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Background: Chronic Obstructive lung diseases (COPD) are complex conditions 
influenced by various environmental, lifestyle, and genetic factors. Ambient air 
pollution has been identified as a potential risk factor, causing 4.2 million deaths 
worldwide in 2016, accounting for 25% of all COPD-related deaths and 26% of all 
respiratory infection-related deaths. This study aims to evaluate the associations 
among chronic lung diseases, air pollution, and meteorological factors.

Methods: This cross-sectional study obtained data from the Taiwan Biobank and 
Taiwan Air Quality Monitoring Database. We defined obstructive lung disease as 
patients with FEV1/FVC  <  70%. Descriptive analysis between spirometry groups 
was performed using one-way ANOVA and the chi-square or Fisher’s exact test. A 
generalized additive model (GAM) was used to evaluate the relationship between 
SO2 and PM2.5/PM10 through equations and splines fitting.

Results: A total of 2,635 participants were enrolled. Regarding environmental 
factors, higher temperature, higher relative humidity, and lower rainfall were 
risk factors for obstructive lung disease. SO2 was positively correlated with PM10 
and PM2.5, with correlation coefficients of 0.53 (p <  0.0001) and 0.52 (p  <  0.0001), 
respectively. Additionally, SO2 modified the relative risk of obstructive impairment 
for both PM10 [β coefficient (β)  =  0.01, p =  0.0052] and PM2.5 (β =  0.01, p =  0.0155). 
Further analysis per standard deviation (per SD) increase revealed that SO2 also 
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modified the relationship for both PM10 (β =  0.11, p =  0.0052) and PM2.5 (β =  0.09, 
p =  0.0155). Our GAM analysis showed a quadratic pattern for SO2 (per SD) and 
PM10 (per SD) in model 1, and a quadratic pattern for SO2 (per SD) in model 2. 
Moreover, our findings confirmed synergistic effects among temperature, SO2 
and PM2.5/PM10, as demonstrated by the significant associations of bivariate 
(SO2 vs. PM10, SO2 vs. PM2.5) thin-plate smoothing splines in models 1 and 2 with 
obstructive impairment (p <  0.0001).

Conclusion: Our study showed high temperature, humidity, and low rainfall 
increased the risk of obstructive lung disease. Synergistic effects were observed 
among temperature, SO2, and PM2.5/PM10. The impact of air pollutants on 
obstructive lung disease should consider these interactions.

KEYWORDS

synergistic effect, air pollutants, climate factors, obstructive lung disease, generalized 
additive model

1. Introduction

Obstructive lung diseases such as asthma, chronic obstructive 
pulmonary disease (COPD), and bronchiectasis are complex 
heterogeneous diseases resulting from interactions among 
environmental, lifestyle, and genotype factors. In 2015, around 358.2 
and 174.5 million individuals worldwide had asthma and COPD, 
respectively, and 0.4 and 3.2 million people died from the diseases (1). 
The high prevalence and mortality associated with obstructive lung 
disease result in significant medical and social costs (2, 3) and 
therefore it is crucial to determine the risk factors and comorbidities 
that cause obstructive lung disease.

Ambient air pollution has been identified as a potential risk factor 
for obstructive lung disease. Air pollution is a mixture of hazardous 
substances, including particulate matter (PM10, PM2.5), sulfur dioxide 
(SO2), nitrogen monoxide (NO), nitrogen dioxide (NO2), nitrogen 
oxides (NOx), carbon monoxide (CO), and ozone (O3). Aerosol-like 
air pollutants are transported to the alveoli by inhalation, and PM is 
subsequently deposited in the respiratory tract. These air pollutants 
can induce the release of inflammatory mediators and lead to the 
development of obstructive lung disease. Previous studies have 
revealed associations between exposure to air pollutants and daily 
admissions for COPD (4) and increased mortality and morbidity (5, 
6). In 2016, ambient air pollution was reported to cause 4.2 million 
deaths worldwide, including 25% of all COPD deaths and 26% of all 
respiratory infection-related deaths (7, 8). Ambient air pollution has 
also been associated with cardiovascular (9, 10) and central nervous 
system diseases (11). Furthermore, air pollution is correlated with 
meteorological factors (12). A previous study demonstrated an 
additive interaction between high temperature and air pollution (13), 
and another study found that a decrease in lung function was related 
to high temperature and humidity (14).

