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A B S T R A C T 
This review article explores sustainable biotechnological strategies 
for converting sulfate compounds and lignocellulosic waste, focusing 
on using sulfate-reducing bacteria (SRB) and the valorization of 
agroforestry residues and sanitary sewage. SRB show potential in 
effluent treatment, mine drainage, and the removal of sulfate and heavy 
metals from wastewater, with their metabolic activity being influenced 
by factors such as pH, temperature, and chemical oxygen demand/
sulfate (COD/SO4

=) ratio. In the context of a sustainable bioeconomy, 
the challenge of converting lignocellulosic waste into value-added 
products is addressed through physical pretreatment techniques such 
as milling, extrusion, microwave irradiation, and ultrasound, which 
are efficient in valorizing waste from urban tree pruning. The article 
highlights the importance of bioreactors in transforming raw materials 
into desirable biochemical products, discussing different types of 
bioreactors, such as batch, continuous stirred tank, airlift, fluidized bed, 
upflow anaerobic sludge blanket (UASB), and bubble column, and their 
specific advantages and disadvantages. Sustainable sulfate reduction is 
the central focus, integrating the application of SRB and the conversion 
of lignocellulosic waste in a way that complements the objectives 
of the work and promotes a more cohesive flow in the summary. 
Thus, the interrelationship between effluent treatment strategies and 
waste valorization is emphasized from an environmental sustainability 
perspective, highlighting the relevance of this study in the broader 
context of a sustainable bioeconomy.

Keywords: sulfate reduction; SRB; effluent treatment; valorization of 
lignocellulosic waste; sustainable bioeconomy; waste pretreatment

R E S U M O
Este artigo de revisão aborda estratégias biotecnológicas sustentáveis 
para a conversão de compostos de sulfato e resíduos lignocelulósicos, 
com foco na utilização de bactérias redutoras de sulfato (BRS) e na 
valorização de resíduos agroflorestais e esgoto sanitário. As BRS 
demonstram potencial no tratamento de efluentes, drenagem de minas 
e remoção de sulfato e metais pesados de águas residuais, sendo sua 
atividade metabólica influenciada por fatores como pH, temperatura e 
relação demanda química de oxigênio/sulfato — DQO/SO4=. No contexto 
de uma bioeconomia sustentável, o desafio de converter resíduos 
lignocelulósicos em produtos de valor agregado é abordado por 
meio de técnicas de pré-tratamento físico, como moagem, extrusão, 
irradiação por micro-ondas e ultrassom, eficientes na valorização de 
resíduos de poda de árvores urbanas. O artigo destaca a importância 
dos biorreatores na transformação de matérias-primas em produtos 
bioquímicos, discutindo diferentes tipos de biorreatores, como batelada, 
tanque agitado contínuo, airlift, leito fluidizado, reator anaeróbio de fluxo 
ascendente (UASB) e coluna de bolhas, e suas vantagens e desvantagens 
específicas. A redução sustentável do sulfato é o foco central, integrando a 
aplicação de BRS e a conversão de resíduos lignocelulósicos de maneira a 
complementar os objetivos do trabalho e promover um fluxo mais coeso 
no resumo. Assim, enfatiza-se a inter-relação entre as estratégias de 
tratamento de efluentes e a valorização de resíduos em uma perspectiva 
de sustentabilidade ambiental, destacando-se a relevância deste estudo 
no contexto mais amplo de uma bioeconomia sustentável.

Palavras-chave: redução de sulfato; BRS; tratamento de efluentes; 
valorização de resíduos lignocelulósicos; bioeconomia sustentável; pré-
tratamento de resíduos.
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Introduction
Plaster gypsum, a semi-hydrated calcium sulfate obtained through 

dehydration of the gypsum mineral (CaSO4.2H2O), plays a vital role in 
the construction industry. Employed in various products such as ceil-
ing tiles, partition blocks, and drywall, gypsum is integral to numerous 
construction applications (Guedri et al., 2023). However, construction, 
renovation, and demolition activities result in significant amounts of 
waste, known as construction and demolition waste (CDW), which 
includes, in addition to plaster, materials such as wood, concrete, and 
heavy metals.

The presence of gypsum in CDW brings environmental challenges 
due to its high content of sulfate and heavy metals, limiting its reuse 
and posing risks when discarded in landfills, such as the formation of 
biogenic sulfide (Camarini and Pinheiro, 2014; Kijjanapanich et  al., 
2014; Cordon et al., 2019). At the same time, the construction industry 
has been seeking technological solutions that align efficiency, economy, 
and sustainability, emphasizing recycling and reuse of CDW (Ghaffar 
et al., 2020).

