model for similar organizations. The study
gathered location and other vital features from low-cost cameras and a standard dataset. Using the XGBoost
machine learning algorithm, the effectiveness of this approach for cybersecurity enhancement was demonstrat-
ed. The implementation included a model-agnostic eXplainable AI (XAI) technique, employing Shapley Additive
Explanations (SHAP) values to interpret the XGBoost model's predictions. This highlighted the significance of
cost-effective features like Flow Duration, Total Forward Packets, and Total Length Forward Packet, in addi-
tion to location data. These features were crucial for intrusion detection using the new IoT dataset. Training a
deep-learning model with only these features maintained comparable accuracy to using the full dataset, validat-
ing the practicality and efficiency of the approach in real-world scenarios.

Keywords: Cybersecurity, Intrusion Detection Dataset, IoT, Model Agnostic XAI, SHAP, XGBoost, Cybercrime,
Ghanaian University.

Production and hosting by NAUSS

1658-7782© 2023. JISCR. This is an open access article, distributed under the terms of the Creative Commons, Attribution-NonCommercial License.

Naif Arab University for Security Sciences
Journal of Information Security and Cybercrimes Research

مجلة بحوث أمن المعلومات والجرائم السيبرانية
https://journals.nauss.edu.sa/index.php/JISCR

JISCR

* Corresponding Author: Enoch Opanin Gyamfi
Email: :enochopaningyamf@outlook.com
doi: 10.26735/LPAO2070

I. IntroductIon

Intrusion detection datasets for IoT camera
devices have become increasingly prevalent, but
their creation often relies on expensive and high-
end camera devices. This poses a challenge for

financially constrained environments, such as
African communities and organizations in remote
regions. The proposed approach leverages on
model-agnostic eXplainable AI (XAI) techniques
to create a robust dataset for intrusion detection,

Original Article Journal of Information Security and Cybercrimes Research 2023; Volume 6 Issue (2), 74-88

https://crossmark.crossref.org/dialog/?doi=10.26735/LPAO2070&domain=pdf
https://journals.nauss.edu.sa/index.php/JISCR
https://journals.nauss.edu.sa/index.php/JISCR
https://nauss.edu.sa/
https://doi.org/10.26735/LPAO2070
https://doi.org/10.26735/LPAO2070

75

JISCR 2023; Volume 6 Issue (2)

they produce often lack transparency and rationale,
posing challenges for individuals, particularly
users and expert-developers, in understanding
the underlying processes [13]. Consequently,
even expert-developed cyber defense systems
may lack the necessary components to effectively
counteract threats, rendering these defensive
systems susceptible to potential data breaches [14].
Additionally, regular users find them challenging
to provide clear and straightforward explanations
when an attack occurs. To address these limitations
in utilizing such algorithms for cybersecurity,
eXplainable AI (XAI) has emerged as a solution to
mitigate the black-box issue associated with these
algorithms. XAI enables users and experts to
understand the logical explanations and core data
evidence behind the outcomes produced by these
algorithms, enhancing interpretability [15]. Siganos
et. al [25] also introduced an AI-powered IDS with
explainability functions for the IoT. They proposed
IDS that relies on machine learning and deep learning
methods, using XAI to explain decision-making

Likewise, in this paper, an eXplainable AI
strategy categorised as model-agnostic was
adopted. Specifically, SHAP was used to interpret
the prediction capability of the machine learning
algorithm, XGBoost, on the IoTID20 dataset [11]
that was modified on a low-cost budget. Through
this, important features of these datasets can
be noted. Organizations, researchers and other
stakeholders interested in intrusion detection but
are on low budgets can be confidently advised to
mimic the procedures and devices used to collect
such data at a low cost.

As described in [21-23], XAI techniques can be
organized based on multiple categories with the
possibility of some techniques fitting into more than
one category due to overlapping characteristics.
To enhance clarity, it would be more appropriate
to classify XAI techniques under either ‘Model-
Specific or Model-Agnostic’ categorization
perspective. This categorization perspective
provides a more comprehensive understanding of
the characteristics of an adopted XAI technique.

XAI techniques can be categorized based on
the types of models they are applicable to, which
are either model-specific or model-agnostic.

albeit, considering low-cost features of the
dataset.

 The escalating complexities of cyberattacks,
particularly intrusion attempts, present a growing
challenge in terms of handling and responding to
these threats. Managing and responding to them is
becoming increasingly difficult [1]. As indicated in
the work of [2], traditional algorithms that rely on rule-
based, statistics-based, and signature-based security
policies, are commonly used for intrusion detection.
It is important to mention that all these approaches
depend on datasets to achieve their effectiveness
[3]. Some latest state-of-the-art intrusion detection
datasets include ISCX_2012 [4] ADFA-LD/-WD [5],
CIC-IDS2017 [6], CSE-CIC-IDS-2018 [7], IEC 60870-
5-104-IDD [8] and CICIoT2023 [9].

Nevertheless, with the proliferation of data
transmitted over the Internet and the emergence
of new computing paradigms like the Internet of
Things (IoT) and Artificial Intelligence (AI), has
led to challenges in generating features of these
datasets. Not only is the process time-consuming,
but also requires the use of sophisticated and
expensive devices to collect feature values [3].
Data obtained from affordable devices [10] present
inherent constraints for AI-based and IoT-based
cybersecurity systems. Affordable devices may
have less powerful electronic components or limited
data collection capabilities, which can lead to lower-
quality or less comprehensive data for cybersecurity
analysis. Consequently, the accuracy of any system
trained on such data may be limited or compromised.
To overcome these limitations, the IoTID20 dataset
was developed with a focus on utilizing inexpensive
and readily available IoT devices for data gathering
[11]. This dataset serves as a solution to enhance the
accessibility and affordability of data for AI-driven
cybersecurity applications, all while maintaining
high levels of accuracy.

Moreover, considering the earlier discussed
drawbacks in intrusion detection research, another
significant challenge is the black-box nature of
algorithms. This aspect requires more attention and
consideration when integrating these models into
the field of cybersecurity [12]. An essential factor
to consider is the creation of datasets. Because
algorithms and models operate with these black-
box characteristics, the predictions and decisions

A Model-agnostic XAI Approach for Developing Low-cost IoT Intrusion Detection Dataset

76

JISCR 2023; Volume 6 Issue (2)

Model-specific XAI techniques are tailored to
a single model or a specific group of models.
For instance, the Graph Neural Network (GNN)
explainer [16] provides interpretable explanations
for predictions made by GNN-based models on
graph-related machine learning problems, which is
beyond the scope of this study. This categorization
of XAI technique is outside the scope of this study.
In contrast, model-agnostic XAI techniques are
designed to be compatible with any machine
learning model in theory. This category of techniques
is intentionally developed to work seamlessly with
diverse number of machine learning models. The
term “agnostic” signifies that these XAI techniques
do not discriminate based on the specific type or
architecture of the machine learning model in use.

These model-agnostic XAI techniques operate
primarily by analyzing the inputs and outputs of a
given machine learning model. They are designed
to extract insights and explanations without needing
to access the internal details of the model, such as
its weight values or structural information. In other
words, model-agnostic XAI techniques do not
require knowledge of how the model was trained
or its internal parameters; they focus solely on the
inputs and outputs of the model. A widely used
example is the SHAP tools [17], which was chosen
as the model-agnostic explanation tool for this
study. Siganos et. al [25] used SHapley Additive
exPlanations (SHAP) method is to explain decisions
made by deep learning models.

In the current highly competitive and dynamic
world, contemporary organizations need to operate
efficiently and affordably to ensure their success.
Security strategies are important in the success
of contemporary organizations, necessitating
measures to safeguard data integral to their business
operations. Financially capable organizations often
invest in the latest and more advanced IoT devices
and security systems, even those at higher costs.
Unfortunately, financially constrained organizations
encounter challenges in adapting to such advanced
security measures, limiting their competitiveness in
data protection on IoT networks. AI-based Intrusion
Detection Systems (IDSs) is a viable approach for
organizations to secure their data on IoT networks.
However, organizations in financially constrained
environments have not effectively adopted IDSs,

primarily due to the substantial expenses associated
with their implementation. AI-based IDSs involves
the use of expensive and sophisticated devices to
generate datasets for training the AI modules. As
datasets form the fuel for any AI-based system, the
costs associated with their creation significantly
contribute to the overall expenses of implementing
AI-based IDSs. Consequently, there is a critical
need for research aimed at reducing the costs
related to dataset creation for training AI-based
IDSs. Addressing this aspect is crucial in enabling
financially constrained organizations to embrace
advanced security technologies, enhancing their
ability to compete effectively in safeguarding their
data and operations.

The problem has to do with the availability of
robust intrusion detection dataset features generated
from low-cost IoT devices. These features need also
to be comparably standard to datasets generated
with expensive high-end IoT devices. The main
objective of this research is to address this issue by
developing an intrusion detection dataset tailored to
the needs of a financially challenged environment.
To achieve this main research objective, standard
dataset was selected, wherein, the IoT devices
used for collecting its features are low-cost devices
and are the ones commonly used in people’s daily
routines. This aligns with the research objective
of addressing the challenges associated with
financially constrained environments. By using data
generated from affordable IoT devices, the study
demonstrates that effective intrusion detection
is still achievable without the need for expensive
infrastructure or resources. A network of IoT camera
devices was set up to automatically capture
location features for monitoring intrusion detection.
Compatibility test was conducted between features
of the selected dataset and that of the automatically
captured location features. Compatible features of
the selected dataset were appended to location
features to create a new IoT dataset. Finally, model-
agnostic XAI method is employed on the XGBoost
algorithm to provide insights into which features of
the new IoT dataset are most influential in making
predictions of intrusion detection.

The subsequent sections of the paper are
organized as follow: Section II discusses the
methodology, Section III covers the experiments

Gyamfi et al.

77

JISCR 2023; Volume 6 Issue (2)

and results, and finally, Section IV is the conclusion
of the paper.

II. Methodology

The methodology begins by selecting a
standardized dataset, IoTID20, which utilizes
affordable IoT camera devices. Following pre-
processing, an IoT Network is set up within a
university campus using low-cost camera devices
to automatically capture two important location
features: the locations of the camera devices
initiating and receiving packets on the network. A
Shapira-Wilk test is employed to identify features
from the IoTID20 dataset that are compatible with
these location features. Features from the IoTID20
dataset demonstrating compatibility with the

location features are then appended. After this,
the dataset's feature count is reduced to create a
new IoT intrusion detection dataset that includes
only features captured by low-cost IoT devices. For
intrusion prediction, an XGBoost regression model is
implemented on the new dataset, with its parameters
optimized through a grid search algorithm. A
model-agnostic Explainable Artificial Intelligence
(XAI) technique calculates SHAP values to interpret
predictions made by the XGBoost algorithm. The
analysis of SHAP values on the XGBoost model's
predictions aids in identifying the contributions of
globally significant dataset features to the overall
predictive outcomes. Fig. 1 provides an overview of
the methodology's processing steps, each of which
is subsequently elaborated upon in detail.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

II. METHODOLOGY
The methodology begins by selecting a standardized dataset,

IoTID20, which utilizes affordable IoT camera devices.
Following pre-processing, an IoT Network is set up within a
university campus using low-cost camera devices to
automatically capture two important location features: the
locations of the camera devices initiating and receiving packets
on the network. A Shapira-Wilk test is employed to identify
features from the IoTID20 dataset that are compatible with
these location features. Features from the IoTID20 dataset
demonstrating compatibility with the location features are then
appended. After this, the dataset's feature count is reduced to

create a new IoT intrusion detection dataset that includes only
features captured by low-cost IoT devices. For intrusion
prediction, an XGBoost regression model is implemented on
the new dataset, with its parameters optimized through a grid
search algorithm. A model-agnostic Explainable Artificial
Intelligence (XAI) technique calculates SHAP values to
interpret predictions made by the XGBoost algorithm. The
analysis of SHAP values on the XGBoost model's predictions
aids in identifying the contributions of globally significant
dataset features to the overall predictive outcomes. Figure 1
provides an overview of the methodology's processing steps,
each of which is subsequently elaborated upon in detail.

.

Fig. 1. Workflow of the proposed approach.

A. Selecting the IoTID20 Dataset
The IoTID20 dataset [11], which contains data pertaining to

attacks on common smart home devices, is used. As previously
highlighted, the key benefits of choosing this dataset are that its
collected features match modern IoT network trends and use
data from affordable devices such as cameras (e.g. the SKT
NGU and the EZVIZ Wi-FI cameras), Wi-Fi routers, laptops,

tablets, and smartphones, among others. This dataset has a total
of 86 network features and 3 label features. The 3 labels of the
features are the binary, categorical, and the sub-categorical
features. The original dataset contains 625,784 data instances.

B. Pre-processing for Feature Selection from IoTID20
Dataset

To get 620,673 data instances and 61 features, three

Removing descriptive features

Cleaning infinity and missing values

Column normalization

Dataset preparation

Pre-processing Original/Default dataset

Location of Camera Initiating Packets

Location of Camera Receiving Packets

Data collection

Location features

Features Compatibility Test

Feature ranking Shapira-Wilk test statistic

Model Building and Evaluation

XGBoost Model development Model validation

Model-agnostic approach

eXplainable AI (XAI) SHAP

Fig. 1. Workflow of the proposed approach.

A Model-agnostic XAI Approach for Developing Low-cost IoT Intrusion Detection Dataset

78

JISCR 2023; Volume 6 Issue (2)

A. Selecting the IoTID20 Dataset
The IoTID20 dataset [11], which contains data

pertaining to attacks on common smart home
devices, is used. As previously highlighted, the key
benefits of choosing this dataset are that its collected
features match modern IoT network trends and use
data from affordable devices such as cameras
(e.g. the SKT NGU and the EZVIZ Wi-FI cameras),
Wi-Fi routers, laptops, tablets, and smartphones,
among others. This dataset has a total of 86 network
features and 3 label features. The 3 labels of the
features are the binary, categorical, and the sub-
categorical features. The original dataset contains
625,784 data instances.

B. Pre-processing for Feature Selection from IoT-
ID20 Dataset

To get 620,673 data instances and 61 features,
three processing techniques were performed as fol-
low. First 1 to 9 features were intentionally removed
because they were mere descriptive features that
identify devices on the network e.g. Flow ID, Source
and Destination IPs, Source and Destination Ports,
Protocols, Timestamps and Flow Duration. Following
this, data cleaning was conducted to address infinity
and missing values, performed column normalization
on feature values, and lastly, conducted feature cor-
relation analysis. Features with a correlation coeffi-
cient of 0.70 or higher were removed from the dataset.

C. The Location Dataset Feature
The retained 61 features were appended to the

automatically collected two (2) location features
which were termed as 'Location for Initiating Packets’
and ‘Location for Receiving Packets’. The set of
features is denoted as

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

processing techniques were performed as follow. First 1 to 9
features were intentionally removed because they were mere
descriptive features that identify devices on the network e.g.
Flow ID, Source and Destination IPs, Source and Destination
Ports, Protocols, Timestamps and Flow Duration. Following
this, data cleaning was conducted to address infinity and
missing values, performed column normalization on feature
values, and lastly, conducted feature correlation analysis.
Features with a correlation coefficient of 0.70 or higher were
removed from the dataset.

C. The Location Dataset Feature
The retained 61 features were appended to the automatically

collected two (2) location features which were termed as
'Location for Initiating Packets’ and ‘Location for Receiving
Packets’. The set of features is denoted as 𝐹𝐹 = {𝑥𝑥𝑛𝑛}𝑖𝑖=1𝑛𝑛 , with
the 𝑥𝑥1 to 𝑥𝑥𝑛𝑛−2 being the retained 61 features of IoTID20 dataset,
𝑥𝑥𝑛𝑛−1 and 𝑥𝑥𝑛𝑛 being the two automatically collected location data
features and 𝑛𝑛 therefore being 𝑛𝑛 = 61 + 2, i.e. the total number
of dataset features after appending.

D. Data Collection for the Location Features
The study hypothesizes that the location of an IoT camera

device is also an important feature that could be used to monitor
attacks for intrusion detection in an IoT network. Any packet
needs to be initiated and received by the IoT camera within this
location. The IPVM Design Calculator (Version 3.1)1 was used
to design geographical plan for our IoT camera devices that are
to be set up to monitor entry and exit of the university campus.
The location of the CKT-UTAS University was searched,
navigated, and set to the position coordinates 10.866 and –1.078
(in decimal degrees format). See Figure 1.

After locations are set, a simulation was made where 7
cameras were added to the Campus Entry/Exit IoT network and
placed at vantage entrance points of the university. Each camera
with corner of coverage cone is also shown in Figure 2.

Figure 3 shows a preview of the viewing angle and area of
one camera.

(a) boundary without fill

1https://calculator.ipvm.com/

(b) boundary with fill (translucent white)
Fig. 1. Location setup for the University campus.

Fig. 2. Camera positions simulated on the IoT network of CKT-UTAS.

Fig. 3. Previewing the CCTV camera device placed exactly at the entrance to
show the camera view of CKT-UTAS entrance .

E. Feature Ranking for Compatibility between IoTID20 and
Location Features

Then, feature ranking was performed to extract from the
retained 61 features of the IoTID20 dataset, those that are very
compatible to the automatically collected two location features.
Feature Ranking in increasing order is computed with a
Shapira-Wilk test statistic. Initial data is ranked from the feature
set:

F = {x1, x2, x3, …x63}, n = 63 (1)

and then equation (2) is calculated as:

bn,n−1 = a1(xn,n−1 − x1) + a2(xn,n−1 −
x2), +⋯+, an(xn,n−1 − xn−2)

(2)

, with the

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

processing techniques were performed as follow. First 1 to 9
features were intentionally removed because they were mere
descriptive features that identify devices on the network e.g.
Flow ID, Source and Destination IPs, Source and Destination
Ports, Protocols, Timestamps and Flow Duration. Following
this, data cleaning was conducted to address infinity and
missing values, performed column normalization on feature
values, and lastly, conducted feature correlation analysis.
Features with a correlation coefficient of 0.70 or higher were
removed from the dataset.

C. The Location Dataset Feature
The retained 61 features were appended to the automatically

collected two (2) location features which were termed as
'Location for Initiating Packets’ and ‘Location for Receiving
Packets’. The set of features is denoted as 𝐹𝐹 = {𝑥𝑥𝑛𝑛}𝑖𝑖=1𝑛𝑛 , with
the 𝑥𝑥1 to 𝑥𝑥𝑛𝑛−2 being the retained 61 features of IoTID20 dataset,
𝑥𝑥𝑛𝑛−1 and 𝑥𝑥𝑛𝑛 being the two automatically collected location data
features and 𝑛𝑛 therefore being 𝑛𝑛 = 61 + 2, i.e. the total number
of dataset features after appending.

D. Data Collection for the Location Features
The study hypothesizes that the location of an IoT camera

device is also an important feature that could be used to monitor
attacks for intrusion detection in an IoT network. Any packet
needs to be initiated and received by the IoT camera within this
location. The IPVM Design Calculator (Version 3.1)1 was used
to design geographical plan for our IoT camera devices that are
to be set up to monitor entry and exit of the university campus.
The location of the CKT-UTAS University was searched,
navigated, and set to the position coordinates 10.866 and –1.078
(in decimal degrees format). See Figure 1.

After locations are set, a simulation was made where 7
cameras were added to the Campus Entry/Exit IoT network and
placed at vantage entrance points of the university. Each camera
with corner of coverage cone is also shown in Figure 2.

Figure 3 shows a preview of the viewing angle and area of
one camera.

(a) boundary without fill

1https://calculator.ipvm.com/

(b) boundary with fill (translucent white)
Fig. 1. Location setup for the University campus.

Fig. 2. Camera positions simulated on the IoT network of CKT-UTAS.

Fig. 3. Previewing the CCTV camera device placed exactly at the entrance to
show the camera view of CKT-UTAS entrance .

E. Feature Ranking for Compatibility between IoTID20 and
Location Features

Then, feature ranking was performed to extract from the
retained 61 features of the IoTID20 dataset, those that are very
compatible to the automatically collected two location features.
Feature Ranking in increasing order is computed with a
Shapira-Wilk test statistic. Initial data is ranked from the feature
set:

F = {x1, x2, x3, …x63}, n = 63 (1)

and then equation (2) is calculated as:

bn,n−1 = a1(xn,n−1 − x1) + a2(xn,n−1 −
x2), +⋯+, an(xn,n−1 − xn−2)

(2)

 to

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

processing techniques were performed as follow. First 1 to 9
features were intentionally removed because they were mere
descriptive features that identify devices on the network e.g.
Flow ID, Source and Destination IPs, Source and Destination
Ports, Protocols, Timestamps and Flow Duration. Following
this, data cleaning was conducted to address infinity and
missing values, performed column normalization on feature
values, and lastly, conducted feature correlation analysis.
Features with a correlation coefficient of 0.70 or higher were
removed from the dataset.

C. The Location Dataset Feature
The retained 61 features were appended to the automatically

collected two (2) location features which were termed as
'Location for Initiating Packets’ and ‘Location for Receiving
Packets’. The set of features is denoted as 𝐹𝐹 = {𝑥𝑥𝑛𝑛}𝑖𝑖=1𝑛𝑛 , with
the 𝑥𝑥1 to 𝑥𝑥𝑛𝑛−2 being the retained 61 features of IoTID20 dataset,
𝑥𝑥𝑛𝑛−1 and 𝑥𝑥𝑛𝑛 being the two automatically collected location data
features and 𝑛𝑛 therefore being 𝑛𝑛 = 61 + 2, i.e. the total number
of dataset features after appending.

D. Data Collection for the Location Features
The study hypothesizes that the location of an IoT camera

device is also an important feature that could be used to monitor
attacks for intrusion detection in an IoT network. Any packet
needs to be initiated and received by the IoT camera within this
location. The IPVM Design Calculator (Version 3.1)1 was used
to design geographical plan for our IoT camera devices that are
to be set up to monitor entry and exit of the university campus.
The location of the CKT-UTAS University was searched,
navigated, and set to the position coordinates 10.866 and –1.078
(in decimal degrees format). See Figure 1.

After locations are set, a simulation was made where 7
cameras were added to the Campus Entry/Exit IoT network and
placed at vantage entrance points of the university. Each camera
with corner of coverage cone is also shown in Figure 2.

Figure 3 shows a preview of the viewing angle and area of
one camera.

(a) boundary without fill

1https://calculator.ipvm.com/

(b) boundary with fill (translucent white)
Fig. 1. Location setup for the University campus.

Fig. 2. Camera positions simulated on the IoT network of CKT-UTAS.

Fig. 3. Previewing the CCTV camera device placed exactly at the entrance to
show the camera view of CKT-UTAS entrance .

E. Feature Ranking for Compatibility between IoTID20 and
Location Features

Then, feature ranking was performed to extract from the
retained 61 features of the IoTID20 dataset, those that are very
compatible to the automatically collected two location features.
Feature Ranking in increasing order is computed with a
Shapira-Wilk test statistic. Initial data is ranked from the feature
set:

F = {x1, x2, x3, …x63}, n = 63 (1)

and then equation (2) is calculated as:

bn,n−1 = a1(xn,n−1 − x1) + a2(xn,n−1 −
x2), +⋯+, an(xn,n−1 − xn−2)

(2)

 being the retained 61 features of IoTID20
dataset,

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

processing techniques were performed as follow. First 1 to 9
features were intentionally removed because they were mere
descriptive features that identify devices on the network e.g.
Flow ID, Source and Destination IPs, Source and Destination
Ports, Protocols, Timestamps and Flow Duration. Following
this, data cleaning was conducted to address infinity and
missing values, performed column normalization on feature
values, and lastly, conducted feature correlation analysis.
Features with a correlation coefficient of 0.70 or higher were
removed from the dataset.

C. The Location Dataset Feature
The retained 61 features were appended to the automatically

collected two (2) location features which were termed as
'Location for Initiating Packets’ and ‘Location for Receiving
Packets’. The set of features is denoted as 𝐹𝐹 = {𝑥𝑥𝑛𝑛}𝑖𝑖=1𝑛𝑛 , with
the 𝑥𝑥1 to 𝑥𝑥𝑛𝑛−2 being the retained 61 features of IoTID20 dataset,
𝑥𝑥𝑛𝑛−1 and 𝑥𝑥𝑛𝑛 being the two automatically collected location data
features and 𝑛𝑛 therefore being 𝑛𝑛 = 61 + 2, i.e. the total number
of dataset features after appending.

D. Data Collection for the Location Features
The study hypothesizes that the location of an IoT camera

device is also an important feature that could be used to monitor
attacks for intrusion detection in an IoT network. Any packet
needs to be initiated and received by the IoT camera within this
location. The IPVM Design Calculator (Version 3.1)1 was used
to design geographical plan for our IoT camera devices that are
to be set up to monitor entry and exit of the university campus.
The location of the CKT-UTAS University was searched,
navigated, and set to the position coordinates 10.866 and –1.078
(in decimal degrees format). See Figure 1.

After locations are set, a simulation was made where 7
cameras were added to the Campus Entry/Exit IoT network and
placed at vantage entrance points of the university. Each camera
with corner of coverage cone is also shown in Figure 2.

Figure 3 shows a preview of the viewing angle and area of
one camera.

(a) boundary without fill

1https://calculator.ipvm.com/

(b) boundary with fill (translucent white)
Fig. 1. Location setup for the University campus.

Fig. 2. Camera positions simulated on the IoT network of CKT-UTAS.

Fig. 3. Previewing the CCTV camera device placed exactly at the entrance to
show the camera view of CKT-UTAS entrance .

E. Feature Ranking for Compatibility between IoTID20 and
Location Features

Then, feature ranking was performed to extract from the
retained 61 features of the IoTID20 dataset, those that are very
compatible to the automatically collected two location features.
Feature Ranking in increasing order is computed with a
Shapira-Wilk test statistic. Initial data is ranked from the feature
set:

F = {x1, x2, x3, …x63}, n = 63 (1)

and then equation (2) is calculated as:

bn,n−1 = a1(xn,n−1 − x1) + a2(xn,n−1 −
x2), +⋯+, an(xn,n−1 − xn−2)

(2)

 and

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

processing techniques were performed as follow. First 1 to 9
features were intentionally removed because they were mere
descriptive features that identify devices on the network e.g.
Flow ID, Source and Destination IPs, Source and Destination
Ports, Protocols, Timestamps and Flow Duration. Following
this, data cleaning was conducted to address infinity and
missing values, performed column normalization on feature
values, and lastly, conducted feature correlation analysis.
Features with a correlation coefficient of 0.70 or higher were
removed from the dataset.

C. The Location Dataset Feature
The retained 61 features were appended to the automatically

collected two (2) location features which were termed as
'Location for Initiating Packets’ and ‘Location for Receiving
Packets’. The set of features is denoted as 𝐹𝐹 = {𝑥𝑥𝑛𝑛}𝑖𝑖=1𝑛𝑛 , with
the 𝑥𝑥1 to 𝑥𝑥𝑛𝑛−2 being the retained 61 features of IoTID20 dataset,
𝑥𝑥𝑛𝑛−1 and 𝑥𝑥𝑛𝑛 being the two automatically collected location data
features and 𝑛𝑛 therefore being 𝑛𝑛 = 61 + 2, i.e. the total number
of dataset features after appending.

D. Data Collection for the Location Features
The study hypothesizes that the location of an IoT camera

device is also an important feature that could be used to monitor
attacks for intrusion detection in an IoT network. Any packet
needs to be initiated and received by the IoT camera within this
location. The IPVM Design Calculator (Version 3.1)1 was used
to design geographical plan for our IoT camera devices that are
to be set up to monitor entry and exit of the university campus.
The location of the CKT-UTAS University was searched,
navigated, and set to the position coordinates 10.866 and –1.078
(in decimal degrees format). See Figure 1.

After locations are set, a simulation was made where 7
cameras were added to the Campus Entry/Exit IoT network and
placed at vantage entrance points of the university. Each camera
with corner of coverage cone is also shown in Figure 2.

Figure 3 shows a preview of the viewing angle and area of
one camera.

(a) boundary without fill

1https://calculator.ipvm.com/

(b) boundary with fill (translucent white)
Fig. 1. Location setup for the University campus.

Fig. 2. Camera positions simulated on the IoT network of CKT-UTAS.

Fig. 3. Previewing the CCTV camera device placed exactly at the entrance to
show the camera view of CKT-UTAS entrance .

E. Feature Ranking for Compatibility between IoTID20 and
Location Features

Then, feature ranking was performed to extract from the
retained 61 features of the IoTID20 dataset, those that are very
compatible to the automatically collected two location features.
Feature Ranking in increasing order is computed with a
Shapira-Wilk test statistic. Initial data is ranked from the feature
set:

F = {x1, x2, x3, …x63}, n = 63 (1)

and then equation (2) is calculated as:

bn,n−1 = a1(xn,n−1 − x1) + a2(xn,n−1 −
x2), +⋯+, an(xn,n−1 − xn−2)

(2)

 being the two automatically
collected location data features and n therefore
being n=61+2, i.e. the total number of dataset
features after appending.