Air pollution usually contains many harmful components, and 
interactions between these components are possible. For example, Yun 
et al. found a synergistic effect between PM10 and SO2. In their study, 
cell damage and apoptosis occurred at low exposure to both PM10 and 
SO2, however these effects were not observed when exposed to either 
PM10 or SO2 alone at the same concentration (15). In addition, Ku 
et al. reported that low exposure to both PM2.5 and SO2 could lead to 

neurodegeneration (16). Moreover, interactions between fine particles 
with NO2 or O3 have also been associated with adverse effects such as 
cardiovascular diseases (17, 18) and respiratory diseases (19), as well 
as an increased risk of preterm birth (20). Taken together, interactions 
between air pollutants can affect health even at a low concentrations, 
and therefore it is important to understand the synergistic impact of 
air pollutants on health.

In this study, we  aimed to evaluate the relationships among 
chronic lung diseases, air pollution, meteorological factors and 
anthropometric indices, and also the synergistic effect of SO2 and 
PM2.5/PM10. We hypothesized that exposure to SO2 and PM2.5/PM10 air 
pollution may be  associated with lower lung function and higher 
prevalence of obstructive lung disease, even at relatively lower 
concentrations of PM2.5 and PM10.

2. Materials and methods

2.1. Data source and study population

This cross-sectional study used data from two large databases: the 
Taiwan Biobank (TWB) and the Taiwan Air Quality Monitoring 
Database (TAQMD), both of which were obtained from the Taiwan 
Environmental Protection Administration (TEPA). The Taiwan 
Biobank (TWB) is the largest biobank in Taiwan, consisting of 
biological samples and associated data collected from volunteers aged 
between 30 and 70 years old who do not have a history of cancer. Prior 
to participation, every individual provided informed consent and 
underwent a face-to-face comprehensive interview, physical 
examination, blood sampling, and completed a questionnaire covering 
personal information and lifestyle factors. These procedures ensured 
that a detailed and comprehensive set of data could be collected for 
analysis, contributing to the understanding of health and disease in 
the Taiwanese population. We  used data from 74 air quality 
monitoring stations located throughout Taiwan, as recorded by the 
TAQMD on a daily basis. The TAQMD was established by the 
Executive Yuan of the Taiwan Environmental Protection 
Administration, and is comprised of daily air pollutant concentration 
data at the study period of data collection. PM2.5 and PM10 were 
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detected by β-ray attenuation method, SO2 was detected by ultraviolet 
fluorescence method, CO was determined by nondispersive infrared 
method, O3 was calculated by ultraviolet absorption method, NOx was 
detected by chemiluminescence method. All air pollutant data is 
stored in the cloud every hour for free. The average concentrations of 
air pollutants in a selected year were obtained before analysis.

By utilizing both the TWB and TAQMD, we  were able to 
determine the nearest air quality monitoring station to the residential 
addresses of the participants using a three-step procedure. First, 
we used Google geocoding to determine the exact geoposition of each 
residential address. Second, we determined the interpolation point 
between each residential address and the nearest air quality 
monitoring station. Lastly, we  selected data from the air quality 
monitoring station recorded during the year leading up to the survey 
date and calculated the average values of air pollutants including 
PM2.5, PM10, CO, NO, NO2, NOx, SO2, and O3 for the chosen year (21).

2.2. Variables

The following variables were recorded: demographic characteristics 
including age, gender, smoking and alcohol consumption; 
anthropometric parameters including height, weight, body mass index 
(BMI), body adiposity index (BAI), and body roundness index (BRI); 
comorbidities including hypertension, type 2 diabetes, renal failure, 
metabolic syndrome, and coronary artery disease; region of Taiwan, 
including northern, central, and southern regions; and meteorological 
factors including temperature (in Celsius), relative humidity (in 
percentage), and rainfall (in millimeters).

2.3. Lung function status

Pulmonary function parameters including forced expiratory 
volume in one second (FEV1), forced vital capacity (FVC), FEV1/
FVC% ratio, FVC-predicted value, and FEV1-predicted value, were 
recorded in the TWB. Technicians used MicroLab spirometers and 
Spida 5 software (Micro Medical Ltd., Rochester, Kent, UK) (22) to 
perform spirometry measurements. Obstructive lung diseases 
including asthma, COPD, and bronchiectasis were defined as patients 
with FEV1/FVC < 70%, according to the American Thoracic Society 
and European Respiratory Society guidelines.

