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MMO: Meta Multi-Objectivization for Software
Configuration Tuning
Pengzhou Chen, Tao Chen, Member, IEEE, and Miqging Li, Senior Member, IEEE

Abstract—Software configuration tuning is essential for optimizing a given performance objective (e.g., minimizing latency). Yet, due to
the software’s intrinsically complex configuration landscape and expensive measurement, there has been a rather mild success,
particularly in preventing the search from being trapped in local optima. To address this issue, in this paper we take a different perspective.
Instead of focusing on improving the optimizer, we work on the level of optimization model and propose a meta multi-objectivization
(MMO) model that considers an auxiliary performance objective (e.g., throughput in addition to latency). What makes this model distinct is
that we do not optimize the auxiliary performance objective, but rather use it to make similarly-performing while different configurations
less comparable (i.e. Pareto nondominated to each other), thus preventing the search from being trapped in local optima. Importantly, by
designing a new normalization method, we show how to effectively use the MMO model without worrying about its weight—the only yet
highly sensitive parameter that can affect its effectiveness. Experiments on 22 cases from 11 real-world software systems/environments
confirm that our MMO model with the new normalization performs better than its state-of-the-art single-objective counterparts on 82%
cases while achieving up to 2.09x speedup. For 68% of the cases, the new normalization also enables the MMO model to outperform the
instance when using it with the normalization from our prior FSE work under pre-tuned best weights, saving a great amount of resources
which would be otherwise necessary to find a good weight. We also demonstrate that the MMO model with the new normalization can

consolidate recent model-based tuning tools on 68% of the cases with up to 1.22x speedup in general.

Index Terms—Configuration tuning, performance optimization, search-based software engineering, multi-objectivization
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1 INTRODUCTION

ANY software systems are highly configurable, such
M that the configuration options can be flexibly ad-
justed for performance, including database systems, ma-
chine learning systems, and cloud systems, to name a
few. For example, APACHE STORM, a stream processing
system, can be tuned by changing some key configuration
options such as splitters. However, a daunting number
of configuration options will inevitably introduce a high
risk of inappropriate or even poor software configurations
set by software engineers. It has been reported that 59%
of the software performance issues worldwide are related
to ill-suited configuration rather than code [43]. In 2017-
2018, configuration-related performance issues costed at least
400,000 USD per hour for 50% of the software companietﬂ

Indeed, adjusting the configurations will affect the out-
comes of different performance attributes, such as latency,
throughput, and CPU load [80], [26], [70], [25], [23], [24].
However, there are many cases wherein only the optimiza-
tion of a single performance attribute is of interest, whose
minimization/maximization serves as a sole performance
objective in consideration. For example, in the finance sector,
a millisecond decrease in the trade delay may boost a high-
speed firm'’s earnings by about 100 million USD per year [90].
Another example is related to the machine learning systems
deployed by large organizations (e.g., GPT-4 [72]), or those
in the health care domain [3], where the concern is mainly on
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1. https:/ /www.evolven.com/blog/downtime-outages-and-failures-
understanding-their-true-costs.html.

the accuracy, while caring little about the overhead /resource
incurred for training. This has been well-echoed from the
literature on software configuration tuning, in the majority
of which only a single performance attribute is considered at
a time [8], [99], [711, [95], [62], [7], [€1], [60].

Despite only a single performance attribute being of
concern, such an optimization scenario is not easy to deal
with for any optimizer that tunes the software configuration.
This is because

1) The configurable systems involve a daunting number
of configuration options with complex interactions,
rendering a black-box to the software engineers [97],
[18], 1211, [22].

2) The measurement of each configuration through running
the software system is often expensive [51]], hence
exhaustively exploring every configuration is unrealistic.

3) There is generally a high degree of sparsity in the
configurable software systems [70], [19], [20], i.e., similar
configurations can also have radically different perfor-
mance.

The last characteristic poses a particular challenge to
the automatic software configuration tuning in finding the
optimal configuration (performance), because firstly different
configurations may achieve locally good, but globally inade-
quate performance (e.g., local optima); and secondly, the land-
scape of a (local) optimum’s neighborhood can be steep and
rugged—if the tuning is trapped in a local optimum, it may
be hard to escape from it as their neighboring configurations
often perform significantly worse than it. As an example,
Figure |1/ shows the projected configuration landscape for
APACHE STORM (2 out of 6 configuration options), where
it can be clearly seen that even with this simplified version,
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Fig. 1: A projected landscape of the performance objective
Throughput with respect to configuration options Splitters
and Counters for STORM under the WORDCOUNT bench-
mark. o is the global optimum and « denotes the local optima
of throughput that an optimizer needs to escape from.

the landscape is rather rugged and contains steep “local
optimum traps”, resulting in significant difficulty in the
tuning.

In light of the above challenges, a number of optimiz-
ers from the Search-Based Software Engineering (SBSE)
paradigm have been presented, such as random search [§],
[99], [71]], hill climbing [95], [62], genetic algorithm [7],
[80], 78], [84], and simulated annealing [37], [42]. To seek
the global optimum (best performance of the concerned
performance attribute) while avoiding being trapped in local
optima, such methods focus on the “internal” components
of the optimizer. They work on designing novel search
operators (i.e., the way to change the configuration structure,
for example, increasing the neighbourhood size of randomly
mutated configurations [71]), or developing various search
strategies (i.e., the way to balance exploration and exploita-
tion, for example, restarting the search in hill climbing [95]).
However, a common limitation of such single-objective
optimizers is that the goal to find the global optimum is “less
oriented” as there is no clear “incentive” to encourage them
to traverse the wide search space and locating as many local
optima as possible, thus finding the best one in a resource-
efficient manner.

To better mitigate the local optima, in this paper and
our prior FSE"21 work [27] (we call it FSE work thereafter),
we tackle this software configuration tuning problem from
a different perspective. In contrast to the effort made by
the existing works on the development of the optimizer,
we work on the optimization model, i.e., the “external”
part of an optimizer. This is achieved by proposing a meta
multi-objectivization (MMO) model for this single-objective
problem, to help the search avoid being trapped in local
optima and progressively explore the entire objective space.

In a nutshell, MMO seeks to optimize two meta-
objectives, each of which has two components. The first
component of both meta-objectives is the target performance
objective (e.g., latency), thereby only those configurations
that perform well on the target objective being in favor.

2

The second component, which is related to the other given
auxiliary performance objective (e.g., throughput), is a
completely conflicting term for the two meta-objectives. The
reason for this design is that we hope to keep the target
performance objective as a primary term in the model to
preserve the tendency towards its optimality, but at the same
time, we want the configurations with different values on
the auxiliary performance objective to be incomparable. We
are not interested in minimizing/maximizing the auxiliary
performance objective since we do not know which value of it
can lead to the best result on the target performance objective,
but we wish to keep a good amount of configurations with
diverse values of the auxiliary performance objective in the
search, thus not being trapped in local optima (we will
elaborate on this in Section [3). The contributions from both
this work and the FSE work are:

o Unlike existing work for the software configuration
tuning which puts effort on the “internal part” of the
optimization (i.e., improving the search operators of
various optimizers), we work on the “external part”—
multi-objectivizing this single-objective optimization
scenario.

o We present a meta multi-objectivization model, MMO,
as opposed to the existing multi-objectivization model
considered in other SBSE scenarios which directly opti-
mizes the target and auxiliary objectives simultaneously
(referred to as plain multi-objectivization or PMO). We
show, analytically and experimentally, why MMO is
more suitable than PMO for software configuration
tuning.

However, MMO requires a weight parameter to aggregate
the target objective component and the auxiliary objective
component. It is a critical parameter to balance searching for
a good target performance objective value and maintaining
diverse auxiliary performance objective values, requiring
fine-tuning from the software engineers for every config-
urable software/environment, as done in our FSE work [27].
This, if done inappropriately, could lead to poor outcomes,
as we will show in Section[3.5] Yet, since the measurement
of configurations is often expensive, finding the best weight
in a case-by-case manner is not always realistic, which is a
major threat to the applicability of the MMO model.

Therefore, in this paper, we also tackle this unwelcome
issue. We show why the weight can be a highly sensitive
parameter in the MMO model and propose a way to make the
model weight-free without compromising the result. This is
achieved by presenting a new normalization method, which
is simple, but works very well—it leads to results that are
even better than those of the FSE work under its best-tuned
weight [27] for the majority of the problems. To sum up, the
unique contributions of this paper are:

o A sound and formal analysis of the principle behind
MMO, derived from the perspective of geometric trans-
formation in the performance objective space, that
explains its intention and what role the parameter w
and the normalization play therein. This then enables us
to formally reflect on the limitation posed by the MMO
model design proposed in the FSE work.

o Drawing on insights from the analysis, we design a
new normalization method as part of the MMO model,
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capturing the bounds of both performance objectives
adaptively. This allows us to keep the strengths and
characteristics of the MMO model while removing the
weight (i.e., setting w = 1 for all cases).

o An extensive evaluation that expands to 11 systems/en-
vironments that are of very different domains. Since a
system comes with two performance objectives, each of
these is used in turn as the target performance objective,
leading to 22 cases. Under these cases, we compare
MMO model using the new normalization with the
PMO model and four single-objective counterparts, as
well as with the MMO model using the normalization
from the FSE work.

o An investigation on how our MMO model with the
new normalization can consolidate FLASH [70] and
BOCA [17], which are state-of-the-art model-based
tuning methods for software configuration tuning.

Our experiment results are encouraging: we show that
the MMO model with the new normalization achieves better
results over the best single-objective counterpart and PMO
(on 18 and 20 out of 22 cases wherein 14 and 15 of them
are considerably better, respectively), while being much
more resource-efficient overall (with up to 2.09x speedup
over the single-objective optimizers and use significantly
less resource than that of the PMO). In contrast to using
the MMO model with the normalization from FSE work
under its best weight, the MMO model with the new
normalization shows better results on 15 cases (7 of which
are significant) and competitive resource efficiency. Notably,
this is achieved without the need of setting the weight, which
can be undesirable as in 13 out of 22 cases, it requires at least
50% of the search budget as the extra resource to identify the
best weight. The MMO model with the new normalization
can also consolidate the model-based tuning methods like
FLasH and BOCA: with minimal code change, both can
be improved for 15 out of 22 cases (with 12 or 13 cases of
statistically significant improvement) while having a 1.22x
and 1.06 x speedup in general, respectively.

To promote the open-science practice, a GitHub repository
that contains all source code and data in this work can be
accessed at: https://github.com/ideas—labo/mmo.

The rest of this paper is organized as follows. Section 2]
introduces some background information. Section [3| elabo-
rates on the design of the MMO and PMO model, as well as
why and how we design the new normalization. Section
presents our experiment methodology, followed by a detailed
discussion of the results in Section[5] Section[6ldelineates how
to apply MMO in practical software engineering scenarios.
The threats to validity are discussed in Section [/} Sections|8]
and [J] analyze the related work and conclude the paper,
respectively.

2 PRELIMINARIES

In this section, we describe the necessary background infor-
mation and context for this work.