D. Data Collection for the Location Features
The study hypothesizes that the location of an

IoT camera device is also an important feature
that could be used to monitor attacks for intrusion

detection in an IoT network. Any packet needs to
be initiated and received by the IoT camera within
this location. The IPVM Design Calculator (Version
3.1) was used to design geographical plan for
our IoT camera devices that are to be set up to
monitor entry and exit of the university campus. The
location of the CKT-UTAS University was searched,
navigated, and set to the position coordinates
10.866 and –1.078 (in decimal degrees format).
See Fig. 2.

After locations are set, a simulation was made
where 7 cameras were added to the Campus Entry/
Exit IoT network and placed at vantage entrance
points of the university. Each camera with corner of
coverage cone is also shown in Fig. 3.

Fig. 4 shows a preview of the viewing angle and
area of one camera.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

processing techniques were performed as follow. First 1 to 9
features were intentionally removed because they were mere
descriptive features that identify devices on the network e.g.
Flow ID, Source and Destination IPs, Source and Destination
Ports, Protocols, Timestamps and Flow Duration. Following
this, data cleaning was conducted to address infinity and
missing values, performed column normalization on feature
values, and lastly, conducted feature correlation analysis.
Features with a correlation coefficient of 0.70 or higher were
removed from the dataset.

C. The Location Dataset Feature
The retained 61 features were appended to the automatically

collected two (2) location features which were termed as
'Location for Initiating Packets’ and ‘Location for Receiving
Packets’. The set of features is denoted as 𝐹𝐹 = {𝑥𝑥𝑛𝑛}𝑖𝑖=1𝑛𝑛 , with
the 𝑥𝑥1 to 𝑥𝑥𝑛𝑛−2 being the retained 61 features of IoTID20 dataset,
𝑥𝑥𝑛𝑛−1 and 𝑥𝑥𝑛𝑛 being the two automatically collected location data
features and 𝑛𝑛 therefore being 𝑛𝑛 = 61 + 2, i.e. the total number
of dataset features after appending.

D. Data Collection for the Location Features
The study hypothesizes that the location of an IoT camera

device is also an important feature that could be used to monitor
attacks for intrusion detection in an IoT network. Any packet
needs to be initiated and received by the IoT camera within this
location. The IPVM Design Calculator (Version 3.1)1 was used
to design geographical plan for our IoT camera devices that are
to be set up to monitor entry and exit of the university campus.
The location of the CKT-UTAS University was searched,
navigated, and set to the position coordinates 10.866 and –1.078
(in decimal degrees format). See Figure 1.

After locations are set, a simulation was made where 7
cameras were added to the Campus Entry/Exit IoT network and
placed at vantage entrance points of the university. Each camera
with corner of coverage cone is also shown in Figure 2.

Figure 3 shows a preview of the viewing angle and area of
one camera.

(a) boundary without fill

1https://calculator.ipvm.com/

(b) boundary with fill (translucent white)
Fig. 1. Location setup for the University campus.

Fig. 2. Camera positions simulated on the IoT network of CKT-UTAS.

Fig. 3. Previewing the CCTV camera device placed exactly at the entrance to
show the camera view of CKT-UTAS entrance .

E. Feature Ranking for Compatibility between IoTID20 and
Location Features

Then, feature ranking was performed to extract from the
retained 61 features of the IoTID20 dataset, those that are very
compatible to the automatically collected two location features.
Feature Ranking in increasing order is computed with a
Shapira-Wilk test statistic. Initial data is ranked from the feature
set:

F = {x1, x2, x3, …x63}, n = 63 (1)

and then equation (2) is calculated as:

bn,n−1 = a1(xn,n−1 − x1) + a2(xn,n−1 −
x2), +⋯+, an(xn,n−1 − xn−2)

(2)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

processing techniques were performed as follow. First 1 to 9
features were intentionally removed because they were mere
descriptive features that identify devices on the network e.g.
Flow ID, Source and Destination IPs, Source and Destination
Ports, Protocols, Timestamps and Flow Duration. Following
this, data cleaning was conducted to address infinity and
missing values, performed column normalization on feature
values, and lastly, conducted feature correlation analysis.
Features with a correlation coefficient of 0.70 or higher were
removed from the dataset.

C. The Location Dataset Feature
The retained 61 features were appended to the automatically

collected two (2) location features which were termed as
'Location for Initiating Packets’ and ‘Location for Receiving
Packets’. The set of features is denoted as 𝐹𝐹 = {𝑥𝑥𝑛𝑛}𝑖𝑖=1𝑛𝑛 , with
the 𝑥𝑥1 to 𝑥𝑥𝑛𝑛−2 being the retained 61 features of IoTID20 dataset,
𝑥𝑥𝑛𝑛−1 and 𝑥𝑥𝑛𝑛 being the two automatically collected location data
features and 𝑛𝑛 therefore being 𝑛𝑛 = 61 + 2, i.e. the total number
of dataset features after appending.

D. Data Collection for the Location Features
The study hypothesizes that the location of an IoT camera

device is also an important feature that could be used to monitor
attacks for intrusion detection in an IoT network. Any packet
needs to be initiated and received by the IoT camera within this
location. The IPVM Design Calculator (Version 3.1)1 was used
to design geographical plan for our IoT camera devices that are
to be set up to monitor entry and exit of the university campus.
The location of the CKT-UTAS University was searched,
navigated, and set to the position coordinates 10.866 and –1.078
(in decimal degrees format). See Figure 1.

After locations are set, a simulation was made where 7
cameras were added to the Campus Entry/Exit IoT network and
placed at vantage entrance points of the university. Each camera
with corner of coverage cone is also shown in Figure 2.

Figure 3 shows a preview of the viewing angle and area of
one camera.

(a) boundary without fill

1https://calculator.ipvm.com/

(b) boundary with fill (translucent white)
Fig. 1. Location setup for the University campus.

Fig. 2. Camera positions simulated on the IoT network of CKT-UTAS.

Fig. 3. Previewing the CCTV camera device placed exactly at the entrance to
show the camera view of CKT-UTAS entrance .

E. Feature Ranking for Compatibility between IoTID20 and
Location Features

Then, feature ranking was performed to extract from the
retained 61 features of the IoTID20 dataset, those that are very
compatible to the automatically collected two location features.
Feature Ranking in increasing order is computed with a
Shapira-Wilk test statistic. Initial data is ranked from the feature
set:

F = {x1, x2, x3, …x63}, n = 63 (1)

and then equation (2) is calculated as:

bn,n−1 = a1(xn,n−1 − x1) + a2(xn,n−1 −
x2), +⋯+, an(xn,n−1 − xn−2)

(2)

(a) boundary without fill.

(b) boundary with fill (translucent white).

Fig. 2. Location setup for the University campus.

Gyamfi et al.

79

JISCR 2023; Volume 6 Issue (2)

F. Extreme Gradient Boosting (XGBoost).
Extreme Gradient Boosting (XGBoost) evolved

as an improved version of the Gradient Boosting
Decision Tree (GBDT) algorithm [20]. When dealing
with a dataset, denoted as

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

 where a1, a2, … an are the coefficients from Table A.6 of
[19]. Test statistic computes the equation (1) with Calc W =
bn2 +bn−12

(n−1)s2 , where s is the standard deviation of the feature set

and (2) test statistic with a critical value Tab W from Table
A.7 in the Appendix section of [19]. These statistics were
then compared. If a feature’s Calc W is greater than Tab W
(i.e. Calc W > Tab W), it indicates a regular distribution of
occurrences concerning the location features, ranking it as
highly compatible with the dataset's features.

F. Extreme Gradient Boosting (XGBoost)

Extreme Gradient Boosting (XGBoost) evolved as an
improved version of the Gradient Boosting Decision Tree
(GBDT) algorithm [20]. When dealing with a dataset,
denoted as D = {xi, yi}, where D consists of n examples and
m features, a tree ensemble model incorporates K additive
functions, denoted as fk ∈ ℱ to predict the output values ŷi
as illustrated in equation (3):

ŷi = ∑ fk(xi)
K

k=1
 (3)

In this equation, each fk represents an individual decision
tree within the ensemble, and they work collectively to
predict the output values based on the input features from
the dataset D. The objective of XGBoost is to iteratively
enhance the performance of these additive functions (trees)
to yield accurate predictions for the given dataset.

To reduce errors within the ensemble trees, the objective
function of XGBoost is shown in equation (4):

ℒ(t) = ∑ (yi, ŷi
(t−1) + ft(xi)) + Ω(ft)

n

i=1
 (4)

where the penalizing term Ω is computed using equation (5)
as follows:

Ω(ft) = γT + 1
2 γ ∑ wi

2
T

i=1
 (5)

The loss objective function can be expanded as shown in
equation (6):

ℒ̂(t) = ∑ (gi, ft(xi) + 1
2 hift

2(xi)) + (γT + 1
2 γ ∑ wj

2
T

j=1
)

n

i=1
 (6)

where an optimal weight of each leaf j, and the
corresponding optimal error/loss value ℒ̂(t) that measure
the quality of a tree structure q as is finally computed using
equation (7) and (8) as follows:

wi
∗ = −

∑ giiϵIj

∑ hi + λ iϵIj
 (7)

ℒ̂(t)(q) = ∑
(∑ giiϵIj)

2

∑ hi + λ iϵIj
+ γT

T

j=1
 (8)

G. SHapley Additive exPlanations (SHAP)

SHAP [17] explains the output of machine learning
models. They are calculated using the game theory concept
called Shapley values. With the values, the average
marginal contribution of each feature to the model’s
prediction can be measured [18].

A key reason for choosing SHAP for this research is
TreeSHAP, designed for efficient Shapley value estimation
in tree models [17] like XGBoost. SHAP provides a
structured framework to explain predictions, enhancing
model understanding. SHAP explains model’s predictions
using equation (9):

g(𝓏𝓏′) = ϕ0 + ∑ ϕj𝓏𝓏j
′

M

j=1
 (9)

where g is the explanation function for XGBoost model’s
prediction, 𝓏𝓏′ is a coalition vector in {0,1}M; M aggregates
all data features as the maximum coalition size; ϕj ∈ ℝ are
estimated Shapley values that denote j feature attribution.
They specify each feature's contribution to the prediction.

To calculate the Shapley values ϕ, the formula simplifies
to equation 10:

g(x′) = ϕ0 + ∑ ϕj

M

j=1
 (10)

In their paper [17], SHAP outlines the following three
properties of ϕ and its related expressions (as shown from
equations (11) to (15)):

1. Local Accuracy (Efficiency Property)

f̂(x) = g(x′) = ϕ0 + ∑ ϕj

M

j=1
xj

′ (11)

Equation 11 can be expanded to equation (12) as:

f̂(x) = ϕ0 + ∑ ϕj

M

j=1
xj

′ = EX (f̂(x)) + ∑ ϕj

M

j=1
 (12)

If you define ϕ0 = EX (f̂(x)) and ∀xj
′ = 1,

2. Missingness Property:

xj
i = 0 ⇒ ϕj = 0 (13)

The Missingness property of SHAP ensures fairness in
assigning Shapley values to features in machine learning
models, especially when some features are missing. This
property states that when a feature is missing (meaning
its value is unknown or undefined), it should be assigned

 where

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

 where a1, a2, … an are the coefficients from Table A.6 of
[19]. Test statistic computes the equation (1) with Calc W =
bn2 +bn−12

(n−1)s2 , where s is the standard deviation of the feature set

and (2) test statistic with a critical value Tab W from Table
A.7 in the Appendix section of [19]. These statistics were
then compared. If a feature’s Calc W is greater than Tab W
(i.e. Calc W > Tab W), it indicates a regular distribution of
occurrences concerning the location features, ranking it as
highly compatible with the dataset's features.

F. Extreme Gradient Boosting (XGBoost)

Extreme Gradient Boosting (XGBoost) evolved as an
improved version of the Gradient Boosting Decision Tree
(GBDT) algorithm [20]. When dealing with a dataset,
denoted as D = {xi, yi}, where D consists of n examples and
m features, a tree ensemble model incorporates K additive
functions, denoted as fk ∈ ℱ to predict the output values ŷi
as illustrated in equation (3):

ŷi = ∑ fk(xi)
K

k=1
 (3)

In this equation, each fk represents an individual decision
tree within the ensemble, and they work collectively to
predict the output values based on the input features from
the dataset D. The objective of XGBoost is to iteratively
enhance the performance of these additive functions (trees)
to yield accurate predictions for the given dataset.

To reduce errors within the ensemble trees, the objective
function of XGBoost is shown in equation (4):

ℒ(t) = ∑ (yi, ŷi
(t−1) + ft(xi)) + Ω(ft)

n

i=1
 (4)

where the penalizing term Ω is computed using equation (5)
as follows:

Ω(ft) = γT + 1
2 γ ∑ wi

2
T

i=1
 (5)

The loss objective function can be expanded as shown in
equation (6):

ℒ̂(t) = ∑ (gi, ft(xi) + 1
2 hift

2(xi)) + (γT + 1
2 γ ∑ wj

2
T

j=1
)

n

i=1
 (6)

where an optimal weight of each leaf j, and the
corresponding optimal error/loss value ℒ̂(t) that measure
the quality of a tree structure q as is finally computed using
equation (7) and (8) as follows:

wi
∗ = −

∑ giiϵIj

∑ hi + λ iϵIj
 (7)

ℒ̂(t)(q) = ∑
(∑ giiϵIj)

2

∑ hi + λ iϵIj
+ γT

T

j=1
 (8)

G. SHapley Additive exPlanations (SHAP)

SHAP [17] explains the output of machine learning
models. They are calculated using the game theory concept
called Shapley values. With the values, the average
marginal contribution of each feature to the model’s
prediction can be measured [18].

A key reason for choosing SHAP for this research is
TreeSHAP, designed for efficient Shapley value estimation
in tree models [17] like XGBoost. SHAP provides a
structured framework to explain predictions, enhancing
model understanding. SHAP explains model’s predictions
using equation (9):

g(𝓏𝓏′) = ϕ0 + ∑ ϕj𝓏𝓏j
′

M

j=1
 (9)

where g is the explanation function for XGBoost model’s
prediction, 𝓏𝓏′ is a coalition vector in {0,1}M; M aggregates
all data features as the maximum coalition size; ϕj ∈ ℝ are
estimated Shapley values that denote j feature attribution.
They specify each feature's contribution to the prediction.

To calculate the Shapley values ϕ, the formula simplifies
to equation 10:

g(x′) = ϕ0 + ∑ ϕj

M

j=1
 (10)

In their paper [17], SHAP outlines the following three
properties of ϕ and its related expressions (as shown from
equations (11) to (15)):

1. Local Accuracy (Efficiency Property)

f̂(x) = g(x′) = ϕ0 + ∑ ϕj

M

j=1
xj

′ (11)

Equation 11 can be expanded to equation (12) as:

f̂(x) = ϕ0 + ∑ ϕj

M

j=1
xj

′ = EX (f̂(x)) + ∑ ϕj

M

j=1
 (12)

If you define ϕ0 = EX (f̂(x)) and ∀xj
′ = 1,

2. Missingness Property:

xj
i = 0 ⇒ ϕj = 0 (13)

The Missingness property of SHAP ensures fairness in
assigning Shapley values to features in machine learning
models, especially when some features are missing. This
property states that when a feature is missing (meaning
its value is unknown or undefined), it should be assigned

consists of n examples and m features, a tree
ensemble model incorporates K additive functions,
denoted as

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

 where a1, a2, … an are the coefficients from Table A.6 of
[19]. Test statistic computes the equation (1) with Calc W =
bn2 +bn−12

(n−1)s2 , where s is the standard deviation of the feature set

and (2) test statistic with a critical value Tab W from Table
A.7 in the Appendix section of [19]. These statistics were
then compared. If a feature’s Calc W is greater than Tab W
(i.e. Calc W > Tab W), it indicates a regular distribution of
occurrences concerning the location features, ranking it as
highly compatible with the dataset's features.

F. Extreme Gradient Boosting (XGBoost)

Extreme Gradient Boosting (XGBoost) evolved as an
improved version of the Gradient Boosting Decision Tree
(GBDT) algorithm [20]. When dealing with a dataset,
denoted as D = {xi, yi}, where D consists of n examples and
m features, a tree ensemble model incorporates K additive
functions, denoted as fk ∈ ℱ to predict the output values ŷi
as illustrated in equation (3):

ŷi = ∑ fk(xi)
K

k=1
 (3)

In this equation, each fk represents an individual decision
tree within the ensemble, and they work collectively to
predict the output values based on the input features from
the dataset D. The objective of XGBoost is to iteratively
enhance the performance of these additive functions (trees)
to yield accurate predictions for the given dataset.

To reduce errors within the ensemble trees, the objective
function of XGBoost is shown in equation (4):

ℒ(t) = ∑ (yi, ŷi
(t−1) + ft(xi)) + Ω(ft)

n

i=1
 (4)

where the penalizing term Ω is computed using equation (5)
as follows:

Ω(ft) = γT + 1
2 γ ∑ wi

2
T

i=1
 (5)

The loss objective function can be expanded as shown in
equation (6):

ℒ̂(t) = ∑ (gi, ft(xi) + 1
2 hift

2(xi)) + (γT + 1
2 γ ∑ wj

2
T

j=1
)

n

i=1
 (6)

where an optimal weight of each leaf j, and the
corresponding optimal error/loss value ℒ̂(t) that measure
the quality of a tree structure q as is finally computed using
equation (7) and (8) as follows:

wi
∗ = −

∑ giiϵIj

∑ hi + λ iϵIj
 (7)

ℒ̂(t)(q) = ∑
(∑ giiϵIj)

2

∑ hi + λ iϵIj
+ γT

T

j=1
 (8)

G. SHapley Additive exPlanations (SHAP)

SHAP [17] explains the output of machine learning
models. They are calculated using the game theory concept
called Shapley values. With the values, the average
marginal contribution of each feature to the model’s
prediction can be measured [18].

A key reason for choosing SHAP for this research is
TreeSHAP, designed for efficient Shapley value estimation
in tree models [17] like XGBoost. SHAP provides a
structured framework to explain predictions, enhancing
model understanding. SHAP explains model’s predictions
using equation (9):

g(𝓏𝓏′) = ϕ0 + ∑ ϕj𝓏𝓏j
′

M

j=1
 (9)

where g is the explanation function for XGBoost model’s
prediction, 𝓏𝓏′ is a coalition vector in {0,1}M; M aggregates
all data features as the maximum coalition size; ϕj ∈ ℝ are
estimated Shapley values that denote j feature attribution.
They specify each feature's contribution to the prediction.

To calculate the Shapley values ϕ, the formula simplifies
to equation 10:

g(x′) = ϕ0 + ∑ ϕj

M

j=1
 (10)

In their paper [17], SHAP outlines the following three
properties of ϕ and its related expressions (as shown from
equations (11) to (15)):

1. Local Accuracy (Efficiency Property)

f̂(x) = g(x′) = ϕ0 + ∑ ϕj

M

j=1
xj

′ (11)

Equation 11 can be expanded to equation (12) as:

f̂(x) = ϕ0 + ∑ ϕj

M

j=1
xj

′ = EX (f̂(x)) + ∑ ϕj

M

j=1
 (12)

If you define ϕ0 = EX (f̂(x)) and ∀xj
′ = 1,

2. Missingness Property:

xj
i = 0 ⇒ ϕj = 0 (13)

The Missingness property of SHAP ensures fairness in
assigning Shapley values to features in machine learning
models, especially when some features are missing. This
property states that when a feature is missing (meaning
its value is unknown or undefined), it should be assigned

 to predict the output values

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

 where a1, a2, … an are the coefficients from Table A.6 of
[19]. Test statistic computes the equation (1) with Calc W =
bn2 +bn−12

(n−1)s2 , where s is the standard deviation of the feature set

and (2) test statistic with a critical value Tab W from Table
A.7 in the Appendix section of [19]. These statistics were
then compared. If a feature’s Calc W is greater than Tab W
(i.e. Calc W > Tab W), it indicates a regular distribution of
occurrences concerning the location features, ranking it as
highly compatible with the dataset's features.

F. Extreme Gradient Boosting (XGBoost)

Extreme Gradient Boosting (XGBoost) evolved as an
improved version of the Gradient Boosting Decision Tree
(GBDT) algorithm [20]. When dealing with a dataset,
denoted as D = {xi, yi}, where D consists of n examples and
m features, a tree ensemble model incorporates K additive
functions, denoted as fk ∈ ℱ to predict the output values ŷi
as illustrated in equation (3):

ŷi = ∑ fk(xi)
K

k=1
 (3)

In this equation, each fk represents an individual decision
tree within the ensemble, and they work collectively to
predict the output values based on the input features from
the dataset D. The objective of XGBoost is to iteratively
enhance the performance of these additive functions (trees)
to yield accurate predictions for the given dataset.

To reduce errors within the ensemble trees, the objective
function of XGBoost is shown in equation (4):

ℒ(t) = ∑ (yi, ŷi
(t−1) + ft(xi)) + Ω(ft)

n

i=1
 (4)

where the penalizing term Ω is computed using equation (5)
as follows:

Ω(ft) = γT + 1
2 γ ∑ wi

2
T

i=1
 (5)

The loss objective function can be expanded as shown in
equation (6):

ℒ̂(t) = ∑ (gi, ft(xi) + 1
2 hift

2(xi)) + (γT + 1
2 γ ∑ wj

2
T

j=1
)

n

i=1
 (6)

where an optimal weight of each leaf j, and the
corresponding optimal error/loss value ℒ̂(t) that measure
the quality of a tree structure q as is finally computed using
equation (7) and (8) as follows:

wi
∗ = −

∑ giiϵIj

∑ hi + λ iϵIj
 (7)

ℒ̂(t)(q) = ∑
(∑ giiϵIj)

2

∑ hi + λ iϵIj
+ γT

T

j=1
 (8)

G. SHapley Additive exPlanations (SHAP)

SHAP [17] explains the output of machine learning
models. They are calculated using the game theory concept
called Shapley values. With the values, the average
marginal contribution of each feature to the model’s
prediction can be measured [18].

A key reason for choosing SHAP for this research is
TreeSHAP, designed for efficient Shapley value estimation
in tree models [17] like XGBoost. SHAP provides a
structured framework to explain predictions, enhancing
model understanding. SHAP explains model’s predictions
using equation (9):

g(𝓏𝓏′) = ϕ0 + ∑ ϕj𝓏𝓏j
′

M

j=1
 (9)

where g is the explanation function for XGBoost model’s
prediction, 𝓏𝓏′ is a coalition vector in {0,1}M; M aggregates
all data features as the maximum coalition size; ϕj ∈ ℝ are
estimated Shapley values that denote j feature attribution.
They specify each feature's contribution to the prediction.

To calculate the Shapley values ϕ, the formula simplifies
to equation 10:

g(x′) = ϕ0 + ∑ ϕj

M

j=1
 (10)

In their paper [17], SHAP outlines the following three
properties of ϕ and its related expressions (as shown from
equations (11) to (15)):

1. Local Accuracy (Efficiency Property)

f̂(x) = g(x′) = ϕ0 + ∑ ϕj

M

j=1
xj

′ (11)

Equation 11 can be expanded to equation (12) as:

f̂(x) = ϕ0 + ∑ ϕj

M

j=1
xj

′ = EX (f̂(x)) + ∑ ϕj

M

j=1
 (12)

If you define ϕ0 = EX (f̂(x)) and ∀xj
′ = 1,

2. Missingness Property:

xj
i = 0 ⇒ ϕj = 0 (13)

The Missingness property of SHAP ensures fairness in
assigning Shapley values to features in machine learning
models, especially when some features are missing. This
property states that when a feature is missing (meaning
its value is unknown or undefined), it should be assigned

as
illustrated in equation (3):

E. Feature Ranking for Compatibility between
IoTID20 and Location Features

Then, feature ranking was performed to extract
from the retained 61 features of the IoTID20 dataset,
those that are very compatible to the automatically
collected two location features. Feature Ranking in
increasing order is computed with a Shapira-Wilk
test statistic. Initial data is ranked from the feature
set:

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

processing techniques were performed as follow. First 1 to 9
features were intentionally removed because they were mere
descriptive features that identify devices on the network e.g.
Flow ID, Source and Destination IPs, Source and Destination
Ports, Protocols, Timestamps and Flow Duration. Following
this, data cleaning was conducted to address infinity and
missing values, performed column normalization on feature
values, and lastly, conducted feature correlation analysis.
Features with a correlation coefficient of 0.70 or higher were
removed from the dataset.

C. The Location Dataset Feature
The retained 61 features were appended to the automatically

collected two (2) location features which were termed as
'Location for Initiating Packets’ and ‘Location for Receiving
Packets’. The set of features is denoted as 𝐹𝐹 = {𝑥𝑥𝑛𝑛}𝑖𝑖=1𝑛𝑛 , with
the 𝑥𝑥1 to 𝑥𝑥𝑛𝑛−2 being the retained 61 features of IoTID20 dataset,
𝑥𝑥𝑛𝑛−1 and 𝑥𝑥𝑛𝑛 being the two automatically collected location data
features and 𝑛𝑛 therefore being 𝑛𝑛 = 61 + 2, i.e. the total number
of dataset features after appending.

D. Data Collection for the Location Features
The study hypothesizes that the location of an IoT camera

device is also an important feature that could be used to monitor
attacks for intrusion detection in an IoT network. Any packet
needs to be initiated and received by the IoT camera within this
location. The IPVM Design Calculator (Version 3.1)1 was used
to design geographical plan for our IoT camera devices that are
to be set up to monitor entry and exit of the university campus.
The location of the CKT-UTAS University was searched,
navigated, and set to the position coordinates 10.866 and –1.078
(in decimal degrees format). See Figure 1.

After locations are set, a simulation was made where 7
cameras were added to the Campus Entry/Exit IoT network and
placed at vantage entrance points of the university. Each camera
with corner of coverage cone is also shown in Figure 2.

Figure 3 shows a preview of the viewing angle and area of
one camera.

(a) boundary without fill

1https://calculator.ipvm.com/

(b) boundary with fill (translucent white)
Fig. 1. Location setup for the University campus.

Fig. 2. Camera positions simulated on the IoT network of CKT-UTAS.

Fig. 3. Previewing the CCTV camera device placed exactly at the entrance to
show the camera view of CKT-UTAS entrance .

E. Feature Ranking for Compatibility between IoTID20 and
Location Features

Then, feature ranking was performed to extract from the
retained 61 features of the IoTID20 dataset, those that are very
compatible to the automatically collected two location features.
Feature Ranking in increasing order is computed with a
Shapira-Wilk test statistic. Initial data is ranked from the feature
set:

F = {x1, x2, x3, …x63}, n = 63 (1)

and then equation (2) is calculated as:

bn,n−1 = a1(xn,n−1 − x1) + a2(xn,n−1 −
x2), +⋯+, an(xn,n−1 − xn−2)

(2)

and then equation (2) is calculated as:

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

processing techniques were performed as follow. First 1 to 9
features were intentionally removed because they were mere
descriptive features that identify devices on the network e.g.
Flow ID, Source and Destination IPs, Source and Destination
Ports, Protocols, Timestamps and Flow Duration. Following
this, data cleaning was conducted to address infinity and
missing values, performed column normalization on feature
values, and lastly, conducted feature correlation analysis.
Features with a correlation coefficient of 0.70 or higher were
removed from the dataset.

C. The Location Dataset Feature
The retained 61 features were appended to the automatically

collected two (2) location features which were termed as
'Location for Initiating Packets’ and ‘Location for Receiving
Packets’. The set of features is denoted as 𝐹𝐹 = {𝑥𝑥𝑛𝑛}𝑖𝑖=1𝑛𝑛 , with
the 𝑥𝑥1 to 𝑥𝑥𝑛𝑛−2 being the retained 61 features of IoTID20 dataset,
𝑥𝑥𝑛𝑛−1 and 𝑥𝑥𝑛𝑛 being the two automatically collected location data
features and 𝑛𝑛 therefore being 𝑛𝑛 = 61 + 2, i.e. the total number
of dataset features after appending.

D. Data Collection for the Location Features
The study hypothesizes that the location of an IoT camera

device is also an important feature that could be used to monitor
attacks for intrusion detection in an IoT network. Any packet
needs to be initiated and received by the IoT camera within this
location. The IPVM Design Calculator (Version 3.1)1 was used
to design geographical plan for our IoT camera devices that are
to be set up to monitor entry and exit of the university campus.
The location of the CKT-UTAS University was searched,
navigated, and set to the position coordinates 10.866 and –1.078
(in decimal degrees format). See Figure 1.

After locations are set, a simulation was made where 7
cameras were added to the Campus Entry/Exit IoT network and
placed at vantage entrance points of the university. Each camera
with corner of coverage cone is also shown in Figure 2.

Figure 3 shows a preview of the viewing angle and area of
one camera.