Another relevant challenge is agroforestry waste, especially from 
tree pruning, which constitutes a significant by-product of agricultural 
and urban activities. These wastes, if not managed correctly, can con-
tribute to environmental problems. Still, on the other hand, they offer 
opportunities for sustainable use, such as in producing renewable en-
ergy and improving soil quality (Picchio et al., 2023). 

Sanitary sewage, a mixture of domestic and industrial wastewa-
ter, emerges as a crucial source of organic matter and nutrients and 
is another available waste. Proper sewage treatment is vital to public 
health and environmental sustainability, and the use of innovative 
technologies, such as sulfate-reducing bacteria (SRB), can transform 
this challenge into a valuable resource for a sustainable bioeconomy 
(Li et al., 2023).

Therefore, this study focuses on the sustainable treatment of 
gypsum waste, particularly those from SRB, and its interaction with 
agroforestry waste and sanitary sewage treatment. The research 
aims to contribute to knowledge about biological sulfate reduction. 
It highlights the importance of this topic in the broader context of 
waste management, as discussed by Zang et  al. (2022) and other 
scholars in the field.

Development

Sulfate’s environmental and industrial importance
Sulfate, the basic radical of sulfuric acid, is one of the most preva-

lent anions found in nature. It originates from groundwater from car-
bonate rocks composed of calcite, dolomite, and aragonite. The  list 
should also include secondary minerals such as gypsum, pyrite, and, 
through the oxidation of ionic sulfides, metal compounds from acid 
mine drainage (AMD), as well as effluents from various industries, 
such as mining, livestock, processed foods, paper and cellulose, dyes, 

and detergents, among others (Kijjanapanich et  al., 2014; Zhang 
et al., 2020a). 

The largest consumer share of sulfur is in the agricultural fertilizer 
industry, which requires around 60% of global production (Alexander 
et al., 2023). Used as an essential nutrient for plants, most sulfates are 
used in the form of sulfuric acid to produce phosphoric acid; from this, 
phosphorus is another crucial nutritional element in the fertilization 
of crops. With the drop in sulfur emissions due to environmental re-
strictions, soils are depleted of this element and, therefore, need to be 
replaced (Wagenfeld et al., 2019). In the polymer industry, sulfates can 
also be applied as raw materials and as catalysts for synthesis reactions, 
such as vulcanization in manufacturing harder and more heat-resis-
tant tires, according to Wagenfeld et al. (2019). Furthermore, produc-
ing batteries containing sulfur metals can increase their storage power 
at a lower cost, which is, for example, an essential factor for renewable 
energy storage.

Sulfate can cause pollution of surface and underground waters, 
acidification of soils, and corrosion and scale in pipes, structures, and 
equipment, resulting in delays in irrigation and water drainage sys-
tems (Brahmacharimayum et al., 2019). When in contact with animals, 
including humans, large intakes of sulfate alter methemoglobin and 
sulfhemoglobin levels, causing symptoms such as dehydration and di-
arrhea (Runtti et al., 2018). In animals living in fresh waters, sulfates 
can be lethal due to the breakdown of the osmotic balance, as the high 
concentration leads to water salinization. 

Sulfate-reducing bacteria

General characteristics
SRB are prokaryotic microorganisms that play a crucial role in 

anaerobic environments (Kushkevych et  al., 2021). These bacteria 
are characterized by their ability to use sulfate (SO4

=) as an electron 
acceptor in their metabolism, converting it into hydrogen sulfide 
(H2S). This process is at the heart of the carbon cycle and the pro-
duction of sulfur, an essential element for various biological and 
industrial processes. In addition to their ecological function, SRB 
have significant applicability in biotechnology, especially in sulfate 
bioreduction in effluent treatments, mine drainage, and calcium sul-
fate compounds. Due to their metabolic versatility, SRB can utilize 
a diverse range of organic and inorganic substances for energy gen-
eration, making them valuable biological tools for the remediation 
of contaminated environments and sustainable industrial processes 
(Ayangbenro et al., 2018). The importance of SRB extends beyond 
their role in natural environments, contributing significantly to the 
development of clean and efficient technologies. This diverse group 
of obligate anaerobes, including both proteobacteria and Gram-pos-
itive bacteria, can adapt to extreme conditions, including the pres-
ence of oxygen and varying temperatures, from psychrophilic to 
thermophilic conditions.
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Diversity and ecology of sulfate-reducing bacteria
SRB thrive in anoxic environments where organic materials and 