2.1

A configurable software system often comes with a set
of critical configuration options such that the ith option

Software Configuration Tuning Problem

3

is denoted as z;, which can be either a binary or integer
variable, where n is the total number of options. The search
space, X, is the Cartesian product of the possible values for
all the x;. Formally, when only a single performance concern
is of interest (such as latency, throughput, or accuracy), the

goal of software configuration tuning is to achiev

argmin f(x), x € X (1)

where © = (21,22, ..., 2, ). This is a classic single-objective
optimization model and the measurement of f is entirely
case-dependent according to the target software and the
corresponding performance attribute; thus we make no
assumption about its characteristics.

2.2 Multi-objectivization

Multi-objectivization is the method of transforming a single-
objective optimization problem into a multi-objective one, in
order to make the search easier to find the global optimum.
It can be realized by adding a new objective (or several
objectives) to the original objective or replacing the original
objective with a set of objectives. The motivation is that
since in a complex problem landscape, the search may
get trapped in local optima when considering the original
objective (due to the total order relation between solutions
with respect to that objective), considering multiple objectives
may make similarly-performed solutions incomparable (i.e.,
Pareto nondominated to each other), thus helping the search
jump out of local optima [55].

Two solutions being Pareto nondominated means that
one is better than the other on some objective and worse
on some other objective. Formally, for two solutions & and
y, we call £ and y nondominated to each other if * £
y Ay # x, where £ is the negation of “to Pareto dominate”
(=), the superiority relation between solutions for multi-
objective optimization. That is, considering a minimization
problem with m objectives, x is said to (Pareto) dominate y
(denoted as < y) if fi(x) < fi(y) for 1 < i < m and
there exists at least one objective j on which f;(x) < f;(y).
Pareto dominance is a partial order relation, and thus there
typically exist multiple optimal solutions in multi-objective
optimization. For a solution set X, a solution € X is called
Pareto optimal to X if there is no solution € X that dominates
. When X is the collection of all feasible solutions for a
multi-objective problem, x becomes an optimal solution to
the problem, and the set of all Pareto optimal solutions of
the problem is called its Pareto optimal set.

Multi-objectivization is not uncommon in the modern
optimization realm, particularly to the evolutionary com-
putation community [55], [16], [50], [87], [88]. To tackle
various challenging single-objective optimization problems,
researchers put much effort in introducing/designing addi-
tional objectives, e.g., creating sub-problems (sub-objectives)
of the original objective [55], converting the constraints into
an additional objective [16], constructing similar adjustable
objectives [50], considering one of the decision variables [87],
or even adding a man-made less relevant objective func-
tion [88].

2. Without loss of generality, we assume the performance objective to
be minimized.
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3 MULTI-OBJECTIVIZATION FOR SOFTWARE CON-
FIGURATION TUNING

In this section, we present the designs of the multi-
objectivization models and how they are derived from the
key properties in software configuration tuning.

3.1 Properties in Configuration Tuning

We observed that, in general, software configuration tuning
bears the following properties.

Property 1: As shown in Figure and what has already
been reported [70], [51], [28], [29], the configuration land-
scape of different performance objectives for most config-
urable software systems is rather rugged with numerous
local optima at varying slopes. Therefore the tuning, once the
search is trapped at a local optimum, would be difficult to
progress. This is because all the surrounding configurations
of a local optimum are significantly inferior to it, and the
search focus would have no much drive to move away
from that local optimum (if only the concerned performance
attribute is used to guide the search). As a result, a good
optimization model has some additional “tricks” to avoid
comparing configurations solely based on a single perfor-
mance attribute.

Property 2: A single measurement of configuration is
often expensive. For example, Valov et al. [92] reported that
sampling all values of 11 configuration options for X264
needs 1,536 hours. This means that the resource (search
budget) in software configuration tuning is highly valuable,
hence utilizing them efficiently is critical.

Property 3: The correlation between different perfor-
mance attributes is often uncertain, as different configura-
tions may have different effects on distinct attributes. We
observed that the configurations may achieve extremely good
or bad performance on one while having similarly good
results on the other, as illustrated in Figure 2} Taking the
system STORM with ROLLINGSORT benchmark (denoted
STORM/RS) from Figure [2] (left) as an example, suppose that
in a multi-threaded and multi-core environment with 100
successful messages, if a configuration A enables each of
these messages to be processed at 30ms, then the latency and
throughput are 1%%30 — 30ms and ¥ = 3.33 msgs/ms,
respectively. In contrast, another configuration B may restrict
the parallelism (e.g., lower spout_num), hence there could
be 50 messages processed at 20ms eaclﬂ while the other
50 are handled at 40ms each (including 20ms queuing time
due to reduced parallelism). Here, the latency remains at
50x20450x40 — 30)ms but the throughput is changed to
% = 2.5 msgs/ms, which is a 25% drop. Therefore, we
should neither presume a strict conflict nor a harmonic
correlation between the performance attributes.

Clearly, a good optimization model for software configu-

ration tuning needs to take the above properties into account.

3.2 Plain Multi-Objectivization (PMO) Model

A straightforward idea to perform multi-objectivization is to
add an auxiliary objective to optimize, along with optimizing
the target performance objective. This is what has been

3. The relief of peak CPU load could allow the process of each message
faster.

4
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Fig. 2: Measured configurations for system STORM/RS and
LRZIP. The points that Property 3 refers to are highlighted:
very good or bad results on one performance objective can
both correspond to similarly good values on the other.

commonly used in SBSE scenarios (e.g., [33], [69], [15], [1]).
That PMO model can be formulated as:

fa(z)
fe(x)

where f;(z) denotes the target performance objective (i.e., the
concerned one) and f,(x) denotes the auxiliary performance
objectiv

Putting it in the context of software configuration tuning,
the PMO model may cover Property 1, because the natural
Pareto relation with respect to the two objectives ensures that
the target performance objective is no longer a sole indicator
to guide the search. However, it does not fit Property 2
as PMO additionally optimizes the auxiliary performance
objective. As such, configurations that perform well on the
auxiliary performance objective but poorly on the target
performance objective are still regarded as optimal in PMO,
despite being meaningless to the original problem. This can
result in a significant waste of resources. In addition, PMO
does not consider Property 3 as it often assumes conflicting
correlation between the two objectives [68], [33], which is
hard to assure in software configuration tuning.

2

minimize {

3.3 Meta Multi-Objectivization (MMO) Model

Unlike PMO, our meta multi-objectivization (MMO) model
creates two meta-objectives based on the performance at-
tributes. The aim is to drive the search towards the optimum
of the target performance objective and at the same time,
not to be trapped in local optima. In particular, we want to
achieve two goals:

— Goal 1: optimizing the target performance objective
still plays a primary role, thus no resource waste on,
for example, optimizing the auxiliary one (this fits in
Property 2);

— Goal 2: but those with different values of the auxiliary
performance objective are more likely to be incompara-
ble (i.e., Pareto nondominated), hence the search would

4. Without loss of generality, we use the minimization form of the
performance objectives; the maximization ones can be trivially converted,

e.g., by multiplying —1.
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(a) Original space

(b) Scaling at w = 1 in MMO

-1 1 3 5 7 9
glz(ft"'fa)

(c) Rotation/dilation at w = 1 in MMO

min

Fig. 3: An illustration of the rotation effect in MMO. A, B, C, and D are four configurations with the auxiliary and target
performance objective values as (2,4), (4,5.5), (4,7), and (0.75,7), respectively. The auxiliary and target performance
objectives are to be minimized if they are both of concern. o denotes the nondominated configurations while ® means those
that are dominated by at least one other within the corresponding current space.

not be trapped in local optima (this relates to Properties
1 and 3).

Formally, the MMO model with two meta-objectives g1 (x)
and go () is constructed as{f}

91(x) = fi(®) + wfa(z)
92(®) = fi(x) — wfa(z)

whereby each of the two meta-objectives shares the same
target performance objective fi(x), but differs (effectively
being opposite) regarding the auxiliary performance objec-
tive f,(x). The auxiliary objective can be a readily available
one and whose result is of no interest (e.g., throughput or
CPU load, in addition to latency). The weight w is a critical
parameter that balances the target and auxiliary performance
objectives.

®)

minimize {

3.3.1 Formal Analysis of MMO

Compared with the original space of f; and f,, MMO
essentially does two main geometric operations to transform
the original space of the two performance objectives into a
meta-objective space: (1) it scales (stretches or shrinks) the
configurations along the f, axis by a factor of w; (2) it rotates
the scaled configurations by 45° clockwise and then dilates
them on both f; and f, by a factor of V2. Geometrically,
MMO in Equation [3|can be decomposed via the following
transformation metrics in linear algebra:

scaling matrix original space

—— —
sin &

coséﬂ {16] (1)} [f‘jé;;]

rotation/dilation matrix

) ol

—gin X
Sln4

(4)

MMO space

i)

5. In our FSE work [27], we found that different forms of the auxiliary
performance objectives (e.g., linear and quadratic) do not lead to
significantly different results, hence in this work, we use the linear
form, which is the simplest version of the MMO model.

whereby sin § = g and cos § = g, hence the rotation
angle is 7 (i.e., 45° clockwise) and both axes are dilated by
a factor of v/2 thereafter to create a rotation matrix of 1 and
—1.

To better understand how the transformation works in
MMO, suppose that there are four configurations A, B, C,
and D, where A is one of the nondominated configurations,
as shown in Figure Bh. The areas around A can be divided
into eight regions every 45°, starting counterclockwise from
the region where B is located and they are marked as
70,71, ..., 7, respectively. Note that since f, and f; are to
be minimized in the original space of PMO (the same for
g1 and go in the MMO space), the configurations that are
dominated by A will be those in its first quadrant, i.e., in
regions 7o and r;. Therefore, we can precisely define the
dominance relations between configurations and A with
respect to the regions of A via the following:

 Configurations in r9 and r; of A (including the bound-
aries) will be dominated by A.

o Likewise, configurations in 74 and r5 of A (including
the boundaries) will dominate A (not applicable if A is
Pareto optimal).

o Finally, configurations in ry, 73, 76, and r7 will be
nondominated to A, including the boundaries except
those adjacent to o, 71, 4, and 75.

Following the rotation in MMO, the configurations in
the regions with respect to A will also be rotated with A,
and hence they would be in different regions compared with
where they were before, which might cause shifts in their
relative dominance relationship to A—the key that makes
MMO works effectively in tuning software configuration.
Assuming that w = 1, i.e., no scaling (Figure [Bp) and hence
we can focus on discussing the impact of rotation in MMO,
from Figure 3¢ it is not difficult to see that, compared to
A, all the configurations will be moved clockwise to their
adjacent regions after the rotation of 45°. Using the case of
A as an example again, configuration D in r, will be moved
to r1; C in r1 will be moved to rg; B in rg will be moved to
r7. As such, we can generalize the following rule:
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Fig. 4: An illustration of the impact of w in MMO. The formats are the same as in Figure[3| (a), (b), and (c) delineate the
effect of an increased weight, i.e., w = 2; (d), (e), and (f) explain the effect of a decreased weight, i.e., w = 0.5.