(a) boundary without fill

1https://calculator.ipvm.com/

(b) boundary with fill (translucent white)
Fig. 1. Location setup for the University campus.

Fig. 2. Camera positions simulated on the IoT network of CKT-UTAS.

Fig. 3. Previewing the CCTV camera device placed exactly at the entrance to
show the camera view of CKT-UTAS entrance .

E. Feature Ranking for Compatibility between IoTID20 and
Location Features

Then, feature ranking was performed to extract from the
retained 61 features of the IoTID20 dataset, those that are very
compatible to the automatically collected two location features.
Feature Ranking in increasing order is computed with a
Shapira-Wilk test statistic. Initial data is ranked from the feature
set:

F = {x1, x2, x3, …x63}, n = 63 (1)

and then equation (2) is calculated as:

bn,n−1 = a1(xn,n−1 − x1) + a2(xn,n−1 −
x2), +⋯+, an(xn,n−1 − xn−2)

(2)

 where a1,a2,… an are the coefficients from Table
A.6 of [19]. Test statistic computes the equation
(1) with Calc W=

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

 where a1, a2, … an are the coefficients from Table A.6 of
[19]. Test statistic computes the equation (1) with Calc W =
bn2 +bn−12

(n−1)s2 , where s is the standard deviation of the feature set

and (2) test statistic with a critical value Tab W from Table
A.7 in the Appendix section of [19]. These statistics were
then compared. If a feature’s Calc W is greater than Tab W
(i.e. Calc W > Tab W), it indicates a regular distribution of
occurrences concerning the location features, ranking it as
highly compatible with the dataset's features.

F. Extreme Gradient Boosting (XGBoost)

Extreme Gradient Boosting (XGBoost) evolved as an
improved version of the Gradient Boosting Decision Tree
(GBDT) algorithm [20]. When dealing with a dataset,
denoted as D = {xi, yi}, where D consists of n examples and
m features, a tree ensemble model incorporates K additive
functions, denoted as fk ∈ ℱ to predict the output values ŷi
as illustrated in equation (3):

ŷi = ∑ fk(xi)
K

k=1
 (3)

In this equation, each fk represents an individual decision
tree within the ensemble, and they work collectively to
predict the output values based on the input features from
the dataset D. The objective of XGBoost is to iteratively
enhance the performance of these additive functions (trees)
to yield accurate predictions for the given dataset.

To reduce errors within the ensemble trees, the objective
function of XGBoost is shown in equation (4):

ℒ(t) = ∑ (yi, ŷi
(t−1) + ft(xi)) + Ω(ft)

n

i=1
 (4)

where the penalizing term Ω is computed using equation (5)
as follows:

Ω(ft) = γT + 1
2 γ ∑ wi

2
T

i=1
 (5)

The loss objective function can be expanded as shown in
equation (6):

ℒ̂(t) = ∑ (gi, ft(xi) + 1
2 hift

2(xi)) + (γT + 1
2 γ ∑ wj

2
T

j=1
)

n

i=1
 (6)

where an optimal weight of each leaf j, and the
corresponding optimal error/loss value ℒ̂(t) that measure
the quality of a tree structure q as is finally computed using
equation (7) and (8) as follows:

wi
∗ = −

∑ giiϵIj

∑ hi + λ iϵIj
 (7)

ℒ̂(t)(q) = ∑
(∑ giiϵIj)

2

∑ hi + λ iϵIj
+ γT

T

j=1
 (8)

G. SHapley Additive exPlanations (SHAP)

SHAP [17] explains the output of machine learning
models. They are calculated using the game theory concept
called Shapley values. With the values, the average
marginal contribution of each feature to the model’s
prediction can be measured [18].

A key reason for choosing SHAP for this research is
TreeSHAP, designed for efficient Shapley value estimation
in tree models [17] like XGBoost. SHAP provides a
structured framework to explain predictions, enhancing
model understanding. SHAP explains model’s predictions
using equation (9):

g(𝓏𝓏′) = ϕ0 + ∑ ϕj𝓏𝓏j
′

M

j=1
 (9)

where g is the explanation function for XGBoost model’s
prediction, 𝓏𝓏′ is a coalition vector in {0,1}M; M aggregates
all data features as the maximum coalition size; ϕj ∈ ℝ are
estimated Shapley values that denote j feature attribution.
They specify each feature's contribution to the prediction.

To calculate the Shapley values ϕ, the formula simplifies
to equation 10:

g(x′) = ϕ0 + ∑ ϕj

M

j=1
 (10)

In their paper [17], SHAP outlines the following three
properties of ϕ and its related expressions (as shown from
equations (11) to (15)):

1. Local Accuracy (Efficiency Property)

f̂(x) = g(x′) = ϕ0 + ∑ ϕj

M

j=1
xj

′ (11)

Equation 11 can be expanded to equation (12) as:

f̂(x) = ϕ0 + ∑ ϕj

M

j=1
xj

′ = EX (f̂(x)) + ∑ ϕj

M

j=1
 (12)

If you define ϕ0 = EX (f̂(x)) and ∀xj
′ = 1,

2. Missingness Property:

xj
i = 0 ⇒ ϕj = 0 (13)

The Missingness property of SHAP ensures fairness in
assigning Shapley values to features in machine learning
models, especially when some features are missing. This
property states that when a feature is missing (meaning
its value is unknown or undefined), it should be assigned

 , where s is the standard
deviation of the feature set and (2) test statistic with
a critical value Tab W from Table A.7 in the Appendix
section of [19]. These statistics were then compared.
If a feature’s Calc W is greater than Tab W (i.e.
Calc W>Tab W), it indicates a regular distribution of
occurrences concerning the location features, ranking
it as highly compatible with the dataset's features.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

processing techniques were performed as follow. First 1 to 9
features were intentionally removed because they were mere
descriptive features that identify devices on the network e.g.
Flow ID, Source and Destination IPs, Source and Destination
Ports, Protocols, Timestamps and Flow Duration. Following
this, data cleaning was conducted to address infinity and
missing values, performed column normalization on feature
values, and lastly, conducted feature correlation analysis.
Features with a correlation coefficient of 0.70 or higher were
removed from the dataset.

C. The Location Dataset Feature
The retained 61 features were appended to the automatically

collected two (2) location features which were termed as
'Location for Initiating Packets’ and ‘Location for Receiving
Packets’. The set of features is denoted as 𝐹𝐹 = {𝑥𝑥𝑛𝑛}𝑖𝑖=1𝑛𝑛 , with
the 𝑥𝑥1 to 𝑥𝑥𝑛𝑛−2 being the retained 61 features of IoTID20 dataset,
𝑥𝑥𝑛𝑛−1 and 𝑥𝑥𝑛𝑛 being the two automatically collected location data
features and 𝑛𝑛 therefore being 𝑛𝑛 = 61 + 2, i.e. the total number
of dataset features after appending.

D. Data Collection for the Location Features
The study hypothesizes that the location of an IoT camera

device is also an important feature that could be used to monitor
attacks for intrusion detection in an IoT network. Any packet
needs to be initiated and received by the IoT camera within this
location. The IPVM Design Calculator (Version 3.1)1 was used
to design geographical plan for our IoT camera devices that are
to be set up to monitor entry and exit of the university campus.
The location of the CKT-UTAS University was searched,
navigated, and set to the position coordinates 10.866 and –1.078
(in decimal degrees format). See Figure 1.

After locations are set, a simulation was made where 7
cameras were added to the Campus Entry/Exit IoT network and
placed at vantage entrance points of the university. Each camera
with corner of coverage cone is also shown in Figure 2.

Figure 3 shows a preview of the viewing angle and area of
one camera.

(a) boundary without fill

1https://calculator.ipvm.com/

(b) boundary with fill (translucent white)
Fig. 1. Location setup for the University campus.

Fig. 2. Camera positions simulated on the IoT network of CKT-UTAS.

Fig. 3. Previewing the CCTV camera device placed exactly at the entrance to
show the camera view of CKT-UTAS entrance .

E. Feature Ranking for Compatibility between IoTID20 and
Location Features

Then, feature ranking was performed to extract from the
retained 61 features of the IoTID20 dataset, those that are very
compatible to the automatically collected two location features.
Feature Ranking in increasing order is computed with a
Shapira-Wilk test statistic. Initial data is ranked from the feature
set:

F = {x1, x2, x3, …x63}, n = 63 (1)

and then equation (2) is calculated as:

bn,n−1 = a1(xn,n−1 − x1) + a2(xn,n−1 −
x2), +⋯+, an(xn,n−1 − xn−2)

(2)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

processing techniques were performed as follow. First 1 to 9
features were intentionally removed because they were mere
descriptive features that identify devices on the network e.g.
Flow ID, Source and Destination IPs, Source and Destination
Ports, Protocols, Timestamps and Flow Duration. Following
this, data cleaning was conducted to address infinity and
missing values, performed column normalization on feature
values, and lastly, conducted feature correlation analysis.
Features with a correlation coefficient of 0.70 or higher were
removed from the dataset.

C. The Location Dataset Feature
The retained 61 features were appended to the automatically

collected two (2) location features which were termed as
'Location for Initiating Packets’ and ‘Location for Receiving
Packets’. The set of features is denoted as 𝐹𝐹 = {𝑥𝑥𝑛𝑛}𝑖𝑖=1𝑛𝑛 , with
the 𝑥𝑥1 to 𝑥𝑥𝑛𝑛−2 being the retained 61 features of IoTID20 dataset,
𝑥𝑥𝑛𝑛−1 and 𝑥𝑥𝑛𝑛 being the two automatically collected location data
features and 𝑛𝑛 therefore being 𝑛𝑛 = 61 + 2, i.e. the total number
of dataset features after appending.

D. Data Collection for the Location Features
The study hypothesizes that the location of an IoT camera

device is also an important feature that could be used to monitor
attacks for intrusion detection in an IoT network. Any packet
needs to be initiated and received by the IoT camera within this
location. The IPVM Design Calculator (Version 3.1)1 was used
to design geographical plan for our IoT camera devices that are
to be set up to monitor entry and exit of the university campus.
The location of the CKT-UTAS University was searched,
navigated, and set to the position coordinates 10.866 and –1.078
(in decimal degrees format). See Figure 1.

After locations are set, a simulation was made where 7
cameras were added to the Campus Entry/Exit IoT network and
placed at vantage entrance points of the university. Each camera
with corner of coverage cone is also shown in Figure 2.

Figure 3 shows a preview of the viewing angle and area of
one camera.

(a) boundary without fill

1https://calculator.ipvm.com/

(b) boundary with fill (translucent white)
Fig. 1. Location setup for the University campus.

Fig. 2. Camera positions simulated on the IoT network of CKT-UTAS.

Fig. 3. Previewing the CCTV camera device placed exactly at the entrance to
show the camera view of CKT-UTAS entrance .

E. Feature Ranking for Compatibility between IoTID20 and
Location Features

Then, feature ranking was performed to extract from the
retained 61 features of the IoTID20 dataset, those that are very
compatible to the automatically collected two location features.
Feature Ranking in increasing order is computed with a
Shapira-Wilk test statistic. Initial data is ranked from the feature
set:

F = {x1, x2, x3, …x63}, n = 63 (1)

and then equation (2) is calculated as:

bn,n−1 = a1(xn,n−1 − x1) + a2(xn,n−1 −
x2), +⋯+, an(xn,n−1 − xn−2)

(2)

Fig. 3. Camera positions simulated on the IoT network of
CKT-UTAS.

Fig. 4. Previewing the CCTV camera device placed exactly at
the entrance to show the camera view of CKT-UTAS entrance.

A Model-agnostic XAI Approach for Developing Low-cost IoT Intrusion Detection Dataset

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

 where a1, a2, … an are the coefficients from Table A.6 of
[19]. Test statistic computes the equation (1) with Calc W =
bn2 +bn−12

(n−1)s2 , where s is the standard deviation of the feature set

and (2) test statistic with a critical value Tab W from Table
A.7 in the Appendix section of [19]. These statistics were
then compared. If a feature’s Calc W is greater than Tab W
(i.e. Calc W > Tab W), it indicates a regular distribution of
occurrences concerning the location features, ranking it as
highly compatible with the dataset's features.

F. Extreme Gradient Boosting (XGBoost)

Extreme Gradient Boosting (XGBoost) evolved as an
improved version of the Gradient Boosting Decision Tree
(GBDT) algorithm [20]. When dealing with a dataset,
denoted as D = {xi, yi}, where D consists of n examples and
m features, a tree ensemble model incorporates K additive
functions, denoted as fk ∈ ℱ to predict the output values ŷi
as illustrated in equation (3):

ŷi = ∑ fk(xi)
K

k=1
 (3)

In this equation, each fk represents an individual decision
tree within the ensemble, and they work collectively to
predict the output values based on the input features from
the dataset D. The objective of XGBoost is to iteratively
enhance the performance of these additive functions (trees)
to yield accurate predictions for the given dataset.

To reduce errors within the ensemble trees, the objective
function of XGBoost is shown in equation (4):

ℒ(t) = ∑ (yi, ŷi
(t−1) + ft(xi)) + Ω(ft)

n

i=1
 (4)

where the penalizing term Ω is computed using equation (5)
as follows:

Ω(ft) = γT + 1
2 γ ∑ wi

2
T

i=1
 (5)

The loss objective function can be expanded as shown in
equation (6):

ℒ̂(t) = ∑ (gi, ft(xi) + 1
2 hift

2(xi)) + (γT + 1
2 γ ∑ wj

2
T

j=1
)

n

i=1
 (6)

where an optimal weight of each leaf j, and the
corresponding optimal error/loss value ℒ̂(t) that measure
the quality of a tree structure q as is finally computed using
equation (7) and (8) as follows:

wi
∗ = −

∑ giiϵIj

∑ hi + λ iϵIj
 (7)

ℒ̂(t)(q) = ∑
(∑ giiϵIj)

2

∑ hi + λ iϵIj
+ γT

T

j=1
 (8)

G. SHapley Additive exPlanations (SHAP)

SHAP [17] explains the output of machine learning
models. They are calculated using the game theory concept
called Shapley values. With the values, the average
marginal contribution of each feature to the model’s
prediction can be measured [18].

A key reason for choosing SHAP for this research is
TreeSHAP, designed for efficient Shapley value estimation
in tree models [17] like XGBoost. SHAP provides a
structured framework to explain predictions, enhancing
model understanding. SHAP explains model’s predictions
using equation (9):

g(𝓏𝓏′) = ϕ0 + ∑ ϕj𝓏𝓏j
′

M

j=1
 (9)

where g is the explanation function for XGBoost model’s
prediction, 𝓏𝓏′ is a coalition vector in {0,1}M; M aggregates
all data features as the maximum coalition size; ϕj ∈ ℝ are
estimated Shapley values that denote j feature attribution.
They specify each feature's contribution to the prediction.

To calculate the Shapley values ϕ, the formula simplifies
to equation 10:

g(x′) = ϕ0 + ∑ ϕj

M

j=1
 (10)

In their paper [17], SHAP outlines the following three
properties of ϕ and its related expressions (as shown from
equations (11) to (15)):

1. Local Accuracy (Efficiency Property)

f̂(x) = g(x′) = ϕ0 + ∑ ϕj

M

j=1
xj

′ (11)

Equation 11 can be expanded to equation (12) as:

f̂(x) = ϕ0 + ∑ ϕj

M

j=1
xj

′ = EX (f̂(x)) + ∑ ϕj

M

j=1
 (12)

If you define ϕ0 = EX (f̂(x)) and ∀xj
′ = 1,

2. Missingness Property:

xj
i = 0 ⇒ ϕj = 0 (13)

The Missingness property of SHAP ensures fairness in
assigning Shapley values to features in machine learning
models, especially when some features are missing. This
property states that when a feature is missing (meaning
its value is unknown or undefined), it should be assigned

In this equation, each

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

 where a1, a2, … an are the coefficients from Table A.6 of
[19]. Test statistic computes the equation (1) with Calc W =
bn2 +bn−12

(n−1)s2 , where s is the standard deviation of the feature set

and (2) test statistic with a critical value Tab W from Table
A.7 in the Appendix section of [19]. These statistics were
then compared. If a feature’s Calc W is greater than Tab W
(i.e. Calc W > Tab W), it indicates a regular distribution of
occurrences concerning the location features, ranking it as
highly compatible with the dataset's features.

F. Extreme Gradient Boosting (XGBoost)

Extreme Gradient Boosting (XGBoost) evolved as an
improved version of the Gradient Boosting Decision Tree
(GBDT) algorithm [20]. When dealing with a dataset,
denoted as D = {xi, yi}, where D consists of n examples and
m features, a tree ensemble model incorporates K additive
functions, denoted as fk ∈ ℱ to predict the output values ŷi
as illustrated in equation (3):

ŷi = ∑ fk(xi)
K

k=1
 (3)

In this equation, each fk represents an individual decision
tree within the ensemble, and they work collectively to
predict the output values based on the input features from
the dataset D. The objective of XGBoost is to iteratively
enhance the performance of these additive functions (trees)
to yield accurate predictions for the given dataset.

To reduce errors within the ensemble trees, the objective
function of XGBoost is shown in equation (4):

ℒ(t) = ∑ (yi, ŷi
(t−1) + ft(xi)) + Ω(ft)

n

i=1
 (4)

where the penalizing term Ω is computed using equation (5)
as follows:

Ω(ft) = γT + 1
2 γ ∑ wi

2
T

i=1
 (5)

The loss objective function can be expanded as shown in
equation (6):

ℒ̂(t) = ∑ (gi, ft(xi) + 1
2 hift

2(xi)) + (γT + 1
2 γ ∑ wj

2
T

j=1
)

n

i=1
 (6)

where an optimal weight of each leaf j, and the
corresponding optimal error/loss value ℒ̂(t) that measure
the quality of a tree structure q as is finally computed using
equation (7) and (8) as follows:

wi
∗ = −

∑ giiϵIj

∑ hi + λ iϵIj
 (7)

ℒ̂(t)(q) = ∑
(∑ giiϵIj)

2

∑ hi + λ iϵIj
+ γT

T

j=1
 (8)

G. SHapley Additive exPlanations (SHAP)

SHAP [17] explains the output of machine learning
models. They are calculated using the game theory concept
called Shapley values. With the values, the average
marginal contribution of each feature to the model’s
prediction can be measured [18].

A key reason for choosing SHAP for this research is
TreeSHAP, designed for efficient Shapley value estimation
in tree models [17] like XGBoost. SHAP provides a
structured framework to explain predictions, enhancing
model understanding. SHAP explains model’s predictions
using equation (9):

g(𝓏𝓏′) = ϕ0 + ∑ ϕj𝓏𝓏j
′

M

j=1
 (9)

where g is the explanation function for XGBoost model’s
prediction, 𝓏𝓏′ is a coalition vector in {0,1}M; M aggregates
all data features as the maximum coalition size; ϕj ∈ ℝ are
estimated Shapley values that denote j feature attribution.
They specify each feature's contribution to the prediction.

To calculate the Shapley values ϕ, the formula simplifies
to equation 10:

g(x′) = ϕ0 + ∑ ϕj

M

j=1
 (10)

In their paper [17], SHAP outlines the following three
properties of ϕ and its related expressions (as shown from
equations (11) to (15)):

1. Local Accuracy (Efficiency Property)

f̂(x) = g(x′) = ϕ0 + ∑ ϕj

M

j=1
xj

′ (11)

Equation 11 can be expanded to equation (12) as:

f̂(x) = ϕ0 + ∑ ϕj

M

j=1
xj

′ = EX (f̂(x)) + ∑ ϕj

M

j=1
 (12)

If you define ϕ0 = EX (f̂(x)) and ∀xj
′ = 1,

2. Missingness Property:

xj
i = 0 ⇒ ϕj = 0 (13)

The Missingness property of SHAP ensures fairness in
assigning Shapley values to features in machine learning
models, especially when some features are missing. This
property states that when a feature is missing (meaning
its value is unknown or undefined), it should be assigned

 represents an individual
decision tree within the ensemble, and they work
collectively to predict the output values based on
the input features from the dataset

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

 where a1, a2, … an are the coefficients from Table A.6 of
[19]. Test statistic computes the equation (1) with Calc W =
bn2 +bn−12

(n−1)s2 , where s is the standard deviation of the feature set

and (2) test statistic with a critical value Tab W from Table
A.7 in the Appendix section of [19]. These statistics were
then compared. If a feature’s Calc W is greater than Tab W
(i.e. Calc W > Tab W), it indicates a regular distribution of
occurrences concerning the location features, ranking it as
highly compatible with the dataset's features.

F. Extreme Gradient Boosting (XGBoost)

Extreme Gradient Boosting (XGBoost) evolved as an
improved version of the Gradient Boosting Decision Tree
(GBDT) algorithm [20]. When dealing with a dataset,
denoted as D = {xi, yi}, where D consists of n examples and
m features, a tree ensemble model incorporates K additive
functions, denoted as fk ∈ ℱ to predict the output values ŷi
as illustrated in equation (3):

ŷi = ∑ fk(xi)
K

k=1
 (3)

In this equation, each fk represents an individual decision
tree within the ensemble, and they work collectively to
predict the output values based on the input features from
the dataset D. The objective of XGBoost is to iteratively
enhance the performance of these additive functions (trees)
to yield accurate predictions for the given dataset.

To reduce errors within the ensemble trees, the objective
function of XGBoost is shown in equation (4):

ℒ(t) = ∑ (yi, ŷi
(t−1) + ft(xi)) + Ω(ft)

n

i=1
 (4)

where the penalizing term Ω is computed using equation (5)
as follows:

Ω(ft) = γT + 1
2 γ ∑ wi

2
T

i=1
 (5)

The loss objective function can be expanded as shown in
equation (6):

ℒ̂(t) = ∑ (gi, ft(xi) + 1
2 hift

2(xi)) + (γT + 1
2 γ ∑ wj

2
T

j=1
)

n

i=1
 (6)

where an optimal weight of each leaf j, and the
corresponding optimal error/loss value ℒ̂(t) that measure
the quality of a tree structure q as is finally computed using
equation (7) and (8) as follows:

wi
∗ = −

∑ giiϵIj

∑ hi + λ iϵIj
 (7)

ℒ̂(t)(q) = ∑
(∑ giiϵIj)

2

∑ hi + λ iϵIj
+ γT

T

j=1
 (8)

G. SHapley Additive exPlanations (SHAP)

SHAP [17] explains the output of machine learning
models. They are calculated using the game theory concept
called Shapley values. With the values, the average
marginal contribution of each feature to the model’s
prediction can be measured [18].

A key reason for choosing SHAP for this research is
TreeSHAP, designed for efficient Shapley value estimation
in tree models [17] like XGBoost. SHAP provides a
structured framework to explain predictions, enhancing
model understanding. SHAP explains model’s predictions
using equation (9):

g(𝓏𝓏′) = ϕ0 + ∑ ϕj𝓏𝓏j
′

M

j=1
 (9)

where g is the explanation function for XGBoost model’s
prediction, 𝓏𝓏′ is a coalition vector in {0,1}M; M aggregates
all data features as the maximum coalition size; ϕj ∈ ℝ are
estimated Shapley values that denote j feature attribution.
They specify each feature's contribution to the prediction.

To calculate the Shapley values ϕ, the formula simplifies
to equation 10:

g(x′) = ϕ0 + ∑ ϕj

M

j=1
 (10)

In their paper [17], SHAP outlines the following three
properties of ϕ and its related expressions (as shown from
equations (11) to (15)):

1. Local Accuracy (Efficiency Property)

f̂(x) = g(x′) = ϕ0 + ∑ ϕj

M

j=1
xj

′ (11)

Equation 11 can be expanded to equation (12) as:

f̂(x) = ϕ0 + ∑ ϕj

M

j=1
xj

′ = EX (f̂(x)) + ∑ ϕj

M

j=1
 (12)

If you define ϕ0 = EX (f̂(x)) and ∀xj
′ = 1,

2. Missingness Property:

xj
i = 0 ⇒ ϕj = 0 (13)

The Missingness property of SHAP ensures fairness in
assigning Shapley values to features in machine learning
models, especially when some features are missing. This
property states that when a feature is missing (meaning
its value is unknown or undefined), it should be assigned

. The objective
of XGBoost is to iteratively enhance the performance
of these additive functions (trees) to yield accurate
predictions for the given dataset.

To reduce errors within the ensemble trees, the
objective function of XGBoost is shown in equation (4):

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

 where a1, a2, … an are the coefficients from Table A.6 of
[19]. Test statistic computes the equation (1) with Calc W =
bn2 +bn−12

(n−1)s2 , where s is the standard deviation of the feature set

and (2) test statistic with a critical value Tab W from Table
A.7 in the Appendix section of [19]. These statistics were
then compared. If a feature’s Calc W is greater than Tab W
(i.e. Calc W > Tab W), it indicates a regular distribution of
occurrences concerning the location features, ranking it as
highly compatible with the dataset's features.

F. Extreme Gradient Boosting (XGBoost)

Extreme Gradient Boosting (XGBoost) evolved as an
improved version of the Gradient Boosting Decision Tree
(GBDT) algorithm [20]. When dealing with a dataset,
denoted as D = {xi, yi}, where D consists of n examples and
m features, a tree ensemble model incorporates K additive
functions, denoted as fk ∈ ℱ to predict the output values ŷi
as illustrated in equation (3):

ŷi = ∑ fk(xi)
K

k=1
 (3)

In this equation, each fk represents an individual decision
tree within the ensemble, and they work collectively to
predict the output values based on the input features from
the dataset D. The objective of XGBoost is to iteratively
enhance the performance of these additive functions (trees)
to yield accurate predictions for the given dataset.

To reduce errors within the ensemble trees, the objective
function of XGBoost is shown in equation (4):

ℒ(t) = ∑ (yi, ŷi
(t−1) + ft(xi)) + Ω(ft)

n

i=1
 (4)

where the penalizing term Ω is computed using equation (5)
as follows:

Ω(ft) = γT + 1
2 γ ∑ wi

2
T

i=1
 (5)

The loss objective function can be expanded as shown in
equation (6):

ℒ̂(t) = ∑ (gi, ft(xi) + 1
2 hift

2(xi)) + (γT + 1
2 γ ∑ wj

2
T

j=1
)

n

i=1
 (6)

where an optimal weight of each leaf j, and the
corresponding optimal error/loss value ℒ̂(t) that measure
the quality of a tree structure q as is finally computed using
equation (7) and (8) as follows:

wi
∗ = −

∑ giiϵIj

∑ hi + λ iϵIj
 (7)

ℒ̂(t)(q) = ∑
(∑ giiϵIj)

2

∑ hi + λ iϵIj
+ γT

T

j=1
 (8)

G. SHapley Additive exPlanations (SHAP)

SHAP [17] explains the output of machine learning
models. They are calculated using the game theory concept
called Shapley values. With the values, the average
marginal contribution of each feature to the model’s
prediction can be measured [18].

A key reason for choosing SHAP for this research is
TreeSHAP, designed for efficient Shapley value estimation
in tree models [17] like XGBoost. SHAP provides a
structured framework to explain predictions, enhancing
model understanding. SHAP explains model’s predictions
using equation (9):

g(𝓏𝓏′) = ϕ0 + ∑ ϕj𝓏𝓏j
′

M

j=1
 (9)

where g is the explanation function for XGBoost model’s
prediction, 𝓏𝓏′ is a coalition vector in {0,1}M; M aggregates
all data features as the maximum coalition size; ϕj ∈ ℝ are
estimated Shapley values that denote j feature attribution.
They specify each feature's contribution to the prediction.

To calculate the Shapley values ϕ, the formula simplifies
to equation 10:

g(x′) = ϕ0 + ∑ ϕj

M

j=1
 (10)

In their paper [17], SHAP outlines the following three
properties of ϕ and its related expressions (as shown from
equations (11) to (15)):

1. Local Accuracy (Efficiency Property)

f̂(x) = g(x′) = ϕ0 + ∑ ϕj

M

j=1
xj

′ (11)

Equation 11 can be expanded to equation (12) as:

f̂(x) = ϕ0 + ∑ ϕj

M

j=1
xj

′ = EX (f̂(x)) + ∑ ϕj

M

j=1
 (12)

If you define ϕ0 = EX (f̂(x)) and ∀xj
′ = 1,

2. Missingness Property:

xj
i = 0 ⇒ ϕj = 0 (13)

The Missingness property of SHAP ensures fairness in
assigning Shapley values to features in machine learning
models, especially when some features are missing. This
property states that when a feature is missing (meaning
its value is unknown or undefined), it should be assigned

where the penalizing term Ω is computed using
equation (5) as follows:

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

 where a1, a2, … an are the coefficients from Table A.6 of
[19]. Test statistic computes the equation (1) with Calc W =
bn2 +bn−12

(n−1)s2 , where s is the standard deviation of the feature set

and (2) test statistic with a critical value Tab W from Table
A.7 in the Appendix section of [19]. These statistics were
then compared. If a feature’s Calc W is greater than Tab W
(i.e. Calc W > Tab W), it indicates a regular distribution of
occurrences concerning the location features, ranking it as
highly compatible with the dataset's features.

