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Introduction: Lumpy skin disease is a viral disease that affects cattle belonging 
to genus Capripoxvirus (Poxviridae) and lead to significant economic losses.

Objective: The objective of this study was to evaluate the distribution of lumpy 
skin disease (LSD) outbreaks and predict future patterns based on retrospective 
outbreak reports in Ethiopia.

Methods: Data were collected through direct communication with regional 
laboratories and a hierarchical reporting system from the Peasant Associations 
to Ministry of Agriculture. Time-series data for the LSD outbreaks were analyzed 
using classical additive time-series decomposition and STL decomposition. 
Four models (ARIMA, SARIMA, ETS, STLF) were also used to forecast the number 
of LSD outbreaks that occurred each month for the years (2021–2025) after the 
models’ accuracy test was performed. Additionally, the space–time permutation 
model (STP) were also used to study retrospective space–time cluster analysis 
of LSD outbreaks in Ethiopia.

Results: This study examined the geographical and temporal distribution of 
LSD outbreaks in Ethiopia from 2008 to 2020, reporting a total of 3,256 LSD 
outbreaks, 14,754 LSD-positive cases, 7,758 deaths, and 289 slaughters. It also 
covered approximately 68% of Ethiopia’s districts, with Oromia reporting the 
highest LSD outbreaks. In the LSD’s temporal distribution, the highest peak was 
reported following the rainy season in September to December and its lowest 
peak in the dry months of April and May. Out of the four models tested for 
forecasting, the SARIMA (3, 0, 0) (2, 1, 0) [12] model performed well for the 
validation data, while the STLF+Random Walk had a robust prediction for the 
training data. Thus, the SARIMA and STLF+Random Walk models produced 
a more accurate forecast of LSD outbreaks between 2020 and 2025. From 
retrospective Space–Time Cluster Analysis of LSD, eight possible clusters were 
also identified, with five of them located in central part of Ethiopia.

Conclusion: The study’s time series and ST-cluster analysis of LSD outbreak data 
provide valuable insights into the spatial and temporal dynamics of the disease 
in Ethiopia. These insights can aid in the development of effective strategies 
to control and prevent the spread of the disease and holds great potential for 
improving efforts to combat LSD in the country.
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1 Introduction

Lumpy skin disease (LSD) is a notifiable viral disease of cattle and 
buffaloes belonging to the genus Capripoxvirus, family Poxviridae. 
LSD infection is characterized by skin nodules, pox lesions in the 
ocular, nasal, and oral mucous membranes and on the surface of 
internal organs, skin edema, fever, lymphadenitis, and sometimes 
mortality (1, 2). LSD is caused by a virus which is member of 
Capripoxviruses (CaPVs) having a large double-stranded DNA 
genomes approximately 151 kb long and contains 156 putative genes. 
It shares 96–97% genome similarity with its CaPVs counterparts: 
Sheeppox virus (SPPV) and Goatpox virus (GTPV) (3, 4). The 
economic impact of LSD is considerable for the livestock industry in 
affected regions and localities (5, 6). For instance, Molla et al. (7) 
studied the partial economic impact of the LSD field outbreak in 
Ethiopia. Their findings indicate that the total economic loss per 
affected herd was USD 1176, with subsistence farms incurring USD 
489 in losses and commercial farms suffering USD 2735 in losses. The 
results of the study highlight that LSD has a significant impact on the 
livelihoods of impoverished farmers in Ethiopia.

In the context of epidemiology, it should be noted that LSD is a 
prevalent endemic disease in Ethiopia (8). The first outbreak of the 
disease occurred between 1981 and 1983 in the northwestern, western, 
and central regions of the country (9). Since then, the disease has 
spread to almost all regions and agroecological zones of the country, 
as evidenced by outbreak reports (10, 11). LSD is a vector-borne 
disease transmitted by various vectors, such as flies and ticks. The 
reoccurrence of the disease is consistently associated with rainfall, the 
emergence of large numbers of arthropod vectors, and low levels of 
herd immunity (7, 12, 13). Therefore, it is imperative to conduct a 
thorough study of the spatial and seasonal (temporal) patterns of LSD 
outbreaks to gain a comprehensive understanding of the seasonal and 
geo-transmission dynamics. This knowledge helps for strategic 
planning for control and prevention the disease. It’s particularly useful 
in planning LSD vaccination programmes.

Veterinary epidemiology and preventive medicine rely on 
analyzing disease data that has an implicit spatiotemporal component, 
such as disease outbreaks, surveillance systems data, and hypothesis-
based field research (14, 15). Spatio-temporal analyses of livestock 
disease can be carried out using, a regression tree analysis model, a 
space–time permutation (STP) and Poisson spacetime (Poisson ST) 
models (16–18). A space–time scan statistics have recently become 
popular for disease cluster detection and evaluation for a wide variety 
of diseases (19). These models can provide valuable insights into 
disease dynamics and inform decision-making for risk-targeted 
control disease programs in livestock populations. Thus, in our study, 
we  utilized the space–time permutation (STP) models from the 
SaTScan v.10.1 open-source software (19) to scrutinize the 
spatiotemporal patterns of LSD outbreaks in Ethiopia. This allowed us 
to identify the specific locations and time periods of the outbreaks, 
providing a comprehensive understanding of the disease’s spread over 
the past 13 years. To our knowledge, this study stands as the first to 

utilize a scan statistics STP model for the identification of 
spatiotemporal clusters of LSD outbreaks on a national level.

Time series data analysis is an extensive topic in data science that 
allows us to extract valuable information, make informed forecasting, 
and comprehend complex patterns concealed in sequential time based 
data (20–22). Time-series modelling is crucial in the field of 
epidemiology for predicting disease outbreak dynamics, similar to 
other fields such as weather forecasting and financial and marketing 
predictions (20). So far, several time-series models have been used in 
the prediction of livestock diseases like foot and mouth disease 
(FMD), canine parvovirus (CPV), LSD and some others (11, 23–25). 
Autoregressive Integrated Moving Average Models (ARIMA), 
Seasonal ARIMA (SARIMA), Exponential Smoothing State Space 
Model (ETS), Seasonal Trend Decomposition procedures based on 
loess forecasting (STF), Neural Network Autoregression (NNAR), 
ARMA Errors, Trend, and Seasonality (TBATS), and Hybrid Models 
are some of the most commonly used methods in time series analysis 
(23, 26). These models help to understand patterns of timeseries data 
and make good forecasts.