A configuration in a region r; will be in a new region
r; following the rotation in MMO, and they satisfy
the condition below:

j=(i+7) mod 8 (5)

Finally, f, and f; of the configurations are dilated by /2
times for normalizing the coefficients of the rotation matrix to
1, and hence such dilatation has no effect on the dominance
relationships between configurations.

From the above, it is intuitive to understand how the
MMO can change the dominance relationships in the space:
by moving the configurations between the regions with
respect to a particular configuration, it is possible to make
them change from dominated (comparable) to nondominated
(incomparable), e.g., from 7 to 77; or vice versa, e.g., from
r9 to r1, thereby altering the number of incomparable
configurations (in the sense of Pareto dominance) during
the tuning. Such an amendment of the Pareto dominance
relationships determines the effectiveness of MMO, as either
too many or too few incomparable configurations throughout
the tuning would be harmful since the former causes a loss
of search direction while the latter increases the possibility
of being trapped at local optima.

Once it is clear how rotation affects the configurations
in the MMO space, we can now explain the role of w in the

MMO model. Since the value of weight w determines the
factor of scaling, it is not hard to imagine that increasing w
stretches all configurations horizontally on f,; conversely,
decreasing w shrinks the configurations horizontally over
fa- Figures [4h, ib, and [# give a concrete example using the
same configurations as before. When changing from w = 1 to
w = 2, the f, for all configurations are stretched by 2 times,
causing configuration C' to move from region r; to 7o before
the rotation (Figure E})). This means that the relative positions
of configurations A, B, C, and D will rotate from Figure @)
to Figure Ek As such, C, which should be dominated by A
when rotating under w = 1, now will become nondominated
to A after the rotation. In contrast, if we change w = 1 to
w = 0.5 (Figures [4d, e, and [#), the configurations will be
shrunk on f, by 0.5 times, where configuration B will be
moved from regions 7 to 1 before rotation (Figure d). As a
result, the relative positions of configurations A, B, C, and
D will rotate from Figure [ to Figure @f. In this case, B,
which should be nondominated to A when rotating under
w = 1, now will be dominated by A after the rotation.

The above indicates a simple rule to understand the role
of w in MMO: a larger w suggests a bigger stretch on f,,
making more of the configurations become incomparable
following the rotation, which encourages the exploration
in the search space to find more diverse configurations. In
the extreme case where w = oo, the differences between
configurations on f, become infinitely large, making the two
meta-objectives linearly conflicted, hence all configurations
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Fig. 5: An illustration of comparison between (a) the PMO model and (b) the MMO model on STORM, where the target
performance objective is latency (to minimize) and the auxiliary performance objective is throughput (to maximize). Both of
them are normalized and the weight is 1.0 in the MMO model. Let us say A, B, C and D be a set of four configurations to
be considered. Out of them, one needs to select two (e.g., in order to put some better configurations into the next-generation
population in a multi-objective optimizer). The solid circle means the configuration being Pareto optimal to the set, and the

hollow one is the dominated configuration.

are incomparable if they differ on f, and render the tuning
with no guidance. On the other hand, A smaller w means
a bigger shrink on f,, thus more configurations become
comparable after the rotation, putting more emphasis on
optimizing f, i.e., exploitation. In the extreme case when
w = 0, f, is completely ruled out, leaving the two meta-
objectives identical, and as such all configurations are
comparable provided that they differ on f;, thereby making
the tuning more difficult to jump out of the local optima. In
general, neither too large nor too small w is ideal; yet, how
large (or small) is considered as too large (or too small) is
really case-dependent.

While here we use a nondominated configuration A as
the example, it is worth noting that the analysis discussed
thereof is applicable to any configurations. As such, the
dominance relationships between any pair of configurations
can be potentially changed by the scaling of w and rotation
introduced in MMO. This as a whole would affect the
behaviors and focus (exploration vs. exploitation) of the
configuration tuning process regardless of the underlying
multi-objective optimizer.

3.3.2 The Characteristics of MMO

To better understand the characteristics of the MMO model
derived from our analysis and how the aforementioned two
goals can be achieved, Figure 5 gives an example of STORM
on how it distinguishes between different configurations, in
comparison with the PMO model, where we assume that
latency is the target performance objective f; and throughput
is the auxiliary performance objective f,. Suppose that there
is a set of four configurations A, B, C and D. Let us say
if we want to select two from them based on their fitness
(e.g., in order to put some better configurations into the next-
generation population in a multi-objective optimizer, such
as NSGA-II). For the PMO model (Figure Ba) that minimizes
latency and maximizes throughput, the configuration D,
which performs extremely poor on latency, will certainly be
selected by any multi-objective optimizer, since it is Pareto
optimal and also less crowded than the other Pareto optimal
configuration A and B. In contrast, for the MMO model

(Figure [5b) which minimizes the two meta objectives, the
two configurations that will be selected are A and C' (since
they are the only two Pareto optimal ones).

It is worth noting that for the single-objective optimiza-
tion model (which only considers latency), the two chosen
configurations will be A and B. However, since C and
A behave much more differently than B and A on the
throughput, it is more likely that they are located in distant
regions in the configuration landscape; thus preserving C
rather than B (when A is preserved) is generally more likely
to help the search to escape from the local optimum.

In the following, we provide several remarks to help
further grasp the characteristics of the MMO model.

Remark 1. The global optimum of the original single-
objective problem (i.e., the configuration with the best
target performance objective) is Pareto optimal (e.g., the
configuration A in the example of Figure [5). This can be
derived immediately by contradiction from Equation (3) or
the analysis of rotation from Section [3.3.1}

Remark 2. A similar but more general observation is that a
configuration will never be dominated by another that has a
worse target performance objective. That is, if configuration
x1 has a better target performance objective than x2 (i.e.,
fi(x1) < fi(x2)), then whatever their auxiliary performance
objective values are, £z will not be better than x; on both
g1 and go; in the best case for x2, they are nondominated to
each other (e.g., the configuration B versus C in Figure 5).
Indeed, according to the analysis from Section [3.3.1} there is
no way for &, to be moved to the region rq or r; of T2 as
can only be in the 74 to 77 of @2 before the rotation.

Remark 3. The above two remarks apply to the target
performance objective, but not to the auxiliary performance
objective. This is a key difference from the PMO model,
where both objectives hold these remarks. An example of
the consequence is the configuration D of Figure |5, which
is meaningless to the original problem, but treated as being
optimal in PMO and not in MMO.

Remark 4. Our MMO model does not bias to a higher
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(a) Original space where f, has a much (b) If no normalization is used; scaling at
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(c) Anticipated effect of normalization;
scaling at w = 1 in MMO

Fig. 6: An illustration of the impact of the scale discrepancy between performance objectives and the anticipated normalization
effect in MMO. A, B, C, and D are four configurations with the auxiliary and target performance objective values as
(2 x 10%,4), (4 x 102,5.5), (3 x 10%,8), respectively. ® and O denote the configurations that will still be/become
nondominated and dominated, respectively, after the rotation in MMO; e is the reference nondominated configuration.

or lower value on the auxiliary performance objective, in
contrast to PMO. Indeed, as in Property 3, we do not know
for certain what value of the auxiliary performance objective
corresponds to the best target performance objective.

Remark 5. Configurations with dissimilar auxiliary per-
formance objective values tend to be incomparable (i.e.,
nondominated to each other) even if one is fairly inferior to
the other on the target performance objective. For example,
the configuration C' in Figure [5} which has worse latency
than A, is not dominated by A as their throughput are rather
different. In contrast, the configuration B, which even has
better latency than C, is dominated by A, as they are similar
on throughput. This enables the model to keep exploring
diverse promising configurations during the search, thereby
a higher chance to find the global optimum.

Remark 6. If two configurations have the same value of
auxiliary performance objective f,, then they are always
subject to the dominance relation (i.e., either dominating or
being dominated). This is because, if configuration x; has the
same f, value as 2, then 1 can only be on the boundary
between r; and 72 (or 5 and r6) for 2, meaning that after
the rotation, it can only be on the boundary between 7y and
r1 (or r4 and 75) for @2, in which case their relationships are
always dominated (comparable) regardless the f; value.

Remark 7. If two configurations have the same value of
the target performance objective f;, then they are always
nondominated to each other in the MMO model. This is
because, if configuration 1 has the same f; value as x2,
then x; can only be on the boundary between ¢ and r7 (or
r3 and r4) for 2, meaning that after the rotation, it can only
be on the boundary between 77 and rg (or 72 and r3) for 2,
in which case their relationships are always nondominated
(incomparable) regardless the f, value and its scaling.

From Remarks 1-5, we can see that the MMO model is
capable of focusing on optimizing the target performance
objective (Goal 1) while mitigating the search from being
trapped in local optima (Goal 2). In the following sections,

on the basis of Remarks 6 and 7, together with the analysis
from Section we will explain why and how the weight
parameter w in the MMO model can be removed by changing
the normalization method for the model.

3.4 Normalization for MMO Model in the FSE work [27]

The above analysis assumes an ideal scenario, i.e., the target
and auxiliary performance objectives are of similar scale. This
is, however, unrealistic for practically tuning configuration.
For example, measuring the difference between latency
results often reaches the magnitude of 5 order while CPU
load merely differs at the scale of a few percentages. The
consequence is that the appropriate w value, which enables
a good balance between exploitation and exploitation for
MMO, can be either very large or very small depending on
the case, leading to high difficulty in setting the w.

Figure@ gives an example. As can be seen, from Figure @1,
f+ has roughly 100 greater scale than that of f,, and thereby
from the coordinates, the configurations will be shrunk
along f, to the boundary between r; and 72 for A. This
means that, after the rotation in MMO, A will dominate
all other configurations and make them comparable, which
is harmful. To mitigate such, one would need to give a
rather large w value, ie., w 100, that enables a more
reasonable incomparability among the configurations, i.e.,
some are nondominated while some others are dominated by
A (Figure[6p). Yet, since we do not normally have a precise
understanding as to what extent the scales between different
performance objectives differ beforehand, one would need
to examine a wide range of possible w values.

To ease the above, in the FSE work [27], we obtain
more commensurable f;(x) and f,(x) via the following
normalization (we call it FSE normalization thereafter):

_ fo(m) — floower
f(m) a - fl(i)wer

where f°(z) denotes the original value of the configuration

x on the performance objective f, and ff, ., and fg, ., are

the global lower and upper bounds on that performance

(6)

fv(jpper
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Fig. 7: The performance of eight w values for the original
MMO model with the FSE normalization on two exampled
systems (the best w is highlighted). With 50 repeated runs
under 600 and 2500 measurement budgets respectively,
STORM consumes a total of 600 x 8 x 50 = 2.4 x 105
measurements while X264 needs 2500 x 8 x 50 = 10°
measurements. Suppose that each measurement takes one
second, it would need around 2.7 and 11.6 days merely to
identify the best w setting.

objective for the software, respectively. That is, the true scale
of the performance objective is used as the bounds.