2.4. Statistical analysis

We used one-way ANOVA and the chi-square or Fisher’s exact 
tests as appropriate. Multinomial logistic regression was used to 
estimate crude odds ratios (ORs) and 95% confidence intervals (CIs). 
Stepwise multinomial logistic regression was used to calculate adjusted 
ORs and 95% CIs. In addition, for the factors showing a significant 
association in the crude analysis, estimated adjusted ORs and 95% CIs 
were further used to evaluate associations between covariant factors 
and obstructive lung disease. Pearson’s correlation analysis was used to 
evaluate the relationships between variables (temperature, relative 
humidity, rainfall, PM10, PM2.5, and SO2). As correlations between SO2 
and PM2.5 and SO2 and PM10 were found, a generalized additive model 
(GAM) was further used to evaluate the relationships between SO2 and 

PM2.5 and SO2 and PM10 to fit equations and splines, and to explore 
linear and nonlinear effects of SO2 and PM2.5 or PM10 on the outcomes 
of obstructive impairment. All data analyses were performed using SAS 
software version 9.4 (SAS Institute Inc., Cary, NC, USA).

3. Results

3.1. Profiles of the participants

The mean age of the 2,635 enrolled participants was 
49.80 ± 10.53 years. Of these participants, 1,225 (46.5%) were men, and 
1,410 (53.5%) were women. The participants were stratified into two 
groups according to lung function test results: the control group 
(normal spirometry group) and chronic lung disease group 
(obstructive impairment). Overall, 72.2% (1902/2635) of the 
participants were classified into the control group, and 27.8% 
(733/2635) were classified into the chronic lung disease group. 
Propensity score matching (1:2) was performed to balance the baseline 
characteristics between the two groups. Table 1 shows the results of 
baseline characteristics before and after propensity score matching.

There were no significant differences in age, gender, smoking, 
alcohol consumption, anthropometric factors and comorbidities, 
including hypertension, type 2 diabetes mellitus, renal failure, 
metabolic syndrome, and coronary artery disease between the two 
groups. Regarding meteorological factors, higher temperature, higher 
relative humidity, and lower rainfall were risk factors for obstructive 
lung disease. In addition, we  found that exposure to SO2 in the 
environment increased the impact on patients with obstructive lung 
disease, whereas PM2.5 and PM10 decreased the impact (Table 1).

3.2. Correlations among meteorological 
factors and SO2, PM2.5/PM10

We found that SO2 was positively correlated with PM10 and PM2.5, 
with correlation coefficients of 0.53 (p < 0.0001) and 0.52 (p < 0.0001), 
respectively (Table 2). In addition, PM10 and PM2.5 were also positively 
correlated (correlation coefficient = 0.69, p < 0.0001).

3.3. Associations among obstructive lung 
disease, meteorological factors and SO2, 
PM2.5/PM10

To further determine whether SO2 modified the relationship of 
PM10 or PM2.5 with the relative risk of obstructive impairment, beta 
coefficients with standard error [β (SE)] and p-values for interaction 
were calculated. The results showed that SO2 modified the relationship 
of both PM10 (β = 0.01, p = 0.0052) and PM2.5 (β = 0.01, p = 0.0155) 
with the relative risk of obstructive impairment (Table 3). Analysis of 
per standard deviation (per SD) increase also showed that SO2 
modified the relationship of both PM10 (β = 0.11, p = 0.0052) and PM2.5 
(β = 0.09, p = 0.0155). Table 3 shows the crude ORs of meteorological 
factors and SO2, PM2.5/PM10. Compared with the control group, the 
obstructive impairment group was associated with higher temperature, 
higher relative humidity, and lower rainfall, and also exposure to a 
higher level of SO2 and lower levels of PM2.5 and PM10. Interactions 
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TABLE 1 Descriptive statistics of the demographic, laboratory, meteorological factors, and air pollutants.