In the current study, four models were selected to be used for 
forecasting LSD outbreak incidences; ARIMA, ETS, SARIMA, and 
STL, based on a strong seasonality evaluation of the data. The ARIMA 
modelling method is considered one of the most efficient methods for 
modelling time-series data across different disciplines. ARIMA is a 
time-series forecasting model that combines autoregressive (AR), 
moving average (MA), and differencing (I) to capture the trend, 
seasonality, and random fluctuations in the data. The letters p, d, and 
q represent the order of autoregression, the degree of difference, and 
the moving average, respectively. Seasonal ARIMA (SARIMA): an 
extension of ARIMA that specifically accounts for seasonality in the 
data (27). The STL model is a robust and versatile technique for 
decomposing time series and forecasting a decomposed time series, 
particularly good estimate of the trend and seasonal component that 
are not distorted by divergent behavior in the data achieved (28, 29). 
The Exponential Smoothing with Trend and Seasonality (ETS) models 
are a comprehensive class that encompasses Simple Exponential 
Smoothing, Holt’s Linear Trend Method, Holt-Winters Method with 
Additive or Multiplicative Seasonality, and all their damped trend 
versions. These models consist of a level component, a trend 
component (T), a seasonal component (S), and an error term (E). The 
smoothing method calculation applies ETS (Error, Trend, and 
Seasonality) terms additively or multiplicatively, or omits them 
entirely (28). So far we found only one study, by Molla et al. (11) 
employed ETS (A, A, M) (Holt-Winters exponential smoothing) and 
ARIMA models to forecast 36 months of LSD outbreaks using 16 years 
of retrospective outbreak data. And they reported that the ARIMA 
model outperformed ETS (A, A, M). Thus, it is noteworthy to consider 
the ARIMA model and its seasonal extension, the SARIMA model, 
and add strong seasonal models like STL and ETS models 
for comparison.

In general, in the current study, the primary objective of this study 
was to investigate the spatiotemporal dynamics of LSD in Ethiopia. 
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This was achieved by undertaking a retrospective analysis of outbreak 
reports spanning the period of 2008 to 2020, as well as conducting a 
comprehensive geographical cluster analysis of LSD outbreaks using 
space–time scan statistics. Additionally, the study predicted LSD 
outbreaks for the period of 2020–2025 using four (ARIMA, SARIMA, 
ETS, STLF) models.

2 Materials and methods

2.1 Description of study location

Ethiopia is the largest and most populated country in the Horn of 
Africa, with a total land cover of 1.1 million square kilometers (km2) 
and an estimated human population of 120.8 million in 2022 (30). It 
is subdivided into 11 regional states and two chartered cities: the 
Oromia, Afar, Amhara, Benishangul-Gumuz, Gambella, Harari, 
Sidama, Somalia, Southwest Ethiopia, Southern Nations, Nationalities 
and People (SNNP) region, Tigray regions, Addis Ababa (city), and 
Dire Dawa (city). These regional states are further divided into zonal 
administration (second-level administration) and districts (the 3rd 
level administration). By 2022, there were approximately 82 zones and 
approximately 670 rural and 100 urban districts (31). The districts are 
further divided into the smallest units of local administration, kebeles 
and neighborhood associations (peasant associations, “PAs”); there are 
approximately 15,000 kebeles (5,000 urban dweller associations in 
towns and 30,000 PAs in rural areas) in the country (2).

In Ethiopia, five noticeable topographic features are the western 
highlands, western lowlands, eastern highlands, eastern lowlands, and 
rift valley (2, 16). The topographic features vary from Ethiopia’s roof, 
Mount Ras-Dejen, with elevations 4,533 m above sea level (m.a.s.l.) to 
the Denakil depression, which drops as low as 11 m.a.s.l. Ethiopia’s 
climatic zone is divided into five zones, defined by altitude and 
temperature: the arid zone covers the desert lowlands below 
500 m.a.s.l, the semiarid zone covers areas with an altitude of 
500–1,500 m.a.s.l, the semihumid zone covers temperate highlands 
between 1,500 and 2,500 m.a.s.l, the cool to cold humid zone covers 
temperate highlands between 2,500 and 3,200 m.a.s.l, and the cold, 
moist temperate zone covers the Afro-alpine areas on the highest 
plateaus between 3,200 and 3,500 m.a.s.l (2, 16).

This study covered almost all geographical areas, climatic zones, 
topographic features, and livestock management systems. Ethiopia has 
the largest livestock population in Africa, with 65 million cattle (32). 
Livestock is a key factor in the livelihood of the people of Ethiopia as 
a major source of animal protein, power for crop cultivation, means 
of transportation, export commodities, manure for farmland and 
household energy, and means of wealth accumulation (33). According 
to a World Bank report (19), the livestock sector contributes up to 20% 
of the total gross domestic product (GDP), 40% of the agricultural 
GDP, and nearly 20% of national foreign exchange earnings. There are 
three predominant livestock management systems: mixed crop-
livestock, specialized urban and peri-urban (intensive management), 
and pastoral/agro-pastoral (extensive management) (33). The mixed 
crop-livestock farming system is dominant in Ethiopia’s highlands, 
where a high population of cattle (70–80%) exists, but pastoral/agro-
pastoral or extensive management dominates the eastern and western 
lowlands, and the Rift Valley contributes 20–30% of the cattle 
population (34).

2.2 General description of the outbreak 
data and analysis

Contextually, the study covers all geographical areas of Ethiopia 
in the sense that the outbreaks reported were from all regional 
administrations of Ethiopia. LSD is a notifiable disease that must 
be reported at the national level to the World Organization for Animal 
Health (WOAH). The reporting mechanism has two methods: one is 
directly to the regional laboratories, and the other is through the 
pyramid of administrative divisions, which means that every PA or 
Kebeles has Agricultural Development Agents (ADAs) who report the 
outbreak cases to district veterinary clinics and then the veterinarian 
in the districts after confirming the cases based on clinical diagnosis 
and the pathognomonic signs of the diseases, reported to the zonal 
agricultural office and then to the regional agricultural office, and 
finally to the Ministry of Agriculture of Ethiopia (MOA), Livestock 
Department, and Epidemiology Directorate.

Thirteen years (2008–2020) of retrospective data (LSD outbreaks) 
were obtained from the Epidemiology Directorate of the Livestock 
Department of the MOA. This outbreak data record contained 
information on the time of reported, place of reported (region, zone, 
district), number of outbreaks per year of the reported, number of 
LSD-positive cases and deaths reported, number of animals at risk, 
and vaccination status during the outbreak time. It covered a total of 
11 regional states, the 2 charted cities, 79 zones and 589 districts.