In practical software configuration tuning, however,
Tiower and f7,..,. are likely to be unknown a priori. Therefore
in our FSE work, these bounds are updated by using the
maximum and minimum values discovered so far during
the tuning to approximate the true scales. Note that using
the true scales of the objectives (if known) or their close
approximations for normalization is a widely used method
in SBSE [98], 801, [89], [32], [4].

Essentially, normalization plays a similar role to w in that
they both scale the relative positions of the configurations
(but the w primarily works on f,). As such, with the FSE
normalization, our hope was that its resulting scaling could
reduce the range of the ideal w values, hence relieving the
effort of adjusting it. In the best scenario, we anticipate
that the configurations on f; and f, can be naturally scaled
to ideal positions even when w = 1 (i.e.,, no scaling),
thereby there is a good mix of incomparable and comparable
configurations after the rotation, leading to more balanced
exploitation and exploration, e.g., in Figure [6.

3.5 What was Wrong?

Indeed, we have shown that the FSE normalization method
can be effective in narrowing down the ideal range of w
to achieve superior results [27], but with one ineffective
outcome: our analysis thereafter reveals that the weight w in
the MMO model remains a highly sensitive parameter, even
within a narrower range, and finding the right setting for a
system still requires much effort of trial and error. In [27] and
this work (Section[5), we examined a set of the weight settings
for MMO model (i.e., 0.01,0.1,0.3,0.5,0.7,0.9, 1.0, 10} A
key finding is that the weight achieving the best performance
differs drastically on different configurable software systems:
as shown in Figure|/] some systems work better with a tiny
weight value, e.g., w = 0.01 for the latency of STORM under

6. We chose these values because they are originally used in the FSE
work and it is found that w values outside [0.01, 10] only degrade the
results.

9

the WORDCOUNT benchmark, while some others do best
with a much bigger value, e.g., w = 1 for the energy usage of
system X264. In what follows, we will explain what caused
this issue that deviates from our original expectation by
means of both theoretical analysis and empirical evidence.

3.5.1 An Analysis

The above occurrence is due to the severe discrepancy
between the range of the current search population and
the performance objectives’ scales in software configuration
tuning, which obscures the benefit of the normalization
schema we used for the FSE work. To provide a sound
analysis thereof, recall the analysis on the effect of w and
the rotation from Section using lower/upper bound in
the normalization might lead to two cases in the presence of
discrepant performance objective values:

Case 1: If the f,, of the configurations in the population
shrinks into a tiny range compared to its true objective scale
in the whole search space (while the f; does not), then the
fa in the population after the normalization (Equation [6)
will be very close (see Remark 6). Figure [8a shows an
example, from which we see that without normalization,
all configurations will be nondominated after rotation, i.e.,
the scale of f; (e.g., CPU load) is much smaller than that
of f, (e.g., latency), which is not ideal. However, when
the bounds for f, is [0,5000] while that for f; is [0,10],
with the FSE normalization (Figure [8p), all configurations
(except A) will be shrunk towards the boundary between 7;
and ry of A (or r5 and 7), meaning that they will become
dominated (or dominate to) by A after the rotation. This is
also devastating to the tuning since too many comparable
configurations will over-emphasize exploitation. To mitigate
such, we need to set a larger w for stretching f,, ie., in
this case, w = 5 as shown in Figure 8, thereby the number
of incomparable configurations after rotation can be more
reasonable to balance the exploration and exploitation.

Case 2: On the other hand, if the f; in the population
evolves into a range that is tiny compared to its objective
scale in the whole search space (while the f, does not),
then the values of the f; of configurations in the current
population after the normalization (Equation[6) will be very
close (see Remark 7). As can be seen in Figure [8d, suppose
that before normalization the scale of f, (e.g., CPU load) is
much smaller than that of f; (e.g., latency), then this will
cause A to dominate all other configurations when rotating,
which is harmful. With the FSE normalization under the
bounds for is [0, 5000] for f; and [0, 10] for f,, as in Figure[8p,
all configurations (except A) will be shrunk towards the
boundary between r3 and r4 (or ro and r7) of A, causing
more configurations to become nondominated to A after the
rotation, hence creating many incomparable configurations
that focus too much on exploration that would also harm the
guidance of tuning. Likewise, to relieve such a case, we need
to set a smaller w for shrinking f,, e.g., w = 0.2 as shown in
Figure[f, thereby the number of incomparable configurations
after rotation is more appropriate, enabling the tuning to
favor towards exploitation that reaches a balance.

As a result, from the above, it is clear that although the
FSE normalization helps to reduce the ideal ranges of w
values (0.2 and 5 instead of the range on, e.g., [0.001, 1000]),
it can still negatively influence the appropriate number of
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Fig. 8: Illustration of why the MMO designs in our FSE work is highly sensitive to w. A, B, C, and D are four configurations
with the auxiliary and target performance objective values as (2,4 x 10?), (4,5.5 x 102), (3,8 x 10%), and (0.75,7 x 10?) in
(a), respectively. In (d), the values are (2 x 102,4), (4 x 102,5.5), (3 x 102,8), and (0.75 x 102, 7), respectively. The format is
the same as Figure @ (a), (b), and (c) show the case where the f, is normalized into a tiny range with bounds of [0, 5000]
as opposed to that of [0, 10] for fi; (d), (c), and (e) demonstrate the case where the f; is normalized into a tiny range with

bounds of [0,5000] as opposed to that of [0, 10] for f,.
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Fig. 9: An intermediate population of configurations for
system LRZIP generated by our MMO model with the FSE
normalization [27] on top of NSGA-II. Scales in the original
population are adjusted for visibility.

incomparable configurations following the rotation in MMO,
because a very large upper bound for one performance
objective might be reached and being used throughout the
tuning, even if such an extreme configuration has been ruled
out later on. Therefore, we still need to non-trivially adjust
w to mitigate such a side-effect from the FSE normalization,
which collectively influences the effects of rotation. This is the
key reason that the MMO designs in our FSE work remain
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Fig. 10: An intermediate population of configurations for
system STORM/WC generated by our MMO model with
the FSE normalization [27] on top of NSGA-II. Scales in the
original population are adjusted for visibility.

highly sensitive to its only parameter w.

3.5.2 Some Empirical Evidences

To demonstrate the devastating impact of FSE normalization
on the MMO model, Figure [ illustrates an intermediate
population of MMO model during the tuning for system
LRZIP. As can be seen from Figure [Pp, since the range of
auxiliary performance objective in the population becomes
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Fig. 11: A simple illustration of why the new normalization is more useful. A, B, C, D and F are five configurations with
the auxiliary and target performance objective values as (2,4), (4,5.5), (3,8), (0.75,7), and (3,5 x 102), respectively. The
format is the same as Figure @ (a) and (b) show the case of MMO under the FSE normalization; (c¢) and (d) demonstrate the
case of MMO under the new normalization. All cases have no scaling in MMO, i.e., w = 1.

“very small” (around [1.03 x 10*ms, 1.3 x 10*ms]), compared
to the objective scale ([10*ms, 1.7 x 105ms], after the normal-
ization the auxiliary performance objective’s values become
tiny, condensing in the range of [0,1.7 X 1073] only. This,
as we discussed during the analysis, can lead to all the
configurations in the population being either dominating or
dominated by each other within the transformed space of our
MMO model (Figure [9), which effectively means that the
problem degenerates to the original single-objective problem,
where the configurations are discriminative virtually based
on their target performance objective (thus easily being
trapped in local optima).

Figure 10| gives yet another example, where we visualize
an intermediate population of MMO model (with the FSE
normalization) during the tuning for system STORM/WC.
As can be seen in Figure [10p, since the range of the target
performance objective (latency) in the population becomes
“very small” (around [95ms, 1800ms]), compared to the
objective scale ([3ms, 55209ms]), after the normalization
the values of the target performance objective become tiny,
condensing in the range of [0,0.03] only. The auxiliary
performance objective (throughput), in contrast, are more
evenly spread over the range of [0, 1] after the normalization.
As with our analysis, this can lead to all the configurations
in the population being nondominated to each other within
the transformed MMO space (Figure [10k). Unfortunately,
all configurations in the population being nondominated is
detrimental to the search since there is no selection pressure
(i.e., discriminative power); everyone is incomparable even
the one with the best target performance objective.

3.6 A New Normalization

The above analysis and observations suggest that the FSE
normalization based on the (approximate) true scales of the
performance objectives may not be suitable for the MMO
model. Fortunately, this can be fixed by considering the cur-
rent population as the basis of bounds in the normalization,
which is the key extension in this work. That is, we replace
Equation [p| with the following:

(o) = LD~ Jin @

where f°(x) denotes the original value of the configuration
« on the performance objective f, and f9,,,, and f2, .. are the
maximum and minimum values of the current population on
f, respectively. As such, instead of using the global bounds
throughout the search, the local bounds (in the population of
configurations of every generation along with the evolution)

are used in the normalization.

To better explain how the new normalization differs from
the FSE normalization in the MMO space, Figure [11| shows
an example. Here, from Figure and [11, suppose that
during the tuning a configuration E with a very large value
of f; is discovered, then this will cause both normalizations
to shrink the configurations along f;, leaving a negative
impact as most configurations will become nondominated
(incomparable) after rotation. However, it is possible that E
will be subsequently ruled out due to it being the only config-
uration dominated by A in the MMO space. Yet, with the FSE
normalization (Figure [ITp), the bounds remain unchanged
hence all configurations are still nondominated, i.e., the side
effect left by E will remain present. In contrast, with the
new normalization in this work (Figure ), the bounds
are updated locally within the population of preserved
configurations and hence they can be scaled more reasonably,
leading to a better mix of comparable and incomparable
configurations after F is eliminated. This will strike a good
balance between imposing the selection pressure toward
the best target performance objective and preserving the
diversity of the auxiliary performance objective.

Figures|12|and [13| give the results of the examples from
Figures E] and [10|after the new normalization is implemented,
respectively. As can be seen, the configurations in the
population after the normalization do not concentrate into
one value on either objective (Figures and [I2b), and
in our MMO space there now exist both dominated and
nondominated configurations in the population (Figures
and ). In this case, there is less need to adjust the w in
the MMO model to mitigate the side-effect of normalization,
which balances the number of incomparable configurations
after rotation, since the two performance objectives after the
normalization are always commensurable. As such, we can
generally remove the weight, i.e., setting w = 1 for all cases.
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Algorithm 1: MMOONNSGA-II
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Fig. 12: The same population of Figure |§| under the MMO
model with the new normalization method in this work.
Scales in the original population are adjusted for visibility.
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model with the new normalization method in this work.
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3.7

Since MMO model is an optimization model, it can fit with
different population-based multi-objective optimizers such
as NSGA-IIL. A pseudo-code for using the MMO model with
the normalization on top of NSGA-II has been demonstrated
in Algorithm As can be seen, there are two amendments
required (the red crossed statements are the code for the FSE
work and the green ones are the code changed in this work):

1) Keeping track of the bounds on f;(x) and f,(x) for
normalizing both the target and auxiliary performance
objectives (lines 6-7 and 23-24). The definitions of
those bounds differ depending on the normalization
methods, i.e., with lines 23-24 instead of lines 21-22, the
bounds are locally restricted to the current population
or otherwise, they would be the global bounds so far.