Total Obstructive 
impairment (2)

Normal 
spirometry (1)

p Normal 
spirometry (1) 

(1:2 matching)*

p

n 2,635 733 1902 1,466

FEV10_PRED, mean 

(SD)
84.89 (22.35) 58.42 (18.31) 95.09 (13.73) <0.0001

95.13 (13.54)
<0.0001

≥80% 1747 (66.3) 80 (10.9) 1,667 (87.6) 1,291 (88.1)

50–80% 639 (24.3) 408 (55.7) 231 (12.1) 171 (11.7)

30–50% 204 (7.7) 200 (27.3) 4 (0.2) 4 (0.3)

<30% 45 (1.7) 45 (6.1) 0 (0.0) <0.0001 0 (0.0) <0.0001

Age (years), mean (SD) 49.80 (10.53) 50.56(10.68) 49.51 (10.46) 0.0216 50.51 (10.64) 0.9220

30–39 587 (22.3) 149 (20.3) 438 (23.0) 306 (20.9)

40–49 710 (26.9) 186 (25.4) 524 (27.5) 359 (24.5)

40–59 816 (31.0) 231 (31.5) 585 (30.8) 466 (31.8)

≥60 522 (19.8) 167 (22.8) 355 (18.7) 0.0632 335 (22.9) 0.9713

Sex, n (%)

Male 1,225 (46.5) 322 (43.9) 903 (47.5) 654 (44.6)

Female 1,410 (53.5) 411 (56.1) 999 (52.5) 0.1019 812 (55.4) 0.7615

Monitoring region, n 

(%)

Northern region 494 (18.7) 182 (24.8) 312 (16.4) 312 (21.3)

Central region 529 (20.1) 139 (19.0) 390 (20.5) 287 (19.6)

Southern region 1,612 (61.2) 412 (56.2) 1,200 (63.1) <0.0001 867 (59.1) 0.1691

Smoking, n (%)

None 1917 (72.8) 535 (73.0) 1,382 (72.7) 1,086 (74.1)

Current and former 718 (27.2) 198 (27.0) 520 (27.3) 0.8657 380 (25.9) 0.5836

Alcohol consumption, n 

(%)

None and sometimes 2,371 (90.0) 660 (90.0) 1711 (90.0) 1,323 (90.2)

Current and quit 264 (10.0) 73 (10.0) 191 (10.0) 0.9493 143 (9.8) 0.8792

Anthropometric 

parameter, mean (SD)

Height (cm) 162.94 (8.25) 162.52 (8.05) 163.09 (8.32) 0.1114 162.32 (8.14) 0.5725

Weight (kg) 64.38 (12.05) 64.08 (11.6) 64.49 (12.22) 0.4324 63.91 (11.99) 0.7482

Body mass index mean 

(kg/m2)

24.14 (3.4)
24.16 (3.32) 24.13 (3.44)

0.8202 24.15 (3.45) 0.9286

Body adiposity index 28.5 (3.88) 28.75 (3.79) 28.40 (3.92) 0.0369 28.75 (3.92) 0.9799

Body roundness index 3.71 (1.11) 3.74 (1.08) 3.70 (1.12) 0.4180 3.73 (1.13) 0.8682

Comorbidities, n (%)

Hypertension 275 (10.4) 78 (10.6) 197 (10.4) 0.8310 161 (11.0) 0.8086

Diabetes mellitus type 2 120 (4.6) 43 (5.9) 77 (4.0) 0.0449 60 (4.1) 0.0635

Renal failure 4 (0.2) 1 (0.1) 3 (0.2) 0.8998 3 (0.2) 0.7234

Metabolic syndrome 475 (18.0) 136 (18.6) 339 (17.8) 0.6620 277 (18.9) 0.8469

Coronary artery disease 27 (1.0) 6 (0.8) 21 (1.1) 0.5143 19 (1.3) 0.3194

Meteorological factors, 

mean (SD)

Temperature (°C) 24.33 (0.75) 24.41 (0.84) 24.31 (0.72) 0.0016 24.27 (0.75) 0.0001

(Continued)
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were also identified between SO2 and PM2.5/PM10 (Table 3). Model 1 
showed that the independent predictive factors were temperature 
(OR  =  1.24; 95% CI  =  1.09–1.41; p  = 0.0009), relative humidity 
(OR = 1.05; 95% CI = 1.01–1.10; p = 0.0160), rainfall (OR = 0.08; 95% 
CI = 0.01–0.68; p = 0.0202), PM10 (OR = 0.99; 95% CI = 0.98–0.99; 
p < 0.001), and SO2 (OR = 1.25; 95% CI = 1.14–1.36; p < 0.001). Model 
2 showed that the independent predictive factors were temperature 
(OR  =  1.31; 95% CI  =  1.15–1.49; p  < 0.001), relative humidity 
(OR = 1.04; 95% CI = 1.00–1.09; p = 0.0372), rainfall (OR = 0.08; 95% 
CI = 0.01–0.67; p = 0.0197), PM2.5 (OR = 0.97; 95% CI = 0.96–0.98; 
p < 0.001), and SO2 (OR = 1.28; 95% CI = 1.17–1.39; p < 0.001).

