
A rapid VEGF-gene-sequence
photoluminescence detector for
osteoarthritis

Hao Huang1†, Shuang Li1†, Xianjing Han1, Yule Zhang2,
Lingfeng Gao3, Xiangjiang Wang1*, Guiqing Wang1* and
Zhi Chen2*
1Department of Orthopaedics, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan
People’s Hospital, Guangzhou, China, 2Key Laboratory of Optoelectronic Devices and Systems of
Ministry of Education and Guangdong Province, Collage of Physics and Optoelectronics Engineering,
Shenzhen University, Shenzhen, China, 3College of Material Chemistry and Chemical Engineering, Key
Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou
Normal University, Hangzhou, Zhejiang, China

Osteoarthritis (OA) has become a serious problem to the human society for years
due to its high economic burden, disability, pain, and severe impact on the
patient’s lifestyle. The importance of current clinical imaging modalities in the
assessment of the onset and progression of OA is well recognized by clinicians,
but these modalities can only detect OA in the II stage with significant structural
deterioration and clinical symptoms. Blood vessel formation induced by vascular
endothelial growth factor (VEGF) occurs in the early stage and throughout the
entire course ofOA, enables VEGF relating gene sequence to act as a biomarker in
the field of early diagnosis and monitoring of the disease. Here in, a facile rapid
detection of VEGF relating ssDNA sequence was developed, in which
manganese-based zeolitic imidazolate framework nanoparticles (Mn-ZIF-NPs)
were synthesized by a simple coprecipitation strategy, followed by the
introduction and surficial absorption of probe ssDNAs and the CRISPR/Cas12a
system components. Furthermore, fluorescence experiments demonstrated that
the biosensor displayed a low detection limit of 2.49 nM, a good linear response
to the target ssDNA ranging from 10 nM to 500 nM, and the ability of
distinguishing single nucleotide polymorphism. This finding opens a new
window for the feasible and rapid detection of ssDNA molecules for the early
diagnose of OA.
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1 Introduction

As the sixth leading cause of disability in the world, OA affects nearly 240 million people
worldwide. Approximately 20% of the world’s population will be over 60 years old by
2050 according to the report of World Health Organization (WHO), in which 15% will
have symptomatic OA, and one-third of these people will be severely disabled (Nelson, 2018). As
a kind of chronic, debilitating joint disease, OA goes beyond anatomical and physiological
degenerative alterations caused by cellular stress and degradation of the extracellular cartilage
matrix begin with micro-and macro-injuries, which can be mainly characterized by joint
degeneration with gradual loss of joint cartilage, bone hypertrophy, changes in the synovial
membrane, and mechanical dysfunction (Gardner, 1983; Cicuttini and Wluka, 2014;
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Tiulpin et al., 2018; Abedin et al., 2019; Chen et al., 2019). Since OA is a
very common disease, the early diagnose of it is of crucial importance
for the purpose of providing affected patients with proper preventive
treatments to delay the progression of OA disease, improve the long-
term life quality of these patients, and alleviate the medical burden of
human society (Chu et al., 2010; Chu et al., 2012; Iolascon et al., 2017).
However, current clinical imaging techniques such as computed
tomography (CT) and magnetic resonance imaging (MRI) can only
detect OA in the II stage with significant structural deterioration and
clinical symptoms (Möller et al., 2008; Braun and Gold, 2012; Roemer
et al., 2014), while some biomolecular changes have already taken place
prior to this irreversible stage (Debabrata and Sandell Linda, 2011).
Articular cartilage (AC) is a layer of transparent cartilage primarily

composed of cartilage matrix and chondrocytes located within
the matrix lacunae, without any existence of blood vessels or
lymphatic vessels. Oxygen molecules and nutrients needed by
chondrocytes are supplied by surrounding synovial fluid and the
underlying subchondral bone through the diffusion effect.
Throughout one’s lifetime, AC maintains a hypoxic
microenvironment, which can promote the proliferation and
differentiation of chondrocytes and then benefit the synthesis
of extracellular matrix. However, blood vessel formation is
commonly observed in the AC of OA patients with higher
expression level of VEGF in synovial fluid and blood. VEGF
can activate endothelial cells and promote their proliferation and
differentiation, thereby facilitating the generation of blood
vessels in the synovium. Consequently, the formed vascular
plexus can cover the surface of AC, preventing the
chondrocytes from receiving nutrients from the synovial fluid,
then lead to the degradation and destruction of AC (Jansena et al.,
2012; Quan et al., 2014; Hamilton et al., 2016; Nagao et al., 2017).
As mentioned above, the key role of VEGF playing in the
development and progression of OA enables its relating gene
sequence to act as a diagnostic marker of the disease.