Outbreak information and livestock data were recorded in 
Microsoft Excel and analyzed using the R statistical software Base 
package (v4.3.2) (35). Descriptive analyses, such as the total sum of 
the outbreaks per year for the last 13 years, the average number of LSD 
outbreaks per month, and from every district for the 13 years, were 
analyzed to obtain temporal, seasonal, and spatial information. A 
comparison was also made between the mean number of LSD 
outbreaks during two major seasons – after the Ethiopian wet season 
(September to December, which saw a peak in LSD outbreaks) and 
dry season (May and April). Additionally, the LSD outbreak incidence 
in districts was analyzed using 13-years data. The average incidence in 
a district was calculated by adding all reported outbreaks over the 
study period and dividing by 13. The LSD outbreak distribution at the 
district level was mapped over 13 years using QGIS 3.4.4 (36), allowing 
for better visualization of geographical distribution.

2.2.1 Classical and STL decomposition of time 
series of LSD outbreaks

The time-series data for the LSD outbreak was analyzed using two 
different decomposition methods: classical additive time-series 
decomposition and Seasonal-Trend decomposition using Loess (STL 
decomposition). The analysis was performed using the ctv package in 
R programme (37), to determine whether the distribution of LSD 
outbreaks over time was random or exhibited seasonal cyclic patterns 
such as seasonality, long-term trend, and irregularity (22). The 
classical additive timeseries decomposition model was given as: 
Yt = Tt + St + It; where Yt is the-number of LSD outbreaks at time t, Tt is 
the trend-cycle component at time t, St is the seasonal component at 
time t, and It is the irregular component at time t.

Whereas the Seasonal-Trend decomposition with Loess, where 
LOESS is LOcal regression, (STL) is a widely used method for 
decomposing time series data into its seasonal, trend-cycle, and 
remainder components. The formula Yv = Tv + Sv + Rv represents this 
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decomposition, where Yv denotes the LSD outbreak data 
(observations), Tv represents the trend variation in the data, and Sv 
represents the seasonal variation in the data, and Rv represents the 
remainder component of the data. It utilizes a smoothing method 
called Loess. The decomposition was further used to create STL 
forecasting (STLF).

2.2.2 LSD outbreak time series forecasting 
models

Time series forecasting for LSD outbreaks for 60 months (2020–
2025) was estimated using STLF +Random walk, ETS (x, y, z), 
(ARIMA) (p, d, q) and (SARIMA [P, D, Q] [P, D, Q]s) models. The 
first model used was the nonseasonal ARIMA model with (p, d, q) 
values estimated by Auto. arima () function, which was selected as the 
best fit. Accordingly, ARIMA (1, 1, 0) was estimated using Auto. arima 
() function that was used to forecast the LSD outbreak time series 
(2008–2020). Second, considering the seasonality of the LSD outbreak 
time series, we utilized the seasonal ARIMA (SARIMA [P, D, Q] [P, 
D, Q]s) model. The SARIMA model has two parts (p, d, q), which 
correspond to the nonseasonal and (P, D, Q) seasonal parts of the 
model. Then, the auto. Arima () function also predicted the parameters 
for the seasonal ARIMA model as (SARIMA [3, 0, 0] [2, 1, 0]) [12], 
which was used to forecast LSD outbreaks (2021–2025).

The ETS model is a powerful tool for analyzing both heterogeneity 
and non-linearity in time series data. It employs exponentially 
decaying weighted averages to account for the impact of previous 
observations on future trends. This model offers a total of 30 possible 
ETS combinations and generates a complete forecast distribution 
based on past observations (28). It is written as ETS (x, y, z), where: x 
∈ {A, M}, y ∈ {N, A, Ad}, z ∈ {N, A, M}; here N stands for “none” (no 
trend component or no seasonality component), A stands for 
“additive,” Ad stands for “additive-damped,” and M stands for 
multiplicative (28). The general approach we followed for forecasting 
using this model was almost similar to that in ARIMA model. The 
models were estimated using the ets() function in the “forecast” 
package (v8.21.1) in the R statistical programme (38). We let the ets() 
function select the best model which resulted in a fitted model of ETS 
(A, N, A) and with smoothing parameters α = 0.9999 β = None, and 
γ = 1e-04. Then LSD outbreaks for five (2021–2025) was forecasted 
and plotted for visual comparison with the other three models.

The STLF+ Random walk model was used to forecast LSD 
outbreak data, and it was estimated using the STL() function in the R 
program forecast package. First, the STLF model decomposed the LSD 
outbreak time series data and then applied a random walk with drift 
model to forecast the seasonally adjusted series. The STLF() function 
was employed with adjusted parameters comprising a t.window of 13 
and a s.window set as periodic every 12 months. The model fitting was 
carried out with robust = true, while forecasting was conducted with 
(h = 60 months). The output was seasonal “naive” forecasts of the 
seasonal component, which were automatically generated by the 
forecast() function. These forecasts were utilized to predict LSD 
outbreaks for the years 2021–2025.

To evaluate forecast ability of the models, the complete timeseries 
dataset of LSD outbreaks was partitioned into training and validation 
datasets. The models were trained on 9 years of empirical data 
(108 months) to forecast for 2017–2020. Validation data of 48 months 
(test data) was held out for evaluation. The validation was performed 

between the predicted values for the years 2017–2020, generated using 
the training dataset, and the actual test dataset (2017–2020). The 
comparisons among the predicted and actual values were carried out 
by plotting line graphs and visual inspection as well as using three 
evaluation error metrics to verify the accuracy and robustness of the 
models. And then, the four forecast models’ (ARIMA, SARIMA, ETS, 
and STLF) performances were compared using four evaluation error 
metrics such as root mean squared error (RMSE), mean absolute error 
(MAE), the mean absolute percentage error (MAPE) and mean 
absolute scaled error (MASE). In forecasting, an error refers to the 
difference between the actual value and the predicted or estimated 
value. Two types of scale-dependent errors are used in forecasting: 
Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). 
MAE is calculated by finding the average differences between the 
actual and forecasted values, to avoid negative values RMSE used. In 
contrast, MASE compares the forecast error with the error of a naive 
forecast (39). However, we were unable to determine MAPE as our 
data contained zero counts for some months of the time-series data. 
It is generally accepted that the lower the error metrics, the better the 
method (26). The second method for the accuracy test was residual 
testing (Ljung-Box test). The Box-Ljung test is a statistical test used to 
diagnose the lack of fit of time series models. It can be defined as: 
H0:The model does not exhibit lack of fit, Ha: The model exhibits lack 
of fit. A p < 0.05 was considered statistically significant and used to 
reject the null hypothesis.