F. Extreme Gradient Boosting (XGBoost)

Extreme Gradient Boosting (XGBoost) evolved as an
improved version of the Gradient Boosting Decision Tree
(GBDT) algorithm [20]. When dealing with a dataset,
denoted as D = {xi, yi}, where D consists of n examples and
m features, a tree ensemble model incorporates K additive
functions, denoted as fk ∈ ℱ to predict the output values ŷi
as illustrated in equation (3):

ŷi = ∑ fk(xi)
K

k=1
 (3)

In this equation, each fk represents an individual decision
tree within the ensemble, and they work collectively to
predict the output values based on the input features from
the dataset D. The objective of XGBoost is to iteratively
enhance the performance of these additive functions (trees)
to yield accurate predictions for the given dataset.

To reduce errors within the ensemble trees, the objective
function of XGBoost is shown in equation (4):

ℒ(t) = ∑ (yi, ŷi
(t−1) + ft(xi)) + Ω(ft)

n

i=1
 (4)

where the penalizing term Ω is computed using equation (5)
as follows:

Ω(ft) = γT + 1
2 γ ∑ wi

2
T

i=1
 (5)

The loss objective function can be expanded as shown in
equation (6):

ℒ̂(t) = ∑ (gi, ft(xi) + 1
2 hift

2(xi)) + (γT + 1
2 γ ∑ wj

2
T

j=1
)

n

i=1
 (6)

where an optimal weight of each leaf j, and the
corresponding optimal error/loss value ℒ̂(t) that measure
the quality of a tree structure q as is finally computed using
equation (7) and (8) as follows:

wi
∗ = −

∑ giiϵIj

∑ hi + λ iϵIj
 (7)

ℒ̂(t)(q) = ∑
(∑ giiϵIj)

2

∑ hi + λ iϵIj
+ γT

T

j=1
 (8)

G. SHapley Additive exPlanations (SHAP)

SHAP [17] explains the output of machine learning
models. They are calculated using the game theory concept
called Shapley values. With the values, the average
marginal contribution of each feature to the model’s
prediction can be measured [18].

A key reason for choosing SHAP for this research is
TreeSHAP, designed for efficient Shapley value estimation
in tree models [17] like XGBoost. SHAP provides a
structured framework to explain predictions, enhancing
model understanding. SHAP explains model’s predictions
using equation (9):

g(𝓏𝓏′) = ϕ0 + ∑ ϕj𝓏𝓏j
′

M

j=1
 (9)

where g is the explanation function for XGBoost model’s
prediction, 𝓏𝓏′ is a coalition vector in {0,1}M; M aggregates
all data features as the maximum coalition size; ϕj ∈ ℝ are
estimated Shapley values that denote j feature attribution.
They specify each feature's contribution to the prediction.

To calculate the Shapley values ϕ, the formula simplifies
to equation 10:

g(x′) = ϕ0 + ∑ ϕj

M

j=1
 (10)

In their paper [17], SHAP outlines the following three
properties of ϕ and its related expressions (as shown from
equations (11) to (15)):

1. Local Accuracy (Efficiency Property)

f̂(x) = g(x′) = ϕ0 + ∑ ϕj

M

j=1
xj

′ (11)

Equation 11 can be expanded to equation (12) as:

f̂(x) = ϕ0 + ∑ ϕj

M

j=1
xj

′ = EX (f̂(x)) + ∑ ϕj

M

j=1
 (12)

If you define ϕ0 = EX (f̂(x)) and ∀xj
′ = 1,

2. Missingness Property:

xj
i = 0 ⇒ ϕj = 0 (13)

The Missingness property of SHAP ensures fairness in
assigning Shapley values to features in machine learning
models, especially when some features are missing. This
property states that when a feature is missing (meaning
its value is unknown or undefined), it should be assigned

The loss objective function can be expanded as
shown in equation (6):

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

 where a1, a2, … an are the coefficients from Table A.6 of
[19]. Test statistic computes the equation (1) with Calc W =
bn2 +bn−12

(n−1)s2 , where s is the standard deviation of the feature set

and (2) test statistic with a critical value Tab W from Table
A.7 in the Appendix section of [19]. These statistics were
then compared. If a feature’s Calc W is greater than Tab W
(i.e. Calc W > Tab W), it indicates a regular distribution of
occurrences concerning the location features, ranking it as
highly compatible with the dataset's features.

F. Extreme Gradient Boosting (XGBoost)

Extreme Gradient Boosting (XGBoost) evolved as an
improved version of the Gradient Boosting Decision Tree
(GBDT) algorithm [20]. When dealing with a dataset,
denoted as D = {xi, yi}, where D consists of n examples and
m features, a tree ensemble model incorporates K additive
functions, denoted as fk ∈ ℱ to predict the output values ŷi
as illustrated in equation (3):

ŷi = ∑ fk(xi)
K

k=1
 (3)

In this equation, each fk represents an individual decision
tree within the ensemble, and they work collectively to
predict the output values based on the input features from
the dataset D. The objective of XGBoost is to iteratively
enhance the performance of these additive functions (trees)
to yield accurate predictions for the given dataset.

To reduce errors within the ensemble trees, the objective
function of XGBoost is shown in equation (4):

ℒ(t) = ∑ (yi, ŷi
(t−1) + ft(xi)) + Ω(ft)

n

i=1
 (4)

where the penalizing term Ω is computed using equation (5)
as follows:

Ω(ft) = γT + 1
2 γ ∑ wi

2
T

i=1
 (5)

The loss objective function can be expanded as shown in
equation (6):

ℒ̂(t) = ∑ (gi, ft(xi) + 1
2 hift

2(xi)) + (γT + 1
2 γ ∑ wj

2
T

j=1
)

n

i=1
 (6)

where an optimal weight of each leaf j, and the
corresponding optimal error/loss value ℒ̂(t) that measure
the quality of a tree structure q as is finally computed using
equation (7) and (8) as follows:

wi
∗ = −

∑ giiϵIj

∑ hi + λ iϵIj
 (7)

ℒ̂(t)(q) = ∑
(∑ giiϵIj)

2

∑ hi + λ iϵIj
+ γT

T

j=1
 (8)

G. SHapley Additive exPlanations (SHAP)

SHAP [17] explains the output of machine learning
models. They are calculated using the game theory concept
called Shapley values. With the values, the average
marginal contribution of each feature to the model’s
prediction can be measured [18].

A key reason for choosing SHAP for this research is
TreeSHAP, designed for efficient Shapley value estimation
in tree models [17] like XGBoost. SHAP provides a
structured framework to explain predictions, enhancing
model understanding. SHAP explains model’s predictions
using equation (9):

g(𝓏𝓏′) = ϕ0 + ∑ ϕj𝓏𝓏j
′

M

j=1
 (9)

where g is the explanation function for XGBoost model’s
prediction, 𝓏𝓏′ is a coalition vector in {0,1}M; M aggregates
all data features as the maximum coalition size; ϕj ∈ ℝ are
estimated Shapley values that denote j feature attribution.
They specify each feature's contribution to the prediction.

To calculate the Shapley values ϕ, the formula simplifies
to equation 10:

g(x′) = ϕ0 + ∑ ϕj

M

j=1
 (10)

In their paper [17], SHAP outlines the following three
properties of ϕ and its related expressions (as shown from
equations (11) to (15)):

1. Local Accuracy (Efficiency Property)

f̂(x) = g(x′) = ϕ0 + ∑ ϕj

M

j=1
xj

′ (11)

Equation 11 can be expanded to equation (12) as:

f̂(x) = ϕ0 + ∑ ϕj

M

j=1
xj

′ = EX (f̂(x)) + ∑ ϕj

M

j=1
 (12)

If you define ϕ0 = EX (f̂(x)) and ∀xj
′ = 1,

2. Missingness Property:

xj
i = 0 ⇒ ϕj = 0 (13)

The Missingness property of SHAP ensures fairness in
assigning Shapley values to features in machine learning
models, especially when some features are missing. This
property states that when a feature is missing (meaning
its value is unknown or undefined), it should be assigned

where an optimal weight of each leaf j, and the
corresponding optimal error/loss value

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

 where a1, a2, … an are the coefficients from Table A.6 of
[19]. Test statistic computes the equation (1) with Calc W =
bn2 +bn−12

(n−1)s2 , where s is the standard deviation of the feature set

and (2) test statistic with a critical value Tab W from Table
A.7 in the Appendix section of [19]. These statistics were
then compared. If a feature’s Calc W is greater than Tab W
(i.e. Calc W > Tab W), it indicates a regular distribution of
occurrences concerning the location features, ranking it as
highly compatible with the dataset's features.

F. Extreme Gradient Boosting (XGBoost)

Extreme Gradient Boosting (XGBoost) evolved as an
improved version of the Gradient Boosting Decision Tree
(GBDT) algorithm [20]. When dealing with a dataset,
denoted as D = {xi, yi}, where D consists of n examples and
m features, a tree ensemble model incorporates K additive
functions, denoted as fk ∈ ℱ to predict the output values ŷi
as illustrated in equation (3):

ŷi = ∑ fk(xi)
K

k=1
 (3)

In this equation, each fk represents an individual decision
tree within the ensemble, and they work collectively to
predict the output values based on the input features from
the dataset D. The objective of XGBoost is to iteratively
enhance the performance of these additive functions (trees)
to yield accurate predictions for the given dataset.

To reduce errors within the ensemble trees, the objective
function of XGBoost is shown in equation (4):

ℒ(t) = ∑ (yi, ŷi
(t−1) + ft(xi)) + Ω(ft)

n

i=1
 (4)

where the penalizing term Ω is computed using equation (5)
as follows:

Ω(ft) = γT + 1
2 γ ∑ wi

2
T

i=1
 (5)

The loss objective function can be expanded as shown in
equation (6):

ℒ̂(t) = ∑ (gi, ft(xi) + 1
2 hift

2(xi)) + (γT + 1
2 γ ∑ wj

2
T

j=1
)

n

i=1
 (6)

where an optimal weight of each leaf j, and the
corresponding optimal error/loss value ℒ̂(t) that measure
the quality of a tree structure q as is finally computed using
equation (7) and (8) as follows:

wi
∗ = −

∑ giiϵIj

∑ hi + λ iϵIj
 (7)

ℒ̂(t)(q) = ∑
(∑ giiϵIj)

2

∑ hi + λ iϵIj
+ γT

T

j=1
 (8)

G. SHapley Additive exPlanations (SHAP)

SHAP [17] explains the output of machine learning
models. They are calculated using the game theory concept
called Shapley values. With the values, the average
marginal contribution of each feature to the model’s
prediction can be measured [18].

A key reason for choosing SHAP for this research is
TreeSHAP, designed for efficient Shapley value estimation
in tree models [17] like XGBoost. SHAP provides a
structured framework to explain predictions, enhancing
model understanding. SHAP explains model’s predictions
using equation (9):

g(𝓏𝓏′) = ϕ0 + ∑ ϕj𝓏𝓏j
′

M

j=1
 (9)

where g is the explanation function for XGBoost model’s
prediction, 𝓏𝓏′ is a coalition vector in {0,1}M; M aggregates
all data features as the maximum coalition size; ϕj ∈ ℝ are
estimated Shapley values that denote j feature attribution.
They specify each feature's contribution to the prediction.

To calculate the Shapley values ϕ, the formula simplifies
to equation 10:

g(x′) = ϕ0 + ∑ ϕj

M

j=1
 (10)

In their paper [17], SHAP outlines the following three
properties of ϕ and its related expressions (as shown from
equations (11) to (15)):

1. Local Accuracy (Efficiency Property)

f̂(x) = g(x′) = ϕ0 + ∑ ϕj

M

j=1
xj

′ (11)

Equation 11 can be expanded to equation (12) as:

f̂(x) = ϕ0 + ∑ ϕj

M

j=1
xj

′ = EX (f̂(x)) + ∑ ϕj

M

j=1
 (12)

If you define ϕ0 = EX (f̂(x)) and ∀xj
′ = 1,

2. Missingness Property:

xj
i = 0 ⇒ ϕj = 0 (13)

The Missingness property of SHAP ensures fairness in
assigning Shapley values to features in machine learning
models, especially when some features are missing. This
property states that when a feature is missing (meaning
its value is unknown or undefined), it should be assigned

 that
measure the quality of a tree structure q as is finally
computed using equation (7) and (8) as follows:

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

 where a1, a2, … an are the coefficients from Table A.6 of
[19]. Test statistic computes the equation (1) with Calc W =
bn2 +bn−12

(n−1)s2 , where s is the standard deviation of the feature set

and (2) test statistic with a critical value Tab W from Table
A.7 in the Appendix section of [19]. These statistics were
then compared. If a feature’s Calc W is greater than Tab W
(i.e. Calc W > Tab W), it indicates a regular distribution of
occurrences concerning the location features, ranking it as
highly compatible with the dataset's features.

F. Extreme Gradient Boosting (XGBoost)

Extreme Gradient Boosting (XGBoost) evolved as an
improved version of the Gradient Boosting Decision Tree
(GBDT) algorithm [20]. When dealing with a dataset,
denoted as D = {xi, yi}, where D consists of n examples and
m features, a tree ensemble model incorporates K additive
functions, denoted as fk ∈ ℱ to predict the output values ŷi
as illustrated in equation (3):

ŷi = ∑ fk(xi)
K

k=1
 (3)

In this equation, each fk represents an individual decision
tree within the ensemble, and they work collectively to
predict the output values based on the input features from
the dataset D. The objective of XGBoost is to iteratively
enhance the performance of these additive functions (trees)
to yield accurate predictions for the given dataset.

To reduce errors within the ensemble trees, the objective
function of XGBoost is shown in equation (4):

ℒ(t) = ∑ (yi, ŷi
(t−1) + ft(xi)) + Ω(ft)

n

i=1
 (4)

where the penalizing term Ω is computed using equation (5)
as follows:

Ω(ft) = γT + 1
2 γ ∑ wi

2
T

i=1
 (5)

The loss objective function can be expanded as shown in
equation (6):

ℒ̂(t) = ∑ (gi, ft(xi) + 1
2 hift

2(xi)) + (γT + 1
2 γ ∑ wj

2
T

j=1
)

n

i=1
 (6)

where an optimal weight of each leaf j, and the
corresponding optimal error/loss value ℒ̂(t) that measure
the quality of a tree structure q as is finally computed using
equation (7) and (8) as follows:

wi
∗ = −

∑ giiϵIj

∑ hi + λ iϵIj
 (7)

ℒ̂(t)(q) = ∑
(∑ giiϵIj)

2

∑ hi + λ iϵIj
+ γT

T

j=1
 (8)

G. SHapley Additive exPlanations (SHAP)

SHAP [17] explains the output of machine learning
models. They are calculated using the game theory concept
called Shapley values. With the values, the average
marginal contribution of each feature to the model’s
prediction can be measured [18].

A key reason for choosing SHAP for this research is
TreeSHAP, designed for efficient Shapley value estimation
in tree models [17] like XGBoost. SHAP provides a
structured framework to explain predictions, enhancing
model understanding. SHAP explains model’s predictions
using equation (9):

g(𝓏𝓏′) = ϕ0 + ∑ ϕj𝓏𝓏j
′

M

j=1
 (9)

where g is the explanation function for XGBoost model’s
prediction, 𝓏𝓏′ is a coalition vector in {0,1}M; M aggregates
all data features as the maximum coalition size; ϕj ∈ ℝ are
estimated Shapley values that denote j feature attribution.
They specify each feature's contribution to the prediction.

To calculate the Shapley values ϕ, the formula simplifies
to equation 10:

g(x′) = ϕ0 + ∑ ϕj

M

j=1
 (10)

In their paper [17], SHAP outlines the following three
properties of ϕ and its related expressions (as shown from
equations (11) to (15)):

1. Local Accuracy (Efficiency Property)

f̂(x) = g(x′) = ϕ0 + ∑ ϕj

M

j=1
xj

′ (11)

Equation 11 can be expanded to equation (12) as:

f̂(x) = ϕ0 + ∑ ϕj

M

j=1
xj

′ = EX (f̂(x)) + ∑ ϕj

M

j=1
 (12)

If you define ϕ0 = EX (f̂(x)) and ∀xj
′ = 1,

2. Missingness Property:

xj
i = 0 ⇒ ϕj = 0 (13)

The Missingness property of SHAP ensures fairness in
assigning Shapley values to features in machine learning
models, especially when some features are missing. This
property states that when a feature is missing (meaning
its value is unknown or undefined), it should be assigned

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

 where a1, a2, … an are the coefficients from Table A.6 of
[19]. Test statistic computes the equation (1) with Calc W =
bn2 +bn−12

(n−1)s2 , where s is the standard deviation of the feature set

and (2) test statistic with a critical value Tab W from Table
A.7 in the Appendix section of [19]. These statistics were
then compared. If a feature’s Calc W is greater than Tab W
(i.e. Calc W > Tab W), it indicates a regular distribution of
occurrences concerning the location features, ranking it as
highly compatible with the dataset's features.

F. Extreme Gradient Boosting (XGBoost)

Extreme Gradient Boosting (XGBoost) evolved as an
improved version of the Gradient Boosting Decision Tree
(GBDT) algorithm [20]. When dealing with a dataset,
denoted as D = {xi, yi}, where D consists of n examples and
m features, a tree ensemble model incorporates K additive
functions, denoted as fk ∈ ℱ to predict the output values ŷi
as illustrated in equation (3):

ŷi = ∑ fk(xi)
K

k=1
 (3)

In this equation, each fk represents an individual decision
tree within the ensemble, and they work collectively to
predict the output values based on the input features from
the dataset D. The objective of XGBoost is to iteratively
enhance the performance of these additive functions (trees)
to yield accurate predictions for the given dataset.

To reduce errors within the ensemble trees, the objective
function of XGBoost is shown in equation (4):

ℒ(t) = ∑ (yi, ŷi
(t−1) + ft(xi)) + Ω(ft)

n

i=1
 (4)

where the penalizing term Ω is computed using equation (5)
as follows:

Ω(ft) = γT + 1
2 γ ∑ wi

2
T

i=1
 (5)

The loss objective function can be expanded as shown in
equation (6):

ℒ̂(t) = ∑ (gi, ft(xi) + 1
2 hift

2(xi)) + (γT + 1
2 γ ∑ wj

2
T

j=1
)

n

i=1
 (6)

where an optimal weight of each leaf j, and the
corresponding optimal error/loss value ℒ̂(t) that measure
the quality of a tree structure q as is finally computed using
equation (7) and (8) as follows:

wi
∗ = −

∑ giiϵIj

∑ hi + λ iϵIj
 (7)

ℒ̂(t)(q) = ∑
(∑ giiϵIj)

2

∑ hi + λ iϵIj
+ γT

T

j=1
 (8)

G. SHapley Additive exPlanations (SHAP)

SHAP [17] explains the output of machine learning
models. They are calculated using the game theory concept
called Shapley values. With the values, the average
marginal contribution of each feature to the model’s
prediction can be measured [18].

A key reason for choosing SHAP for this research is
TreeSHAP, designed for efficient Shapley value estimation
in tree models [17] like XGBoost. SHAP provides a
structured framework to explain predictions, enhancing
model understanding. SHAP explains model’s predictions
using equation (9):

g(𝓏𝓏′) = ϕ0 + ∑ ϕj𝓏𝓏j
′

M

j=1
 (9)

where g is the explanation function for XGBoost model’s
prediction, 𝓏𝓏′ is a coalition vector in {0,1}M; M aggregates
all data features as the maximum coalition size; ϕj ∈ ℝ are
estimated Shapley values that denote j feature attribution.
They specify each feature's contribution to the prediction.

To calculate the Shapley values ϕ, the formula simplifies
to equation 10:

g(x′) = ϕ0 + ∑ ϕj

M

j=1
 (10)

In their paper [17], SHAP outlines the following three
properties of ϕ and its related expressions (as shown from
equations (11) to (15)):

1. Local Accuracy (Efficiency Property)

f̂(x) = g(x′) = ϕ0 + ∑ ϕj

M

j=1
xj

′ (11)

Equation 11 can be expanded to equation (12) as:

f̂(x) = ϕ0 + ∑ ϕj

M

j=1
xj

′ = EX (f̂(x)) + ∑ ϕj

M

j=1
 (12)

If you define ϕ0 = EX (f̂(x)) and ∀xj
′ = 1,

2. Missingness Property:

xj
i = 0 ⇒ ϕj = 0 (13)

The Missingness property of SHAP ensures fairness in
assigning Shapley values to features in machine learning
models, especially when some features are missing. This
property states that when a feature is missing (meaning
its value is unknown or undefined), it should be assigned

80

JISCR 2023; Volume 6 Issue (2)

2. Missingness Property:

Gyamfi et al.

G. SHapley Additive exPlanations (SHAP)
SHAP [17] explains the output of machine

learning models. They are calculated using the
game theory concept called Shapley values. With
the values, the average marginal contribution of
each feature to the model’s prediction can be
measured [18].

A key reason for choosing SHAP for this research
is TreeSHAP, designed for efficient Shapley value
estimation in tree models [17] like XGBoost.
SHAP provides a structured framework to explain
predictions, enhancing model understanding.
SHAP explains model’s predictions using
equation (9):

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

 where a1, a2, … an are the coefficients from Table A.6 of
[19]. Test statistic computes the equation (1) with Calc W =
bn2 +bn−12

(n−1)s2 , where s is the standard deviation of the feature set

and (2) test statistic with a critical value Tab W from Table
A.7 in the Appendix section of [19]. These statistics were
then compared. If a feature’s Calc W is greater than Tab W
(i.e. Calc W > Tab W), it indicates a regular distribution of
occurrences concerning the location features, ranking it as
highly compatible with the dataset's features.

F. Extreme Gradient Boosting (XGBoost)

Extreme Gradient Boosting (XGBoost) evolved as an
improved version of the Gradient Boosting Decision Tree
(GBDT) algorithm [20]. When dealing with a dataset,
denoted as D = {xi, yi}, where D consists of n examples and
m features, a tree ensemble model incorporates K additive
functions, denoted as fk ∈ ℱ to predict the output values ŷi
as illustrated in equation (3):

ŷi = ∑ fk(xi)
K

k=1
 (3)

In this equation, each fk represents an individual decision
tree within the ensemble, and they work collectively to
predict the output values based on the input features from
the dataset D. The objective of XGBoost is to iteratively
enhance the performance of these additive functions (trees)
to yield accurate predictions for the given dataset.

To reduce errors within the ensemble trees, the objective
function of XGBoost is shown in equation (4):

ℒ(t) = ∑ (yi, ŷi
(t−1) + ft(xi)) + Ω(ft)

n

i=1
 (4)

where the penalizing term Ω is computed using equation (5)
as follows:

Ω(ft) = γT + 1
2 γ ∑ wi

2
T

i=1
 (5)

The loss objective function can be expanded as shown in
equation (6):

ℒ̂(t) = ∑ (gi, ft(xi) + 1
2 hift

2(xi)) + (γT + 1
2 γ ∑ wj

2
T

j=1
)

n

i=1
 (6)

where an optimal weight of each leaf j, and the
corresponding optimal error/loss value ℒ̂(t) that measure
the quality of a tree structure q as is finally computed using
equation (7) and (8) as follows:

wi
∗ = −

∑ giiϵIj

∑ hi + λ iϵIj
 (7)

ℒ̂(t)(q) = ∑
(∑ giiϵIj)

2

∑ hi + λ iϵIj
+ γT

T

j=1
 (8)

G. SHapley Additive exPlanations (SHAP)

SHAP [17] explains the output of machine learning
models. They are calculated using the game theory concept
called Shapley values. With the values, the average
marginal contribution of each feature to the model’s
prediction can be measured [18].

A key reason for choosing SHAP for this research is
TreeSHAP, designed for efficient Shapley value estimation
in tree models [17] like XGBoost. SHAP provides a
structured framework to explain predictions, enhancing
model understanding. SHAP explains model’s predictions
using equation (9):

g(𝓏𝓏′) = ϕ0 + ∑ ϕj𝓏𝓏j
′

M

j=1
 (9)

where g is the explanation function for XGBoost model’s
prediction, 𝓏𝓏′ is a coalition vector in {0,1}M; M aggregates
all data features as the maximum coalition size; ϕj ∈ ℝ are
estimated Shapley values that denote j feature attribution.
They specify each feature's contribution to the prediction.

To calculate the Shapley values ϕ, the formula simplifies
to equation 10:

g(x′) = ϕ0 + ∑ ϕj

M

j=1
 (10)

In their paper [17], SHAP outlines the following three
properties of ϕ and its related expressions (as shown from
equations (11) to (15)):

1. Local Accuracy (Efficiency Property)

f̂(x) = g(x′) = ϕ0 + ∑ ϕj

M

j=1
xj

′ (11)

Equation 11 can be expanded to equation (12) as:

f̂(x) = ϕ0 + ∑ ϕj

M

j=1
xj

′ = EX (f̂(x)) + ∑ ϕj

M

j=1
 (12)

If you define ϕ0 = EX (f̂(x)) and ∀xj
′ = 1,

2. Missingness Property:

xj
i = 0 ⇒ ϕj = 0 (13)

The Missingness property of SHAP ensures fairness in
assigning Shapley values to features in machine learning
models, especially when some features are missing. This
property states that when a feature is missing (meaning
its value is unknown or undefined), it should be assigned

where g is the explanation function for XGBoost
model’s prediction,

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

 where a1, a2, … an are the coefficients from Table A.6 of
[19]. Test statistic computes the equation (1) with Calc W =
bn2 +bn−12

(n−1)s2 , where s is the standard deviation of the feature set

and (2) test statistic with a critical value Tab W from Table
A.7 in the Appendix section of [19]. These statistics were
then compared. If a feature’s Calc W is greater than Tab W
(i.e. Calc W > Tab W), it indicates a regular distribution of
occurrences concerning the location features, ranking it as
highly compatible with the dataset's features.

F. Extreme Gradient Boosting (XGBoost)

Extreme Gradient Boosting (XGBoost) evolved as an
improved version of the Gradient Boosting Decision Tree
(GBDT) algorithm [20]. When dealing with a dataset,
denoted as D = {xi, yi}, where D consists of n examples and
m features, a tree ensemble model incorporates K additive
functions, denoted as fk ∈ ℱ to predict the output values ŷi
as illustrated in equation (3):

ŷi = ∑ fk(xi)
K

k=1
 (3)

In this equation, each fk represents an individual decision
tree within the ensemble, and they work collectively to
predict the output values based on the input features from
the dataset D. The objective of XGBoost is to iteratively
enhance the performance of these additive functions (trees)
to yield accurate predictions for the given dataset.

To reduce errors within the ensemble trees, the objective
function of XGBoost is shown in equation (4):

ℒ(t) = ∑ (yi, ŷi
(t−1) + ft(xi)) + Ω(ft)

n

i=1
 (4)

where the penalizing term Ω is computed using equation (5)
as follows:

Ω(ft) = γT + 1
2 γ ∑ wi

2
T

i=1
 (5)

The loss objective function can be expanded as shown in
equation (6):

ℒ̂(t) = ∑ (gi, ft(xi) + 1
2 hift

2(xi)) + (γT + 1
2 γ ∑ wj

2
T

j=1
)

n

i=1
 (6)

where an optimal weight of each leaf j, and the
corresponding optimal error/loss value ℒ̂(t) that measure
the quality of a tree structure q as is finally computed using
equation (7) and (8) as follows:

wi
∗ = −

∑ giiϵIj

∑ hi + λ iϵIj
 (7)

ℒ̂(t)(q) = ∑
(∑ giiϵIj)

2

∑ hi + λ iϵIj
+ γT

T

j=1
 (8)

G. SHapley Additive exPlanations (SHAP)

SHAP [17] explains the output of machine learning
models. They are calculated using the game theory concept
called Shapley values. With the values, the average
marginal contribution of each feature to the model’s
prediction can be measured [18].

A key reason for choosing SHAP for this research is
TreeSHAP, designed for efficient Shapley value estimation
in tree models [17] like XGBoost. SHAP provides a
structured framework to explain predictions, enhancing
model understanding. SHAP explains model’s predictions
using equation (9):

g(𝓏𝓏′) = ϕ0 + ∑ ϕj𝓏𝓏j
′

M

j=1
 (9)

where g is the explanation function for XGBoost model’s
prediction, 𝓏𝓏′ is a coalition vector in {0,1}M; M aggregates
all data features as the maximum coalition size; ϕj ∈ ℝ are
estimated Shapley values that denote j feature attribution.
They specify each feature's contribution to the prediction.