Clustered regularly interspaced short palindromic repeats
(CRISPR)-Cas12a systems can recognize and indiscriminately
cleave single-stranded DNA (ssDNA) upon recognition of the
complementary DNA by a unique trans-cleavage effect (Chen
et al., 2018; Pickar-Oliver and Gersbach, 2019). With the help of
this unique trans-cleavage effect of Cas12a protein, CRISPR/Cas12a
systems can bring better specificity and efficiency to the field of rapid
and simple detection based on fluorescence analysis, which inspired
our research (Li et al., 2018; Zhou et al., 2018; Xue et al., 2020; Chen
et al., 2022; Wu et al., 2022). Herein, CRISPR/Cas12a and Mn-ZIF-
NPs were synergistically driven to build a novel fluorescence-on type
biosensor to achieve rapid detection of the VEGF gene sequences.
Firstly, Mn-ZIF-NPs was prepared by a facile coprecipitation strategy
(Scheme 1a). After that, the cyanine5 (Cy5)-labelled probe 5′-amino
ssDNAs were added and adsorbed to the surface of as-prepared Mn-
ZIF-NPs via the electrostatic interaction between the positive amino
groups of probe ssDNAs and the negative surface of Mn-ZIF-NPs.

TABLE 1 Sequence information of oligonucleotides used in the
experiments, and mutated sites are presented as bold letters and labelled
as red.

Name Sequence (5′-3′)

probe
ssDNA

Cy5—TTATT—NH2

crRNA UAA UUU CUA CUA AGU GUA GAU UCU GAG UCG GAG
GCU GUG GU

target
ssDNA

AGG GCA GGG CCC ACC ACA GCC TCC GAC TCA GAG GAA
GAG GCT GCC CTG CAA GGA GGC CTC

M11 AGG GCA GGG CCC ACC ACA GCCACC GAC TCA GAG GAA
GAG GCT GCC CTG CAA GGA GGC CTC

M12 AGG GCA GGG CCC ACC ACA GCC TCC GCC TCA GAG GAA
GAG GCT GCC CTG CAA GGA GGC CTC

M13 AGG GCA GGG CCC ACC ACA GCC TCC GAC CCA GAG GAA
GAG GCT GCC CTG CAA GGA GGC CTC

M2 AGG GCA GGG CCC ACC ACA GCC TCC GAC TCT CAG GAA
GAG GCT GCC CTG CAA GGA GGC CTC

M3 AGG GCA GGG CCC ACC ACA GCC ACC GAC TCT CAG GAA
GAG GCT GCC CTG CAA GGA GGC CTC

NC AAA TGG CGA ATC CAA TTC CAA GAG GGA CCG TGC TGG
GTC ACC CGC CCG GGA ATG CTT CCG

Mutated sites are presented as bold letters and labelled as red.

SCHEME 1
(A). Fabrication and (B). schematic diagram of Mn-ZIF-NPs-based CRISPR/Cas12a fluorescent-on type VEGF-related ssDNA sensing nanoplatform.
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The close proximity of probe DNA-Cy5 and Mn-ZIF-NPs led to
fluorescence quenching of the dye, as the result of the fluorescence
resonance energy transfer (FRET) from Cy5 to Mn-ZIF-NPs. After
the addition of target VEGF-related DNA, the crRNA formed a
duplex with this complementary ssDNA strand by hybridization,
and then bound with the Cas12a protein to form a Cas12a-crRNA/
ssDNA complex, which leads to the cleavage of probe DNA and the
visual fluorescence recovering (Scheme 1b).