2.2.3 Retrospective space–time cluster analysis 
of LSD

Spatio-temporal analyses of the LSD outbreaks were analyzed 
using a probability model (space–time permutation model [STP]) 
using the SaTScanTM (v10.1) software package (40). Using the STP 
model requires only case data with information about the spatial 
location and time for each outbreak cases, but does not need 
information about population at risk, controls or risk factors for the 
background population like Poisson ST and Bernoulli ST models (19, 
40). ST-cluster analysis was performed by uploading the LSD outbreak 
case file and the location data, or districts’ centroids as an input file. 
In the meantime, in instances where precise outbreak location 
coordinates were unavailable, we used the center of the polygon as a 
substitute. To perform the analysis, we set several parameters. The 
spatial window, or the area to be scanned, was set to cover a maximum 
cluster size of 50, 40, 30, 20, and 10% of the population at risk. The 
scans used districts as the spatial modeling units. The maximum 
temporal cluster size was set at 50% of the study period (6.5 years), and 
Scans were conducted for areas of high rates, and 1 year time 
aggregation unit [adjusted in relation to the shortest district level 
reoccurrence of LSD outbreak previously recorded in Ethiopia was 
1 year (11)].

The ST-scan statistic utilizes a dynamic cylindrical window with 
a circular geographic base, and the height of the cylinder is 
proportional to time (40). The observed and expected cases were 
calculated in the circular window, which is movable across each 
centroid of districts, assuming they are randomly distributed in space. 
The clusters were identified by dividing the observed cases in the 
district by the population at risk as expected cases, with the 
assumption of no clustering of the null hypothesis. A Monte Carlo 
simulation (number of replications = 999) of the dataset under the null 
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hypothesis was used to calculate the maximum likelihood ratio 
function. A value of p < 0.05 was considered statistically significant 
and used to reject the null hypothesis that the stated LSD outbreak 
cases are randomly distributed in space as inputs. Furthermore, 
clusters defined by the spatiotemporal models were mapped using the 
Quantum Geographic Information System (QGIS), an open-source 
software (41). Geographical data on administrative divisions of 
Ethiopia were obtained from the Humanitarian Data Exchange (HDX) 
website (42).

3 Results

3.1 Geographical and temporal distribution 
of LSD outbreaks

A total of 3,256 LSD outbreaks, 14,754 individual cattle 
LSD-positive cases, 7,758 deaths, and 289 slaughters were reported 
over the period 2008–2020 in Ethiopia. The general cattle population 
at risk was estimated to be approximately 377,17,369 over the period. 
Although the density of LSD outbreaks might vary among different 
regions, districts, and PAs, at least one outbreak has been reported 
from almost all regional states (n = 11) and Addis Ababa City in 
Ethiopia. This covers approximately 68% (527/770) of the districts 
in the country, indicating a widespread geographical distribution of 
the disease. At the regional level, Oromia reported the highest 
number of LSD outbreaks at 57.65% (n = 1877), followed by Amhara 
at 20.64% (n = 672), SNNP at 11.73% (n = 382), Tigray at 2.73% 
(n = 89), and Somali at 2.52% (n = 82). At the zonal level, the North 
Shewa Zone, Illubabor Zone, and Jimma Zone from the Oromia 

region ranked in the top three, with 9.52, 9.00, and 5.62%, 
respectively (Supplementary Table S1). The district-level mapping of 
LSD outbreaks in Ethiopia between 2008 and 2020 was thorough and 
effective, as demonstrated in Figure 1. Over the course of 13 years, 
the average number of outbreaks per district was 6.18, or 0.48 per 
district per year. Based on Figure 1, the highest incidences were 
reported in the central part of Ethiopia’s Oromia region, particularly 
in the Dera district (n = 33) in the North Shewa, Becho district 
(n = 26) in the Southwest Shewa, and Chora district (n = 23) in the 
Illubabor Zone of the southwestern part of Ethiopia. The lowest 
incidences were observed in the eastern lowlands districts of the 
Afar, Tigray, and Somali regions, as well as the southwest lowlands 
(Omo Valley).

The temporal distribution of LSD disease outbreaks over 13 years, 
from 2008 to 2020, is presented on a bar graph (see 
Supplementary Figure S1). The highest number of outbreaks reported 
per year occurred in 2010 (n = 448), while the lowest was in 2016 
(approximately 100 outbreak reports). Additionally, a line graph 
(Figure  2) was used to display the monthly distribution of LSD 
outbreaks between 2008 and 2020. The purpose was to examine any 
seasonal or distribution pattern differences among the years. The 
graph shows a consistent pattern every year, with peak points in 
October and November and the lowest in April and May. This 
difference was found to be  statistically significant (p < 0.05). The 
outbreak reports increased notably after the rainy season (i.e., 
September, October, November, and December) and decreased to 
their lowest level during the dry months of April and May. 
Additionally, box plots (Figure 3) depict seasonal fluctuations in LSD 
outbreaks that show intratemporal and intertemporal variations, 
indicating variation within individual months and between years. The 

FIGURE 1

Map of Ethiopia showing the distribution of lumpy skin disease outbreaks, 2008–2020. District-based LSD outbreak distribution per 13 district years in 
Ethiopia over the 13-year period mapped. The shaded area shows districts with cumulative LSD outbreak reports from 2008 to 2020.

https://doi.org/10.3389/fvets.2024.1277007
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org


Tesfaye et al. 10.3389/fvets.2024.1277007

Frontiers in Veterinary Science 06 frontiersin.org

analysis of box plots for September to November revealed high annual 
variation in LSD distributions, with many outbreaks above median 
values for the same months.

3.2 LSD outbreak time series analysis

3.2.1 Classical and STL decomposition of LSD 
outbreaks time series data

The most striking finding from the current retrospective study 
was that LSD outbreaks do not occur at random in time; rather, they 
have a pattern in time over 13 years. Through both the additive time 
series decomposition (classical) and STL decomposition of observed 
LSD outbreaks throughout 2008–2020, the trend, seasonal, and 
random components were estimated (Figures  4, 5). Based on the 
visual inspection of Figures  4B, 5B, it is evident that the trend 
component of the LSD outbreak for the first 4 years (2008–2011) 
exhibited an observable smooth up-and-down pattern. However, for 
the next 4 years (2011–2014), the trend remained constant and steady. 
From 2014 to the end of 2015, there was a slight increase, followed by 
a decline in 2017. There was a slight increase from the last months of 
2017 until the end of the outbreak report (2017–2020), and the trend 
remained steady. There appears to be a cyclical trend in LSD outbreaks 
every 2–4 years with an end-to-end decline trend (Figures 4A, 5A). 
However, both models (classical and STL decomposition methods) 
showed strong and regular yearly fluctuations of the seasonal 
component (Figures 4C, 5C) and these fluctuations indicate a seasonal 
pattern in the epidemics of LSD incidence, which is related to 
particular seasons (the rainy and dry seasons).