To calculate the Shapley values ϕ, the formula simplifies
to equation 10:

g(x′) = ϕ0 + ∑ ϕj

M

j=1
 (10)

In their paper [17], SHAP outlines the following three
properties of ϕ and its related expressions (as shown from
equations (11) to (15)):

1. Local Accuracy (Efficiency Property)

f̂(x) = g(x′) = ϕ0 + ∑ ϕj

M

j=1
xj

′ (11)

Equation 11 can be expanded to equation (12) as:

f̂(x) = ϕ0 + ∑ ϕj

M

j=1
xj

′ = EX (f̂(x)) + ∑ ϕj

M

j=1
 (12)

If you define ϕ0 = EX (f̂(x)) and ∀xj
′ = 1,

2. Missingness Property:

xj
i = 0 ⇒ ϕj = 0 (13)

The Missingness property of SHAP ensures fairness in
assigning Shapley values to features in machine learning
models, especially when some features are missing. This
property states that when a feature is missing (meaning
its value is unknown or undefined), it should be assigned

 is a coalition vector in {0,1}M;
M aggregates all data features as the maximum
coalition size;

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

 where a1, a2, … an are the coefficients from Table A.6 of
[19]. Test statistic computes the equation (1) with Calc W =
bn2 +bn−12

(n−1)s2 , where s is the standard deviation of the feature set

and (2) test statistic with a critical value Tab W from Table
A.7 in the Appendix section of [19]. These statistics were
then compared. If a feature’s Calc W is greater than Tab W
(i.e. Calc W > Tab W), it indicates a regular distribution of
occurrences concerning the location features, ranking it as
highly compatible with the dataset's features.

F. Extreme Gradient Boosting (XGBoost)

Extreme Gradient Boosting (XGBoost) evolved as an
improved version of the Gradient Boosting Decision Tree
(GBDT) algorithm [20]. When dealing with a dataset,
denoted as D = {xi, yi}, where D consists of n examples and
m features, a tree ensemble model incorporates K additive
functions, denoted as fk ∈ ℱ to predict the output values ŷi
as illustrated in equation (3):

ŷi = ∑ fk(xi)
K

k=1
 (3)

In this equation, each fk represents an individual decision
tree within the ensemble, and they work collectively to
predict the output values based on the input features from
the dataset D. The objective of XGBoost is to iteratively
enhance the performance of these additive functions (trees)
to yield accurate predictions for the given dataset.

To reduce errors within the ensemble trees, the objective
function of XGBoost is shown in equation (4):

ℒ(t) = ∑ (yi, ŷi
(t−1) + ft(xi)) + Ω(ft)

n

i=1
 (4)

where the penalizing term Ω is computed using equation (5)
as follows:

Ω(ft) = γT + 1
2 γ ∑ wi

2
T

i=1
 (5)

The loss objective function can be expanded as shown in
equation (6):

ℒ̂(t) = ∑ (gi, ft(xi) + 1
2 hift

2(xi)) + (γT + 1
2 γ ∑ wj

2
T

j=1
)

n

i=1
 (6)

where an optimal weight of each leaf j, and the
corresponding optimal error/loss value ℒ̂(t) that measure
the quality of a tree structure q as is finally computed using
equation (7) and (8) as follows:

wi
∗ = −

∑ giiϵIj

∑ hi + λ iϵIj
 (7)

ℒ̂(t)(q) = ∑
(∑ giiϵIj)

2

∑ hi + λ iϵIj
+ γT

T

j=1
 (8)

G. SHapley Additive exPlanations (SHAP)

SHAP [17] explains the output of machine learning
models. They are calculated using the game theory concept
called Shapley values. With the values, the average
marginal contribution of each feature to the model’s
prediction can be measured [18].

A key reason for choosing SHAP for this research is
TreeSHAP, designed for efficient Shapley value estimation
in tree models [17] like XGBoost. SHAP provides a
structured framework to explain predictions, enhancing
model understanding. SHAP explains model’s predictions
using equation (9):

g(𝓏𝓏′) = ϕ0 + ∑ ϕj𝓏𝓏j
′

M

j=1
 (9)

where g is the explanation function for XGBoost model’s
prediction, 𝓏𝓏′ is a coalition vector in {0,1}M; M aggregates
all data features as the maximum coalition size; ϕj ∈ ℝ are
estimated Shapley values that denote j feature attribution.
They specify each feature's contribution to the prediction.

To calculate the Shapley values ϕ, the formula simplifies
to equation 10:

g(x′) = ϕ0 + ∑ ϕj

M

j=1
 (10)

In their paper [17], SHAP outlines the following three
properties of ϕ and its related expressions (as shown from
equations (11) to (15)):

1. Local Accuracy (Efficiency Property)

f̂(x) = g(x′) = ϕ0 + ∑ ϕj

M

j=1
xj

′ (11)

Equation 11 can be expanded to equation (12) as:

f̂(x) = ϕ0 + ∑ ϕj

M

j=1
xj

′ = EX (f̂(x)) + ∑ ϕj

M

j=1
 (12)

If you define ϕ0 = EX (f̂(x)) and ∀xj
′ = 1,

2. Missingness Property:

xj
i = 0 ⇒ ϕj = 0 (13)

The Missingness property of SHAP ensures fairness in
assigning Shapley values to features in machine learning
models, especially when some features are missing. This
property states that when a feature is missing (meaning
its value is unknown or undefined), it should be assigned

 are estimated Shapley values
that denote j feature attribution. They specify each
feature's contribution to the prediction.

To calculate the Shapley values

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

 where a1, a2, … an are the coefficients from Table A.6 of
[19]. Test statistic computes the equation (1) with Calc W =
bn2 +bn−12

(n−1)s2 , where s is the standard deviation of the feature set

and (2) test statistic with a critical value Tab W from Table
A.7 in the Appendix section of [19]. These statistics were
then compared. If a feature’s Calc W is greater than Tab W
(i.e. Calc W > Tab W), it indicates a regular distribution of
occurrences concerning the location features, ranking it as
highly compatible with the dataset's features.

F. Extreme Gradient Boosting (XGBoost)

Extreme Gradient Boosting (XGBoost) evolved as an
improved version of the Gradient Boosting Decision Tree
(GBDT) algorithm [20]. When dealing with a dataset,
denoted as D = {xi, yi}, where D consists of n examples and
m features, a tree ensemble model incorporates K additive
functions, denoted as fk ∈ ℱ to predict the output values ŷi
as illustrated in equation (3):

ŷi = ∑ fk(xi)
K

k=1
 (3)

In this equation, each fk represents an individual decision
tree within the ensemble, and they work collectively to
predict the output values based on the input features from
the dataset D. The objective of XGBoost is to iteratively
enhance the performance of these additive functions (trees)
to yield accurate predictions for the given dataset.

To reduce errors within the ensemble trees, the objective
function of XGBoost is shown in equation (4):

ℒ(t) = ∑ (yi, ŷi
(t−1) + ft(xi)) + Ω(ft)

n

i=1
 (4)

where the penalizing term Ω is computed using equation (5)
as follows:

Ω(ft) = γT + 1
2 γ ∑ wi

2
T

i=1
 (5)

The loss objective function can be expanded as shown in
equation (6):

ℒ̂(t) = ∑ (gi, ft(xi) + 1
2 hift

2(xi)) + (γT + 1
2 γ ∑ wj

2
T

j=1
)

n

i=1
 (6)

where an optimal weight of each leaf j, and the
corresponding optimal error/loss value ℒ̂(t) that measure
the quality of a tree structure q as is finally computed using
equation (7) and (8) as follows:

wi
∗ = −

∑ giiϵIj

∑ hi + λ iϵIj
 (7)

ℒ̂(t)(q) = ∑
(∑ giiϵIj)

2

∑ hi + λ iϵIj
+ γT

T

j=1
 (8)

G. SHapley Additive exPlanations (SHAP)

SHAP [17] explains the output of machine learning
models. They are calculated using the game theory concept
called Shapley values. With the values, the average
marginal contribution of each feature to the model’s
prediction can be measured [18].

A key reason for choosing SHAP for this research is
TreeSHAP, designed for efficient Shapley value estimation
in tree models [17] like XGBoost. SHAP provides a
structured framework to explain predictions, enhancing
model understanding. SHAP explains model’s predictions
using equation (9):

g(𝓏𝓏′) = ϕ0 + ∑ ϕj𝓏𝓏j
′

M

j=1
 (9)

where g is the explanation function for XGBoost model’s
prediction, 𝓏𝓏′ is a coalition vector in {0,1}M; M aggregates
all data features as the maximum coalition size; ϕj ∈ ℝ are
estimated Shapley values that denote j feature attribution.
They specify each feature's contribution to the prediction.

To calculate the Shapley values ϕ, the formula simplifies
to equation 10:

g(x′) = ϕ0 + ∑ ϕj

M

j=1
 (10)

In their paper [17], SHAP outlines the following three
properties of ϕ and its related expressions (as shown from
equations (11) to (15)):

1. Local Accuracy (Efficiency Property)

f̂(x) = g(x′) = ϕ0 + ∑ ϕj

M

j=1
xj

′ (11)

Equation 11 can be expanded to equation (12) as:

f̂(x) = ϕ0 + ∑ ϕj

M

j=1
xj

′ = EX (f̂(x)) + ∑ ϕj

M

j=1
 (12)

If you define ϕ0 = EX (f̂(x)) and ∀xj
′ = 1,

2. Missingness Property:

xj
i = 0 ⇒ ϕj = 0 (13)

The Missingness property of SHAP ensures fairness in
assigning Shapley values to features in machine learning
models, especially when some features are missing. This
property states that when a feature is missing (meaning
its value is unknown or undefined), it should be assigned

, the formula
simplifies to equation 10:

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

 where a1, a2, … an are the coefficients from Table A.6 of
[19]. Test statistic computes the equation (1) with Calc W =
bn2 +bn−12

(n−1)s2 , where s is the standard deviation of the feature set

and (2) test statistic with a critical value Tab W from Table
A.7 in the Appendix section of [19]. These statistics were
then compared. If a feature’s Calc W is greater than Tab W
(i.e. Calc W > Tab W), it indicates a regular distribution of
occurrences concerning the location features, ranking it as
highly compatible with the dataset's features.

F. Extreme Gradient Boosting (XGBoost)

Extreme Gradient Boosting (XGBoost) evolved as an
improved version of the Gradient Boosting Decision Tree
(GBDT) algorithm [20]. When dealing with a dataset,
denoted as D = {xi, yi}, where D consists of n examples and
m features, a tree ensemble model incorporates K additive
functions, denoted as fk ∈ ℱ to predict the output values ŷi
as illustrated in equation (3):

ŷi = ∑ fk(xi)
K

k=1
 (3)

In this equation, each fk represents an individual decision
tree within the ensemble, and they work collectively to
predict the output values based on the input features from
the dataset D. The objective of XGBoost is to iteratively
enhance the performance of these additive functions (trees)
to yield accurate predictions for the given dataset.

To reduce errors within the ensemble trees, the objective
function of XGBoost is shown in equation (4):

ℒ(t) = ∑ (yi, ŷi
(t−1) + ft(xi)) + Ω(ft)

n

i=1
 (4)

where the penalizing term Ω is computed using equation (5)
as follows:

Ω(ft) = γT + 1
2 γ ∑ wi

2
T

i=1
 (5)

The loss objective function can be expanded as shown in
equation (6):

ℒ̂(t) = ∑ (gi, ft(xi) + 1
2 hift

2(xi)) + (γT + 1
2 γ ∑ wj

2
T

j=1
)

n

i=1
 (6)

where an optimal weight of each leaf j, and the
corresponding optimal error/loss value ℒ̂(t) that measure
the quality of a tree structure q as is finally computed using
equation (7) and (8) as follows:

wi
∗ = −

∑ giiϵIj

∑ hi + λ iϵIj
 (7)

ℒ̂(t)(q) = ∑
(∑ giiϵIj)

2

∑ hi + λ iϵIj
+ γT

T

j=1
 (8)

G. SHapley Additive exPlanations (SHAP)

SHAP [17] explains the output of machine learning
models. They are calculated using the game theory concept
called Shapley values. With the values, the average
marginal contribution of each feature to the model’s
prediction can be measured [18].

A key reason for choosing SHAP for this research is
TreeSHAP, designed for efficient Shapley value estimation
in tree models [17] like XGBoost. SHAP provides a
structured framework to explain predictions, enhancing
model understanding. SHAP explains model’s predictions
using equation (9):

g(𝓏𝓏′) = ϕ0 + ∑ ϕj𝓏𝓏j
′

M

j=1
 (9)

where g is the explanation function for XGBoost model’s
prediction, 𝓏𝓏′ is a coalition vector in {0,1}M; M aggregates
all data features as the maximum coalition size; ϕj ∈ ℝ are
estimated Shapley values that denote j feature attribution.
They specify each feature's contribution to the prediction.

To calculate the Shapley values ϕ, the formula simplifies
to equation 10:

g(x′) = ϕ0 + ∑ ϕj

M

j=1
 (10)

In their paper [17], SHAP outlines the following three
properties of ϕ and its related expressions (as shown from
equations (11) to (15)):

1. Local Accuracy (Efficiency Property)

f̂(x) = g(x′) = ϕ0 + ∑ ϕj

M

j=1
xj

′ (11)

Equation 11 can be expanded to equation (12) as:

f̂(x) = ϕ0 + ∑ ϕj

M

j=1
xj

′ = EX (f̂(x)) + ∑ ϕj

M

j=1
 (12)

If you define ϕ0 = EX (f̂(x)) and ∀xj
′ = 1,

2. Missingness Property:

xj
i = 0 ⇒ ϕj = 0 (13)

The Missingness property of SHAP ensures fairness in
assigning Shapley values to features in machine learning
models, especially when some features are missing. This
property states that when a feature is missing (meaning
its value is unknown or undefined), it should be assigned

In their paper [17], SHAP outlines the following
three properties of

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

 where a1, a2, … an are the coefficients from Table A.6 of
[19]. Test statistic computes the equation (1) with Calc W =
bn2 +bn−12

(n−1)s2 , where s is the standard deviation of the feature set

and (2) test statistic with a critical value Tab W from Table
A.7 in the Appendix section of [19]. These statistics were
then compared. If a feature’s Calc W is greater than Tab W
(i.e. Calc W > Tab W), it indicates a regular distribution of
occurrences concerning the location features, ranking it as
highly compatible with the dataset's features.

F. Extreme Gradient Boosting (XGBoost)

Extreme Gradient Boosting (XGBoost) evolved as an
improved version of the Gradient Boosting Decision Tree
(GBDT) algorithm [20]. When dealing with a dataset,
denoted as D = {xi, yi}, where D consists of n examples and
m features, a tree ensemble model incorporates K additive
functions, denoted as fk ∈ ℱ to predict the output values ŷi
as illustrated in equation (3):

ŷi = ∑ fk(xi)
K

k=1
 (3)

In this equation, each fk represents an individual decision
tree within the ensemble, and they work collectively to
predict the output values based on the input features from
the dataset D. The objective of XGBoost is to iteratively
enhance the performance of these additive functions (trees)
to yield accurate predictions for the given dataset.

To reduce errors within the ensemble trees, the objective
function of XGBoost is shown in equation (4):

ℒ(t) = ∑ (yi, ŷi
(t−1) + ft(xi)) + Ω(ft)

n

i=1
 (4)

where the penalizing term Ω is computed using equation (5)
as follows:

Ω(ft) = γT + 1
2 γ ∑ wi

2
T

i=1
 (5)

The loss objective function can be expanded as shown in
equation (6):

ℒ̂(t) = ∑ (gi, ft(xi) + 1
2 hift

2(xi)) + (γT + 1
2 γ ∑ wj

2
T

j=1
)

n

i=1
 (6)

where an optimal weight of each leaf j, and the
corresponding optimal error/loss value ℒ̂(t) that measure
the quality of a tree structure q as is finally computed using
equation (7) and (8) as follows:

wi
∗ = −

∑ giiϵIj

∑ hi + λ iϵIj
 (7)

ℒ̂(t)(q) = ∑
(∑ giiϵIj)

2

∑ hi + λ iϵIj
+ γT

T

j=1
 (8)

G. SHapley Additive exPlanations (SHAP)

SHAP [17] explains the output of machine learning
models. They are calculated using the game theory concept
called Shapley values. With the values, the average
marginal contribution of each feature to the model’s
prediction can be measured [18].

A key reason for choosing SHAP for this research is
TreeSHAP, designed for efficient Shapley value estimation
in tree models [17] like XGBoost. SHAP provides a
structured framework to explain predictions, enhancing
model understanding. SHAP explains model’s predictions
using equation (9):

g(𝓏𝓏′) = ϕ0 + ∑ ϕj𝓏𝓏j
′

M

j=1
 (9)

where g is the explanation function for XGBoost model’s
prediction, 𝓏𝓏′ is a coalition vector in {0,1}M; M aggregates
all data features as the maximum coalition size; ϕj ∈ ℝ are
estimated Shapley values that denote j feature attribution.
They specify each feature's contribution to the prediction.

To calculate the Shapley values ϕ, the formula simplifies
to equation 10:

g(x′) = ϕ0 + ∑ ϕj

M

j=1
 (10)

In their paper [17], SHAP outlines the following three
properties of ϕ and its related expressions (as shown from
equations (11) to (15)):

1. Local Accuracy (Efficiency Property)

f̂(x) = g(x′) = ϕ0 + ∑ ϕj

M

j=1
xj

′ (11)

Equation 11 can be expanded to equation (12) as:

f̂(x) = ϕ0 + ∑ ϕj

M

j=1
xj

′ = EX (f̂(x)) + ∑ ϕj

M

j=1
 (12)

If you define ϕ0 = EX (f̂(x)) and ∀xj
′ = 1,

2. Missingness Property:

xj
i = 0 ⇒ ϕj = 0 (13)

The Missingness property of SHAP ensures fairness in
assigning Shapley values to features in machine learning
models, especially when some features are missing. This
property states that when a feature is missing (meaning
its value is unknown or undefined), it should be assigned

 and its related expressions (as
shown from equations (11) to (15)):

1. Local Accuracy (Efficiency Property)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

 where a1, a2, … an are the coefficients from Table A.6 of
[19]. Test statistic computes the equation (1) with Calc W =
bn2 +bn−12

(n−1)s2 , where s is the standard deviation of the feature set

and (2) test statistic with a critical value Tab W from Table
A.7 in the Appendix section of [19]. These statistics were
then compared. If a feature’s Calc W is greater than Tab W
(i.e. Calc W > Tab W), it indicates a regular distribution of
occurrences concerning the location features, ranking it as
highly compatible with the dataset's features.

F. Extreme Gradient Boosting (XGBoost)

Extreme Gradient Boosting (XGBoost) evolved as an
improved version of the Gradient Boosting Decision Tree
(GBDT) algorithm [20]. When dealing with a dataset,
denoted as D = {xi, yi}, where D consists of n examples and
m features, a tree ensemble model incorporates K additive
functions, denoted as fk ∈ ℱ to predict the output values ŷi
as illustrated in equation (3):

ŷi = ∑ fk(xi)
K

k=1
 (3)

In this equation, each fk represents an individual decision
tree within the ensemble, and they work collectively to
predict the output values based on the input features from
the dataset D. The objective of XGBoost is to iteratively
enhance the performance of these additive functions (trees)
to yield accurate predictions for the given dataset.

To reduce errors within the ensemble trees, the objective
function of XGBoost is shown in equation (4):

ℒ(t) = ∑ (yi, ŷi
(t−1) + ft(xi)) + Ω(ft)

n

i=1
 (4)

where the penalizing term Ω is computed using equation (5)
as follows:

Ω(ft) = γT + 1
2 γ ∑ wi

2
T

i=1
 (5)

The loss objective function can be expanded as shown in
equation (6):

ℒ̂(t) = ∑ (gi, ft(xi) + 1
2 hift

2(xi)) + (γT + 1
2 γ ∑ wj

2
T

j=1
)

n

i=1
 (6)

where an optimal weight of each leaf j, and the
corresponding optimal error/loss value ℒ̂(t) that measure
the quality of a tree structure q as is finally computed using
equation (7) and (8) as follows:

wi
∗ = −

∑ giiϵIj

∑ hi + λ iϵIj
 (7)

ℒ̂(t)(q) = ∑
(∑ giiϵIj)

2

∑ hi + λ iϵIj
+ γT

T

j=1
 (8)

G. SHapley Additive exPlanations (SHAP)

SHAP [17] explains the output of machine learning
models. They are calculated using the game theory concept
called Shapley values. With the values, the average
marginal contribution of each feature to the model’s
prediction can be measured [18].

A key reason for choosing SHAP for this research is
TreeSHAP, designed for efficient Shapley value estimation
in tree models [17] like XGBoost. SHAP provides a
structured framework to explain predictions, enhancing
model understanding. SHAP explains model’s predictions
using equation (9):

g(𝓏𝓏′) = ϕ0 + ∑ ϕj𝓏𝓏j
′

M

j=1
 (9)

where g is the explanation function for XGBoost model’s
prediction, 𝓏𝓏′ is a coalition vector in {0,1}M; M aggregates
all data features as the maximum coalition size; ϕj ∈ ℝ are
estimated Shapley values that denote j feature attribution.
They specify each feature's contribution to the prediction.

To calculate the Shapley values ϕ, the formula simplifies
to equation 10:

g(x′) = ϕ0 + ∑ ϕj

M

j=1
 (10)

In their paper [17], SHAP outlines the following three
properties of ϕ and its related expressions (as shown from
equations (11) to (15)):

1. Local Accuracy (Efficiency Property)

f̂(x) = g(x′) = ϕ0 + ∑ ϕj

M

j=1
xj

′ (11)

Equation 11 can be expanded to equation (12) as:

f̂(x) = ϕ0 + ∑ ϕj

M

j=1
xj

′ = EX (f̂(x)) + ∑ ϕj

M

j=1
 (12)

If you define ϕ0 = EX (f̂(x)) and ∀xj
′ = 1,

2. Missingness Property:

xj
i = 0 ⇒ ϕj = 0 (13)

The Missingness property of SHAP ensures fairness in
assigning Shapley values to features in machine learning
models, especially when some features are missing. This
property states that when a feature is missing (meaning
its value is unknown or undefined), it should be assigned

Equation (11) can be expanded to equation (12) as:

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

 where a1, a2, … an are the coefficients from Table A.6 of
[19]. Test statistic computes the equation (1) with Calc W =
bn2 +bn−12

(n−1)s2 , where s is the standard deviation of the feature set

and (2) test statistic with a critical value Tab W from Table
A.7 in the Appendix section of [19]. These statistics were
then compared. If a feature’s Calc W is greater than Tab W
(i.e. Calc W > Tab W), it indicates a regular distribution of
occurrences concerning the location features, ranking it as
highly compatible with the dataset's features.

F. Extreme Gradient Boosting (XGBoost)

Extreme Gradient Boosting (XGBoost) evolved as an
improved version of the Gradient Boosting Decision Tree
(GBDT) algorithm [20]. When dealing with a dataset,
denoted as D = {xi, yi}, where D consists of n examples and
m features, a tree ensemble model incorporates K additive
functions, denoted as fk ∈ ℱ to predict the output values ŷi
as illustrated in equation (3):

ŷi = ∑ fk(xi)
K

k=1
 (3)

In this equation, each fk represents an individual decision
tree within the ensemble, and they work collectively to
predict the output values based on the input features from
the dataset D. The objective of XGBoost is to iteratively
enhance the performance of these additive functions (trees)
to yield accurate predictions for the given dataset.

To reduce errors within the ensemble trees, the objective
function of XGBoost is shown in equation (4):

ℒ(t) = ∑ (yi, ŷi
(t−1) + ft(xi)) + Ω(ft)

n

i=1
 (4)

where the penalizing term Ω is computed using equation (5)
as follows:

Ω(ft) = γT + 1
2 γ ∑ wi

2
T

i=1
 (5)

The loss objective function can be expanded as shown in
equation (6):

ℒ̂(t) = ∑ (gi, ft(xi) + 1
2 hift

2(xi)) + (γT + 1
2 γ ∑ wj

2
T

j=1
)

n

i=1
 (6)

where an optimal weight of each leaf j, and the
corresponding optimal error/loss value ℒ̂(t) that measure
the quality of a tree structure q as is finally computed using
equation (7) and (8) as follows:

wi
∗ = −

∑ giiϵIj

∑ hi + λ iϵIj
 (7)

ℒ̂(t)(q) = ∑
(∑ giiϵIj)

2

∑ hi + λ iϵIj
+ γT

T

j=1
 (8)

G. SHapley Additive exPlanations (SHAP)

SHAP [17] explains the output of machine learning
models. They are calculated using the game theory concept
called Shapley values. With the values, the average
marginal contribution of each feature to the model’s
prediction can be measured [18].

A key reason for choosing SHAP for this research is
TreeSHAP, designed for efficient Shapley value estimation
in tree models [17] like XGBoost. SHAP provides a
structured framework to explain predictions, enhancing
model understanding. SHAP explains model’s predictions
using equation (9):

g(𝓏𝓏′) = ϕ0 + ∑ ϕj𝓏𝓏j
′

M

j=1
 (9)

where g is the explanation function for XGBoost model’s
prediction, 𝓏𝓏′ is a coalition vector in {0,1}M; M aggregates
all data features as the maximum coalition size; ϕj ∈ ℝ are
estimated Shapley values that denote j feature attribution.
They specify each feature's contribution to the prediction.

To calculate the Shapley values ϕ, the formula simplifies
to equation 10:

g(x′) = ϕ0 + ∑ ϕj

M

j=1
 (10)

In their paper [17], SHAP outlines the following three
properties of ϕ and its related expressions (as shown from
equations (11) to (15)):

1. Local Accuracy (Efficiency Property)

f̂(x) = g(x′) = ϕ0 + ∑ ϕj

M

j=1
xj

′ (11)

Equation 11 can be expanded to equation (12) as:

f̂(x) = ϕ0 + ∑ ϕj

M

j=1
xj

′ = EX (f̂(x)) + ∑ ϕj

M

j=1
 (12)

If you define ϕ0 = EX (f̂(x)) and ∀xj
′ = 1,

2. Missingness Property:

xj
i = 0 ⇒ ϕj = 0 (13)

The Missingness property of SHAP ensures fairness in
assigning Shapley values to features in machine learning
models, especially when some features are missing. This
property states that when a feature is missing (meaning
its value is unknown or undefined), it should be assigned

If you define

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

 where a1, a2, … an are the coefficients from Table A.6 of
[19]. Test statistic computes the equation (1) with Calc W =
bn2 +bn−12

(n−1)s2 , where s is the standard deviation of the feature set

and (2) test statistic with a critical value Tab W from Table
A.7 in the Appendix section of [19]. These statistics were
then compared. If a feature’s Calc W is greater than Tab W
(i.e. Calc W > Tab W), it indicates a regular distribution of
occurrences concerning the location features, ranking it as
highly compatible with the dataset's features.

F. Extreme Gradient Boosting (XGBoost)

Extreme Gradient Boosting (XGBoost) evolved as an
improved version of the Gradient Boosting Decision Tree
(GBDT) algorithm [20]. When dealing with a dataset,
denoted as D = {xi, yi}, where D consists of n examples and
m features, a tree ensemble model incorporates K additive
functions, denoted as fk ∈ ℱ to predict the output values ŷi
as illustrated in equation (3):

ŷi = ∑ fk(xi)
K

k=1
 (3)

In this equation, each fk represents an individual decision
tree within the ensemble, and they work collectively to
predict the output values based on the input features from
the dataset D. The objective of XGBoost is to iteratively
enhance the performance of these additive functions (trees)
to yield accurate predictions for the given dataset.

To reduce errors within the ensemble trees, the objective
function of XGBoost is shown in equation (4):

ℒ(t) = ∑ (yi, ŷi
(t−1) + ft(xi)) + Ω(ft)

n

i=1
 (4)

where the penalizing term Ω is computed using equation (5)
as follows:

Ω(ft) = γT + 1
2 γ ∑ wi

2
T

i=1
 (5)

The loss objective function can be expanded as shown in
equation (6):

ℒ̂(t) = ∑ (gi, ft(xi) + 1
2 hift

2(xi)) + (γT + 1
2 γ ∑ wj

2
T

j=1
)

n

i=1
 (6)

where an optimal weight of each leaf j, and the
corresponding optimal error/loss value ℒ̂(t) that measure
the quality of a tree structure q as is finally computed using
equation (7) and (8) as follows:

wi
∗ = −

∑ giiϵIj

∑ hi + λ iϵIj
 (7)

ℒ̂(t)(q) = ∑
(∑ giiϵIj)

2

∑ hi + λ iϵIj
+ γT

T

j=1
 (8)

G. SHapley Additive exPlanations (SHAP)

SHAP [17] explains the output of machine learning
models. They are calculated using the game theory concept
called Shapley values. With the values, the average
marginal contribution of each feature to the model’s
prediction can be measured [18].

A key reason for choosing SHAP for this research is
TreeSHAP, designed for efficient Shapley value estimation
in tree models [17] like XGBoost. SHAP provides a
structured framework to explain predictions, enhancing
model understanding. SHAP explains model’s predictions
using equation (9):

g(𝓏𝓏′) = ϕ0 + ∑ ϕj𝓏𝓏j
′

M

j=1
 (9)

where g is the explanation function for XGBoost model’s
prediction, 𝓏𝓏′ is a coalition vector in {0,1}M; M aggregates
all data features as the maximum coalition size; ϕj ∈ ℝ are
estimated Shapley values that denote j feature attribution.
They specify each feature's contribution to the prediction.