sulfates are abundant, playing an essential role in the biodegradation 
of organic matter. This group of bacteria exhibits remarkable metabolic 
diversity, allowing them to adapt to a wide range of environments and 
conditions (Michas et al., 2020). Some SRB species can survive even in 
the presence of oxygen, which significantly expands their ecological 
range. They are classified into different categories, including proteo-
bacteria and Gram-positive bacteria. Furthermore, SRB include psy-
chrophilic species, which reproduce at low temperatures, and extrem-
ophile species, adapted to extreme environments. 

Mesophilic SRB, growing optimally at temperatures between 20 
and 45°C, are found in a variety of environments, while thermophil-
ic SRB, capable of surviving at temperatures above 70°C, are partic-
ularly notable in environments such as hydrothermal vents (Tang 
et  al., 2009). This ecological diversity of SRB makes them essential 
components in many natural ecosystems, from freshwater and ma-
rine ecosystems to anaerobic soil areas and wetlands. The ability to 
utilize hydrogen and other sources of organic matter to obtain energy 
through oxidation is a key aspect of their ecological function, con-
tributing significantly to global biogeochemical cycles, including the 
sulfur cycle. 

Role of sulfate-reducing bacteria in  
reducing sulfates and producing H2S

SRB, specialized microorganisms that use sulfate (SO4
=) as an elec-

tron acceptor in their metabolism, play a vital role in reducing sul-
fates and producing H2S. This action results in the generation of H2S, a 
critical byproduct of various biological and industrial processes (Tian 
et al., 2017). This biochemical mechanism has significant implications, 
especially in environments where reduction of sulfur compounds 
is required. SRB are particularly important in environments such as 
freshwater and marine ecosystems, hydrothermal vents, anaerobic soil 
areas, and wetlands. They play a prominent role in using hydrogen 
from organic matter to obtain energy through oxidation, a process that 
is directly linked to sulfate reduction. Furthermore, these bacteria are 
essential in environmental applications such as wastewater treatment 
and heavy metal removal (Kijjanapanich et al., 2014). 

As found by Liu et  al. (2018), SRB activity is strongest at tem-
peratures around 30°C, while it is weak at temperatures of 50°C. 
Low  temperatures and low pH values can reduce the efficiency of 
sulfate reduction by SRB. S= has an inhibitory effect on the growth 
of SRB, and the inhibition increases with a higher S= concentration. 
Different chemical oxygen demand/sulfate (COD/SO4

=) values affect 
the symbiotic environment between SRB and metagenes, leading to 
the growth of different dominant strains and indirectly affecting the 
efficiency of sulfate reduction. The most suitable COD/SO4

= ratio for 
desulfurization by SRB is theoretically from 0.5 to 1.5. Still, SO4

= can-
not be effectively reduced to H2S by SRB when the COD/SO4

= value 

is between 0.5 and 1.5 due to the lack of electron donors. The most 
appropriate COD/SO4

= value for good desulfurization efficiency is 
from 1.5 to 2.5. 

In effluent treatment, SRB can be used to effectively remove sulfate 
and heavy metals, transforming them into less harmful and more man-
ageable forms. This process contributes not only to water purification 
but also to mitigating the negative environmental impacts of industrial 
and urban effluents. The role of SRB in reducing sulfates and producing 
H2S is also essential in industrial processes, such as in the production 
of fertilizers, rubber, and pigments, where the presence of sulfates can 
be problematic (Karnachuk et al., 2021). 

Sulfate-reducing bacteria in Sulfidogenic Processes
SRB play a vital role in sulfidogenic processes, which are funda-

mental to the biogeochemical sulfur cycle. In these processes, SRB re-
duce sulfur compounds, particularly sulfate (SO4

=), using it as an elec-
tron acceptor in their metabolism. This process produces H2S, a key 
component in several environmental and industrial contexts. The abil-
ity of SRB to metabolize sulfur compounds and oxidize organic and 
inorganic carbon sources is crucial for the balance and maintenance of 
diverse ecosystems (Ranadev et al., 2023). They are found in a variety 
of environments, including freshwater and marine ecosystems, hydro-
thermal vents, anaerobic soil areas, and wetlands. In these locations, 
SRB use hydrogen from organic matter to obtain energy through oxi-
dation, a process closely linked to sulfate reduction. In addition to their 
environmental role, SRB are also of great interest for biotechnological 
applications, especially in wastewater remediation and heavy metal re-
moval. By reducing sulfate, they contribute to water purification, trans-
forming potentially harmful compounds into more stable forms that 
are less harmful to the environment. 