3.4. Interactions among obstructive lung 
disease with SO2 and PM2.5 or PM10

The GAM (Figure 1) showed that obstructive impairment was 
associated with a quadratic pattern for SO2 (per SD) and PM10 (per 

SD) in model 1, and a quadratic pattern for SO2 (per SD) but not PM2.5 
(per SD) in model 2. We  also found that the bivariate thin-plate 
smoothing spline in models 1 and 2 were significantly associated with 
obstructive impairment (p < 0.0001) (Table 4). In addition, bivariate 
smoothing of SO2, PM10 and PM2.5 showed evidence of the risk of 
obstructive impairment (Figures 2A,B). A semiparametric model was 
generated using the parametric effects of temperature (°C), relative 
humidity (%) and rainfall (mm/day) as the linear part of the model.

4. Discussion

In this study, we analyzed 2,635 participants in the TWB and 
found that factors associated with a higher risk of obstructive lung 
disease included higher temperature, higher relative humidity, and 
lower rainfall. We also found that SO2 was strongly associated with 
obstructive lung disease, while PM2.5 and PM10 were not. Further 

TABLE 2 Pearson correlation coefficients and p-values.

Temperature 
(°C)

P- 
value

Relative 
humidity 

(%)

P- 
value

Rainfall 
(mm/
day)

P- 
value

PM10 
(μg/
m3)

P- 
value

PM2.5 
(μg/
m3)

P- 
value

SO2 
(ppb)

Temperature 

(°C)

1.00

Relative 

humidity 

(%)

−0.15 <0.0001 1.00

Rainfall 

(mm/day)

−0.37 <0.0001 −0.18 <0.0001 1.00

PM10 (μg/

m3)

0.19 <0.0001 −0.37 <0.0001 0.14 <0.0001 1.00

PM2.5 (μg/

m3)

0.28 <0.0001 −0.37 <0.0001 0.08 0.0003 0.69 <0.0001 1.00

SO2 (ppb) 0.08 <0.0001 −0.33 <0.0001 0.21 <0.0001 0.53 <0.0001 0.52 <0.0001 1.00

Total Obstructive 
impairment (2)

Normal 
spirometry (1)

p Normal 
spirometry (1) 

(1:2 matching)*

p

Relative humidity (%) 74.28 (2.45) 74.51 (2.37) 74.20 (2.47) 0.0028 74.25 (2.49) 0.0158

Rainfall (mm/day) 0.22 (0.05) 0.21 (0.05) 0.22 (0.05) 0.0039 0.22 (0.05) 0.0001

Air pollution factors, 

median (IQR)

PM10 (μg/m3) 68.12 (17.2) 65.72 (17.51) 69.05 (16.99) <0.0001 67.74 (17.69) 0.0113

PM2.5 (μg/m3) 37.72 (10.8) 35.88 (10.74) 38.44 (10.74) <0.0001 37.47 (11.15) 0.0014

CO (ppm) 0.44 (0.18) 0.45 (0.20) 0.44 (0.17) 0.3033 0.45 (0.18) 0.7156

NO (ppb) 4.09 (3.83) 4.31 (4.29) 4.00 (3.64) 0.0666 4.19 (4.08) 0.5400

NO2 (ppb) 14.86 (5.6) 14.76 (6.45) 14.9 (5.23) 0.5875 14.83 (5.72) 0.8188

NOX (ppb) 18.93 (8.71) 19.06 (9.94) 18.88 (8.19) 0.6431 19.0 (9.08) 0.8936

O3 (ppb) 30.97 (3.85) 31.04 (4.04) 30.94 (3.78) 0.5466 30.89 (3.88) 0.3957

SO2 (ppb) 3.63 (1.19) 3.70 (1.39) 3.61 (1.09) 0.0809 3.57 (1.15) 0.0265

The two groups were propensity-score matched (1:2) for baseline characteristics of age categories, sex, live region, Smoke, Drink, BMI, BAI and BRI. Air pollution factors were analyzed using 
independent t-test to compare the obstructive impairment group with the comparison group of normal spirometry.