To calculate the Shapley values ϕ, the formula simplifies
to equation 10:

g(x′) = ϕ0 + ∑ ϕj

M

j=1
 (10)

In their paper [17], SHAP outlines the following three
properties of ϕ and its related expressions (as shown from
equations (11) to (15)):

1. Local Accuracy (Efficiency Property)

f̂(x) = g(x′) = ϕ0 + ∑ ϕj

M

j=1
xj

′ (11)

Equation 11 can be expanded to equation (12) as:

f̂(x) = ϕ0 + ∑ ϕj

M

j=1
xj

′ = EX (f̂(x)) + ∑ ϕj

M

j=1
 (12)

If you define ϕ0 = EX (f̂(x)) and ∀xj
′ = 1,

2. Missingness Property:

xj
i = 0 ⇒ ϕj = 0 (13)

The Missingness property of SHAP ensures fairness in
assigning Shapley values to features in machine learning
models, especially when some features are missing. This
property states that when a feature is missing (meaning
its value is unknown or undefined), it should be assigned

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

 where a1, a2, … an are the coefficients from Table A.6 of
[19]. Test statistic computes the equation (1) with Calc W =
bn2 +bn−12

(n−1)s2 , where s is the standard deviation of the feature set

and (2) test statistic with a critical value Tab W from Table
A.7 in the Appendix section of [19]. These statistics were
then compared. If a feature’s Calc W is greater than Tab W
(i.e. Calc W > Tab W), it indicates a regular distribution of
occurrences concerning the location features, ranking it as
highly compatible with the dataset's features.

F. Extreme Gradient Boosting (XGBoost)

Extreme Gradient Boosting (XGBoost) evolved as an
improved version of the Gradient Boosting Decision Tree
(GBDT) algorithm [20]. When dealing with a dataset,
denoted as D = {xi, yi}, where D consists of n examples and
m features, a tree ensemble model incorporates K additive
functions, denoted as fk ∈ ℱ to predict the output values ŷi
as illustrated in equation (3):

ŷi = ∑ fk(xi)
K

k=1
 (3)

In this equation, each fk represents an individual decision
tree within the ensemble, and they work collectively to
predict the output values based on the input features from
the dataset D. The objective of XGBoost is to iteratively
enhance the performance of these additive functions (trees)
to yield accurate predictions for the given dataset.

To reduce errors within the ensemble trees, the objective
function of XGBoost is shown in equation (4):

ℒ(t) = ∑ (yi, ŷi
(t−1) + ft(xi)) + Ω(ft)

n

i=1
 (4)

where the penalizing term Ω is computed using equation (5)
as follows:

Ω(ft) = γT + 1
2 γ ∑ wi

2
T

i=1
 (5)

The loss objective function can be expanded as shown in
equation (6):

ℒ̂(t) = ∑ (gi, ft(xi) + 1
2 hift

2(xi)) + (γT + 1
2 γ ∑ wj

2
T

j=1
)

n

i=1
 (6)

where an optimal weight of each leaf j, and the
corresponding optimal error/loss value ℒ̂(t) that measure
the quality of a tree structure q as is finally computed using
equation (7) and (8) as follows:

wi
∗ = −

∑ giiϵIj

∑ hi + λ iϵIj
 (7)

ℒ̂(t)(q) = ∑
(∑ giiϵIj)

2

∑ hi + λ iϵIj
+ γT

T

j=1
 (8)

G. SHapley Additive exPlanations (SHAP)

SHAP [17] explains the output of machine learning
models. They are calculated using the game theory concept
called Shapley values. With the values, the average
marginal contribution of each feature to the model’s
prediction can be measured [18].

A key reason for choosing SHAP for this research is
TreeSHAP, designed for efficient Shapley value estimation
in tree models [17] like XGBoost. SHAP provides a
structured framework to explain predictions, enhancing
model understanding. SHAP explains model’s predictions
using equation (9):

g(𝓏𝓏′) = ϕ0 + ∑ ϕj𝓏𝓏j
′

M

j=1
 (9)

where g is the explanation function for XGBoost model’s
prediction, 𝓏𝓏′ is a coalition vector in {0,1}M; M aggregates
all data features as the maximum coalition size; ϕj ∈ ℝ are
estimated Shapley values that denote j feature attribution.
They specify each feature's contribution to the prediction.

To calculate the Shapley values ϕ, the formula simplifies
to equation 10:

g(x′) = ϕ0 + ∑ ϕj

M

j=1
 (10)

In their paper [17], SHAP outlines the following three
properties of ϕ and its related expressions (as shown from
equations (11) to (15)):

1. Local Accuracy (Efficiency Property)

f̂(x) = g(x′) = ϕ0 + ∑ ϕj

M

j=1
xj

′ (11)

Equation 11 can be expanded to equation (12) as:

f̂(x) = ϕ0 + ∑ ϕj

M

j=1
xj

′ = EX (f̂(x)) + ∑ ϕj

M

j=1
 (12)

If you define ϕ0 = EX (f̂(x)) and ∀xj
′ = 1,

2. Missingness Property:

xj
i = 0 ⇒ ϕj = 0 (13)

The Missingness property of SHAP ensures fairness in
assigning Shapley values to features in machine learning
models, especially when some features are missing. This
property states that when a feature is missing (meaning
its value is unknown or undefined), it should be assigned

The Missingness property of SHAP ensures
fairness in assigning Shapley values to features in
machine learning models, especially when some
features are missing. This property states that when
a feature is missing (meaning its value is unknown
or undefined), it should be assigned a Shapley
value of 0.

3. Consistency
The Consistency property of SHAP is an

important attribute that ensures the fairness and
reliability of feature attributions in machine learning
models. To understand this property, let us first
express the Consistency property as shown in
equation (14).

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

a Shapley value of 0.

3. Consistency
The Consistency property of SHAP is an important

attribute that ensures the fairness and reliability of feature
attributions in machine learning models. To understand this
property, let us first express the Consistency property as
shown in equation (14).

�̂�𝑓𝑥𝑥′(𝑧𝑧′) − �̂�𝑓𝑥𝑥′(𝑧𝑧𝑗𝑗′) ≥ �̂�𝑓𝑥𝑥(𝑧𝑧′) − �̂�𝑓𝑥𝑥(𝑧𝑧𝑗𝑗′) (14)

The Consistency property essentially states that for any
two models, f̂x(z′) and f̂x(zj′), if the change in the

prediction, expressed as f̂x′(z′) − f̂x′(zj′), is greater than or

equal to the change in prediction for the original model
f̂x(z′) − f̂x(zj′) for all possible input configurations z′ϵ{0,1}M,
then Equation (15) holds true.

𝜙𝜙𝑗𝑗(�̂�𝑓′, 𝑥𝑥) ≥ 𝜙𝜙𝑗𝑗(�̂�𝑓𝑥𝑥, 𝑥𝑥) (15)

Equation (15) shows that, given these conditions, the
Shapley value (𝜙𝜙𝑗𝑗) for a specific feature 𝑗𝑗 in the modified

model (�̂�𝑓′) is greater than or equal to the Shapley value
for the same feature in the original model (𝑓𝑓). Consistency
property ensures that if a machine learning model is
changed in a way that increases or maintains the impact
of a particular feature (regardless of what happens to
other features), then the Shapley value attributed to that
feature also increases or stays the same.

III. EXPERIMENTS AND RESULTS

The ‘shap’ Python Package was used. The package
provides a set of tools and functions to compute and
interpret SHAP values for different machine learning
models. The ‘shap’ package is designed to be compatible
with the widely used Python machine learning library, ‘scikit-
learn’, which means that SHAP could easily be applied to
explain predictions made by tree-based models created
using ‘scikit-learn’. The XGBoost algorithm was used as a
tree-based model with ‘scikit-learn’. The ‘shap’ package
was in conjunction with ‘scikit-learn’ package’s tree
boosting framework, the XGBoost.

A. Compatibility test between the IoTID20 Dataset and the
Location Features

We show results from the Feature Ranking with Shapira-

Wilk test statistic in Figure 4. The first features labelled 9 – 20
of the 61 features ranked high in compatibility with the location
features, with a value greater than 0.50.

Fig. 4. Feature Ranking with Shapiro-Wilk test

B. XGBoost regression
1) Model development

The input data features were divided into 80-20 training and
testing subsets. Five-folds cross validation was applied to train
and evaluate the model. The XGBoost parameters were
optimized using a simple grid search algorithm [21] to select
the optimal parameters in Table I.

2) Model validation
For validating the chosen model, the developed model is used

to verify the performance of the model on the independent test
set from the dataset feature as compared to one other popular
regression model, i.e. the multiple regression model. The R-
squared score was utilized for this verification and found that
the XGBoost regression model outperformed the multiple
regression model in both training and testing, with the average
R-squared values being above 80%. In addition, the XGBoost
model resulted in more consistent values and smaller MSE,
RMSE and MAE values, compared to the multiple regression
model (see Table II).

C. SHAP Results
We use TreeSHAP estimation method to explain individual

predictions, since XGBoost algorithm creates a sequential
ensemble of tree models. This helps in extracting knowledge
from the IoTID20 dataset using the SHAP method. The results
will be in different domains interpreting XGBoost model
using the SHAP method, as shown in Figure 5.

TABLE I

AVERAGE VALIDATION METRICS
Regression Model training set test set

MSE RMSE MAE R-squared MSE RMSE MAE R-squared
XGBoost 2.087 1.559 1.105 0.868 2.057 2.079 1.085 0.962
Multiple 4.033 3.837 1.501 0.571 4.389 3.903 2.516 1.684

The Consistency property essentially states that
for any two models,

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

a Shapley value of 0.

3. Consistency
The Consistency property of SHAP is an important

attribute that ensures the fairness and reliability of feature
attributions in machine learning models. To understand this
property, let us first express the Consistency property as
shown in equation (14).

�̂�𝑓𝑥𝑥′(𝑧𝑧′) − �̂�𝑓𝑥𝑥′(𝑧𝑧𝑗𝑗′) ≥ �̂�𝑓𝑥𝑥(𝑧𝑧′) − �̂�𝑓𝑥𝑥(𝑧𝑧𝑗𝑗′) (14)

The Consistency property essentially states that for any
two models, f̂x(z′) and f̂x(zj′), if the change in the

prediction, expressed as f̂x′(z′) − f̂x′(zj′), is greater than or

equal to the change in prediction for the original model
f̂x(z′) − f̂x(zj′) for all possible input configurations z′ϵ{0,1}M,
then Equation (15) holds true.

𝜙𝜙𝑗𝑗(�̂�𝑓′, 𝑥𝑥) ≥ 𝜙𝜙𝑗𝑗(�̂�𝑓𝑥𝑥, 𝑥𝑥) (15)

Equation (15) shows that, given these conditions, the
Shapley value (𝜙𝜙𝑗𝑗) for a specific feature 𝑗𝑗 in the modified

model (�̂�𝑓′) is greater than or equal to the Shapley value
for the same feature in the original model (𝑓𝑓). Consistency
property ensures that if a machine learning model is
changed in a way that increases or maintains the impact
of a particular feature (regardless of what happens to
other features), then the Shapley value attributed to that
feature also increases or stays the same.

III. EXPERIMENTS AND RESULTS

The ‘shap’ Python Package was used. The package
provides a set of tools and functions to compute and
interpret SHAP values for different machine learning
models. The ‘shap’ package is designed to be compatible
with the widely used Python machine learning library, ‘scikit-
learn’, which means that SHAP could easily be applied to
explain predictions made by tree-based models created
using ‘scikit-learn’. The XGBoost algorithm was used as a
tree-based model with ‘scikit-learn’. The ‘shap’ package
was in conjunction with ‘scikit-learn’ package’s tree
boosting framework, the XGBoost.

A. Compatibility test between the IoTID20 Dataset and the
Location Features

We show results from the Feature Ranking with Shapira-

Wilk test statistic in Figure 4. The first features labelled 9 – 20
of the 61 features ranked high in compatibility with the location
features, with a value greater than 0.50.

Fig. 4. Feature Ranking with Shapiro-Wilk test

B. XGBoost regression
1) Model development

The input data features were divided into 80-20 training and
testing subsets. Five-folds cross validation was applied to train
and evaluate the model. The XGBoost parameters were
optimized using a simple grid search algorithm [21] to select
the optimal parameters in Table I.

2) Model validation
For validating the chosen model, the developed model is used

to verify the performance of the model on the independent test
set from the dataset feature as compared to one other popular
regression model, i.e. the multiple regression model. The R-
squared score was utilized for this verification and found that
the XGBoost regression model outperformed the multiple
regression model in both training and testing, with the average
R-squared values being above 80%. In addition, the XGBoost
model resulted in more consistent values and smaller MSE,
RMSE and MAE values, compared to the multiple regression
model (see Table II).

C. SHAP Results
We use TreeSHAP estimation method to explain individual

predictions, since XGBoost algorithm creates a sequential
ensemble of tree models. This helps in extracting knowledge
from the IoTID20 dataset using the SHAP method. The results
will be in different domains interpreting XGBoost model
using the SHAP method, as shown in Figure 5.

TABLE I

AVERAGE VALIDATION METRICS
Regression Model training set test set

MSE RMSE MAE R-squared MSE RMSE MAE R-squared
XGBoost 2.087 1.559 1.105 0.868 2.057 2.079 1.085 0.962
Multiple 4.033 3.837 1.501 0.571 4.389 3.903 2.516 1.684

 and

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

a Shapley value of 0.

3. Consistency
The Consistency property of SHAP is an important

attribute that ensures the fairness and reliability of feature
attributions in machine learning models. To understand this
property, let us first express the Consistency property as
shown in equation (14).

�̂�𝑓𝑥𝑥′(𝑧𝑧′) − �̂�𝑓𝑥𝑥′(𝑧𝑧𝑗𝑗′) ≥ �̂�𝑓𝑥𝑥(𝑧𝑧′) − �̂�𝑓𝑥𝑥(𝑧𝑧𝑗𝑗′) (14)

The Consistency property essentially states that for any
two models, f̂x(z′) and f̂x(zj′), if the change in the

prediction, expressed as f̂x′(z′) − f̂x′(zj′), is greater than or

equal to the change in prediction for the original model
f̂x(z′) − f̂x(zj′) for all possible input configurations z′ϵ{0,1}M,
then Equation (15) holds true.

𝜙𝜙𝑗𝑗(�̂�𝑓′, 𝑥𝑥) ≥ 𝜙𝜙𝑗𝑗(�̂�𝑓𝑥𝑥, 𝑥𝑥) (15)

Equation (15) shows that, given these conditions, the
Shapley value (𝜙𝜙𝑗𝑗) for a specific feature 𝑗𝑗 in the modified

model (�̂�𝑓′) is greater than or equal to the Shapley value
for the same feature in the original model (𝑓𝑓). Consistency
property ensures that if a machine learning model is
changed in a way that increases or maintains the impact
of a particular feature (regardless of what happens to
other features), then the Shapley value attributed to that
feature also increases or stays the same.

III. EXPERIMENTS AND RESULTS

The ‘shap’ Python Package was used. The package
provides a set of tools and functions to compute and
interpret SHAP values for different machine learning
models. The ‘shap’ package is designed to be compatible
with the widely used Python machine learning library, ‘scikit-
learn’, which means that SHAP could easily be applied to
explain predictions made by tree-based models created
using ‘scikit-learn’. The XGBoost algorithm was used as a
tree-based model with ‘scikit-learn’. The ‘shap’ package
was in conjunction with ‘scikit-learn’ package’s tree
boosting framework, the XGBoost.

A. Compatibility test between the IoTID20 Dataset and the
Location Features

We show results from the Feature Ranking with Shapira-

Wilk test statistic in Figure 4. The first features labelled 9 – 20
of the 61 features ranked high in compatibility with the location
features, with a value greater than 0.50.

Fig. 4. Feature Ranking with Shapiro-Wilk test

B. XGBoost regression
1) Model development

The input data features were divided into 80-20 training and
testing subsets. Five-folds cross validation was applied to train
and evaluate the model. The XGBoost parameters were
optimized using a simple grid search algorithm [21] to select
the optimal parameters in Table I.

2) Model validation
For validating the chosen model, the developed model is used

to verify the performance of the model on the independent test
set from the dataset feature as compared to one other popular
regression model, i.e. the multiple regression model. The R-
squared score was utilized for this verification and found that
the XGBoost regression model outperformed the multiple
regression model in both training and testing, with the average
R-squared values being above 80%. In addition, the XGBoost
model resulted in more consistent values and smaller MSE,
RMSE and MAE values, compared to the multiple regression
model (see Table II).

C. SHAP Results
We use TreeSHAP estimation method to explain individual

predictions, since XGBoost algorithm creates a sequential
ensemble of tree models. This helps in extracting knowledge
from the IoTID20 dataset using the SHAP method. The results
will be in different domains interpreting XGBoost model
using the SHAP method, as shown in Figure 5.

TABLE I

AVERAGE VALIDATION METRICS
Regression Model training set test set

MSE RMSE MAE R-squared MSE RMSE MAE R-squared
XGBoost 2.087 1.559 1.105 0.868 2.057 2.079 1.085 0.962
Multiple 4.033 3.837 1.501 0.571 4.389 3.903 2.516 1.684

, if the change
in the prediction, expressed as

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

a Shapley value of 0.

3. Consistency
The Consistency property of SHAP is an important

attribute that ensures the fairness and reliability of feature
attributions in machine learning models. To understand this
property, let us first express the Consistency property as
shown in equation (14).

�̂�𝑓𝑥𝑥′(𝑧𝑧′) − �̂�𝑓𝑥𝑥′(𝑧𝑧𝑗𝑗′) ≥ �̂�𝑓𝑥𝑥(𝑧𝑧′) − �̂�𝑓𝑥𝑥(𝑧𝑧𝑗𝑗′) (14)

The Consistency property essentially states that for any
two models, f̂x(z′) and f̂x(zj′), if the change in the

prediction, expressed as f̂x′(z′) − f̂x′(zj′), is greater than or

equal to the change in prediction for the original model
f̂x(z′) − f̂x(zj′) for all possible input configurations z′ϵ{0,1}M,
then Equation (15) holds true.

𝜙𝜙𝑗𝑗(�̂�𝑓′, 𝑥𝑥) ≥ 𝜙𝜙𝑗𝑗(�̂�𝑓𝑥𝑥, 𝑥𝑥) (15)

Equation (15) shows that, given these conditions, the
Shapley value (𝜙𝜙𝑗𝑗) for a specific feature 𝑗𝑗 in the modified

model (�̂�𝑓′) is greater than or equal to the Shapley value
for the same feature in the original model (𝑓𝑓). Consistency
property ensures that if a machine learning model is
changed in a way that increases or maintains the impact
of a particular feature (regardless of what happens to
other features), then the Shapley value attributed to that
feature also increases or stays the same.

III. EXPERIMENTS AND RESULTS

The ‘shap’ Python Package was used. The package
provides a set of tools and functions to compute and
interpret SHAP values for different machine learning
models. The ‘shap’ package is designed to be compatible
with the widely used Python machine learning library, ‘scikit-
learn’, which means that SHAP could easily be applied to
explain predictions made by tree-based models created
using ‘scikit-learn’. The XGBoost algorithm was used as a
tree-based model with ‘scikit-learn’. The ‘shap’ package
was in conjunction with ‘scikit-learn’ package’s tree
boosting framework, the XGBoost.

A. Compatibility test between the IoTID20 Dataset and the
Location Features

We show results from the Feature Ranking with Shapira-

Wilk test statistic in Figure 4. The first features labelled 9 – 20
of the 61 features ranked high in compatibility with the location
features, with a value greater than 0.50.

Fig. 4. Feature Ranking with Shapiro-Wilk test

B. XGBoost regression
1) Model development

The input data features were divided into 80-20 training and
testing subsets. Five-folds cross validation was applied to train
and evaluate the model. The XGBoost parameters were
optimized using a simple grid search algorithm [21] to select
the optimal parameters in Table I.

2) Model validation
For validating the chosen model, the developed model is used

to verify the performance of the model on the independent test
set from the dataset feature as compared to one other popular
regression model, i.e. the multiple regression model. The R-
squared score was utilized for this verification and found that
the XGBoost regression model outperformed the multiple
regression model in both training and testing, with the average
R-squared values being above 80%. In addition, the XGBoost
model resulted in more consistent values and smaller MSE,
RMSE and MAE values, compared to the multiple regression
model (see Table II).

C. SHAP Results
We use TreeSHAP estimation method to explain individual

predictions, since XGBoost algorithm creates a sequential
ensemble of tree models. This helps in extracting knowledge
from the IoTID20 dataset using the SHAP method. The results
will be in different domains interpreting XGBoost model
using the SHAP method, as shown in Figure 5.

TABLE I

AVERAGE VALIDATION METRICS
Regression Model training set test set

MSE RMSE MAE R-squared MSE RMSE MAE R-squared
XGBoost 2.087 1.559 1.105 0.868 2.057 2.079 1.085 0.962
Multiple 4.033 3.837 1.501 0.571 4.389 3.903 2.516 1.684

, is
greater than or equal to the change in prediction
for the original model

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

a Shapley value of 0.

3. Consistency
The Consistency property of SHAP is an important

attribute that ensures the fairness and reliability of feature
attributions in machine learning models. To understand this
property, let us first express the Consistency property as
shown in equation (14).

�̂�𝑓𝑥𝑥′(𝑧𝑧′) − �̂�𝑓𝑥𝑥′(𝑧𝑧𝑗𝑗′) ≥ �̂�𝑓𝑥𝑥(𝑧𝑧′) − �̂�𝑓𝑥𝑥(𝑧𝑧𝑗𝑗′) (14)

The Consistency property essentially states that for any
two models, f̂x(z′) and f̂x(zj′), if the change in the

prediction, expressed as f̂x′(z′) − f̂x′(zj′), is greater than or

equal to the change in prediction for the original model
f̂x(z′) − f̂x(zj′) for all possible input configurations z′ϵ{0,1}M,
then Equation (15) holds true.

𝜙𝜙𝑗𝑗(�̂�𝑓′, 𝑥𝑥) ≥ 𝜙𝜙𝑗𝑗(�̂�𝑓𝑥𝑥, 𝑥𝑥) (15)

Equation (15) shows that, given these conditions, the
Shapley value (𝜙𝜙𝑗𝑗) for a specific feature 𝑗𝑗 in the modified

model (�̂�𝑓′) is greater than or equal to the Shapley value
for the same feature in the original model (𝑓𝑓). Consistency
property ensures that if a machine learning model is
changed in a way that increases or maintains the impact
of a particular feature (regardless of what happens to
other features), then the Shapley value attributed to that
feature also increases or stays the same.

III. EXPERIMENTS AND RESULTS

The ‘shap’ Python Package was used. The package
provides a set of tools and functions to compute and
interpret SHAP values for different machine learning
models. The ‘shap’ package is designed to be compatible
with the widely used Python machine learning library, ‘scikit-
learn’, which means that SHAP could easily be applied to
explain predictions made by tree-based models created
using ‘scikit-learn’. The XGBoost algorithm was used as a
tree-based model with ‘scikit-learn’. The ‘shap’ package
was in conjunction with ‘scikit-learn’ package’s tree
boosting framework, the XGBoost.

A. Compatibility test between the IoTID20 Dataset and the
Location Features

We show results from the Feature Ranking with Shapira-

Wilk test statistic in Figure 4. The first features labelled 9 – 20
of the 61 features ranked high in compatibility with the location
features, with a value greater than 0.50.

Fig. 4. Feature Ranking with Shapiro-Wilk test

B. XGBoost regression
1) Model development

The input data features were divided into 80-20 training and
testing subsets. Five-folds cross validation was applied to train
and evaluate the model. The XGBoost parameters were
optimized using a simple grid search algorithm [21] to select
the optimal parameters in Table I.

2) Model validation
For validating the chosen model, the developed model is used

to verify the performance of the model on the independent test
set from the dataset feature as compared to one other popular
regression model, i.e. the multiple regression model. The R-
squared score was utilized for this verification and found that
the XGBoost regression model outperformed the multiple
regression model in both training and testing, with the average
R-squared values being above 80%. In addition, the XGBoost
model resulted in more consistent values and smaller MSE,
RMSE and MAE values, compared to the multiple regression
model (see Table II).

C. SHAP Results
We use TreeSHAP estimation method to explain individual

predictions, since XGBoost algorithm creates a sequential
ensemble of tree models. This helps in extracting knowledge
from the IoTID20 dataset using the SHAP method. The results
will be in different domains interpreting XGBoost model
using the SHAP method, as shown in Figure 5.

TABLE I

AVERAGE VALIDATION METRICS
Regression Model training set test set

MSE RMSE MAE R-squared MSE RMSE MAE R-squared
XGBoost 2.087 1.559 1.105 0.868 2.057 2.079 1.085 0.962
Multiple 4.033 3.837 1.501 0.571 4.389 3.903 2.516 1.684

 for all possible
input configurations

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

a Shapley value of 0.

3. Consistency
The Consistency property of SHAP is an important

attribute that ensures the fairness and reliability of feature
attributions in machine learning models. To understand this
property, let us first express the Consistency property as
shown in equation (14).

�̂�𝑓𝑥𝑥′(𝑧𝑧′) − �̂�𝑓𝑥𝑥′(𝑧𝑧𝑗𝑗′) ≥ �̂�𝑓𝑥𝑥(𝑧𝑧′) − �̂�𝑓𝑥𝑥(𝑧𝑧𝑗𝑗′) (14)

The Consistency property essentially states that for any
two models, f̂x(z′) and f̂x(zj′), if the change in the

prediction, expressed as f̂x′(z′) − f̂x′(zj′), is greater than or

equal to the change in prediction for the original model
f̂x(z′) − f̂x(zj′) for all possible input configurations z′ϵ{0,1}M,
then Equation (15) holds true.

𝜙𝜙𝑗𝑗(�̂�𝑓′, 𝑥𝑥) ≥ 𝜙𝜙𝑗𝑗(�̂�𝑓𝑥𝑥, 𝑥𝑥) (15)

Equation (15) shows that, given these conditions, the
Shapley value (𝜙𝜙𝑗𝑗) for a specific feature 𝑗𝑗 in the modified

model (�̂�𝑓′) is greater than or equal to the Shapley value
for the same feature in the original model (𝑓𝑓). Consistency
property ensures that if a machine learning model is
changed in a way that increases or maintains the impact
of a particular feature (regardless of what happens to
other features), then the Shapley value attributed to that
feature also increases or stays the same.

III. EXPERIMENTS AND RESULTS

The ‘shap’ Python Package was used. The package
provides a set of tools and functions to compute and
interpret SHAP values for different machine learning
models. The ‘shap’ package is designed to be compatible
with the widely used Python machine learning library, ‘scikit-
learn’, which means that SHAP could easily be applied to
explain predictions made by tree-based models created
using ‘scikit-learn’. The XGBoost algorithm was used as a
tree-based model with ‘scikit-learn’. The ‘shap’ package
was in conjunction with ‘scikit-learn’ package’s tree
boosting framework, the XGBoost.

A. Compatibility test between the IoTID20 Dataset and the
Location Features

We show results from the Feature Ranking with Shapira-

Wilk test statistic in Figure 4. The first features labelled 9 – 20
of the 61 features ranked high in compatibility with the location
features, with a value greater than 0.50.

Fig. 4. Feature Ranking with Shapiro-Wilk test

B. XGBoost regression
1) Model development

The input data features were divided into 80-20 training and
testing subsets. Five-folds cross validation was applied to train
and evaluate the model. The XGBoost parameters were
optimized using a simple grid search algorithm [21] to select
the optimal parameters in Table I.

2) Model validation
For validating the chosen model, the developed model is used

to verify the performance of the model on the independent test
set from the dataset feature as compared to one other popular
regression model, i.e. the multiple regression model. The R-
squared score was utilized for this verification and found that
the XGBoost regression model outperformed the multiple
regression model in both training and testing, with the average
R-squared values being above 80%. In addition, the XGBoost
model resulted in more consistent values and smaller MSE,
RMSE and MAE values, compared to the multiple regression
model (see Table II).

C. SHAP Results
We use TreeSHAP estimation method to explain individual

predictions, since XGBoost algorithm creates a sequential
ensemble of tree models. This helps in extracting knowledge
from the IoTID20 dataset using the SHAP method. The results
will be in different domains interpreting XGBoost model
using the SHAP method, as shown in Figure 5.

TABLE I

AVERAGE VALIDATION METRICS
Regression Model training set test set

MSE RMSE MAE R-squared MSE RMSE MAE R-squared
XGBoost 2.087 1.559 1.105 0.868 2.057 2.079 1.085 0.962
Multiple 4.033 3.837 1.501 0.571 4.389 3.903 2.516 1.684

, then Equation (15)
holds true.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

a Shapley value of 0.