3.2.2 Forecasting of LSD outbreak time series
In this retrospective LSD outbreak time series finding (Figure 6A), 

we forecasted the number of LSD outbreaks to occur in each month 
for the next 5 years (2021–2025). Checking the ACF, the correlogram 
indicated that there was a significant autocorrelation that decayed 
slowly over time and rose up again, repeating the pattern like waves. 
This pattern continues in a seasonal form or a regular seasonal cycle 
that goes from year to year (Figure 6B). The same was true for the 
PACF too (Figure 6C).

FIGURE 2

Monthly LSD outbreak distribution over 13  years (2008–2013) in Ethiopia. The line graph shows the monthly seasonality of the LSD outbreak 
distribution, with the highest recorded in October, November, September, and December (after the rainy season) and the lowest recorded in April and 
May (dry season). The distribution showed the same patterns for all 13  years of records.

FIGURE 3

Boxplot for the LSD outbreak time-series data [with windows 
(width  =  800, height  =  350)]. Box plots provide a pictorial 
representation of the seasonal variation in LSD outbreaks in Ethiopia 
from 2008 to 2020. Each box plot handles intratemporal variation 
(variation within individual months) and intertemporal variation 
(between 12  months). Box plots of intertemporal variations indicate 
how the outbreak distribution varies over various years, whereas 
intratemporal variations demonstrate the shape of the distribution, its 
central value, and variability. According to the box plots analyzed in 
September, October, and November, LSD distributions had very high 
records of annual variation, and within an individual month, many 
outbreaks fell above the median values for the same months.
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The training data was fitted, and all four models were plotted with 
the empirical, forecasted, and validation data shown in 
Figures 7A–D. The empirical data was displayed in black, forecasted 
data in dark blue, and validation data in red. Visual inspection of 
actual and forecast values on the graphs showed that models ETS, STL 
and SARMA have the same pattern. However, the SARIMA model 
had a more reliable fit between the forecasted and the actual number 
of LSD outbreak (2017–2020 years) as its shown in Figure 7C. But for 
ARIMA model, they have completely different pattern as shown in 
Figure 7B.

Additionally, the forecasting performance of LSD outbreak time 
series was evaluated comparatively based on MAE, MASE and RMSEs 
(Table 1). It was found that using the STL+ random walk method for 
training data resulted in better performance compared to the other 
three models. However, the SARIMA model is more precise than 
other competing models, as demonstrated by the lowest values of the 
RMSE, MAE, and MASE from the testing data in terms of accuracy. 
With regarding to residual testing (Ljung-Box test), it was found that 
except for the ARIMA model other three models (ETS, STLF, 
SARIMA) models were exhibited fit with Test statistical value p > 0.05. 

This suggests that the three of models are capable of providing a 
sufficient forecast.

After validating the accuracy of all models, predictions for LSD 
outbreak incidences were made for the years 2021–2025 using all 
four models (Figure 8). The first model utilized was a nonseasonal 
ARIMA (1, 1, 0) model. The forecast values were utilized to plot the 
long-term average (−0.93) of future points in the time series (2021–
2025) on a graph (Figure 8A). Thus, visual inspection of the graph 
appears to be unfavorable, as the result of the forecast is far from 
desirable. Subsequently, following the estimation of SARIMA 
parameters, which were determined to be SARIMA (3, 0, 0) (2, 1, 0) 
[12], the forecast outcomes for LSD outbreaks were plotted, as 
illustrated in Figure 8B. The forecast graph depicts a more realistic 
future projection, which exhibits similar fluctuations to those 
observed in the historical data. The third and fourth forecasts were 
made using ETS (A, N, A) and STL+ random walk methods. When 
graphed, the projected values for these forecasts appear similar to 
those of the SARIMA model, despite some variations in the 
fluctuation patterns among them as it can be  vividly visible in 
Figures 8B–D.

FIGURE 4

Conventional decomposition of the additive time series of observed LSD outbreaks from 2008 to 2020. (A) The graph shows the observed LSD 
outbreak case numbers (top panel), decomposed into three components (trend, seasonality, and random). (B) The 2nd panel (trend) shows a declining 
pattern from 2008 to 2020. (C) The 3rd panel (seasonality) shows strong and regular yearly fluctuations. (D) The 4th panel (error panel), or residual 
components of the time series, is the remainder of the original time series after removing the seasonal and trend time series.
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FIGURE 5

STL decomposition of time series of LSD outbreaks for STL forecasting. (A) The graph shows the observed LSD outbreak case numbers (top panel), 
decomposed into three components (trend, seasonality, and remainder). (B) The 2nd panel (trend) shows a weak declining pattern from 2008 to 2020. 
(C) The 3rd panel (seasonality) shows strong and regular yearly fluctuations. (D) The 4th panel (error panel), or residual components of the time series, 
is the remainder of the original time series after removing the seasonal and trend time series.

FIGURE 6

An autocorrelation function (ACF) and a partial autocorrelation function (PACF) plotted to confirm the steady-state prediction of time-series models; 
(A) LSD outbreaks time-series row data plotting, (B) autocorrelation function (ACF), the correlogram indicated that there was a significant 
autocorrelation that decayed slowly over time and rose up again, repeating the pattern like waves indicating pattern of continues in a seasonal form or 
a regular seasonal cycle that goes from year to year (C) partial autocorrelation function (PACF); which has many significant spikes with wave patterns 
starting from a significant negative PACF value.
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3.2.3 Retrospective space–time cluster analysis 
of LSD

In this study, an overall of 804 distinct locations throughout the 
country and 3,205 LSD outbreak cases, over a period spanning from 
January 1st, 2008 to December 31st, 2020. Utilizing a spatial window 
that encompasses a maximum cluster size of 50, 40, 30, 20, and 10% 
of the population at risk, we have identified eight of the most likely 
LSD outbreak clusters. These clusters were selected based on their 
consistency throughout the five spatial scanning window sizes. The 
results are presented in Figure 8, Table 2 and Supplementary Figures 
S2–S5.