2) Performing the normal Pareto search procedure in
NSGA-II within the transformed meta-objective space
(91(x) and g2(x)) of MMO model without a weight,
instead of the original target-auxiliary space (f;(x) and
fa(x)), as shown at lines 10, 15, 28, and 30.

Indeed, we do not need to make a significant amount of
refactoring on MMO at the code level, but as we will show
later on (Section[5), such a simple change can lead to dramatic
improvements in its effectiveness while saving the overhead
of adjusting the weight. It is worth noting that, proposing a
simple method that leads to large improvements is not easy,
as this requires in-depth understanding and reasoning about
the principles/causes behind the observations, as what we
have shown in our theoretical and empirical analysis, which
requires a large amount of effort.

Integrating with an Optimizer

4 EXPERIMENTAL EVALUATION

In this section, we articulate the experimental methodology
for evaluating our MMO model with the new normalization.

Input: Configuration space V; the system F; weight-

Output: sp.;: the best configuration on f; ()

Declare: bound vectors Zmax and Zmin

Randomly initialize a population of n configurations P

Zmax ::Q;Znﬁn =

3 /+ measuring fr and f, of the configurations in
P on the system */

4 MEASURE(P, F)

/* initializing the bounds for normalization

*/

No=

o

6 Zmax = UPDATEUPPERBOUNDS(P)

7 Zmin = UPDATELOWERRBOUNDS(P)

8 /x updating g1 and g2 x/
9 T Zras; Zmin

10 COMPUTEMMOMODEL(P; Zmax, Zmin)
11 while The search budget is not exhausted do

12 P =0

13 while P’ < n do

14 /* selecting parents based on g1 and g2
*/

15 {sz, sy} < MATING(P)

16 {0z, 0y} + DOCROSSOVERANDMUTATION(V, sz, Sy)

17 /+ measuring f; and f, for configurations
0y and oy on the system (if unique)
*/

18 MEASURE(0z, 0y, F)

19 | P+ P U{ox, 0y}

20 /* the bounds are reset based on the

current population at each generation
regardless of the previous bound values

*/
21 Zmax —=UPPATEUPPERBOUND S Zmax)
2 Zmin = UPPATELOWERRBOUNDS(P Zmm)
23 Zmax = UPDATEUPPERBOUNDS(P)
24 Zmin = UPDATELOWERRBOUNDS(P)
25 u «~rPUP
26 /* updating g1 and g2 */
27 7 ,17HMX77an
28 COMPUTEMMOMODEL(U’, Zmax, Zmin)
29 /* sorting based on g1 and g2 */
30 U <+ NONDOMINATEDSORTING(U")
31 ‘P «top n configurations from U/

32 return spes¢ < BESTCONFIGURATION(P)

To better distinguish this work and the FSE work [27], we
use the following terminology:
e MMO-FSE: This refers to our MMO model with the
normalization method from the FSE work.
e MMO: This refers to our MMO model with the new
normalization proposed in this work.

All optimization models and optimizers are implemented
in Java, using jMetal [35] and Opt4] [65].

4.1

Our experiment answers a few research questions (RQs):
— RQ1: How effective is the MMQO?

As the most fundamental question, we ask RQ1 to verify
whether our MMO can better help to mitigate the issue of
local optima, i.e., by providing better results than the MMO-
FSE, PMO, and state-of-the-art single-objective counterparts.
However, even if the MMO can lead to promising results by
mitigating local optima, it would be less useful if it requires
a significantly large amount of resources to do so. Under
the same settings as RQ1, our second research question is,
therefore:

— RQ2: How resource-efficient is the MMO?

Research Questions
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TABLE 1: Configurable software systems studied.

Software System Domain Performance Objectives # Options  Search Space  Used By
MARIADB SQL database O1: latency 02: CPU load 10 864 175]
STORM/WC stream processing  O1: throughput  O2: latency 6 2,880 701, [51], [75]
VP9 video encoding O1: latency 02: CPU load 12 3,008 175]

STORM /RS stream processing ~ O1: throughput  O2: latency 6 3,839 701, [51], [75]
LRZIP file compression O1: latency 02: CPU load 12 5,184 175]
MONGODB no-SQL database O1: latency 02: CPU load 15 6,840 [75]
KERAS-DNN/SA deep learning O1: AUC O2: inference time 12 16,384 1671, 152]
KERAS-DNN/ADIAC  deep learning O1: AUC 0O2: inference time 12 24,576 [671, [52]
X264 video encoding O1: PSNR O2: energy usage 17 53,662 1701, 182, 175]
LLVM compiler O1: latency 02: CPU load 16 65,436 701, [75]
TRIMESH triangle mesh O1: # iteration =~ O2: latency 13 239,260 1701, 182]
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In RQ2, we are interested in examining whether the MMO
can utilize the resource (the number of measurements)
efficiently when reaching a certain level of performance.

One of the key novelties for MMO, compared with MMO-
FSE, is weight-free. Yet, this would be meaningless if the
MMO-FSE achieves similarly promising results over different
weights on the systems studied; or if the effort for finding
the best weight is trivial. Hence, our next RQ is:

— RQ3: How meaningful is the weight-free design in
MMO?

RQ3 seeks to understand two aspects: (1) how does MMO
perform when compared with MMO-FSE under different
weights; and (2) How much extra resource is required to
tune the MMO-FSE for finding a promising weight value.

To reduce unnecessary noise, we investigate RQ1-3
by directly measuring the systems, which belongs to the
measurement-based tuning methods for software configu-
ration tuning [71], [102], [95]. However, there exist studies
leveraging on the model-based tuning methods where a
surrogate is built to serve as a cheap evaluator to predict
the performance of a configuration, under the assumption of
the single-objective model. Since the key difference between
measurement-based and model-based tuning methods lies in
whether a surrogate is used to guide the search, the MMO,
which itself is an optimization model, can be considered
complementary to the model-based alternative. Therefore,
our final research question is concerned with:

— RQ4: Can MMO consolidate the existing model-based
tuning method?

To that end, we extend FLASH [70] and BOCA [17]—two
recent tools from the Software Engineering community for
configuration tuning—with our MMO and examine whether
its performance can be improved.

4.2 Software Systems

To improve the generality of this work, we chose systems
from existing studies according to the following criteria:

« To ensure complexity, we exclude simple systems, i.e.,
those with less than 10 configuration options and all of
them are binary.

e The system should involve at least two performance
objectives.

o To expedite the experiments, the system should contain
readily available data of the measurements on all the
valid configurations.

« To improve the diversity of the subject, for the system
under different benchmarks, we use the one with the
largest search space and the one with the highest
deviation on the performance, providing that the above
points are satisfied.

As shown in Table[I} we experiment on 11 real-world soft-
ware systems and environments that have been commonly
used in prior work [70], [51], [67], [52], [75]. They come
from diverse domains, e.g., SQL database, video encoding,
and stream processing, while having different performance
attributes, scale, and search space of valid configurations.
Each software system has two performance objectives, which
are chosen from prior work [70], [51l], [67], [52], [75]. In all
experiments, we use each of their two performance attributes
as the target performance objective in turn while the other
serves as the auxiliary performance objective, leading to 22
cases in total. We apply the same configuration options and
their ranges as studied previously since those have been
shown to be the key ones for the software systems under the
related environment.

Noteworthily, it can be rather expensive even for a single
measurement under those systems, e.g., it may take up to 341
seconds to measure a configuration on MONGODB. To ensure
realism and expedite the experiments, we use the datasets
of those systems collected by existing work, in which each
measurement is extracted from 3-5 repeats [51], [75].

4.3 Settings for RQ1, RQ2, and RQ3
4.3.1

For the single-objective optimization model, we examine four
state-of-the-art optimizers that are widely used in software
configuration tuning, all of which deal with local optima in
different ways:

e Random Search (RS) with a high neighbourhood radius
to escape from the local optima, as used in [8], [99], [71].

e Stochastic Hill Climbing with restart (SHC-r), which is
exploited by [95], [62], aiming to avoid local optima by
using different starting points.

o Single-Objective Genetic Algorithm (SOGA) from [7],
[801, [78], [84] that seeks to escape local optima by using
variation operators.

o Simulated Annealing (SA) that tackles local optima by
stochastically accepting inferior configurations as used
in [37], [42].

While the MMO does not tie to any specific multi-
objective optimizer, we use NSGA-II for the MMO, MMO-

Optimizers
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TABLE 2: Measurement search budgets and population sizes.

Software Size Budget Software Size Budget
MARIADB 20 400 STORM/WC 50 600
VP9 30 700 STORM /RS 50 900
LRZIP 20 400 MONGODB 20 500
KERAS-DNN/SA 20 400 ||[KERAS-DNN/ADIAC 20 400
X264 50 2,500 LLVM 20 600
TRIMESH 20 1,000

FSE, and PMO in this work, because (1) it has been predomi-
nately used for software configuration tuning in prior work
when multiple performance attributes are of interest [26],
[831, [311], 58], [85]]; (2) it shares many similarities with the
SOGA that we compare in this work. However, it is worth
noting that MMO may not be able to work with some multi-
objective optimizers designed for SBSE problems where the
objectives are not treated equally, such as [73], [46], [45].

4.3.2 Weight Values for MMO-FSE

In our experiments, we evaluate a set of weight values, i.e.,
w € {0.01,0.1,0.3,0.5,0.7,0.9, 1.0, 10}, for the MMO-FSE.
Those are merely pragmatic settings, but we found that
weight beyond this range only degraded the performance,
please kindly refer to Section 3.4 for a theoretical explanation.
Further, a similar setting is also what has been commonly
followed for SBSE work in general [29]. In this way, we aim
to examine whether the MMO-FSE can perform as well as
MMO under the best weight chosen from a set of diverse
weight values (or indeed worse on all of them).

4.3.3 Search Budget

In this work, we use the number of measurements to
quantify the search budget and resource consumed, as it
is language-/platform-independent and does not suffer from
the interference caused by the background processes of the
operating system.

Since one of our goals is to examine how badly a
model/optimizer can suffer from trapping at undesired
local optima when tuning software configuration, it is
important to study the result under reasonable convergence,
i.e., increasing the search budget is unlikely to change the
outcomes. To that end, for every optimizer/model on each
system (and its performance objectives), we examine different
search budgets from {100,200, ..., X} where X refers to
the smaller one between 3,000 and the size of the search
space. The purpose is to set a search budget as the smallest
number of measurements for all optimizers/models, such
that they all have less than 10% changes of configuration in
the population (or no better configuration found when no
population is involved) within the last 10% of the successive
measurement coun The settings are similar to those used
by existing work which were found in a similar way, e.g.,
Gerasimou et al. [38] set no better configuration found for
the last 20% of the iteration count as a sign of convergence;
Krall et al. [56] use 15% as an indicator of convergence.
Note that we additionally monitor the percentage of the
population change rather than purely whether a better
configuration is found, since Harman [44] suggests that a

7. For SOGA and NSGA-II, the population size is initially fixed to 10,
which is the smallest size that we will examine subsequently.