3. Consistency
The Consistency property of SHAP is an important

attribute that ensures the fairness and reliability of feature
attributions in machine learning models. To understand this
property, let us first express the Consistency property as
shown in equation (14).

�̂�𝑓𝑥𝑥′(𝑧𝑧′) − �̂�𝑓𝑥𝑥′(𝑧𝑧𝑗𝑗′) ≥ �̂�𝑓𝑥𝑥(𝑧𝑧′) − �̂�𝑓𝑥𝑥(𝑧𝑧𝑗𝑗′) (14)

The Consistency property essentially states that for any
two models, f̂x(z′) and f̂x(zj′), if the change in the

prediction, expressed as f̂x′(z′) − f̂x′(zj′), is greater than or

equal to the change in prediction for the original model
f̂x(z′) − f̂x(zj′) for all possible input configurations z′ϵ{0,1}M,
then Equation (15) holds true.

𝜙𝜙𝑗𝑗(�̂�𝑓′, 𝑥𝑥) ≥ 𝜙𝜙𝑗𝑗(�̂�𝑓𝑥𝑥, 𝑥𝑥) (15)

Equation (15) shows that, given these conditions, the
Shapley value (𝜙𝜙𝑗𝑗) for a specific feature 𝑗𝑗 in the modified

model (�̂�𝑓′) is greater than or equal to the Shapley value
for the same feature in the original model (𝑓𝑓). Consistency
property ensures that if a machine learning model is
changed in a way that increases or maintains the impact
of a particular feature (regardless of what happens to
other features), then the Shapley value attributed to that
feature also increases or stays the same.

III. EXPERIMENTS AND RESULTS

The ‘shap’ Python Package was used. The package
provides a set of tools and functions to compute and
interpret SHAP values for different machine learning
models. The ‘shap’ package is designed to be compatible
with the widely used Python machine learning library, ‘scikit-
learn’, which means that SHAP could easily be applied to
explain predictions made by tree-based models created
using ‘scikit-learn’. The XGBoost algorithm was used as a
tree-based model with ‘scikit-learn’. The ‘shap’ package
was in conjunction with ‘scikit-learn’ package’s tree
boosting framework, the XGBoost.

A. Compatibility test between the IoTID20 Dataset and the
Location Features

We show results from the Feature Ranking with Shapira-

Wilk test statistic in Figure 4. The first features labelled 9 – 20
of the 61 features ranked high in compatibility with the location
features, with a value greater than 0.50.

Fig. 4. Feature Ranking with Shapiro-Wilk test

B. XGBoost regression
1) Model development

The input data features were divided into 80-20 training and
testing subsets. Five-folds cross validation was applied to train
and evaluate the model. The XGBoost parameters were
optimized using a simple grid search algorithm [21] to select
the optimal parameters in Table I.

2) Model validation
For validating the chosen model, the developed model is used

to verify the performance of the model on the independent test
set from the dataset feature as compared to one other popular
regression model, i.e. the multiple regression model. The R-
squared score was utilized for this verification and found that
the XGBoost regression model outperformed the multiple
regression model in both training and testing, with the average
R-squared values being above 80%. In addition, the XGBoost
model resulted in more consistent values and smaller MSE,
RMSE and MAE values, compared to the multiple regression
model (see Table II).

C. SHAP Results
We use TreeSHAP estimation method to explain individual

predictions, since XGBoost algorithm creates a sequential
ensemble of tree models. This helps in extracting knowledge
from the IoTID20 dataset using the SHAP method. The results
will be in different domains interpreting XGBoost model
using the SHAP method, as shown in Figure 5.

TABLE I

AVERAGE VALIDATION METRICS
Regression Model training set test set

MSE RMSE MAE R-squared MSE RMSE MAE R-squared
XGBoost 2.087 1.559 1.105 0.868 2.057 2.079 1.085 0.962
Multiple 4.033 3.837 1.501 0.571 4.389 3.903 2.516 1.684

Equation (15) shows that, given these conditions,
the Shapley value

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

a Shapley value of 0.

3. Consistency
The Consistency property of SHAP is an important

attribute that ensures the fairness and reliability of feature
attributions in machine learning models. To understand this
property, let us first express the Consistency property as
shown in equation (14).

�̂�𝑓𝑥𝑥′(𝑧𝑧′) − �̂�𝑓𝑥𝑥′(𝑧𝑧𝑗𝑗′) ≥ �̂�𝑓𝑥𝑥(𝑧𝑧′) − �̂�𝑓𝑥𝑥(𝑧𝑧𝑗𝑗′) (14)

The Consistency property essentially states that for any
two models, f̂x(z′) and f̂x(zj′), if the change in the

prediction, expressed as f̂x′(z′) − f̂x′(zj′), is greater than or

equal to the change in prediction for the original model
f̂x(z′) − f̂x(zj′) for all possible input configurations z′ϵ{0,1}M,
then Equation (15) holds true.

𝜙𝜙𝑗𝑗(�̂�𝑓′, 𝑥𝑥) ≥ 𝜙𝜙𝑗𝑗(�̂�𝑓𝑥𝑥, 𝑥𝑥) (15)

Equation (15) shows that, given these conditions, the
Shapley value (𝜙𝜙𝑗𝑗) for a specific feature 𝑗𝑗 in the modified

model (�̂�𝑓′) is greater than or equal to the Shapley value
for the same feature in the original model (𝑓𝑓). Consistency
property ensures that if a machine learning model is
changed in a way that increases or maintains the impact
of a particular feature (regardless of what happens to
other features), then the Shapley value attributed to that
feature also increases or stays the same.

III. EXPERIMENTS AND RESULTS

The ‘shap’ Python Package was used. The package
provides a set of tools and functions to compute and
interpret SHAP values for different machine learning
models. The ‘shap’ package is designed to be compatible
with the widely used Python machine learning library, ‘scikit-
learn’, which means that SHAP could easily be applied to
explain predictions made by tree-based models created
using ‘scikit-learn’. The XGBoost algorithm was used as a
tree-based model with ‘scikit-learn’. The ‘shap’ package
was in conjunction with ‘scikit-learn’ package’s tree
boosting framework, the XGBoost.

A. Compatibility test between the IoTID20 Dataset and the
Location Features

We show results from the Feature Ranking with Shapira-

Wilk test statistic in Figure 4. The first features labelled 9 – 20
of the 61 features ranked high in compatibility with the location
features, with a value greater than 0.50.

Fig. 4. Feature Ranking with Shapiro-Wilk test

B. XGBoost regression
1) Model development

The input data features were divided into 80-20 training and
testing subsets. Five-folds cross validation was applied to train
and evaluate the model. The XGBoost parameters were
optimized using a simple grid search algorithm [21] to select
the optimal parameters in Table I.

2) Model validation
For validating the chosen model, the developed model is used

to verify the performance of the model on the independent test
set from the dataset feature as compared to one other popular
regression model, i.e. the multiple regression model. The R-
squared score was utilized for this verification and found that
the XGBoost regression model outperformed the multiple
regression model in both training and testing, with the average
R-squared values being above 80%. In addition, the XGBoost
model resulted in more consistent values and smaller MSE,
RMSE and MAE values, compared to the multiple regression
model (see Table II).

C. SHAP Results
We use TreeSHAP estimation method to explain individual

predictions, since XGBoost algorithm creates a sequential
ensemble of tree models. This helps in extracting knowledge
from the IoTID20 dataset using the SHAP method. The results
will be in different domains interpreting XGBoost model
using the SHAP method, as shown in Figure 5.

TABLE I

AVERAGE VALIDATION METRICS
Regression Model training set test set

MSE RMSE MAE R-squared MSE RMSE MAE R-squared
XGBoost 2.087 1.559 1.105 0.868 2.057 2.079 1.085 0.962
Multiple 4.033 3.837 1.501 0.571 4.389 3.903 2.516 1.684

 for a specific feature j in the
modified model

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

a Shapley value of 0.

3. Consistency
The Consistency property of SHAP is an important

attribute that ensures the fairness and reliability of feature
attributions in machine learning models. To understand this
property, let us first express the Consistency property as
shown in equation (14).

�̂�𝑓𝑥𝑥′(𝑧𝑧′) − �̂�𝑓𝑥𝑥′(𝑧𝑧𝑗𝑗′) ≥ �̂�𝑓𝑥𝑥(𝑧𝑧′) − �̂�𝑓𝑥𝑥(𝑧𝑧𝑗𝑗′) (14)

The Consistency property essentially states that for any
two models, f̂x(z′) and f̂x(zj′), if the change in the

prediction, expressed as f̂x′(z′) − f̂x′(zj′), is greater than or

equal to the change in prediction for the original model
f̂x(z′) − f̂x(zj′) for all possible input configurations z′ϵ{0,1}M,
then Equation (15) holds true.

𝜙𝜙𝑗𝑗(�̂�𝑓′, 𝑥𝑥) ≥ 𝜙𝜙𝑗𝑗(�̂�𝑓𝑥𝑥, 𝑥𝑥) (15)

Equation (15) shows that, given these conditions, the
Shapley value (𝜙𝜙𝑗𝑗) for a specific feature 𝑗𝑗 in the modified

model (�̂�𝑓′) is greater than or equal to the Shapley value
for the same feature in the original model (𝑓𝑓). Consistency
property ensures that if a machine learning model is
changed in a way that increases or maintains the impact
of a particular feature (regardless of what happens to
other features), then the Shapley value attributed to that
feature also increases or stays the same.

III. EXPERIMENTS AND RESULTS

The ‘shap’ Python Package was used. The package
provides a set of tools and functions to compute and
interpret SHAP values for different machine learning
models. The ‘shap’ package is designed to be compatible
with the widely used Python machine learning library, ‘scikit-
learn’, which means that SHAP could easily be applied to
explain predictions made by tree-based models created
using ‘scikit-learn’. The XGBoost algorithm was used as a
tree-based model with ‘scikit-learn’. The ‘shap’ package
was in conjunction with ‘scikit-learn’ package’s tree
boosting framework, the XGBoost.

A. Compatibility test between the IoTID20 Dataset and the
Location Features

We show results from the Feature Ranking with Shapira-

Wilk test statistic in Figure 4. The first features labelled 9 – 20
of the 61 features ranked high in compatibility with the location
features, with a value greater than 0.50.

Fig. 4. Feature Ranking with Shapiro-Wilk test

B. XGBoost regression
1) Model development

The input data features were divided into 80-20 training and
testing subsets. Five-folds cross validation was applied to train
and evaluate the model. The XGBoost parameters were
optimized using a simple grid search algorithm [21] to select
the optimal parameters in Table I.

2) Model validation
For validating the chosen model, the developed model is used

to verify the performance of the model on the independent test
set from the dataset feature as compared to one other popular
regression model, i.e. the multiple regression model. The R-
squared score was utilized for this verification and found that
the XGBoost regression model outperformed the multiple
regression model in both training and testing, with the average
R-squared values being above 80%. In addition, the XGBoost
model resulted in more consistent values and smaller MSE,
RMSE and MAE values, compared to the multiple regression
model (see Table II).

C. SHAP Results
We use TreeSHAP estimation method to explain individual

predictions, since XGBoost algorithm creates a sequential
ensemble of tree models. This helps in extracting knowledge
from the IoTID20 dataset using the SHAP method. The results
will be in different domains interpreting XGBoost model
using the SHAP method, as shown in Figure 5.

TABLE I

AVERAGE VALIDATION METRICS
Regression Model training set test set

MSE RMSE MAE R-squared MSE RMSE MAE R-squared
XGBoost 2.087 1.559 1.105 0.868 2.057 2.079 1.085 0.962
Multiple 4.033 3.837 1.501 0.571 4.389 3.903 2.516 1.684

 is greater than or equal to the
Shapley value for the same feature in the original
model (f). Consistency property ensures that if a
machine learning model is changed in a way that
increases or maintains the impact of a particular
feature (regardless of what happens to other
features), then the Shapley value attributed to that
feature also increases or stays the same.

III. experIMents and results

The ‘shap’ Python Package was used. The
package provides a set of tools and functions to
compute and interpret SHAP values for different
machine learning models. The ‘shap’ package is

81

JISCR 2023; Volume 6 Issue (2)

taBle I
average valIdatIon MetrIcs

Regression Model
training set test set

MSE RMSE MAE R-squared MSE RMSE MAE R-squared

XGBoost 2.087 1.559 1.105 0.868 2.057 2.079 1.085 0.962
Multiple 4.033 3.837 1.501 0.571 4.389 3.903 2.516 1.684

2) Model validation
For validating the chosen model, the developed

model is used to verify the performance of the
model on the independent test set from the
dataset feature as compared to one other popular
regression model, i.e. the multiple regression
model. The R-squared score was utilized for this
verification and found that the XGBoost regression
model outperformed the multiple regression model
in both training and testing, with the average
R-squared values being above 80%. In addition,
the XGBoost model resulted in more consistent
values and smaller MSE, RMSE and MAE values,
compared to the multiple regression model (see
Table II).

C. SHAP Results
We use TreeSHAP estimation method to explain

individual predictions, since XGBoost algorithm
creates a sequential ensemble of tree models. This
helps in extracting knowledge from the IoTID20
dataset using the SHAP method. The results will
be in different domains interpreting XGBoost model
using the SHAP method, as shown in Fig. 6.

D. SHAP Feature Importance
The SHAP feature importance plot, shown

in Fig. 7, provides insights into which features
are most influential in making predictions using
the XGBoost algorithm for intrusion detection.
It helps in identifying which aspects of the input
data have the greatest impact on the model's
decision-making process. Fig. 7 reveals that three
features—Flow Duration, Total Forward Packets,
and Total Length Forward Packet—stand out as
the most globally important features. This means
that these three features play a significant role in
the model's ability to detect intrusions across the
entire dataset. Fig. 5. Feature Ranking with Shapiro-Wilk test.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

a Shapley value of 0.

3. Consistency
The Consistency property of SHAP is an important

attribute that ensures the fairness and reliability of feature
attributions in machine learning models. To understand this
property, let us first express the Consistency property as
shown in equation (14).

�̂�𝑓𝑥𝑥′(𝑧𝑧′) − �̂�𝑓𝑥𝑥′(𝑧𝑧𝑗𝑗′) ≥ �̂�𝑓𝑥𝑥(𝑧𝑧′) − �̂�𝑓𝑥𝑥(𝑧𝑧𝑗𝑗′) (14)

The Consistency property essentially states that for any
two models, f̂x(z′) and f̂x(zj′), if the change in the

prediction, expressed as f̂x′(z′) − f̂x′(zj′), is greater than or

equal to the change in prediction for the original model
f̂x(z′) − f̂x(zj′) for all possible input configurations z′ϵ{0,1}M,
then Equation (15) holds true.

𝜙𝜙𝑗𝑗(�̂�𝑓′, 𝑥𝑥) ≥ 𝜙𝜙𝑗𝑗(�̂�𝑓𝑥𝑥, 𝑥𝑥) (15)

Equation (15) shows that, given these conditions, the
Shapley value (𝜙𝜙𝑗𝑗) for a specific feature 𝑗𝑗 in the modified

model (�̂�𝑓′) is greater than or equal to the Shapley value
for the same feature in the original model (𝑓𝑓). Consistency
property ensures that if a machine learning model is
changed in a way that increases or maintains the impact
of a particular feature (regardless of what happens to
other features), then the Shapley value attributed to that
feature also increases or stays the same.

III. EXPERIMENTS AND RESULTS

The ‘shap’ Python Package was used. The package
provides a set of tools and functions to compute and
interpret SHAP values for different machine learning
models. The ‘shap’ package is designed to be compatible
with the widely used Python machine learning library, ‘scikit-
learn’, which means that SHAP could easily be applied to
explain predictions made by tree-based models created
using ‘scikit-learn’. The XGBoost algorithm was used as a
tree-based model with ‘scikit-learn’. The ‘shap’ package
was in conjunction with ‘scikit-learn’ package’s tree
boosting framework, the XGBoost.

A. Compatibility test between the IoTID20 Dataset and the
Location Features

We show results from the Feature Ranking with Shapira-

Wilk test statistic in Figure 4. The first features labelled 9 – 20
of the 61 features ranked high in compatibility with the location
features, with a value greater than 0.50.

Fig. 4. Feature Ranking with Shapiro-Wilk test

B. XGBoost regression
1) Model development

The input data features were divided into 80-20 training and
testing subsets. Five-folds cross validation was applied to train
and evaluate the model. The XGBoost parameters were
optimized using a simple grid search algorithm [21] to select
the optimal parameters in Table I.

2) Model validation
For validating the chosen model, the developed model is used

to verify the performance of the model on the independent test
set from the dataset feature as compared to one other popular
regression model, i.e. the multiple regression model. The R-
squared score was utilized for this verification and found that
the XGBoost regression model outperformed the multiple
regression model in both training and testing, with the average
R-squared values being above 80%. In addition, the XGBoost
model resulted in more consistent values and smaller MSE,
RMSE and MAE values, compared to the multiple regression
model (see Table II).

C. SHAP Results
We use TreeSHAP estimation method to explain individual

predictions, since XGBoost algorithm creates a sequential
ensemble of tree models. This helps in extracting knowledge
from the IoTID20 dataset using the SHAP method. The results
will be in different domains interpreting XGBoost model
using the SHAP method, as shown in Figure 5.

TABLE I

AVERAGE VALIDATION METRICS
Regression Model training set test set

MSE RMSE MAE R-squared MSE RMSE MAE R-squared
XGBoost 2.087 1.559 1.105 0.868 2.057 2.079 1.085 0.962
Multiple 4.033 3.837 1.501 0.571 4.389 3.903 2.516 1.684

A Model-agnostic XAI Approach for Developing Low-cost IoT Intrusion Detection Dataset

designed to be compatible with the widely used
Python machine learning library, ‘scikit-learn’, which
means that SHAP could easily be applied to explain
predictions made by tree-based models created
using ‘scikit-learn’. The XGBoost algorithm was
used as a tree-based model with ‘scikit-learn’. The
‘shap’ package was in conjunction with ‘scikit-learn’
package’s tree boosting framework, the XGBoost.

A. Compatibility test between the IoTID20 Dataset
and the Location Features

We show results from the Feature Ranking with
Shapira-Wilk test statistic in Fig. 5. The first features
labelled 9 – 20 of the 61 features ranked high in
compatibility with the location features, with a value
greater than 0.50.

B. XGBoost regression
1) Model development
The input data features were divided into 80-

20 training and testing subsets. Five-folds cross
validation was applied to train and evaluate the
model. The XGBoost parameters were optimized
using a simple grid search algorithm [21] to select
the optimal parameters in Table I.

82

JISCR 2023; Volume 6 Issue (2)

taBle II
chosen xgBoost paraMeters after sIMple grId search

Parameters Values Selected Optimal value

Learning rate 0.1 ,0.01 0.01

Max tree depth 65 ,50 ,47 ,30 ,12 50

Min feature weights 12 ,8 ,6 ,4 ,1 12

Fraction of random samples for each tree 0.7 ,0.5 0.5

Subsample ratio of columns when constructing each tree 0.7 ,0.5 0.5

Number of trees to fit 1000 ,500 ,250 ,100 1000

Fig. 7. SHAP Feature Importance.

Gyamfi et al.

Fig. 6. Pipeline for interpreting XGBoost model using the SHAP method.

 81صفحة 6الشكل رقم

XGBoost Regression Model
Black box prediction

Establishes the
most important
features in the

prediction

Interprets the
relationship

between feature
values and
predictions

Detailed interpretation
on the relationship

between feature values
and predictions

Interprets the

distribution of the
features and the
prediction effects

Interpret the effects
of having a certain

value of the location
feature constant

SHAP
feature importance

SHAP
summary plot

SHAP
dependence plot

SHAP
dependence plot with

location features

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

Fig. 5. Pipeline for interpreting XGBoost model using the SHAP method

TABLE II
CHOSEN XGBOOST PARAMETERS AFTER SIMPLE GRID SEARCH

Parameters Values Selected
Optimal value

Learning rate 0.01, 0.1 0.01

Max tree depth 12, 30, 47,
50, 65 50

Min feature weights 1, 4, 6, 8, 12 12

Fraction of random samples for each
tree 0.5, 0.7 0.5

Subsample ratio of columns when
constructing each tree 0.5, 0.7 0.5

Number of trees to fit 100, 250,
500, 1000 1000

D. SHAP Feature Importance
The SHAP feature importance plot, shown in Figure 6,

provides insights into which features are most influential in
making predictions using the XGBoost algorithm for
intrusion detection. It helps in identifying which aspects of
the input data have the greatest impact on the model's
decision-making process. The Figure reveals that three
features—Flow Duration, Total Forward Packets, and Total
Length Forward Packet—stand out as the most globally
important features. This means that these three features play
a significant role in the model's ability to detect intrusions
across the entire dataset.

1) SHAP Summary Plot
Looking at Figure 7, focusing on the Flow Duration feature

of Figure 7, it becomes evident that high values of this feature
are associated with intrusion detection. In other words, when
network flows have long durations, it may be indicative of
intrusion events. Additionally, it is noteworthy that data
instances with a high total number of forward packets
(Tot_Fwd_Pkts) values are also considered as an important

feature for distinguishing intrusion events

Fig. 6. SHAP Feature Importance.

XGBoost Regression Model
Black box prediction

Establishes the most
important features in

the prediction

Interprets the
relationship between

feature values and
predictions

Detailed interpretation on
the relationship between

feature values and
predictions

Interprets the distribution of

the features and the
prediction effects

Interpret the effects of
having a certain value of

the location feature
constant

SHAP
feature importance

SHAP
summary plot

SHAP
dependence plot

SHAP
dependence plot with

location features

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

Fig. 5. Pipeline for interpreting XGBoost model using the SHAP method

TABLE II
CHOSEN XGBOOST PARAMETERS AFTER SIMPLE GRID SEARCH

Parameters Values Selected
Optimal value

Learning rate 0.01, 0.1 0.01

Max tree depth 12, 30, 47,
50, 65 50

Min feature weights 1, 4, 6, 8, 12 12

Fraction of random samples for each
tree 0.5, 0.7 0.5

Subsample ratio of columns when
constructing each tree 0.5, 0.7 0.5

Number of trees to fit 100, 250,
500, 1000 1000

D. SHAP Feature Importance
The SHAP feature importance plot, shown in Figure 6,

provides insights into which features are most influential in
making predictions using the XGBoost algorithm for
intrusion detection. It helps in identifying which aspects of
the input data have the greatest impact on the model's
decision-making process. The Figure reveals that three
features—Flow Duration, Total Forward Packets, and Total
Length Forward Packet—stand out as the most globally
important features. This means that these three features play
a significant role in the model's ability to detect intrusions
across the entire dataset.

1) SHAP Summary Plot
Looking at Figure 7, focusing on the Flow Duration feature

of Figure 7, it becomes evident that high values of this feature
are associated with intrusion detection. In other words, when
network flows have long durations, it may be indicative of
intrusion events. Additionally, it is noteworthy that data
instances with a high total number of forward packets
(Tot_Fwd_Pkts) values are also considered as an important

feature for distinguishing intrusion events

Fig. 6. SHAP Feature Importance.

XGBoost Regression Model
Black box prediction

Establishes the most
important features in

the prediction

Interprets the
relationship between

feature values and
predictions

Detailed interpretation on
the relationship between

feature values and
predictions

Interprets the distribution of

the features and the
prediction effects

Interpret the effects of
having a certain value of

the location feature
constant

SHAP
feature importance

SHAP
summary plot

SHAP
dependence plot

SHAP
dependence plot with

location features

83

JISCR 2023; Volume 6 Issue (2)

1) SHAP Summary Plot
Focusing on the Flow Duration feature of Fig. 8,

it becomes evident that high values of this feature
are associated with intrusion detection. In other
words, when network flows have long durations, it
may be indicative of intrusion events. Additionally,
it is noteworthy that data instances with a high total
number of forward packets (Tot_Fwd_Pkts) values
are also considered as an important feature for
distinguishing intrusion events.

2) SHAP Dependence Plot
SHAP dependence plot in Fig. 9 confirms that

a feature like Total Forward Packets have SHAP
values of nearly -1.74 for the intrusion detection are
extremely negative.

3) SHAP Force Plot
The force plot offers a visual representation of

the contribution of individual feature to the XGBoost
prediction. The values ranging from -0.0257 to
0.0716 represent the magnitude of the entire feature
contribution to the final XGBoost prediction.

The plot has two force bars, one pink and one
blue. The pink bar is labelled “higher” and the blue
bar is labelled “lower”. These bars represent the
positive and negative contributions of the features
towards the prediction. The length of each bar
indicates the magnitude of the feature’s effect. In Fig.
10, it appears that certain features (“such as ‘Pkt_len_
Min’ and ‘Sub_Cat_Mirai-Ackflooding’) are pushing
the XGBoost model’s output higher (pink bar) when
combined with the collected location features, while
others (such as ‘Bwd_Pkt_Len_Mean’ and ‘Sub_cat_
Scan-Port’) are pushing the output lower (blue bar).

E. Comparison with dataset created using high-end
cameras

The effectiveness of the newly created dataset
built from low-cost features is compared to that

of an original dataset lacking such specifications.
The newly created dataset is created through a
methodology that retains approximately 65% of the
original dataset's features, focusing solely on low-
cost features. Importantly, experiment is conducted
to verify if this reduction in features streamlined
to emphasize low-cost features, and does not
compromise the accuracy of the machine learning
model and still preserves the essential details of the
dataset.

The experiment is executed on a desktop PC
equipped with an AMD Ryzen 7 3700X CPU with
a Base Clock of 3.60 GHz, a 32 GB of RAM, and
an RTX 3060 GPU with 12GB GDDR6 VRAM. The
software utilized comprises open-source libraries
including Python, PyTorch, and scikit-learn.> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

Fig. 7. Summary plots

2) SHAP Dependence Plot
SHAP dependence plot in Figure 8 confirms that a feature

like Total Forward Packets have SHAP values of nearly -
1.74 for the intrusion detection are extremely negative.

Fig. 8. SHAP Dependence Plot

3) SHAP Force Plot
The force plot offers a visual representation of the

contribution of individual feature to the XGBoost prediction.
The values ranging from -0.0257 to 0.0716 represent the
magnitude of the entire feature contribution to the final
XGBoost prediction.

The plot has two force bars, one pink and one blue. The
pink bar is labelled “higher” and the blue bar is labelled
“lower”. These bars represent the positive and negative
contributions of the features towards the prediction. The
length of each bar indicates the magnitude of the feature’s
effect. In Figure 9, it appears that certain features (“such as
‘Pkt_len_Min’ and ‘Sub_Cat_Mirai-Ackflooding’) are
pushing the XGBoost model’s output higher (pink bar) when
combined with the collected location features, while others
(such as ‘Bwd_Pkt_Len_Mean’ and ‘Sub_cat_Scan-Port’)
are pushing the output lower (blue bar).

E. Comparison with dataset created using high-end cameras
The effectiveness of the newly created dataset built from

low-cost features is compared to that of an original dataset
lacking such specifications. The newly created dataset is
created through a methodology that retains approximately 65%
of the original dataset's features, focusing solely on low-cost
features. Importantly, experiment is conducted to verify if this
reduction in features streamlined to emphasize low-cost
features, and does not compromise the accuracy of the machine
learning model and still preserves the essential details of the
dataset

The experiment is executed on a desktop PC equipped with
an AMD Ryzen 7 3700X CPU with a Base Clock of 3.60 GHz,
a 32 GB of RAM, and an RTX 3060 GPU with 12GB GDDR6
VRAM. The software utilized comprises open-source libraries
including Python, PyTorch, and scikit-learn.

Fig. 9. SHAP Force Plot

The procedural steps outlined in Figure 1 for the proposed
approach are entirely implemented in Python, encompassing
tasks such as Dataset preparation, Data collection, Features
Compatibility Test, Model Building and Evaluation and Model-
agnostic approach. These tasks are in green-colored rectangular
boxes in Figure 1. While the primary objective of the proposed
method is to generate a new dataset from existing ones, where
the new dataset selectively incorporates features compatible
with location features obtained from low-cost devices, it is
imperative to validate that the machine learning model's
performance on the new dataset remains unaffected.

To achieve this, a basic deep-learning model is instantiated
and trained twice. In the first instance, the model undergoes
training with the IoTID20 dataset, utilizing all its original

features. This model is referred to as the DEFAULT dataset
model. Subsequently, in the second instance, the model is
trained on the same dataset, but with features selected using our
proposed methodology’s workflow, wherein only a specific
number of features are chosen to create the new dataset. This is
termed as the NEW dataset model.

Figure 11 presents the deep-learning model developed,
which is built on the convolutional neural network (CNN)
framework proposed in [24]. The model processes the packet of
an intrusion instance into byte-level data, passing them through
an embedding layer, a convolution layer, a max-pooling layer,
a flatten layer, and finally, a fully-connected layer. By assessing
the correlation between each byte in the packet, the model
determines whether the intrusion instance classifies as a true

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

Fig. 7. Summary plots

2) SHAP Dependence Plot
SHAP dependence plot in Figure 8 confirms that a feature

like Total Forward Packets have SHAP values of nearly -
1.74 for the intrusion detection are extremely negative.