Another critical aspect of SRB metabolism is the utilization of elec-
tron donors such as short-chain fatty acids (e.g., lactate and acetate), 
long-chain acids, and aromatic compounds (Finke et al., 2007; Zhang 
et al., 2016; Dordević et al., 2020). This broad spectrum of usable sub-
strates highlights the versatility and adaptability of SRB to different en-
vironmental conditions.

Use of sulfate-reducing bacteria in industrial effluent treatment
SRB play a fundamental role in treating industrial effluents, sig-

nificantly mitigating sulfate emissions from activities such as the pro-
duction of fertilizers, rubber, pigments, mining, and domestic sewage. 
These industrial processes often release large amounts of sulfate, which 
can cause water and soil contamination through leaching. In these 
contexts, SRB are a viable and environmentally sustainable alternative 
for treating effluents (Reis et al., 2022). They begin the transformation 
process by reducing sulfates, using cheap carbon sources as electron 
donors. This process not only helps to reduce the concentration of sul-
fate in effluents but also contributes to the generation of H2S, which can 
be recovered and used in other applications. 
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The primary mechanism used by SRB in sulfate reduction involves 
the dissimilatory reduction of sulfate and the use of carbon sources as 
electron donors. This process is essential for the production of H2S. 
It is exemplified by species such as Desulfobacter and Desulfovibrio, 
which are classified as sulfidogenic due to their ability to use sulfate as 
an energy source in reactions to produce new biomass (Zhang et al., 
2016). In addition to their role in reducing sulfates and heavy metals, 
SRB are also employed as environmental markers for corrosion analy-
sis, highlighting their versatility and broad spectrum of applications in 
industrial contexts (Asif et al., 2021). 

Metabolism and diversity of sulfate-reducing bacteria
SRB have a unique and diverse metabolism, allowing them to play 

a significant role in the biogeochemical sulfur cycle and microbial de-
sulfurization processes. These bacteria are capable of reducing the sul-
fate ion under anaerobic (or anoxic) conditions, producing sulfide and 
precipitating heavy metals, while also producing alkaline substances to 
improve pH. The diversity of SRB is remarkable, encompassing differ-
ent species that can utilize a variety of electron donors, including sodi-
um lactate, ethanol, and hydrogen. This metabolic diversity allows SRB 
to operate efficiently in a wide range of environments, contributing to 
the removal of sulfate ions and heavy metals in different contexts and 
industrial wastewater. Studies carried out by several researchers have 
shown the effectiveness of SRB in the synchronous removal of sulfate 
ions and heavy metals, achieving fixation rates of iron, copper, lead, 
and other heavy metals of up to 87–100%. Furthermore, SRB have been 
shown to be effective in removing Mn2+ and Pb2+ by up to 93 and 90%, 
respectively (Yuya et al., 2019). 

The role of SRB in sulfidogenic processes is of particular ecolog-
ical and biotechnological interest, given their ability to interact with 
other bacteria, including methanogenic bacteria. These interactions 
are influenced by environmental variables such as sulfate concentra-
tions, carbon substrates, and COD to sulfate ratios. Furthermore, the 
operating mode of bioreactors significantly impacts microbial enrich-
ment, based on the r/K selection theory. This theory describes strate-
gists adapted to resource-rich environments (r) and those adapted to 
resource-limited environments (K), each with distinct growth charac-
teristics and ecological niches (Guo et al., 2022).

Acid mine drainage treatment
SRB are crucial in treating AMD, one of the mining industry’s most 

severe environmental challenges. AMD is characterized by wastewater 
with a generally acidic pH and rich in sulfate ions, iron, and toxic metal 
ions, such as Cu2+, Zn2+, and Pb2+. The use of SRB in treating AMD is a 
promising biotechnological approach, offering advantages such as high 
efficiency, low energy consumption, and being environmentally friendly 
(Bayrakdar et al., 2009). SRB reduce the sulfate present in these waters, 
helping precipitate heavy metals and improving overall water quality. 
This treatment process involves adapting the environment to promote 

the growth and metabolic activity of SRB. This adaptation is essential, 
as treatment efficiency depends on specific environmental conditions, 
including the water’s chemical composition and the microbial ecosys-
tem’s characteristics. In the uncontrolled release of AMD, sulfidogenic 
processes carried out by SRB are considered more effective due to advan-
tages such as better thickening of the metallic sludge and lower solubil-
ity. To optimize treatment, it is often necessary to add a suitable carbon 
source to promote biological sulfate reduction (Nguyen et al., 2020). 