TABLE 1 (Continued)
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analysis revealed that SO2 synergistically interacted with PM2.5 and 
PM10 to increase the risk of obstructive lung disease.

Overall, 27.8% of our study population had obstructive 
impairment. However, a previous study estimated that the prevalence 
of COPD in Taiwan was around 6.1% (23), with a prevalence of 
asthma of around 5.1% (24). The higher percentage of obstructive 
impairment in our study may be due to the presence of higher annual 
mean concentrations of air pollutants in southern Taiwan than in 
other areas (25, 26). In Table 1, we present the average air pollution 
levels based on a total of 2,635 observations, indicating the following 
values: PM10: 68.12 μg/m3, PM2.5: 37.72 μg/m3, SO2: 3.63 ppb, CO: 
0.44 ppm, NO: 4.09 ppb, NO2: 14.86 ppb, NOx: 18.93 ppb. Furthermore, 
around 1,612 individuals, which accounts for 61.2% of the total, were 
from southern Taiwan. The findings align with those of our prior 
study (21). Fine particles play an essential role in the development of 
obstructive lung disease (25), and thus people exposed to higher 

concentrations of air pollution may have a higher prevalence of 
lung impairment.

We also found that people living in areas with a higher 
temperature, higher relative humidity In a previous study in 
Taiwan, Wu et  al. reported a V/U shaped relationship between 
temperature and air pollutants (12), and a temperature between 
24.3–24.9°C was associated with exposure to the lowest 
concentration of air pollutants. Thus, a higher or lower temperature 
may result in higher exposure to air pollution, which may then 
affect the development of obstructive lung disease. A study in 
New  York City found that the risk of hospitalization due to 
respiratory diseases increased by 2.7% per °C above the threshold 
of 28.9°C on the same day (27). Another study in London revealed 
that the risk of respiratory diseases was related to admission when 
the temperature increased by 5.44% per °C above a threshold 
(23°C) with a lag of 0–2 days (28). Thus, a higher temperature 

TABLE 3 Predicted obstructive impairment by crude and multiple logistic regression model.

PM10 or PM2.5 
by SO2

Model 1 Model 2 PM10 or PM2.5 
by SO2

Crude OR 
(95%CI)

P-value
β (SE), P for 
interaction

Adjusted 
OR 

(95%CI)
P-value

Adjusted 
OR 

(95%CI)
P-value

Adjusted β 
(SE), P for 

interaction

Temperature 

(°C)

1.26 (1.12–

1.41)
0.0001 1.24 (1.09–1.41) 0.0009 1.31 (1.15–1.49) <0.0001

Relative 

humidity (%)

1.05 (1.01–

1.08)
0.0160 1.05 (1.01–1.10) 0.0160 1.04 (1.00–1.09) 0.0372

Rainfall (mm/

day)

0.03 (0.00–

0.18)
0.0001 0.08 (0.01–0.68) 0.0202 0.08 (0.01–0.67) 0.0197

PM10 (μg/m3)
0.99 (0.99–

0.999)
0.0115 0.01 (0.00), 0.0052 0.99 (0.98–0.99) <0.0001 0.00 (0.00), 0.3423

PM2.5 (μg/m3)
0.99 (0.98–

0.99)
0.0015 0.01 (0.00), 0.0155 0.97 (0.96–0.98) <0.0001 0.05 (0.05), 0.3423

SO2 (ppb)
1.08 (1.01–

1.16)
0.0268 1.25 (1.14–1.36) <0.0001 1.28 (1.17–1.39) <0.0001

Per SD 

increasing

Temperature 

(°C)

1.19 (1.09–

1.30)
0.0001 1.18 (1.07–1.3) 0.0009 1.22 (1.11–1.35) <0.0001

Relative 

humidity (%)

1.12 (1.02–

1.22)
0.0160 1.13 (1.02–1.25) 0.0160 1.11 (1.01–1.23) 0.0372

Rainfall (mm/

day)

0.84 (0.76–

0.92)
0.0001 0.88 (0.80–0.98) 0.0202 0.88 (0.80–0.98) 0.0197

PM10 (μg/m3)
0.90 (0.82–

0.98)
0.0115 0.11 (0.04), 0.0052 0.79 (0.71–0.88) <0.0001

−0.00 (0.00), 

0.5086

PM2.5 (μg/m3)
0.87 (0.80–

0.95)
0.0015 0.09 (0.04), 0.0155 0.73 (0.65–0.81) <0.0001

−0.03 (0.04), 

0.5086

NO2 (ppb)
0.99 (0.91–

1.08)