Accordingly, the results showed that the most likely primary 
cluster (Cluster 1) covered (n = 75 districts) with in western part of 
Oromia region and some districts in north-west of Amhara Region 
within the time frame of January 1st, 2008 to December 31st 2008 
with a radius of 127.61 km. The largest most likely cluster on area 
coverage was cluster 6 (n = 133 districts) with radius of 353.87 km, 
whereas the 2nd was cluster 7 (n = 45 districts) with radius of 
290.58 km and they are located in the Northern and southern part of 
Ethiopia crossing into the neighboring countries Eritrea, and Kenya, 
respectively. The smallest most likely cluster (Cluster 4) has been 
located in four sub-cities in Addis Ababa (capital city), with a radius 

FIGURE 7

Accuracy tests for the four forecast models for predicting lumpy skin disease outbreak incidence based on the hindcasting method. (A) The top left 
graph shows comparison between forecasted and real data values for STL+ Random walk model. (B) The top right graph shows comparison between 
forecasted and real data values for ARIMA (1,1,0) model. (C) The bottom left graph shows comparison between forecasted and real data values for 
Seasonal ARIMA (3, 0, 0) (2, 1, 0) [12] model. (D) The bottom right bottom graph shows comparison between forecasted and real data values for ETS (A, 
N, A) model. In the graphs the pink line indicates the actual (test) data whereas the blue line indicates the forecasted values.

TABLE 1 Error matrices for forecast models accuracy test applied to training and Test LSD outbreak dataset and residual testing (Ljung-Box test).

Forecast 
models

Training data 
(2008–2016)

Accuracy test method
Ljung-Box test (residuals test 

statistics)

Test data 
(2017–2020)

RMSE MAE MASE Q* df p-value

ARIMA (1, 1, 0) Training set 11.18 8.05 0.5620 46.032 21 0.0013

Test set 14.76 10.54 0.7360

SARIMA (3, 0, 0) (2, 1, 

0) [12]

Training set 8.62 6.42 0.4500 12.027 17 0.7985

Test set 10.00 7.71 0.5379

ETS (A, N, A) Training set 8.97 6.69 0.4671 18.008 24 0.8026

Test set 21.90 19.14 1.3367

STL+ random walk Training set 8.14 6.00 0.4174 31.434 22 0.0876

Test set 15.71 13.67 0.9546

ARIMA, autoregressive integrated moving average; SARIMA, seasonal autoregressive integrated moving average; ETS, error trend seasonality; STL, seasonal-trend decomposition with loess; 
RMSE, root mean squared error; MAE, mean absolute error; MASE, mean absolute scaled error. The bold values denote the comparison of error matrices, including RMSE, MAE, and MASE, 
for the training data of LSD outbreaks. Accordingly, STL+ random walk model with lowest value performed best compared to other three models.
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of 6.02 km with a time frame from January 1st, 2015 to December 31st, 
2015. The long persisted cluster was cluster 3 (n = 70 districts) within 
the time frame of January 1st, 2010 to December 31st 2012 for a 
duration of 3 years and it coved the central eastern part of Ethiopia, 
including Arsi and Bale zones of Oromia region. Six of the eight 
clusters could only persist for a years. Visual analysis in QGIS of 8 LSD 
outbreak clusters at the district level, where the representative spatial 
window was the maximum of 30% of the population at risk, was 
selected and located in Figure 8.

4 Discussion

The analysis of spatial data in the present study revealed that the 
incidence of LSD outbreaks reported in all regions of Ethiopia was 
consistent with the findings of Molla et  al. (11), who reported 
outbreaks of LSD in all regions of Ethiopia from 2000 to 2015. This 
finding is significant, as it provides insights into the extent and 
incidence of the LSD outbreak in Ethiopia, which can aid in the 
development of effective strategies to control and prevent its spread. 
Specifically, an endemic form of LSD outbreak in Ethiopia has been 
predominantly concentrated in three regions, namely, Oromia, 
Amhara, and the Southern Nations, Nationalities and People’s Region, 
which account for over 90% of the total LSD outbreak cases. This 
provides a significant opportunity for targeted intervention efforts 
aimed at preventing and controlling the spread of the disease. By 
focusing on these regions, the MOA can maximize the effectiveness of 

the interventions and minimize the impact of the outbreak at the 
national level.

When examining the zonal distribution of LSD in the Oromia 
Regional State alone, it is apparent that the zones most frequently 
affected by the virus are Illubabor, Jimma, Arsi, and South–West 
Shewa, as illustrated in Figure  1. These geographic areas are 
characterized by a midland agro-climate, which is conducive to the 
breeding of blood-feeding insect vectors that transmit the LSD virus 
to cattle. It is important to note that the situation has not changed 
since it was reported by Ayelet et al. (8) and Molla et al. (11). At the 
district level, the cumulative incidence of LSD outbreaks recorded 
over a period of 13 years was found to be 6.18, equivalent to 0.48 per 
district per year. A comparison with the results of Molla et al. (11), 
who reported an incidence of 5.58 over 16 years or 0.35 per district per 
year, showed that the incidence recorded in the present study was 
slightly higher. It should be  noted that this finding indicates the 
persistence of the LSD incidence despite efforts made toward LSD 
vaccination coverage or the possibility of the current intervention 
mechanism being ineffective in controlling the disease.

In this study, we examined the temporal distribution pattern of 
LSD and discovered that despite a general downward trend from 2008 
to 2020, the substance exhibited fluctuations among years. However, 
the decline was statistically significant (p = 0.00022). This finding 
diverges from that of Molla et al. (2), who observed an increasing 
trend of LSD outbreaks from January 2000 to December 2015. Our 
results suggest that the LSD outbreak has decreased over time, 
although it is important to note that fluctuations may still occur year 

FIGURE 8

Forecasts of the number of LSD outbreaks (blue lines) from ARIMA, SARIMA, ETS, STL  +  Random models for the period of 2020–2025. (A) The top left 
graph shows LSD outbreaks forecast from ARIMA (1,1,0) model. (B) The top right graph shows LSD outbreaks forecast from seasonal ARIMA (3, 0, 0) (2, 
1, 0) [12] model. (C) The bottom left graph shows LSD outbreak forecast from ETS (A, N, A) model. (D) The bottom right bottom graph shows LSD 
outbreak forecast for STL+ Random walk model. The plots show future time series prediction for LSD incidence similar to its retrospective data. In the 
graph the dark blue shaded area represents the 80% confidence interval, while the light blue 95% confidence interval of the predicted values indicates 
that the trend of LSD, which has exhibited a slight decline, may increase once again to reach its previous peak incidence levels.
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to year. It is possible that the decline might be due to underreported 
LSD outbreaks from districts and rural kebeles. This may be attributed 
to political instability in several regional states, particularly after 2017, 
where the frequency of outbreak reports has significantly decreased. 
Moreover, vaccination has been the sole LSD control strategy for a 
long time, and the vaccine type used as a control against LSD has been 
a live attenuated Kenyan sheep and goat vaccine strain (KS1-180) (43). 
However, many research findings have reported vaccine failure (11, 
43, 44), suggesting that it is difficult to believe that LSD vaccination 
decreases the incidence of the disease. Therefore, it is noteworthy that 
despite the overall decrease, the year-to-year variability highlights the 
need for continued monitoring and intervention efforts.