Sulfate-reducing bacteria and operating conditions in bioreactors
The Erlenmeyer flask offers several advantages for microbial cul-

tivation when used as a batch-scale bioreactor (Schirmer et al., 2022), 
as they are also easy to handle and allow adequate agitation of the 
culture medium. Although used on a small scale in laboratories, the 
cultivation principles and conditions can often be scaled up to larger 
bioreactors, allowing for a smooth transition from laboratory research 
to larger-scale processes. These bottles allow for easy monitoring of 
cultures, which is essential for microbial growth follow-up, metabo-
lite production, and other relevant parameters. The process can oc-
cur with or without agitation and aeration through diffusion (shaker 
incubator with orbital shaking and heating). Dong et al. (2023) used 
Erlenmeyer flasks to monitor the growth of SRB. These bacteria ex-
hibited an “S-“type growth curve, and their logarithmic growth phase 
was quantified throughout 14–86 h, demonstrating high activity and 
robust growth metabolism. For this, the ideal temperature range was 
32–35°C, where their activity was the highest. As the concentration of 
S= in the culture system gradually increased, SRB activity was inhibited, 
possibly leading to cell death. SRB were shown to be most active in 
an environmental pH range of 7–8, although they could tolerate pH 
values in the range of 5–8. The relationship between COD and sulfate 
(SO4

=) that most favored the growth of SRB was 2. 
Upflow anaerobic sludge blanket (UASB) reactors can be used for 

laboratory-scale wastewater treatment as they are essential in treating 
sulfate-rich effluents. Bertolino et  al. (2013) worked with biological 
sulfate reduction in a UASB under poor mixing conditions, obtaining 
results well below expectations. However, by improving the mixing 
conditions with biomass recirculation and increasing the upward flow 
velocity, the sulfate removal rate increased significantly, reaching 89% 
removal. This highlighted the importance of mixing conditions in the 
performance of this bioreactor for substrate degradation and sulfate 
reduction. Thus, the absence of defined guidelines for geometry design, 
material selection, construction, operating rules, and especially start-
ing conditions significantly hampers researchers who wish to conduct 
treatability tests using laboratory-scale UASB reactors (Najib et  al., 
2017; Pererva et al., 2020). However, most studies in the literature do 
not provide details about these reactors’ construction and operational 
conditions, making it difficult to replicate the experiments.

Kijjanapanich et al. (2014) investigated the biological removal of 
sulfate from leachate generated from CDW and evaluated the effect 
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of bioreactor configuration on this process. These researchers used 
different bioreactor configurations, including an upflow bioreactor 
(UASB), an anaerobic gaslift membrane bioreactor (GLAM), and a 
downflow bioreactor (inverted fluidized bed-LFI). They monitored 
important parameters such as sulfate removal, sulfide production, al-
kalinity consumption, and H2S formation. The study results showed 
that the three bioreactor configurations can be used to treat CDW 
leachate, achieving sulfate removal efficiency in the 75–85% range. 
In these systems, SRB used the sulfate present in the leachate. A high 
calcium concentration had a negative impact on the UASB granules, 
resulting in the precipitation of CaCO3 on the surface of the gran-
ules. On the other hand, a calcium concentration of up to 1000 mg/L 
did not adversely affect the sulfate removal efficiency of the LFI and 
GLAM systems. The effluents from these bioprocesses still showed 
high concentrations of sulfide (except GLAM) and calcium, which 
need to be removed before reusing the water in the leaching process 
or before disposing it into the environment.

Sustainable sources of carbon and nutrients
The primary critical connections between sustainable carbon and 

nutrient sources and SRB include (Zhang et al., 2022): 1. SRB’s need 
for sustainable carbon sources for nutrition and growth; 2. The impor-
tance of these sources in the sulfate reduction process, essential for SRB 
metabolism; 3.The role of SRB in the nutrient cycle, especially in the 
sulfur cycle; 4. The use of SRB in bioremediation, where sustainable 
carbon sources are fundamental; and 5. The contribution to environ-
mental sustainability when using renewable resources. Based on these 
premises, these techniques suggest using agroforestry waste and gyp-
sum as sources of carbon and nutrients for SRB. This not only efficient-
ly treats waste but also contributes to the circular economy.