14

good sign of little realistic chance of further improvements
on population-based optimizers is that the population has
become homogeneous. To ensure the realism of the setting,
we make sure that the actual time taken for exhausting the
search budget does not exceed 48 hours for a run overall. The
identified search budgets are then used as the termination
criterion in our experiments, as shown in Table [2| It is
worth noting that the search budget identified remains much
smaller than the corresponding search space. For example,
it only allows for measuring 0.42% of the configurations for
TRIMESH.

Since each measurement has considered the noise [51]],
[75] and only the profiling of systems is expensive in
practice, in each run, we cached the measurements of distinct
configurations, which can be reused directly when the same
configuration appears again during the tuning. As such, only
the distinct configurations would consume the budget.

To account for the stochastic nature of the optimizers, we
repeat all experiments 50 runs under the search budget.

4.3.4 Other Parameters

For the other key parameters of the optimizers, we apply the
binary tournament for mating selection, together with the
boundary mutation and uniformed crossover in SOGA and
NSGA-II, as used in prior work [26], [80], [31]. The mutation
and crossover rates are set to 0.1 and 0.9, respectively, as
commonly set in software configuration tuning [26].

What we could not decide easily is the population size
for SOGA and NSGA-II. Therefore, for each software system,
we additionally examine a set of population sizes, i.e.,
{10,20, ...,100}, under the search budget identified previ-
ously. Similarly, we set the largest population size that can
still ensure there are less than 10% changes of configurations
at the last 10% of the measurement count. The results are
shown in Table [2| In this way, we seek to reach a good
balance between convergence (smaller population change)
and diversity (larger population size) under a budget.

4.4 Settings for RQ4
4.4.1 Optimizers

For model-based tuning methods, we consider FLAS

(TSE’20) [7Q0] and BOCA (ICSE"21) [17] in this work, because

o they are recent efforts from the software engineering
community to tune software configuration.

o they have been specifically tailored to cater for the key
properties of the tuning problem, e.g., high sparsity and
expensive measurements.

o their authors have shown that they outperform other
more general configuration tuning approaches, e.g.,
BOCA is better than TPE [17] and FLASH is superior to
e-PAL [70Q], as well as better than some older methods for
software configuration tuning, e.g., the one by Jamshidi
and Casale [70].

« both have been tested on some of the systems studied
in this work, e.g., X264 and LLVM.

In a nutshell, FLASH was derived from the Sequential
Model-Based Optimization (SMBO) paradigm, which is a

8. Note that when only a single performance objective matters, FLASH
uses a single-objective model like the RS, SHC-r, SOGA, and SA studied
in this work. Hence, we use the single-objective version of FLASH.
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Algorithm 2: FLASH

Algorithm 3: BOCA

Input: Configuration space V; the system F

Output: sp.s: the best configuration on f; ()

Declare: vector of surrogates M (one for each performance
objective)

1 Randomly initialize a size of & configurations P
2 MEASURE(P, F)
3 /+ removing measured configurations */
1 V<V -P
5 while The search budget is not exhausted do
6 M = TRAINCARTS(P)
7 /* searching an estimated-best
configuration for measurement */
o0 = FINDBESTCONFIGURATION(V, M)
9 MEASURE(o, F)
10 V&V —-o
11 P+P+o
12 if o is measured to be better than syes on fi(x) then
13 | Spest =0

14 return speq;

generalization of the Bayesian Optimization (BO) [81]. As
shown in Algorithm [2} the basic idea is to build a surrogate
that learns the correlation between configurations and their
values of a performance objective (line 6). Such a surrogate
is then used to guide the search to decide which promising
configuration to measure next via an acquisition function
(line 8), after which the surrogate would be updated by using
the newly measured configuration. Like other measurement-
based tuning methods, the process terminates when the
search budget is exhausted. Yet, unlike the classic BO, FLASH
does two major changes for the problem to tune a single
performance objective:

1) The surrogate is a CART [14] instead of the classic
Gaussian Process in BO [81]].

2) The acquisition function no longer considers uncertainty
but solely targets the best-predicted performance value.

Note that FLASH originally uses an exhaustive search
to find the best-predicted configuration at each sampling
iteration (line 8), but this may not be ideal for our study
because of two reasons: (1) exhaustively traversing the
whole configuration space itself is still a lengthy process,
especially on some of the large systems. For example, on
each iteration for TRIMESH, it can take several minutes on
a standard machine to run even for a surrogate. (2) Since
the surrogate is not always accurate [102], the exhaustive
search could amplify the side effects caused by the errors in
misleading the search. Therefore, we replace the exhaustive
search with a random search, which works well and has been
recommended as a replacement for SMBO [8].

Similar to FLASH, BOCA (Algorithm [3) also leverages
Bayesian Optimization but it uses Random Forest [13] and
Expected Improvement [53] as the surrogate and acquisition
function, respectively. Further, BOCA takes the top K
most important configuration options into account based
on the rank from the Random Forest; it then creates a set
of candidate configurations that cover c settings for the
unimportant options combined with every setting of the
important ones, where c is determined proportionally to the
search progress (lines 5-9). The one with the best acquisition
value from the set is then measured.

Input: Configuration space V; the system F
Output: sp.;: the best configuration on f; ()
Declare: vector of surrogates M
Randomly initialize a size of k configurations P
MEASURE(P, F)
while The search budget is not exhausted do
M = TRAINRANDOMFOREST(P)
7 =GETALLSETTINGSONIMPORTANTOPTIONS(M, K)
fori € Z do

¢ =DECAY(j)

Z =GETUNIMPORTANTSETTINGS(c)

P’ <~ COMBINEDSAMPLES(3, )

© ® N U R W N R

=
S5

/* searching an estimated-best
configuration for measurement */

1 0 = FINDBESTCONFIGURATION(P’)

12 MEASURE(o, F)

13 P<+P+o

14 if o is measured to be better than spes on fi(x) then

15 | Spest =0

16 return sy

4.4.2 Search Budget

To ensure fairness, we set the same search budget as used
in the original work of FLASH [70], i.e., 50 measurements.
Further, we also use the same initial sample size (kK = 30
in Algorithm 2) to pre-train the surrogate. As for the search
process with the surrogate, we allow for 1,000 surrogate
evaluations (including redundant ones) which is a typical
setting from the other work for optimizing the surrogate
when an exhaustive search is undesirable [54], [76].
Similar to RQ1-3, each experiment is repeated 50 runs.

4.5 Statistical Validation

We use the following methods for statistical test:

— Non-parametric test: To verify statistical significance,
we leverage the Wilcoxon signed-rank test [94] (for
paired comparisons between two approaches) and
Kruskal-Wallis test [66] (for multiple comparisons). In
particular, to understand which pairwise comparisons
are significant in the Kruskal-Wallis test, we use Dunn'’s
test [91] as the post-hoc method together with the
Holm-Bonferroni correction [2], which will significantly
reduce the chances of Type-I error. All of the above are
widely used non-parametric test for SBSE and has been
recommended in software engineering research for their
strong statistical power [6]. The standard a = 0.05 is set
as the significance level over 50 runs.

— Effect size: To ensure the differences are not generated
from a trivial effect, we use A;o [93] to verify the effect
size of the comparisons on target performance objectives
over 50 runs. According to Vargha and Delaney [93],
when comparing our MMO and its counterpart in this
work, Ajs > 0.5 denotes that the MMO is better for
more than 50% of the times (MMO wins); MOO will lose
if Aj9 < 0.5 and itis a tie when A;5 = 0.5. In particular,
0.56 < {112 < 0.64 indif:ates a small effect size while
0.64 < A3 < 0.71 and A;5 > 0.71 mean a medium and
a large effect size, respectively.

As such, we say a result of the comparison is statistically
significant only if it has /112 > 0.56 (or Alz < 0.44) and
p < 0.05 (after correction if needed).
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TABLE 3: Comparing MMO with the other state-of-the-arts over 50 runs. SOpcst and MMO-FSE,.s; denote the best single-
objective model/optimizer and the MMO-FSE with the best weight, respectively. —e— shows the average and standard error
(SE) on the target performance objective achieved (all objective values are normalized within [0, 1] and the closer to the left,
the better). —e— denotes the best average among others. Column ”Alg (p value)” shows the Alg and corrected p value when
comparing the corresponding counterpart with MMO. “T”, “S”, “M”, and “L” denotes trivial, small, medium, and large
effect size, respectively. The blue cells denote MMO wins (A12 > 0.5) while red cells mean it loses (A12 < 0.5); otherwise it
is a tie (A12 = 0.5). Statistically significant comparisons, i.e., A12 > 0.56 (Alg < 0.44) and p < 0.05 are highlighted in bold.

Mean/SE A1a (p value) Mean/SE A1 (p value) Mean/SE A1 (p value) Mean/SE A1a (p value)
SOpest —e— .66 M (=.005) —o— 51T (=.814) 3 55T (=.395) ° .50 T (=1.00)
MMO-FSEpcs;  +o~ 43 M (=.114) o 53T (=1.33) (] 46 T (=.339) e .99 L (<.001)
PMO e~ .65 M (=.009) —e— .71 L (=.001) —e— .66 M (<.001) (] .66 M (=.017)
MMO —o— - o - 1o - ° -
(a). MARIADB-O1 (b). MARIADB-O2 (c). STORM/WC-O1 (d). STORM/WC-0O2
Mean/SE A1s (p value) Mean/SE A1z (p value) Mean/SE A1z (p value) Mean/SE A1z (p value)
SOpest re .64 M (=.020) . .64 M (=.027) ] 57 M (=.444) ° .50 T (=1.00)
MMO-FSEpes; ® 44 S (=.228) ° A48T (=.737) . 52T (=.687) e+ .94 L (<.001)
PMO e .89 L (<.001) —e— .87 L (<.001) e .90 L (<.001) L] .53 T (=1.00)
MMO L] - ° - . - ° -
(e). VP9-0O1 (f). VP9-O2 (g). STORM/RS-O1 (h). STORM /RS-02
Mean/SE A1z (p value) Mean/SE A1z (p value) Mean/SE A1z (p value) Mean/SE A1z (p value)
SOpest o .62 S (=.001) —e— 55T (=.236) —e— .74 L (<.001) —e—i .63 S (=.031)
MMO-FSEy ¢ L .77 L (<.001) —e— .77 L (<.001) o 54T (=.614) —e—i .64 M (=.044)
PMO —e— .89 L (<.001) —e— .81L (<.001) —o—i .59 S (=.253) —e—  .60S (=.091)
MMO ] - —e—i - —eo—i - —e—i -
(i). LRZIP-O1 (j). LRZIP-02 (k). MONGODB-O1 (1). MONGODB-02
Mean/SE Ao (p value) Mean/SE A1 (p value) Mean/SE A1 (p value) Mean/SE A1a (p value)
SOpest —e—  63S (=.023) . 62 S (=.040) —e— .65 M (=.005) . 64 M (=.008)
MMO-FSEj 51 —e— 54 T (=.981) e .94 L (<.001) —e— 54 T (=.698) —e— .99 L (<.001)
PMO L] A48 T (=.690) (] .61 S (=.049) ° 55 T (=.991) ° .81 L (<.001)
MMO —e—i - [ - —o— - ° -
(n). KERAS-DNN/SA-O1 (m). KERAS-DNN/SA-O2 (0). KERAS-DNN/ADIAC-O1 (p). KERAS-DNN/ADIAC-02
Mean/SE Alz (p value) Mean/SE Alz (p value) Mean/SE Alz (p value) Mean/SE Alz (p value)
SOpest —e— .69 M (=.001) —e—i .61 S (=.046) ° .50 T (=1.00) e .62 S (=.043)
MMO-FSEpesy +——0— 45 T (=.461) —e— 52T (=.688) ° .50 T (=1.00) Rl 59 S (=.182)
PMO o .67 M (=.021) e~ .72 L (<.001) ——e—— 52T (=.135) re1 .78 L (<.001)
MMO —eo— - e - ° - o -
(q)- x264-01 (r). X264-02 (s). LLVM-O1 (t). LLVM-02
Mean/SE A1a (p value) Mean/SE A1 (p value) % Win % Lose % Tie
SOpost e 50T (=1.00) o 66 M (=.017) MMO vs. SOpcsz 82% 0% 18%
MMO-FSEp¢ e 50T (=1.00) Y 52 T (=.744) MMO vs. MMO-FSEy. ;¢ 68% 23% 9%
PMO e 50T (=1.00) ~e— .81 L (<.001) MMO vs. PMO 90% 5% 5%
MMO ° - o -
(u). TRIMESH-O1 (v). TRIMESH-O2 (w). Overall % win/loss/tie for MMO versus the others based on Aia
5 RESULTS 3) Select the one with the best rank; if there are multiple