2 Materials and methods

2.1 Materials and instruments

The polyvinylpyrrolidone (PVP24000) was purchased from
Aladdin Reagents. The manganese chloride tetrahydrate
(MnCl2·4H2O, 99.99%) and 2-methylimidazole (98%) were both

purchased from Macklin Inc. Oligonucleotides were purchased
from Tsingke Biotech. Co. Ltd. (Beijing, China) with the sequence
information shown in Table 1. Ultrapure water (18.25 MΩ·cm,
25°C) was used to prepare all solutions. All other chemicals used in
this study were of analytical reagent grade and were used without
further purification. The CRISPR/Cas12a assay kit purchasing
from EZassay Biotech. Co. Ltd. (Shenzhen, China) was used in
accordance with the manufacturer’s guidelines unless otherwise
stated. The ultrasonication cleaner, Elmasonic S 60, was purchased
from Elma Co. Ltd., Germany. The centrifuge used in this work
was a Sigma 3-30k (Sigma, Germany). Fluorescence photos were
taken by Quantum ST5 (Vilber Lourmat Co. Ltd., France) and the
corresponding quantitative measurements were performed with an
LightCycler 480II (Roche Ltd., Switzerland). HRTEM images and
EDS Mapping data were both taken under a Talos F200X
microscope (FEI Electronics, U.S.A.). AFM images were
obtained with Demension icon and XRD data were collected

FIGURE 1
Characterization of the as-prepared Mn-ZIF-NPs. (A, B) HRTEM images, (C, D) AFM images, (E, F) EDS Mapping images.
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using a D8 Advance instrument (both Bruker, Germany). UV-VIS-
NIR curve was measured by UH4150 (Hitachi, Japan).
Zeta potential was taken by an Zetasizer Nano ZS90
(Malvern, England).

2.2 Material preparation

In brief, 500 mg PVP24000 was dissolved in 20 mL ultrapure
water with continuous stirring of 500 rpm, followed by the

FIGURE 2
Characterization of the as-prepared Mn-ZIF-NPs. (A) XPS spectrum, (B)Mn 3s, (C)C1s, (D)O1s, (E)N1s. (F) Raman spectrum, (G) XRD pattern and (H)
UV-VIS-NIR curve.
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addition of MnCl2·4H2O aqueous solution (1 M, 500 μL) and
stirring for 3 min. Meanwhile, 2-methylimidazole aqueous
solution (1 M, 1 mL) was diluted into 20 mL ultrapure water
and then this diluted solution was injected into the
abovementioned MnCl2·4H2O aqueous solution, followed by
another stirring for 30 min. The resulting suspension was
collected and centrifuged at 25000 × g for 2 min, and the
precipitation was been washed with ultrapure water for several
times. Finally, the as-prepared product was re-dispersed into
ultrapure water, then was sealed and stored in a dark
environment at room temperature.

2.3 Fluorescent assay of DNA detection

The fluorescent measurements were carried out in 8-strip PCR
tubes at 37°C. At the first, 10× reaction buffer (2 μL), Cas12a protein
(2 μM, 1 μL) and crRNA (4 μM, 1 μL) were mixed in RNase-free
water and incubated at 37°C for 15 min, followed by the addition of
various concentration of VEGF-related target ssDNA or mismatch
ssDNA (1 μL) and then another incubation at 37°C for 15 min. After
that, various concentration of Mn-ZIF-NPs and probe Cy5-ssDNA-
NH2 (10 μM, 1 μL) were added with the final volume of 20 μL filled
with RNase-free water. Finally, the fluorescence measurement was
performed at 37°C.

3 Results and discussions

3.1 Material characterization

The HRTEM images (Figures 1A, B) of the Mn-ZIF-NPs reveal
irregular nanocrystals with a mean diameter of about 50 nm and clear
lattice fringes of 0.267 nm. The AFM images (Figures 1C, D) indicate
that the average thickness of NPs was less than 3.5 nm. EDS element
mapping in Figures 1E, F confirms the uniformly distribution of
Mn(red), O(yellow), C(green) and N(blue) elements inside the NPs.

Mn-ZIF-NPs were subjected to XPS analysis to find the
elemental states and the result is shown in Figures 2A–D. The
observed Mn 3s binding energy values are 83.2 eV and 88.7 eV
with two multiple split components caused by coupling of non-
ionized 3s electron with 3d valence-band electrons. The ΔE of
5.5 eV is in the range between 6.0 eV (MnO, Mn2+) and 5.3 eV
(Mn2O3, Mn3+), indicating that the Mn was observed in multiple
oxidation states in the imidazolate framework (Biesinger et al.,
2011). Besides, the carbon functionalities like C-C, C-O-C, and
O-C=O were observed at 283.4 eV, 285.4 eV and 288 eV,
respectively (Shchukarev and Korolkov, 2004). Furthermore, the
O 1s spectrum of 529.5 eV and 530.4 eV correspond to Mn−O and
C=O/Mn-OH, respectively (Figure 2D). The N 1s XPS spectrum in
Figure 2E reveals the existence of 399.7 eV corresponding to C-N.
In Figure 2F, the major Raman peak in the spectra of Mn-ZIF-NPs