Challenges and opportunities in using sulfate-reducing bacteria
The use of SRB in biotechnological and environmental process-

es offers several opportunities but also faces significant challenges. 
These bacteria, essential for sulfate reduction and effluent treatment, 
play an important role in ecological balance and a sustainable bioeco-
nomy (van den Brand, 2015). SRB are fundamental in treating efflu-
ents, especially in industrial contexts such as mining, where they help 
mitigate sulfate emissions and remove heavy metals. Its use aligns with 
global efforts to transition to a bioeconomy based on sustainable re-
sources, reducing dependence on fossil resources and carbon dioxide 
emissions. SRB can convert waste, such as urban tree pruning, into 
valuable resources, optimizing the use of underutilized bioresources. 
Among the challenges, effective management of SRB requires specific 
conditions, such as maintaining an anaerobic environment and adjust-
ing carbon and nutrient sources. Another challenge is that competi-
tion between SRB and other bacteria, such as methanogenic bacteria, 
in treatment systems can affect the efficiency of sulfate reduction and 
anaerobic digestion processes (Oliveira et al., 2021). Furthermore, fac-

tors such as temperature, pH, and the COD/SO4
= ratio can significantly 

influence SRB metabolic activity, requiring careful control to optimize 
the effectiveness of the treatment. 

Studies have aimed to apply environmental technologies to obtain 
nutrients and energy sources from industrial waste, biological objects, 
and organic pollutants (Kanda et al., 2019). In recent years, there has 
been a tendency toward reducing the use of phosphate, potash, and ni-
trogen fertilizers, associated with decreased natural resources required 
to produce such fertilizers. The solution to this problem may be the 
use of organic waste that contains phosphorus (P), nitrogen (N), and 
potassium (K) (Xie et al., 2023). One of these wastes is sewage sludge. 
Sewage sludge contains, on average, 1–3% nitrogen, 1–5% phosphorus, 
and 0.2–0.7% potassium, therefore being an excellent source for the 
isolation or recovery of biogenic elements (Tao, 2019). 

Pretreatment of lignocellulosic biomass
Several factors contribute to the resistance of lignocellulosic bio-

mass (LB) to conversion into value-added products such as biofuels, 
chemicals, and materials. This recalcitrance is due to the presence of 
a crystalline structure of cellulose, the degree of lignification, and the 
structural heterogeneity and complexity of cell wall constituents (Ba-
ruah et al., 2018). The choice of a more suitable pretreatment technique 
depends on the type of LB used, as the composition of cellulose, hemi-
cellulose, and lignin can vary between different lignocellulosic sources 
(Matheri et al., 2018; Siddique et al., 2023). In this work, preference was 
given to reviewing physical pretreatment methods due to such proce-
dures’ strong, environmentally friendly nature.

The physical pretreatment of LB, characteristic of agroforestry 
waste, comprises an essential preliminary step before other pretreat-
ment methods (Galić et al., 2021). One of the objectives of this pre-
treatment is to reduce particle size, which results in increased surface 
area and a decrease in the degree of polymerization and crystallinity 
of the biomass. For example, milling reduces the crystallinity and par-
ticle size of LB. It can reduce particle size down to 0.2 mm. A study 
by Chang et  al. (1997) revealed that biomass particles smaller than 
0.4  mm do not have a notable effect on the hydrolysis yield. Extru-
sion is considered one of the most commonly used physical pretreat-
ment techniques. This technique is based on the action of one or two 
screws that rotate in a tight cylinder, which is equipped with tempera-
ture control (Zhang et al., 2020b). The use of microwave irradiation as 
an unconventional heating method for the pretreatment of LB under 
an applied electromagnetic field. Ooshima et al. (1984) carried out the 
first microwave irradiation pretreatment study. Since then, this method 
has been considered convenient due to several advantages, including 
easy operation, energy efficiency, minimal formation of inhibitors, and 
high heating capacity in a short period of time (Camani et al., 2020). 

The pretreatment of LB by ultrasound (US) is based on the princi-
ple of cavitation through ultrasonic radiation. Cavitation, or the forma-
tion of acoustic micro- and nanobubbles within the liquid, generates 
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