The seasonal pattern of LSD outbreaks was the second point of 
consideration. The analysis of LSD outbreaks has revealed a notable 
seasonal pattern, as evidenced by the classical and STL decomposition 
methods (Figures 4, 5). Additionally, the data presented in Figures 2, 
3 show a consistent pattern of high incidence of LSD following the 
rainy season annually from 2008 to 2020. Conversely, there was a 
lower incidence of LSD during the dry season (April and May) 
consistently during the same time period (11). These outcomes are 
consistent with Molla et al. (11), which suggests that an increased 
number of arthropods after the rainy season may be responsible for 
the rise, while a decrease in the dry season is observed. Many other 
studies have also proposed that vectors like insects or tick bites 
transmit LSD (12, 45), which aligns with this finding (12, 45).

In the current study based on our prior understanding of 
seasonality of LSD incidence from classical and STL decomposition 
methods, four models (ARIMA, SARIMA, ETS and STLF+Random 
walk) were utilized for LSD outbreak prediction. According to our 
finding on predictive models performance evaluation based on four 
error metrics, STL+ random walk showed better performance for 
training data, whereas SARIMA model was more precise on validation 
(Test) LSD outbreak data (Table  1; Figure  7). This suggests that 
SARIMA appears to be an effective model for short-term forecasting 
whereas STL model is a robust and flexible method for decomposing 
and decomposed time series forecasting. This finding is in agreement 
with previous studies by Punyapornwithaya et al. (23) and Molla et al. 
(11) who reported SARIMA’s success in short-term forecasting for 
Foot and mouth disease and LSD, respectively. At the same time 
outperformance of STL model might be  due to division of the 
forecasting problem into smaller units (46). After validation of the 
models, the forecasting for LSD outbreak incidences were made for 
the years 2021–2025 using all four models (Figure 8). Upon visually 
inspecting Figures 8A–D, it is clear that the SARIMA model provides 
better predictive values in terms of its lower and upper boundaries as 
compared to the other three models. However, combined models 
might be  more appropriate for forecasting such disease outbreak 
incidences to get robust and more accurate outcomes. In the 
meantime, the capacity of this forecast might be  affected by the 
possibility of LSD outbreaks under reporting, lack of confirmative 
diagnosis (clinical signed-based case prediction) and some reporting 
biases on the original data, but it is still very valuable for national 
vaccination planning in Ethiopia. Upon analyzing the predicted 
values, it can be inferred that the LSD trend has shown a slight decline. 
However, it is imperative to note that this trend may escalate again to 
its previous high peak unless a more strategic control program is 
implemented in advance. It is crucial to exercise caution and ensure 
that appropriate measures are taken to curtail the spread of LSD.T
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To our knowledge, this study stands as the first to utilize a scan 
statistics STP model for the identification of spatiotemporal clusters 
of LSD outbreaks in Ethiopia at national level. However, several 
studies reported from different regions, including Uganda, Thailand, 
and the Balkan Peninsula (Greece, Bulgaria, Macedonia, Albania, 
Serbia and Montenegro), have effectively employed a scan statistics 
STP model for the analysis of LSD spatiotemporal dynamics (14, 23, 
47, 48). In Figure 1, we showed the geographic distribution patterns 
of LSD outbreaks throughout Ethiopia over 13 years (2008–2020) and 
we also learned areas with high endemicity of LSD. In this ST-cluster 
analysis, 8 clusters were identified (Figure 9). The two largest clusters 
identified on area coverage, namely cluster 6 and cluster 7, are located 
in the northern part of Ethiopia (Tigray and Amhara regions) and the 
Southern Ethiopia (Yirga Chefe, Borena and Guji zones). These 
regions extend towards the borders of neighboring countries such as 
Eritrea and Kenya, respectively. However, the relatively small number 
of cases recorded is an indication of the sporadic distribution of LSD 
occurrence in these clusters. The main challenges in these areas are 
primarily inhabited by dispersed pastoral communities with 
underdeveloped infrastructure for intervention in disease control 
programs (34). Furthermore, areas like the Borena and Guji zones 
under Cluster 7 are semi-arid and arid environments that are primarily 
affected by drought, resulting in deficient rainfall and low arthropod 
population density. The transmission of LSDV might occurred due to 
animal aggregation around limited water sources and communal 
grazing areas (rangelands). For instance, Borena plateau (rangeland) 
one of the best spot of communal grazing (49), which might facilitates 
the sporadic spread of the LSD disease in this cluster. This statement 

aligns with the findings of Ochwo et al. (47) who reported that the 
clustering of animals around limited water sources during dry seasons 
can act as a facilitator in the transmission of the disease.

In contrast, five clusters representing mixed livestock production 
systems and warm moist highland, midland and lowland agro-climate 
zones were identified: cluster 1 (west-central Oromia), cluster 2 
(south-west Oromia), cluster 3 (central and south-east Oromia), 
cluster 4 (central, Addis Ababa), and cluster 5 (north-east Amhara). 
These regions of the country experience average range humidity 
(>70%) and average temperature ranging from 8°C to 40°C (50). This 
creates an environment conducive to the proliferation of different 
species of arthropods, particularly blood-sucking flies like the 
common stable fly (Stomoxys species). For instance, according to 
Dawit et  al.’s study (52), the density of S. calcitans was greater in 
highland and midland regions, where the average temperature ranged 
from 8 to 28.5°C. In contrast, S. ochrosoma was more abundant in 
lowland agro-climatic conditions, where the temperature range was 
25–40°C. Another laboratory based experimental study conducted by 
Issimov et  al. (51) confirmed that S. calcitans required a mean 
temperature of 26–28°C and humidity levels above 80% to achieve 
high reproduction rates. This finding highlights the species’ role as the 
primary vector species for the local transmission of LSDV varying 
temperatures and humidity in those cluster areas (11).