FIGURE 3
(A). The fluorescence curve of probe ssDNA in the presence of Mn-ZIF-NPs at different concentrations (750, 500 and 250 μg/mL) after incubation
with target VEGF-related ssDNA (100 nM) for 15 min at 37°C. (B) The calibration relationship of ΔF versus the concentration of target ssDNA (CssDNA) when
theMn-ZIF-NPs concentrationwas 750 μg/mL. (C) The calibration relationship of ΔF versusCssDNAwhen theMn-ZIF-NPs concentrationwas 500 μg/mL.
(D) The calibration relationship of ΔF versusCssDNAwhen theMn-ZIF-NPs concentrationwas 250 μg/mL. The curves represent the average values of
three wells with error bars showing the standard deviation of three wells at each condition.
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at 642.8 cm−1 can be ascribed to the Mn2+/3+ coordinated with the
imidazolate framework. As is shown in Figure 2G, the X-ray
diffraction (XRD) peaks of Mn-ZIF-NPs well indexed to

coincide with other work (Sankar Selvasundarasekar et al.,
2022). The relative high absorption intensity in the VIS region
enables the Mn-ZIF-NPs to efficiently quench the fluorescence of
our probe ssDNA (Figure 2H), while the zeta potential peak of Mn-
ZIF-NPs at −3.26 mV makes the surface absorption of probe
DNA possible.

3.2 Optimization of experimental conditions

The concentration of probe ssDNA and Mn-ZIF-NPs were
optimized to make the performance of the biosensor best. The tested
probe ssDNA concentration varied from 250 to 1,000 nM, and three
concentrations of Mn-ZIF-NPs (750, 500 and 250 μg/mL) were
compared after incubation with target VEGF-related ssDNA
(100 nM) for 15 min at 37°C. Figure 3A shows the fluorescence
curve of probe ssDNA in the presence of Mn-ZIF-NPs at different
concentrations, illustrating that the quenching efficiency of probe
ssDNA become higher as the concentration of Mn-ZIF-NPs
increased, possibly due to the increased amount of probe ssDNA
absorbed on Mn-ZIF-NPs. The results for target ssDNA detection
were presented in Figures 3B–D. When the concentration of Mn-
ZIF-NPs was 750 μg/mL, no linear interval for target ssDNA
detection can be observed. Figure 3C shows that there is a linear
relationship between ΔF (ΔF = F/F0—1, F0 is the fluorescence
intensity of the probe Cy5-ssDNA, F is the fluorescence intensity of

FIGURE 4
Performance of as-prepared ssDNA sensor. (A) Fluorescence image of the CRISPR/Cas12a system including probe Cy5-ssDNA solution (500 nM)
before and after mixing with Mn-ZIF-NPs (500 μg·mL−1), the Cy5-ssDNA/Mn-ZIF-NP complex after incubation with target VEGF-related ssDNA (100 nM)
for 15 min at 37°C. (B)Corresponding fluorescence spectra of the probe Cy5-ssDNA (black curve), Cy5-ssDNA/Mn-ZIF-NPs (blue curve) and Cy5-ssDNA/
target ssDNA/Mn-ZIF-NPs (red curve). (C) The fluorescence emission spectra of the probe ssDNA after incubating with varying concentrations of
target ssDNA at 10, 20, 50, 100, 250 and 500 nM for a total of 30 min. (D) The calibration curve of OD versus CssDNA (10–500 nM). The curves represent
the average values of three wells with error bars showing the standard deviation of three wells at each concentration.