Fig. 8. SHAP Dependence Plot

3) SHAP Force Plot
The force plot offers a visual representation of the

contribution of individual feature to the XGBoost prediction.
The values ranging from -0.0257 to 0.0716 represent the
magnitude of the entire feature contribution to the final
XGBoost prediction.

The plot has two force bars, one pink and one blue. The
pink bar is labelled “higher” and the blue bar is labelled
“lower”. These bars represent the positive and negative
contributions of the features towards the prediction. The
length of each bar indicates the magnitude of the feature’s
effect. In Figure 9, it appears that certain features (“such as
‘Pkt_len_Min’ and ‘Sub_Cat_Mirai-Ackflooding’) are
pushing the XGBoost model’s output higher (pink bar) when
combined with the collected location features, while others
(such as ‘Bwd_Pkt_Len_Mean’ and ‘Sub_cat_Scan-Port’)
are pushing the output lower (blue bar).

E. Comparison with dataset created using high-end cameras
The effectiveness of the newly created dataset built from

low-cost features is compared to that of an original dataset
lacking such specifications. The newly created dataset is
created through a methodology that retains approximately 65%
of the original dataset's features, focusing solely on low-cost
features. Importantly, experiment is conducted to verify if this
reduction in features streamlined to emphasize low-cost
features, and does not compromise the accuracy of the machine
learning model and still preserves the essential details of the
dataset

The experiment is executed on a desktop PC equipped with
an AMD Ryzen 7 3700X CPU with a Base Clock of 3.60 GHz,
a 32 GB of RAM, and an RTX 3060 GPU with 12GB GDDR6
VRAM. The software utilized comprises open-source libraries
including Python, PyTorch, and scikit-learn.

Fig. 9. SHAP Force Plot

The procedural steps outlined in Figure 1 for the proposed
approach are entirely implemented in Python, encompassing
tasks such as Dataset preparation, Data collection, Features
Compatibility Test, Model Building and Evaluation and Model-
agnostic approach. These tasks are in green-colored rectangular
boxes in Figure 1. While the primary objective of the proposed
method is to generate a new dataset from existing ones, where
the new dataset selectively incorporates features compatible
with location features obtained from low-cost devices, it is
imperative to validate that the machine learning model's
performance on the new dataset remains unaffected.

To achieve this, a basic deep-learning model is instantiated
and trained twice. In the first instance, the model undergoes
training with the IoTID20 dataset, utilizing all its original

features. This model is referred to as the DEFAULT dataset
model. Subsequently, in the second instance, the model is
trained on the same dataset, but with features selected using our
proposed methodology’s workflow, wherein only a specific
number of features are chosen to create the new dataset. This is
termed as the NEW dataset model.

Figure 11 presents the deep-learning model developed,
which is built on the convolutional neural network (CNN)
framework proposed in [24]. The model processes the packet of
an intrusion instance into byte-level data, passing them through
an embedding layer, a convolution layer, a max-pooling layer,
a flatten layer, and finally, a fully-connected layer. By assessing
the correlation between each byte in the packet, the model
determines whether the intrusion instance classifies as a true

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

Fig. 7. Summary plots

2) SHAP Dependence Plot
SHAP dependence plot in Figure 8 confirms that a feature

like Total Forward Packets have SHAP values of nearly -
1.74 for the intrusion detection are extremely negative.

Fig. 8. SHAP Dependence Plot

3) SHAP Force Plot
The force plot offers a visual representation of the

contribution of individual feature to the XGBoost prediction.
The values ranging from -0.0257 to 0.0716 represent the
magnitude of the entire feature contribution to the final
XGBoost prediction.

The plot has two force bars, one pink and one blue. The
pink bar is labelled “higher” and the blue bar is labelled
“lower”. These bars represent the positive and negative
contributions of the features towards the prediction. The
length of each bar indicates the magnitude of the feature’s
effect. In Figure 9, it appears that certain features (“such as
‘Pkt_len_Min’ and ‘Sub_Cat_Mirai-Ackflooding’) are
pushing the XGBoost model’s output higher (pink bar) when
combined with the collected location features, while others
(such as ‘Bwd_Pkt_Len_Mean’ and ‘Sub_cat_Scan-Port’)
are pushing the output lower (blue bar).

E. Comparison with dataset created using high-end cameras
The effectiveness of the newly created dataset built from

low-cost features is compared to that of an original dataset
lacking such specifications. The newly created dataset is
created through a methodology that retains approximately 65%
of the original dataset's features, focusing solely on low-cost
features. Importantly, experiment is conducted to verify if this
reduction in features streamlined to emphasize low-cost
features, and does not compromise the accuracy of the machine
learning model and still preserves the essential details of the
dataset

The experiment is executed on a desktop PC equipped with
an AMD Ryzen 7 3700X CPU with a Base Clock of 3.60 GHz,
a 32 GB of RAM, and an RTX 3060 GPU with 12GB GDDR6
VRAM. The software utilized comprises open-source libraries
including Python, PyTorch, and scikit-learn.

Fig. 9. SHAP Force Plot

The procedural steps outlined in Figure 1 for the proposed
approach are entirely implemented in Python, encompassing
tasks such as Dataset preparation, Data collection, Features
Compatibility Test, Model Building and Evaluation and Model-
agnostic approach. These tasks are in green-colored rectangular
boxes in Figure 1. While the primary objective of the proposed
method is to generate a new dataset from existing ones, where
the new dataset selectively incorporates features compatible
with location features obtained from low-cost devices, it is
imperative to validate that the machine learning model's
performance on the new dataset remains unaffected.

To achieve this, a basic deep-learning model is instantiated
and trained twice. In the first instance, the model undergoes
training with the IoTID20 dataset, utilizing all its original

features. This model is referred to as the DEFAULT dataset
model. Subsequently, in the second instance, the model is
trained on the same dataset, but with features selected using our
proposed methodology’s workflow, wherein only a specific
number of features are chosen to create the new dataset. This is
termed as the NEW dataset model.

Figure 11 presents the deep-learning model developed,
which is built on the convolutional neural network (CNN)
framework proposed in [24]. The model processes the packet of
an intrusion instance into byte-level data, passing them through
an embedding layer, a convolution layer, a max-pooling layer,
a flatten layer, and finally, a fully-connected layer. By assessing
the correlation between each byte in the packet, the model
determines whether the intrusion instance classifies as a true

 Fig. 8. Summary plots.

Fig. 9. SHAP Dependence Plot.

Fig. 10. SHAP Force Plot.

A Model-agnostic XAI Approach for Developing Low-cost IoT Intrusion Detection Dataset

84

JISCR 2023; Volume 6 Issue (2)

The procedural steps outlined in Fig. 1 for the
proposed approach are entirely implemented in Python,
encompassing tasks such as Dataset preparation,
Data collection, Features Compatibility Test, Model
Building and Evaluation and Model-agnostic approach.
These tasks are in green-colored rectangular boxes
in Fig. 1. While the primary objective of the proposed
method is to generate a new dataset from existing
ones, where the new dataset selectively incorporates
features compatible with location features obtained
from low-cost devices, it is imperative to validate that
the machine learning model's performance on the new
dataset remains unaffected.

To achieve this, a basic deep-learning model is
instantiated and trained twice. In the first instance,
the model undergoes training with the IoTID20
dataset, utilizing all its original features. This model
is referred to as the DEFAULT dataset model.
Subsequently, in the second instance, the model
is trained on the same dataset, but with features
selected using our proposed methodology’s
workflow, wherein only a specific number of
features are chosen to create the new dataset. This
is termed as the NEW dataset model.

Fig. 11 presents the deep-learning model
developed, which is built on the convolutional
neural network (CNN) framework proposed in [24].
The model processes the packet of an intrusion
instance into byte-level data, passing them through
an embedding layer, a convolution layer, a max-
pooling layer, a flatten layer, and finally, a fully-
connected layer. By assessing the correlation
between each byte in the packet, the model
determines whether the intrusion instance classifies
as a true positive or true negative. It is assumed
that the maximum length of the instance is denoted
by the number of features 'n'; if some features have
missing values, resulting in an instance length less
than the 'n' bytes, zero padded to add up to the
length. The loss function employed is binary cross
entropy. The ADAM optimizer is adopted. The non-
linear activation function ReLU, is also used. The
Softmax function is applied in the last step.

This experiment shows the effectiveness of
the proposed approach in demonstrating the
usefulness of low-cost features of the dataset,
rather than aiming to enhance the classification
performance of the CNN model for the intrusion

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

positive or true negative. It is assumed that the maximum length
of the instance is denoted by the number of features 'n'; if some
features have missing values, resulting in an instance length less
than the 'n' bytes, zero padded to add up to the length. The loss

function employed is binary cross entropy. The ADAM
optimizer is adopted. The non-linear activation function ReLU,
is also used. The Softmax function is applied in the last step.

Fig. 11. Architecture of CNN model for experiment on comparing the newly created dataset with existing ones.

This experiment shows the effectiveness of the proposed
approach in demonstrating the usefulness of low-cost features
of the dataset, rather than aiming to enhance the classification
performance of the CNN model for the intrusion problem.
Consequently, we employ the same CNN as base model with
consistent hyper-parameter values for both the DEFAULT
dataset and the NEW dataset models. The number of training
epochs is configured at 32 for the DEFAULT dataset and 64 for
the NEW dataset. The batch size is uniformly set to 128 for both
dataset models. Each dataset is partitioned into training and
testing sets to assess the impact of the proposed approach on the
performance of a machine learning model. The same model, as
illustrated in Figure 11, undergoes training twice: once on the
DEFAULT dataset and once on the NEW dataset. The
outcomes are then juxtaposed based on accuracy, precision,
recall, and F1-score, with the following definitions:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝑇𝑇 (16)

𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇

(17)

𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇

(18)

𝐹𝐹1 − 𝑆𝑆𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃 = 2 × 𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅
𝑇𝑇𝐴𝐴𝑃𝑃𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑃𝑃𝐴𝐴𝐴𝐴𝑅𝑅𝑅𝑅

(19)

Here are the explanations for TP, TN, FP, and FN:
• True Positive (TP): An attack instance is correctly

identified as an attack instance.
• True Negative (TN): A non-attack instance is correctly

identified as a non-attack instance.
• False Positive (FP): A non-attack instance is incorrectly

classified as an attack instance.
• False Negative (FN): An attack instance is incorrectly

classified as a non-attack instance.

The F1-score takes into account both precision and recall,
making it a comprehensive metric that effectively illustrates the
overall performance of the deep learning model on the datasets.

We visualized the experimental results. Machine learning
models trained on the different dataset are compared and the
resulting data is visualized in Figure 128.

Feature
1

Feature
n

⋯

⋮

Embedding layer

൬𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 1
𝑙𝑙𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙ℎ = 1200൰

Byte

Embedding

⋮

⋮

‘Zero-padded’ Instance
vector

൬ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 1
𝑙𝑙𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙ℎ = (𝑑𝑑 + 𝑧𝑧) = 1200൰

n

Zero
Padding
(z)

Convolution
layer

(32 × 32 × 3)
Stride = 1

ReLU act. fn.

Max-Pooling layer
(16 × 16 × 3)

Stride = 2

⋮

True
Positive (TP)

True
Negative (TN) ⋮

Flatten
layer

(256 × 6 = 1536) × 1

FC layer
(512 × 1)

Softmax
Layer

Softmax act.fn.

 ⋯

 ⋮

Transpose

Instance Input

൬𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 1
𝑙𝑙𝑑𝑑𝑑𝑑𝑙𝑙𝑙𝑙ℎ = 𝑑𝑑 ൰

Fig. 11. Architecture of CNN model for experiment on comparing the newly created dataset with existing ones.

Gyamfi et al.

85

JISCR 2023; Volume 6 Issue (2)

problem. Consequently, we employ the same CNN
as base model with consistent hyper-parameter
values for both the DEFAULT dataset and the NEW
dataset models. The number of training epochs is
configured at 32 for the DEFAULT dataset and 64
for the NEW dataset. The batch size is uniformly
set to 128 for both dataset models. Each dataset
is partitioned into training and testing sets to
assess the impact of the proposed approach on
the performance of a machine learning model. The
same model, as illustrated in Fig. 11, undergoes
training twice: once on the DEFAULT dataset and
once on the NEW dataset. The outcomes are then
juxtaposed based on accuracy, precision, recall,
and F1-score, with the following definitions:

Accuracy=

F1-Score=2×

Precision=

Recall=

TP+TN

Precision×Recall

TP

TP

TP+TN+FN+FP

Precision+Recall

TP+FP

TP+FN

(16)

(19)

(17)

(18)

Here are the explanations for TP, TN, FP, and FN:
• True Positive (TP): An attack instance is

correctly identified as an attack instance.
• True Negative (TN): A non-attack instance is

correctly identified as a non-attack instance.
• False Positive (FP): A non-attack instance is

incorrectly classified as an attack instance.
• False Negative (FN): An attack instance

is incorrectly classified as a non-attack
instance.

The F1-score takes into account both precision
and recall, making it a comprehensive metric that
effectively illustrates the overall performance of the
deep learning model on the datasets.

We visualized the experimental results. Machine
learning models trained on the different dataset are
compared and the resulting data is visualized in Fig. 12.

It is interesting that values computed for the
metrics for the DEFAULT dataset model is almost

equal to that of the NEW dataset. Thus, the figure
reveals that the machine learning model trained on
the NEW dataset does not degrades in terms of
precision, recall, and F1-score. For the DEFAULT
dataset model, the Precision, Recall, Accuracy
and F1-Score values are 0.85, 0.86, 0.91 and
0.85 respectively. For the NEW dataset model,
the Precision, Recall, Accuracy and F1-Score
values are 0.84, 0.85, 0.93 and 0.84, respectively.
Comparing these metrics reveals that the NEW
dataset maintains the performance of the machine
learning model almost identical to the DEFAULT
dataset.

Iv. conclusIon

This research addresses a significant challenge
related to obtaining intrusion detection dataset
features from cost-effective devices, with the goal
of ensuring their comparability to those derived from
high-end counterparts. The primary aim is to construct
an intrusion detection dataset customized to meet
the specific demands of financially constrained
environments, without requiring costly infrastructure.
The methodology starts by selecting the IoTID20
dataset, specifically designed to capture common
IoT network characteristics, with a distinctive focus
on using low-cost camera devices. Subsequently, an
Entry/Exit IoT Network is simulated within a university
campus using budget-friendly camera devices to
automatically capture two essential location features:
the locations of the initiating and receiving packets of
the camera devices on the network. A Shapira-Wilk
test statistic is executed to identify which features
from the IoTID20 dataset is compatible with the two

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

Fig. 12. Performance comparison of deep learning model on

NEW dataset vs. DEFAULT dataset.
It is interesting that values computed for the metrics for the

DEFAULT dataset model is almost equal to that of the NEW
dataset. Thus, the figure reveals that the machine learning
model trained on the NEW dataset does not degrades in terms
of precision, recall, and F1-score. For the DEFAULT dataset
model, the Precision, Recall, Accuracy and F1-Score values are
0.85, 0.86, 0.91 and 0.85 respectively. For the NEW dataset
model, the Precision, Recall, Accuracy and F1-Score values are
0.84, 0.85, 0.93 and 0.84, respectively. Comparing these
metrics reveals that the NEW dataset maintains the
performance of the machine learning model almost identical to
the DEFAULT dataset.

IV. CONCLUSION
This research addresses a significant challenge related to

obtaining intrusion detection dataset features from cost-
effective devices, with the goal of ensuring their comparability
to those derived from high-end counterparts. The primary aim
is to construct an intrusion detection dataset customized to meet
the specific demands of financially constrained environments,
without requiring costly infrastructure. The methodology starts
by selecting the IoTID20 dataset, specifically designed to
capture common IoT network characteristics, with a distinctive
focus on using low-cost camera devices. Subsequently, an
Entry/Exit IoT Network is simulated within a university
campus using budget-friendly camera devices to automatically
capture two essential location features: the locations of the
initiating and receiving packets of the camera devices on the
network. A Shapira-Wilk test statistic is executed to identify
which features from the IoTID20 dataset is compatible with the
two location features. The identified compatible location
features are then appended to the existing features of the
IoTID20 dataset. Through the compatibility test, features that
received high rankings were found to be compatible for
integration with the location dataset. This confirms the initial
concept that the development of the IoTID20 dataset was
intended for a budget-friendly process.

Following a pre-processing phase, the dataset feature count
is reduced to create a new IoT intrusion detection dataset,
streamlined in such a way that it includes only features captured
by low-cost IoT devices. To offer a practical solution that uses
the cost-effective features of this new dataset, an important

aspect of the research involves implementing the XGBoost
machine learning algorithm on this new dataset for intrusion
prediction. The implemented XGBoost regression model with
the selection of its parameters optimized using a simple grid
search algorithm was found to predict better on the new low-
budget IoT intrusion detection dataset than other popular
multiple regression models.

A model-agnostic XAI approach was adopted in using SHAP
values to interpret the predictions made by XGBoost algorithm.
The computation of SHAP values on the XGBoost model’s
predictions shows the contributions of a substantial number of
dataset features to the overall predictive outcomes. The research
also found that the SHAP results highlight certain globally
important, low-cost features within the IoTID20 dataset when
the location features collected in this study were appended to
them to create a new IoT dataset. The Flow Duration, Total
Forward Packets, and Total Length Forward Packet are deemed
important global features in the context of intrusion detection
using the implemented XGBoost algorithm on the new low-cost
IoT dataset.

The Flow Duration feature represents the duration of a
network flow, which could be significant in identifying patterns
associated with normal or abnormal network behavior. The
Total Forward Packets suggests that the number of forward
packets in a network flow is a significant factor in determining
whether an intrusion is occurring. It could indicate that certain
patterns in packet transmission are indicative of security threats.
Lastly, the Total Length Forward Packet implies that the total
length of forward packets in a network flow plays a crucial role
in intrusion detection. It could suggest that the size or content
of transmitted data is a key consideration in identifying
potential security issues.

In essence, these findings suggest that focusing on these
specific aspects of network activity—flow duration, the number
of forward packets, and the total length of forward packets—
provides valuable insights for effectively detecting intrusions
using the XGBoost algorithm on the new budget-friendly IoT
dataset.

From the experimental results, it was found that the newly
created dataset maintains the performance of a machine
learning model while selecting only low-cost features of
dataset of an intrusion detection instances. This means that
selecting only the low-cost features of the original dataset using
our proposed approach is sufficient for training a deep learning
model for intrusion detection, and the financial burden on using
expensive features of the datasets could be lessened

From the abovementioned, the study demonstrate the
feasibility of building an effective intrusion detection dataset
suited to financially constrained settings, ensuring that
institutions in resource-limited areas (like CKT-UTAS,
Navrongo, Ghana) can enhance their cybersecurity measures
without the need for costly infrastructure. The findings
presented in this paper can serve as a valuable reference for
organizations seeking to improve their security posture without

Fig. 12. Performance comparison of deep learning model on
NEW dataset vs. DEFAULT dataset.

A Model-agnostic XAI Approach for Developing Low-cost IoT Intrusion Detection Dataset

86

JISCR 2023; Volume 6 Issue (2)

location features. The identified compatible location
features are then appended to the existing features
of the IoTID20 dataset. Through the compatibility
test, features that received high rankings were found
to be compatible for integration with the location
dataset. This confirms the initial concept that the
development of the IoTID20 dataset was intended
for a budget-friendly process.

Following a pre-processing phase, the dataset
feature count is reduced to create a new IoT
intrusion detection dataset, streamlined in such
a way that it includes only features captured by
low-cost IoT devices. To offer a practical solution
that uses the cost-effective features of this new
dataset, an important aspect of the research
involves implementing the XGBoost machine
learning algorithm on this new dataset for intrusion
prediction. The implemented XGBoost regression
model with the selection of its parameters optimized
using a simple grid search algorithm was found to
predict better on the new low-budget IoT intrusion
detection dataset than other popular multiple
regression models.

A model-agnostic XAI approach was adopted in
using SHAP values to interpret the predictions made
by XGBoost algorithm. The computation of SHAP
values on the XGBoost model’s predictions shows
the contributions of a substantial number of dataset
features to the overall predictive outcomes. The
research also found that the SHAP results highlight
certain globally important, low-cost features within
the IoTID20 dataset when the location features
collected in this study were appended to them to
create a new IoT dataset. The Flow Duration, Total
Forward Packets, and Total Length Forward Packet
are deemed important global features in the context
of intrusion detection using the implemented
XGBoost algorithm on the new low-cost IoT dataset.

The Flow Duration feature represents the
duration of a network flow, which could be significant
in identifying patterns associated with normal or
abnormal network behavior. The Total Forward
Packets suggests that the number of forward
packets in a network flow is a significant factor
in determining whether an intrusion is occurring.
It could indicate that certain patterns in packet
transmission are indicative of security threats.

Lastly, the Total Length Forward Packet implies that
the total length of forward packets in a network flow
plays a crucial role in intrusion detection. It could
suggest that the size or content of transmitted
data is a key consideration in identifying potential
security issues.

In essence, these findings suggest that focusing
on these specific aspects of network activity—flow
duration, the number of forward packets, and the total
length of forward packets—provides valuable insights
for effectively detecting intrusions using the XGBoost
algorithm on the new budget-friendly IoT dataset.

From the experimental results, it was found
that the newly created dataset maintains the
performance of a machine learning model while
selecting only low-cost features of dataset of
an intrusion detection instances. This means
that selecting only the low-cost features of the
original dataset using our proposed approach is
sufficient for training a deep learning model for
intrusion detection, and the financial burden on
using expensive features of the datasets could be
lessened

From the abovementioned, the study demonstrate
the feasibility of building an effective intrusion detection
dataset suited to financially constrained settings,
ensuring that institutions in resource-limited areas
(like CKT-UTAS, Navrongo, Ghana) can enhance their
cybersecurity measures without the need for costly
infrastructure. The findings presented in this paper
can serve as a valuable reference for organizations
seeking to improve their security posture without
incurring substantial financial burdens.

fundIng

 This work was supported in part by the National
Natural Science Foundation of China (NSFC)’s: Key
Project Number for International Cooperation (国家
自然科学基金国际合 作重点项目编号) 61520106007,
Privacy and Security Critical Theories and Technologies
Based on Data Lifecycle (基于 数据生命周期的隐私和
安全关键理论与技术), Funding: 964000 (经费：96.4
万), Start and Finish Date 2016.1.1 – 2020.12.31 (起止
日期：2016.1.1-2020.12.31); Major Instrument Project
Number 62027827, Development of Heart-Sound
Cardio-Ultrasonic Multimodal Auxiliary Diagnostic
Equipment for Fetal Heart.

Gyamfi et al.

87

JISCR 2023; Volume 6 Issue (2)

conflIct of Interest

Authors declare that they have no conflict of
interest.

references

[1] D. Ucci, L. Aniello, and R. Baldoni, "Survey of machine
learning techniques for malware analysis," Computer
Security, vol. 81, pp. 123-147, 2019. [Online]. Available:
https://doi.org/10.1016/j.cose.2018.11.001

[2] D. Gumusbas, T. Yldrm, A. Genovese, and F. Scotti, "A
comprehensive survey of databases and deep learning
methods for cybersecurity and intrusion detection
systems," IEEE Systems Journal, vol. 15, no. 2, pp. 1717–
1731, 2021. [Online]. Available: https://doi.org/10.11090/
JSYST-.2020.2992966.

[3] R. Donida L., A. Genovese, V. Piuri, F. Scotti, and
S. Vishwakarma, "Computational intelligence in
cloud computing," in Recent Advances in Intelligent
Engineering, L. Kovács, T. Haidegger, and A. Szakál,
Eds. Springer, 2020, pp. 111–127. [Online]. Available:
https://doi.org/10.1007/978-3-030-14350-3_6.

[4] A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani,
"Toward developing a systematic approach to generate
benchmark datasets for intrusion detection," Computers
& Security, vol. 31, no. 3, pp. 357-374, 2012.

[5] G. Creech, "Developing a high-accuracy cross-platform
host-based intrusion detection system capable of reliably
detecting zero-day attacks," Ph.D. dissertation, University
of New South Wales (UNSW) Sydney, Australia, 2014.

[6] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani,
"Toward generating a new intrusion detection dataset
and intrusion traffic characterization," in Proceedings of
the 4th International Conference on Information Systems
Security and Privacy (ICISSP), 2018, pp. 108-116.

[7] P. Radoglou-Grammatikis et al., "IEC 60870-5-104
Intrusion Detection Dataset," IEEE Dataport, 2022.
[Online]. Available: https://dx.doi.org/10.21227/fj7s-f281.

[8] E. C. P. Neto et al., "CICIoT2023: A real-time dataset and
benchmark for large-scale attacks in IoT environment,"
Sensors, vol. 23, 5941, 2023. [Online]. Available: https://
doi.org/10.3390/s23135941.

[9] R. A. Nafea and M. A. Almaiah, "Cybersecurity threats
in the cloud: A literature review," in Proceedings of the
International Conference on Information Technology
(ICIT), 2021, pp. 779-786. [Online]. Available: https://doi.
org/10.1109/ICIT52682.2021.9491638.

[10] K. Hyunjae et al., "IoT Network Intrusion Dataset,"
2023. [Online]. Available: http://dx.doi.org/10.21227/
q70p-q449. Accessed April 1, 2023.

[11] J. Gerlings, A. Shollo, and I. Constantiou, "Reviewing the
need for explainable artificial intelligence (xAI)," arXiv
preprint arXiv:2012.01007, 2012.

[12] T. Perarasi et al., "Malicious vehicles identifying
and trust management algorithm for enhancing
security in 5G-VANET," in Proceedings of the 2nd
International Conference on Inventive Research in
Computer Applications (ICIRCA), 2020, pp. 269-
275. [Online]. Available: https://doi.org/10.1109/
ICIRCA48905.2020.9183184.

[13] G. Jaswal, V. Kanhangad, and R. Ramachandra, Eds.,
AI and Deep Learning in Biometric Security: Trends,
Potential, and Challenges. CRC Press, 2021.

[14] C. Rudin, "Stop explaining black box machine learning
models for high-stakes decisions and use interpretable
models instead," arXiv preprint arXiv:1811.10154, 2018.

[15] R. Ying et al., "GNNExplainer: Generating explanations for
graph neural networks," arXiv preprint arXiv:1903.03894,
2019.

[16] S. M. Lundberg and S.-I. Lee, "A unified approach to
interpreting model predictions," in Proceedings of the
Advances in Neural Information Processing Systems
(Vol. 30), 2017, pp. 1-10.

[17] E. Winter, "The Shapley value," in Handbook of Game
Theory with Economic Applications (Vol. 3), 2002, pp.
2025-2054.

[18] A. P. King and R. J. Eckersley, "Appendix A - Statistical
Tables," in Statistics for Biomedical Engineers and
Scientists: How to Visualize and Analyze Data, Eds. A. P.
King and R. J. Eckersley, Academic Press, 2019.

[19] T. Chen and C. Guestrin, "XGBoost: A scalable tree
boosting system," in Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2016, pp. 785-794.

[20] F. Pedregosa et al., "Scikit-learn: Machine learning in
Python," Journal of Machine Learning Research, vol. 12,
pp. 2825-2830, 2011.

[21] S. Holm and L. Macedo, "The Accuracy and Faithfullness
of AL-DLIME-Active Learning-Based Deterministic
Local Interpretable Model-Agnostic Explanations: A
Comparison with LIME and DLIME in Medicine," in World
Conference on Explainable Artificial Intelligence, 2023,
pp. 582-605. Cham: Springer Nature Switzerland.

A Model-agnostic XAI Approach for Developing Low-cost IoT Intrusion Detection Dataset

88

JISCR 2023; Volume 6 Issue (2)

[22] S. Ali et al., "Explainable Artificial Intelligence (XAI): What
we know and what is left to attain Trustworthy Artificial
Intelligence," Information Fusion, vol. 99, 101805, 2023.

[23] M. N. K. Sikder et al., "Model-agnostic scoring methods
for artificial intelligence assurance," in 2022 IEEE 29th
Annual Software Technology Conference (STC), 2022,
pp. 9-18. [Online]. Available: https://doi.org/10.1109/
STC51895.2022.961.

[24] W. Jang, H. Kim, H. Seo, M. Kim, and M. Yoon, "SELID:
Selective Event Labeling for Intrusion Detection
Datasets," Sensors, vol. 23, no. 13, pp. 6105, 2023.

[25] M. Siganos, P. Radoglou-Grammatikis, I. Kotsiuba, E.
Markakis, I. Moscholios, S. Goudos, and P. Sarigiannidis,
"Explainable AI-based Intrusion Detection in the Internet
of Things," in Proceedings of the 18th International
Conference on Availability, Reliability and Security, 2023,
pp. 1-10.

Gyamfi et al.