In this section, we present and discuss the experi-
ment results. All code and data can be accessed at:
https://github.com/ideas—1abo/mmol

5.1 RQ1: Effectiveness
5.1.1 Method

To answer RQ1, we compare MMO with the best state-
of-the-art single-objective counterparts (as discussed in
Section [4.3.1)), as well as the MMO-FSE with a best-tuned
weight and PMO, over all the 22 cases of study. Since the
best single-objective optimizer (denoted as SOp.s;) and the
MMO-FSE with the best weight (denoted as MMO-FSE )
differ across the systems/objectives, we use the following
procedure to select the best representative in each case:

1) Run all candidates under the full-scale experiment.
2) Rank the results using Scott-Knott test [79] according to
the target performance ob]ectlwﬂ

9. Scott-Knott test is a widely used test in SBSE [96] to distinguish
different approaches into clusters based on an indicator (target perfor-
mance objective in this work), between each of which are guaranteed to
have statistically significant differences; the approaches within the same
cluster are said to be statistically similar. The clusters are then ranked.

candidates under the best rank, the one with the best av-
erage (over 50 runs) on the target performance objective
would be used.

To ensure statistical significance, the statistical testPE]
and effect size are reported for every pairwise comparison
between our MMO and the other counterparts over 50 runs.

5.1.2 Findings

From Table 3} we can see that MMO performs considerably
better than the best single-objective counterpart SOpes:
(which can vary depending on the case), winning 18 out of 22
cases within which 14 of them show statistical 51gn1f1canc.
(A12 > 0.56 and p < 0.05); the remaining 4 cases are all tie
and there are no cases of losses. The magnitudes of gains are
also clear. The improvements over PMO are also clear: MMO
wins 20 cases (15 have statistically significant differences)
under mostly large magnitude of gains; there are also one tie
and one loss.

10. Since there are multiple comparisons, we use Kruskal-Wallis test
and the corrected p values (via Holm-Bonferroni correction) of Dunn’s
test for all the 3 comparisons between MMO and its counterpart.

11. All Kruskal-Wallis tests show p < 0.001 at the global level, hence
the details are omitted for simplicity of exposition.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/


https://github.com/ideas-labo/mmo

This article has been accepted for publication in IEEE Transactions on Software Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TSE.2024.3388910

JOURNAL OF IATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2024

SOpest " (MMO vs. SOpcq: A2 = .82;p < .001) Tk
MMO/FSEpes: (MMO vs. MMO-FSE.;: A2 = .73;p = .006) |-
PMO (MMO vs. PMO: A5 = .86;p < .001) =
MMO I 1 1 | | I

1
10 20 30 40 50 60 70 80
Number of times that finds global optimum

Fig. 14: The number of times to find the global optimum
within 50 runs for all cases. The reported figures are the
average and standard error across all cases. For all statistical
comparisons with MMO, 12112 > .50 means MMO wins. All
comparisons show large effect sizes.

When comparing to the MMO-FSE with the best weight
(MMO-FSEp¢st), MMO wins 15 out of the 22 cases with 7 of
them showing statistical significance; loses on 5 cases with
no statistically significant ones, together with two ties. This
means that, although MMO-FSEy,; is competitive, MMO can
still obtain further improvement in general thanks to the new
normalization method. This is especially true in some cases,
such as STORM /RS-O2, where the target performance objec-
tive values are much more skewed than the auxiliary ones
(recall from Figure . Even though MMO-FSE,,.,; was pre-
tuned with some best weights, such finding is not surprising
because: firstly, despite that the range of good weights can
be reduced compared with when no normalization is used,
the given set of candidate weights may not be exhaustive.
Indeed, as we will show in Section the weight tuning
itself can be profoundly expensive, making exhaustive search
unrealistic. As such, the chosen weight may still be far from
the truly optimal weight setting. Secondly, as the population
evolves, the objective values keep changing, particularly on
the target performance objective. A fixed weight typically
does not stay ideal during the entire evolution process. For
example, the weight may be a good fit at the beginning of the
evolution when the population has a relatively large range of
the target performance objective values, but it may become
unsuitable when the population converges into a tiny region
with respect to the target performance objective.

To examine whether MMO can indeed improve the
chances for reaching the global optimum of the target
performance objective, in Figure we plot the average
number of runs that each model/optimizer reaches the
global optimum across all cases. We see that, as expected,
MMO cannot find the global optimum for all runs under
the systems studied. However, in general, it hits the global
optimum more regularly than the others with statistical
significance and large effect siz@

To understand why our MMO can outperform the state-
of-the-arts, we took a closer look at the configurations
explored during the runs. We identified two most common
patterns shown in Figure[I5] As can be seen from Figure[I5h,
the first pattern is where MMO reaches the global optimum
while the others do not; the second represents a run where the
global optimum has never been found, but MMO produces
a result that is much closer to it than that of the others, as
shown in Figure [I5p. It is worth noting that, under both
patterns, there exist some large regions of local optima
that cause the others to suffer more than MMO. This is

12. We use the Wilcoxon signed-rank test here since the comparisons
cut across the subject systems, i.e., they are paired.
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Fig. 15: Projected landscapes of the explored configurations
for two exampled systems. Each point is a configuration
measured in the run, regardless of whether it is preserved
or not. (a) represents a case where MMO finds the global
optimum while the others do not; (b) showcases the scenario
where none of them found the global optimum, but MMO
produces results that are much closer than those of the others.

evident by Figure (15| where the highlighted local optima
regions are mostly crowded with points explored by the other
counterparts. The MMO, in contrast, escapes from these local
optima by exploring an even larger area while keeping the
tendency towards better target performance objective, which
is precisely our Goals 1 and 2 from Section 3|

In summary, we can answer RQ1 as:

The MMO is effective because we found that

o it provides considerably better results than the SOpe st
(82%, 18 out of 22 cases) and PMO (90%, 20 out of
22 cases).

o it also obtains relatively good improvement over MMO-
FSE s, thanks to the new normalization.

5.2 RQ2: Resource Efficiency
5.2.1 Method

To understand the resource efficiency of MMO in RQ2, for
each case out of the 22, we use the following procedure:

1) Identify a baseline, b, taken as the smallest number of
measurements that the best single-objective counterpart
(SOpest) consumes to achieve its best result of the target
performance objective, averaging over 50 runs (says 1').

2) For each of the others, find the smallest number of
measurements, denoted as m, at which the average
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Fig. 16: Illustrating the calculations of speedup s.

result of the target performance objective (the mean
over 50 runs) is equivalent to or better than 7.
3) The speedup over SOpcst, i€, 5 = %, is reported,
according to the metric used by Gao et al. [36].
From the example in Figure [T6} we see that:

o In Figure[I6p, s > 1 means that the approach reaches
the converging performance of SOy, by using less
measurements, hence is more efficient when achieving
the best of what can be produced by the baseline.

o In Figure[T6p, s < 1 suggests that the approach reaches
the converging performance of SOp.s; by using more
measurements, hence is less efficient even though it can
lead to better results when the full budget is exhausted.

o In Figure[T6f, we use s < 0 to denote the case where the
approach has never been able to reach the converging
performance of SOy, denoted as “failed”.

Of course, when s = 1, both approaches reach the same
performance at exactly the same number of measurements.

Clearly, the greater the s, the better speedup, and hence
more resources can be saved against that consumed by SOpes:.
In particular, if the MMO is resource-efficient, then we would
expect at least s = 1 and ideally s > 1. Since in our context,
the resource is the number of measurements, it reflects the
time and computation required by a model. Again, we use
the same SOy,s; and MMO-FSE;.; from RQ1.

5.2.2 Findings

As can be seen from Figure[17} despite a very small number
of cases where the MMO uses more resources to reach the
performance level achieved by the best single-objective coun-
terpart, most commonly it uses less number of measurements
than, or at least identical to, the baseline to find the same
or better results, e.g., it obtains a speedup up to 2.09x. In
particular, the MMO achieves 17 cases of s > 1; 3 cases
of s = 1; and 2 cases of 0 < s < 1. Remarkably, there is
no case where it fails to reach the performance level (the
divided bars, denoted as s < 0). This indicates that the
MMO overcomes local optima better and more efficiently—
a key attraction to software configuration tuning due to
its expensive measurements. The MMO-FSE,,.s; does show
competitive results with respect to MMO: it has 13 cases of
s > 1 and 4 cases of s = 1, but there are 5 cases of s < 0
due to the issues discussed in Section which could be
undesirable on certain domains. Again, the above is due to
MMO covering the key properties of software configuration
tuning (Section [3) while making it much less sensitive to the
weight parameter.

In contrast, the PMO exhibits the worst resource efficiency
in terms of the speedup over SOpes, as it has 3 cases of
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Fig. 17: Speedup (denoted as s) for MMO, MMO-FSE with
the best weight (MMOy,s;), and the PMO for converging
to the best value (the average over 50 runs) of performance
objective, T', by the best single-objective counterpart (SOpest),
using its budget consumption as the baseline (the dashed
line at speedup 1x). 0 < s < 1 indicating that the method
is even slower (by using more measurements) than SOps¢
to reach its best result, suggesting an inefficient utilization
of resources. The broken bars mean T has not been reached
when the tunning terminates, i.e., s < 0.