FIGURE 5
Specificity assay of as-prepared ssDNA sensor. The fluorescence
emission spectra upon the addition of target ssDNA, M11, M12, M13,
M2, M3, and NC with the same concentration of 100 nM. The error
bars represent the standard deviation of three wells under the
same conditions.
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the probe Cy5-ssDNA/Mn-ZIF-NP complex after incubating with
different concentrations of target ssDNA) and CssDNA in the
concentration range of 10 to 500 nM for 500 nM probe ssDNA,
20 to 100 nM for 250 nM probe ssDNA and 10 to 100 nM for
1,000 nM probe ssDNA when the concentration of Mn-ZIF-NPs was
500 μg/mL, respectively. However, when the concentration of Mn-ZIF-
NPs further reduces to 250 μg/mL, no linear interval for target ssDNA
detection can be observed again (Figure 3D). With the aim of getting
clear linear relationship with widest detection range, 500 nM of probe
ssDNA and 500 μg/mL of Mn-ZIF-NPs were employed for target
ssDNA detection.

3.3 DNA sensing performance of Mn-
ZIF-NPs

Figure 4A depicts fluorescence photos of the probe Cy5-ssDNA
solution, as the strong fluorescence dramatically quenched after the
addition of Mn-ZIF-NPs with the final concentration of
500 μg·mL−1, confirming the efficient quenching capability of the
Mn-ZIF-NPs. As shown in Figure 4C, the addition of the target
VEGF related ssDNA followed by a total of 30 min’ incubation at
37°C leads to obvious fluorescence recovery even can be directly
observed by naked eyes, which is primarily due to the cleavage of
probe ssDNA by Cas12a-crRNA/target ssDNA complex and the
releasing of Cy5 from the surface of Mn-ZIF-NPs.

To validate the abovementioned naked-eyes observation more
precisely, we performed the fluorescence spectroscopy measurement
shown in Figure 4B. The initial value of strong emission of probe Cy5-
ssDNA at 670 nm is 56.8 a.u. (black curve). After the addition of Mn-
ZIF-NPs, the fluorescence intensity is rapidly quenched to 0.29 a.u.
(blue curve). Due to the cleavage of probe ssDNA by Cas12a-crRNA/
target ssDNA complex, the fluorescence intensity is greatly increased
to 26.9 a.u. after the addition of target ssDNA (red curve).

To examine the sensitivity of this nanoplatform, different
concentrations of ssDNA were introduced and then a progressive
increase in the fluorescence intensity at λ = 670 nm with increasing
ssDNA concentration is observed (Figure 4C), which exhibits a
linear response in the concentration range of 10 nM–500 nM. The
linear regression equation is ΔF = −0.59666 + 0.000543007·CssDNA

(nM, r2 = 0.9998). The detection limit is 2.49 nM as estimated
according to the 3σ rule (Figure 4D).

To study the selectivity of this platform, a comparison of the
fluorescence recovery responses of the target ssDNA, mismatched
ssDNA (M11, M12, M13, M2, M3) and non-complementary ssDNA
(NC) was performed. As shown in Figure 5, the F/F0 value obtained
upon the incubation of 100 nM target ssDNA, M11, M12, M13, M2,
M3 and NC are 0.477, 0.266, 0.256, 0.264, 0.262, 0.252 and 0.218,
respectively. The fluorescence intensity ratios of all the mismatched
group don’t show obvious differences, which demonstrated that our
biosensor could distinguish the target ssDNA from single-base
mismatched or non-complementary ones.

3.4 Additional specificity test

We also tested the responses of biosensor after mixed target
ssDNA with M11, M2, M3 and NC, respectively. In our
experiments, the detected concentrations of “100 nM target”,
“100 nM target mixed with 40 nM M11”, “100 nM target
mixed with 40 nM M2”, “100 nM target mixed with 40 nM
M3” and “100 nM target mixed with 40 nM NC” are
calculated by the linear equation of biosensor. As can be seen
from Table 2, the accuracies are in the range of 90% to 110%,
which demonstrated that the signal of target ssDNA remains
almost the same in the presence of other ssDNAs. The results
further verify the specificity of the biosensor.

4 Conclusion

In summary, we built a simple and fast CRISPR/Cas12a-based
VEGF related ssDNA detection nanoplatform by employing Mn-
ZIF-NPs prepared through facile nanoprecipitation strategy as
fluorescence quenching material. The biosensor had a linear
range of 10–500 nM, a detection limit of 2.49 nM, with excellent
specificity of single nucleotide polymorphism. It is therefore
envisaged that our research paves the way for further
investigations and applications of CRISPR/Cas12a system and
nanomaterials in fluorescence quenching-based biosensing for
biomedical research and particular the early clinical
diagnostics of OA.
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