Regarding temporal patterns, the abundance of Stomoxys flies was 
higher following the prolonged rainy (wet) season, with a peak density 
in September and August across most agro-climate zones in Ethiopia, 
whereas the peak of the LSD outbreak was observed to occur from 
October to December. Conversely, the population of flies was observed 

FIGURE 9

LSD cluster analysis map in Ethiopia (2008–2020). Based on the legends of the map, yellow lines represent the district admirative divisions, whereas 
the circles indicate the eight SaTScan cluster zones with their radia. The smallest cluster (cluster 4) covered only 6.02  km of radius and with cluster time 
of 2015/1/1 to 2015/12/31 whereas the largest cluster (Cluster  =  6) was with Radius of 358.87  km with cluster time 2017/1/1 to 2017/12/31.
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to be markedly low during March, April, and May due to dry and hot 
climatic conditions, which increase dehydration and are unfavorable 
for the survival of flies (11). As insects are the primary local 
transmitters of LSD (12, 13), our findings indicated that the number 
of LSD outbreaks within indicated clusters has shown influenced by 
the amount of rainfall, which has an impact on the abundance of flies. 
Specifically, during periods of high rainfall (June to August), there 
were fewer LSD outbreaks recorded in those cluster areas. However, 
following this rainy season (October to December), there was a higher 
incidence of LSD outbreaks. These outcome is also consistent with 
Molla et al. (11), as their research indicated an inverse pattern of LSD 
outbreak when compared to the precipitation pattern, in other words, 
during the high rainy (wet) season (July and August), the precipitation 
was high and LSD outbreak was low, whereas from October to 
December the precipitation was declined but LSD outbreak burden 
was very high. These results have significant implications for future 
national vaccination strategies.

Moreover, the cluster 4, located in the central region of Addis 
Ababa, has the smallest spatial coverage. This cluster may 
be associated with a high density of commercial farms, particularly 
dairy and fattening farms (53), which favors mechanical vector 
transmission of LSD among farms. This finding is consistent with 
several previous studies that have suggested that the transmission of 
LSD is likely linked to arthropod vectors that are common in most 
dairy farms in Central Ethiopia, including arthropod horn flies, 
Haematobia irritans and tick vectors (54). This finding also supported 
by the study done in Balkan by Mercier et al. (55) that short-distance 
spread (approximately 7.3 km per week) of LSD virus was associated 
with cattle movements and presence of a windborne dispersal of 
virus-carrying vectors (12).

In terms of duration LSD outbreaks in clusters, the longest LSD 
outbreak persistence recorded in cluster 3 (central and southeast Oromia 
region) which lasted for 3 years whereas, most of the other clusters 
persisted only for 1 year. These differences might depend on the variability 
of LSD local transmission factors including types of cattle breeds, insect 
vectors burden, effort in disease prevention (vaccination status) and 
status of uncontrolled animal movement (11, 47). The last cluster (cluster 
8) which was located in south-west Ethiopia (SNNP, Kaffa and Sheka 
Zones) bordering with South Sudan. In this cluster, especially the Kaffa 
zone (dense forest and high coffee producing area) covered relatively high 
rainfall which provide wet and humid micro-climates provides suitable 
environment for multiplication of LSD transmitting flies (56). In general, 
it has been observed in this study that all the eight clusters identified are 
mostly located in areas with a high incidence of LSD outbreaks, such as 
Oromia, Amhara, SNNPS, and Tigray as illustrated in Figures 1, 8. This 
finding is also supported by previous reports from other researchers (10, 
11), who identified a high distribution of the LSD virus in these (10, 11) 
regions, particularly in specified zones including the central part of 
Oromia region, Addis Ababa, and the southwest part of Ethiopia, such as 
Illubabor, Jimma, Aris, and Bale zone. Meanwhile, we  have to also 
consider and treat the issue consciously underreporting might causing 
missing of some significant clustering (53).

Overall, a retrospective analysis of ST-clusters related to the 
occurrence of LSD could reveled important insights into the 
spatiotemporal dynamics of the LSD distribution in time and spaces. 
Such insights can be useful in developing strategic plans for controlling 
and preventing LSD in Ethiopia. It is critical to identify and 
understand the patterns of disease transmission to effectively manage 

the disease. Therefore, the knowledge generated from this retrospective 
space–time cluster analysis is an essential tool for disease surveillance 
and control as well as vector control strategies in Ethiopia. It aided in 
the identification of high-risk areas in terms of clusters. By using such 
clusters, we can enhance our interventions including LSD vaccination, 
vector control and restriction of illegal animal movements and putting 
strategic surveillance mechanism which ultimately improve the 
effectiveness of our control strategies.

5 Conclusion

The main goal of the current study was to evaluate the spatiotemporal 
distribution of LSD in Ethiopia based on retrospective outbreak reports 
from 2008 to 2020. This study aimed to gain a better understanding of 
the temporal and spatial dynamics of lumpy skin disease based on 
nationwide LSD outbreak data over the last 13 years (2008–2020). One of 
the more significant findings to emerge from this study is that throughout 
its 13 years, the data showed a constant seasonal pattern that was high 
during and after the rainy season and may be  related to arthropod 
burden. This suggests that, in general, while planning to campaign 
national LSD vaccination (control), the seasonality of the diseases should 
be considered. This study also indicated that statistical models such as 
SARIMA, STLF, and ETS, which were effective for seasonal time-series 
data, can be used to predict LSD outbreaks in the future. In the meantime, 
a combined models would give better prediction capacity than single one 
because each has its own advantages. Additionally, the eight possible 
clusters identified during space–time cluster analysis of LSD outbreak 
using STP model can give an insight during designing LSD outbreak 
intervention at national level. In general, Even though the limitation of 
this study (underreported outbreaks) might have a denied effect on the 
whole scope of findings, the findings will benefit livestock authorities in 
better understanding LSD epidemiology of the disease to enhance efforts 
and formulate an effective control strategy for preventing future 
LSD outbreaks.
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SUPPLEMENTARY FIGURE S1

Annual total sum of LSD outbreaks reported (2008-2020), Ethiopia.

SUPPLEMENTARY FIGURE S2

LSD cluster analysis map in Ethiopia (2008–2020). The map shows LSD 
outbreak clusters, with the spatial window covering a maximum of 10% of 
the population at risk. In the graph, yellow lines represent the district 
admirative divisions, whereas the circles indicate the 14 SaTScan cluster 
zones with their radii.

SUPPLEMENTARY FIGURE S3

LSD cluster analysis map in Ethiopia (2008–2020). The map shows LSD 
outbreak clusters, with the spatial window covering a maximum of 20% of 
the population at risk. In the graph, the yellow lines represent district 
administrative divisions, while the circles indicate the eight SaTScan cluster 
zones with their radii.

SUPPLEMENTARY FIGURE S4

LSD cluster analysis map in Ethiopia (2008–2020). The map represents LSD 
outbreak clusters where representative spatial window was the maximum of 
40% of the population at risk. In the graph, yellow lines represent the district 
admirative divisions, whereas the circles indicate the eight SaTScan cluster 
zones with their radia.

SUPPLEMENTARY FIGURE 5

LSD cluster analysis map in Ethiopia (2008–2020). The map shows LSD 
outbreak clusters with a spatial window covering up to 50% of the at-risk 
population. Yellow lines denote district administrative divisions, while circles 
mark the eight SaTScan cluster zones with their radii.
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