0.8187 1.09 (0.86–1.37) 0.4895 1.06 (0.83–1.34) 0.6488

O3 (ppb)
1.04 (0.95–

1.13)

0.3958 1.03 (0.86–1.23) 0.7584 1.00 (0.83–1.20) 0.9979

SO2 (ppb)
1.10 (1.01–

1.20)
0.0268 1.30 (1.17–1.44) <0.0001 1.34 (1.21–1.48) <0.0001

To determine whether SO2 modified the relationship of PM10 or PM2.5 with the relative risk of obstructive impairment, β (standard error, SE) and P-value for interaction were calculated.
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appears to increase the risk of developing obstructive lung disease. 
When considering temperature and relative humidity, previous 
research has revealed a 0.7% decrease in FVC when there is a 5°C 
increase in the 3-day moving average temperature, and a 0.2% 
decrease in FVC when there is a 5% increase in the 7-day moving 
average relative humidity (14). Thermoregulation involves 
increasing cardiac output, cutaneous blood flow, and breathing rate. 
However, in conditions of high relative humidity evaporation by 
perspiration is limited, which creates physiological stress leading to 
dysfunction in respiratory function (29), especially in older people 
(30, 31). High temperature with high humidity has also been shown 
to affect thermoregulation and trigger bronchoconstriction (32). 
Thus, the risk of developing obstructive lung disease would increase 
under these conditions.

Our study also found that lower rainfall increased the risk of 
obstructive lung disease. A study conducted in Korea reported that 
the concentrations of air pollutants, including PM10 and NO2 were 
lower during rainfall compared to dry conditions (33). Another study 
in Korea revealed that pollutant (PM10, SO2, NO2, and CO) 
concentrations and rainfall intensity were significantly negatively 
correlated due to precipitation scavenging. Among those pollutants, 
PM10 was the most effectively scavenged by rain (34). In addition, a 
study in Spain reported a washout effect, with a 20% reduction in the 
number of particles during rainfall with an intensity of over 
3.2 ± 1.5 mm/h (35). Thus, concentrations of air pollutants decrease 
due to a washout effect during rainfall, and consequently lower 
rainfall may be  associated with a higher risk of obstructive 
lung disease.

FIGURE 1

Partial prediction of A) SO2 (Per SD) and PM10 (Per SD) in model 1 and B) SO2 (Per SD) and PM2.5 (Per SD) on the risk of obstructive impairment. A 
semiparametric model was performed by using the parametric effects of temperature (°C), relative humidity (%) and Rainfall (mm/day) as the linear part 
of the model. Obstructive impairment was associated with a quadratic pattern for the SO2 (Per SD) and PM10 (Per SD) in model 1 and a quadratic 
pattern for the SO2 (Per SD) but not PM2.5 (Per SD) in model 2.
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Another finding of this study is that exposure to a higher level of 
SO2 and lower levels of PM2.5 and PM10 increased the risk of 
obstructive lung disease. SO2 is produced from volcanoes gas, burning 
fuel and industrial production processes (36–38). Exposure to SO2 has 
been shown to affect the respiratory tract and cause oxidative stress 
and DNA damage, which would further damage the lungs (39). 
Several studies have revealed a relationship between SO2 exposure and 
respiratory diseases (40–42). Goudarzi et al. concluded that a higher 
SO2 concentration was associated with an increased relative risk of 
hospital admission for respiratory diseases (43).

Particulate matter can be generated from soil dust, road traffic, 
industry, and fuel combustion, and it is a crucial indicator of the 
health effects of air pollution (44, 45). Several studies have discussed 
the relationship between PM and lung function change and respiratory 
diseases (12, 46, 47). Penttinen et al. reported a decrease in average 
evening peak expiratory flow by 1.14 L/min when the average 
concentration of PM2.5 increased by one interquartile (1.3 μg/m3) in a 

5-day average (48). In addition, Downs et al. found significant negative 
associations between a lower concentration of PM10 and worsening 
lung function. They found that the annual decline in lung function 
with regards to FEV1 and FEF25–75 decreased by 9 and 16%, 
respectively, with a 10 μg/m3 reduction in PM10 over an 11-year period 
(49). Thus, higher concentrations of SO2 and PM appear to increase 
the risk of worsening lung function and developing obstructive lung 
disease. In our study, lower levels of PM2.5 and PM10 increased the risk 
of developing obstructive lung disease, which is contrast to most of 
previous studies. That is because, we found that there was a synergistic 
effect between SO2 and PM2.5/PM10. Yun et al. found that synergistic 
injury in terms of cell survival and apoptosis occurred under low 
concentrations of PM10 and SO2 (15). The proposed mechanism was 
that PM10 and SO2 synergistic induced cytotoxicity of radical oxygen 
species production and nuclear factor kappa B (NF-κB) activation (15, 
50). Thus, the synergistic effect could increase the risk of respiratory 
diseases, even with low concentrations of the air pollutants. The 

TABLE 4 Predicted obstructive impairment by generalized additive model, a smoothing spline nonparametric model.

DF Sum of squares Chi-square P-value

Model 1

Spline (Per SD, PM10) 3.03 9.59 9.59 0.0230

Spline (Per SD, SO2) 2.92 9.30 9.30 0.0239

Bivariate thin-plate smoothing spline*

Spline2(SO2 per SD, PM10 per SD) 4.00 37.19 37.19 <0.0001

Model 2

Spline (Per SD, PM2.5) 2.98 3.38 3.38 0.3336

Spline (Per SD, SO2) 2.97 7.77 7.77 0.0498

Bivariate thin-plate smoothing spline*

Spline2 (SO2 per SD, PM2.5 per SD) 4.00 48.04 48.04 <0.0001

A semiparametric model was performed by using the parametric effects of temperature (°C), relative humidity (%) and Rainfall (mm/day) as the linear part of the model. *Fits a bivariate 
thin-plate smoothing spline with SO2 per SD and PM10 per SD or SO2 per SD and PM2.5 per SD and with DF = 4.

FIGURE 2

Correlations between A) SO2 (Per SD) and PM10 (Per SD) in model 1 and B) SO2 (Per SD) and PM2.5 (Per SD) in model 2 of obstructive impairment were 
applied by the use of a generalized additive model (GAM), a smoothing spline nonparametric model. A semiparametric model was performed by using 
the parametric effects of temperature (°C), relative humidity (%) and Rainfall (mm/day) as the linear part of the model. The graphic suggests that there 
was an interaction, a diagonal pattern in model 1 and model 2, on the risk of obstructive impairment.
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synergistic effect could also explain our finding that a higher level of 
SO2 and lower levels of PM2.5 and PM10 increased the risk of 
obstructive lung disease. Furthermore, our results also showed that 
high SO2 exposure could affect lower concentrations of PM2.5 and 
PM10 with similar patterns (Figures 1, 2). These interesting findings 
indicate that SO2 could trigger PM2.5 and PM10, and that the interaction 
between SO2 and PM2.5/PM10 may play a vital role in developing 
obstructive lung disease.

Although our study is the first to comprehensively investigate the 
associations among obstructive lung disease (classified by lung 
function), air pollution, and meteorological factors, several limitations 
should be acknowledged. First, the design of this study was cross-
sectional. Determining the progression of lung function and 
obstructive lung disease over time is complex, and further prospective 
studies are needed to elucidate the causal effects. Second, lung 
function assessments were used to identify chronic lung disease, and 
follow-up checkups are required to further evaluate the progression of 
the disease. Third, the TWB does not contain information regarding 
occupational exposure to toxic substances. Some poisonous substances 
may influence lung function, however we  could not analyze this. 
Finally, because the participant’s residential address was used as the 
air pollutant exposure point, we did not include all factors affecting 
lung function, such as personal exposure, travel exposure, and indoor 
air quality. This may have led to underestimation of the risk of lung 
function impairment and the association with obstructive lung disease.

5. Conclusion

Compared with the normal spirometry group, we  found that 
factors associated with a higher risk of obstructive lung disease 
included a higher temperature, higher relative humidity, and lower 
rainfall. Furthermore, we  identified interactions and synergistic 
effects among SO2 and PM2.5/PM10. These findings could explain why 
a higher level of SO2 and lower levels of PM2.5/PM10 were associated 
with a higher risk of obstructive lung disease. Our findings also 
highlight the importance of interactions between air pollutants. 
We  suggest that the synergistic effects of air pollutants should 
be considered when investigating the actual impact on developing 
obstructive lung disease.
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