5 > 1, together with 3 cases of s = 1; 1 case of 0 < 5 < 1,
respectively, while the remaining 16 cases are s < 0. This
is a clear sign that PMO is generally resource-hungry as
discussed in Section[3

Interestingly, however, we see that PMO is considerably
resource-efficient in 3 cases (KERAS-DNN/SA-O1, KERAS-
DNN/SA-O1, and KERAS-DNN/ADAIC-O1). Despite be-
ing rare, this is indeed possible, because it can be severely
affected by the relationship between the target and auxil-
iary performance objective. When there is a conflicting or
weak relationship, then certainly optimizing the auxiliary
performance objective would be harmful to the target one, as
the valuable budget is wasted on something meaningfulless.
However, when the relationship is harmonic, optimizing
one can in fact beneficial to the other. In such a case, the
drawback of PMO we discussed in Section 8l would become
blurred. We observed that the inference time and AUC on
the three cases tend to be harmonic objectives. Note that the
relationship between the two objectives need not be symmet-
ric. For example, improving inference time can also help to
significantly improve AUC, but finding configurations with
better AUC may slightly improve inference time. In other
words, the extent of interaction can be different. This is why
PMO tends to be efficient on KERAS-DNN /ADAIC-O1 but
not on KERAS-DNN/ADAIC-O2.
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Fig. 18: Comparing MMO and MMO-FSE with different weights on the normalized target performance objective
(mean and standard error) over 50 runs; the smaller, the better. w1, w2, w3, wy, ws, we, w7, ws denote weight setting
of {0.01,0.1,0.3,0.5,0.7,0.9, 1,10}, respectively. For each case, the promising weight(s) of MMO-FSE, i.e., the one(s) that
has better (or identical) mean than MMO or that has the best mean if no weight outperforms MMO, is highlighted.

As the conclusion for RQ2, we say:

The MMO is resource-efficient as we found that
o it saves generally more resources than the best single-
objective counterpart to reach the same or better results
(for 17 out of 22 cases with up to 2.09x speedup).
o it leads to very competitive resource-saving and fewer
cases of “failed” when compared with MMO-FSEpc:.
o the PMO, in contrast, is much more resource-hungry.

5.3 RQ3: Benefits over MMO-FSE
5.3.1 Method

In RQ3, we seek to verify the benefits provided by the weight-
free design in MMO are indeed meaningful over MMO-FSE.
Particularly, on each of the 22 systems/environments, we
examine how MMO performs against the MMO-FSE under
different weights using the full-scale experiment. Indeed, if

the differences between MMO and MMO-FSE over different
weights are small, then perhaps using the MMO-FSE can be
sufficient. Our goal is to confirm if there are some promising
weights that often lead to good enough results. As such, over
50 runs, we say a weight value is promising in MMO-FSE if:

e It leads to a result that is generally better than (or
identical to) that of MMO;

 or when there are no weight values in MMO-FSE can
outperform MMO overall, it is the one with the best
mean result.

The other aspect we are interested in is how much extra
resource would be required in order to identify at least one
promising weight when using MMO-FSE. This makes sense
as if the effort to find some good weights in MMO-FSE is
trivial, then one would merely need to find such weight
in a case-by-case manner. To investigate such, we use the
following procedure in each of the 22 systems/environments:

1) Run MMO-FSE under all weights studied with an
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Fig. 19: The necessary resource consumed p (in terms of % on
the full-scale experiments” search budget) for the MMO-FSE
to find the promising weight(s) as that identified under the
full-scale experiments; these are the resources that would
have been saved by using MMO. As a reference, the dashed
line highlights the 50% threshold of the budget. All cases are
sorted in descending order.

incremental search budget that is proportional to that
of the full-scale experiment, i.e., 10%, 20%, ..., 100%.
The experiment under each proportion of the budget is
repeated 50 runs.

2) Find the smallest proportion of the search budget, p,
which discovers at least one of the promising weights
as that identified previously under the full-scale experi-
ment.

3) The p is then reported.

5.3.2 Findings

Figure [18 shows the mean on MMO and MMO-FSE under
different weights; the promising ones have been highlighted.
As can be seen, we observe that:

e In the majority of cases, MMO can outperform MMO-
FSE over all weight settings.

o For all the cases, the performance of MMO-FSE deviates
significantly under different weights.

o The promising weights often achieve considerably su-
perior results than most of the others, i.e., up to 10x
better.

o It is difficult to conclude a generally promising weight
over the cases. Most commonly, the promising weight

can be radically diverse, e.g., it is w = 0.01 for
MARIADB-0O2 while w = 0.9 for X264-O1—a 90x
difference.

To understand how much extra resource is required to
tune the weight in MMO-FSE in order to find a promising
one, Figureillustrates the results. Clearly, we see that for
13 out of the 22 cases, it needs 50% or more of the full-scale
search budget to identify a promising weight, which may
not be acceptable when using the MMO-FSE under a case;
or otherwise, the quality of tuning could be compromised.
Even for the 9 cases where the extra resources required are
between 10% and 30%, it may still be undesirable since some

20

Algorithm 4: FLASHMMo

Input: Configuration space V; the system F

Output: sp.s; the best configuration on f; ()

Declare: vector of surrogates M (one for each performance

objective)

Randomly initialize a size of k configurations P

MEASURE(P, F)

R

while The search budget is not exhausted do

M = TRAINCARTS(P)

/* searching an estimated-best
configuration in the transformed
meta-objective space defined by the MMO
(with NSGA-II), as shown in Algorithm

o G R W N =

*/
7 = 2
8 o = MMOONNSGA-II(V, M)
9 MEASURE(o, F)
10 V+V-—-o
11 P<+P+o
12 if o is measured to be better than spest on fi(a) then
13 | Sbest =0

14 return spcq;

Algorithm 5: BOCApmMmo

Input: Configuration space V; the system F
Output: sy, the best configuration on f; ()
Declare: vector of surrogates M

Randomly initialize a size of k configurations P
MEASURE(P, F)

while The search budget is not exhausted do

M = TRAINRANDOMFOREST(P)

for_ =% do
L _ .
T =GETUNIMPORTANTSETTINGS{e)

© ® N U R W N =

é

=
=)

/* searching an estimated-best
configuration in the transformed
meta-objective space defined by the MMO
(with NSGA-II), as shown in Algorithm

*/
1 = L
12 0o = MMOONNSGA-II(V, M)
13 MEASURE(o, F)
14 P<+P+o
15 if o is measured to be better than spest on fi(a) then
16 | Sbest =0

17 return spcs:

systems, such as VP9, can take up to 190 seconds to measure
a single configuration.
Therefore, for RQ3, we say:

Thanks to the new normalization, the weight-free feature is
meaningful in MMO as we found that

o the MMO-FSE can be highly sensitive to the
weight setting—there exist some rather diverse, case-
dependent, and promising weights that perform sig-
nificantly better than the others, which can only be
discovered via pre-tuning.

o the effort required by the MMO-FSE to identify a
promising weight is non-trivial, i.e., it takes 50% or
more of the full-scale search budget for 13 out of 22
cases, which would otherwise be saved by using MMO
instead without compromising the quality.
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TABLE 4: Improvements on FLASH and BOCA using MMO over 50 runs. The format is the same as Table

Mean/SE Alz (p value) Mean/SE Au (p value) Mean/SE A12 (p value) Mean/SE Alz (p value)
FLASH —e— .62 S (<.001) —e— A48T (=.101) —e— .33 M (<.001) ——e—— 53T (<.001)
FLASH\yMO & —@— - —e—i - —e—I - —e— -
BOCA —e— .59 S (<.001) ——e—— 52T (=.018) —e—— 46T (=.016) —e— .57 S (<.001)
BOCAMMO H—o— - ——— - —— - —e— -
(a). MARIADB-O1 (b). MARIADB-O2 (c). STORM/WC-0O1 (d). STorRM/WC-O2
Mean/SE Alz (p value) Mean/SE Alz (p value) Mean/SE A12 (p value) Mean/SE Alz (p value)
FLASH —e— 49T (=.530) @ 91L (<.001) —o— .31 M (<.001) ——e—— .56 S (=.040)
FLASHMMO e - o - e - 1o -
BOCA —e— .98 L (<.001) o 95L (<.001) e+ .88 L (<.001) ——e—— 50T (=.015)
BOCAMMO @ - gl - gl - L] -
(e). VP9-O1 (f). VP9-O2 (g)- STORM/RS-O1 (h). STORM/RS-02
Mean/SE Alz (p value) Mean/SE Alz (p value) Mean/SE Alg (p value) Mean/SE 1412 (p value)
FLASH ——e—— 58S (=.049) —e— 58S (=.015) —e— .67 M (=.008) —e— .73 L (<.001)
FLASHMMO —e— - —— - —e— - —e—i -
BOCA —e—i .38 S (<.001) e+ .97 L (<.001) e+ 94 L (<.001) ~e-  .95L (<.001)
BOCAMMO —e— - i - o - o+ -
(i). LRZIP-O1 (j)- LRZIP-O2 (k). MONGODB-O1 (). MONGODB-02
Mean/SE Alz (p value) Mean/SE Alz (p value) Mean/SE /\12 (p value) Mean/SE Alz (p value)
FLASH —e— .63 S (=.011) —e— 78 L (<.001) o .61S (=.005) —e— .67 M (=.002)
FLASHyMo  —o— - ° - —e— - ————— -
BOCA —e—— 48T (<.001) o .03 L (<.001) o .05 L (<.001) ° .28 L (<.001)
BOCAMMO —— - —o— - 1o - —— -
(n). KERAS-DNN/SA-O1 (m). KERAS-DNN/SA-O2 (0). KERAS-DNN/ADIAC-O1 (p)- KERAS-DNN/ADIAC-O2
Mean/SE Alz (p value) Mean/SE Alz (p value) Mean/SE Alg (p value) Mean/SE Alz (p value)
FLASH —e— .26 L (<.001) —e— .36 M (<.001) —e— .78 L (<.001) ——— 47T (<.001)
FLASHMMO —e—i - —e—i - o - ————i -
BOCA ——e—— .73 L (<.001) ——e—— .59 S (<.001) —e— .75 L (<.001) ——e—— 55T (<.001)
BOCAMMO +H——o— - —e— - o - ——— -
(q)- x264-01 (r). X264-02 (s). LLVM-O1 (t). LLVM-02
Mean/SE A1 (p value) Mean/SE Ao (p value) % Win % Lose % Tie
FLASH ——e—— 51T (<.001) —e—— 54T (=.103) FLASHyvo vs. FLASH 68% 32% 0%
FLASHMMO = ——@—— - e -
BOCA —e— | 635 (<.001) —e— .67 M (<.001) BOCAmmo vs. BOCA 68%  27% 5%
BOCAMMo @ - —e— -

(u). TRIMESH-O1 (v). TRIMESH-O2

5.4 RQ4: Consolidating Model-based Tuning
5.4.1 Method

For RQ4, we extended FLASH and BOCA with our MMO,
denoted as FLASHMMmo and BOCAwmmo, respectively. As
shown in Algorithm [ and [f] the change is highlighted in
colors, from which we see that the amendment is merely a
single line of code which changes the original search strategy
that solely optimizes the target performance objective to
searching over the space of MMO (working with NSGA-
II). In this way, the search is conducted in the transformed
meta-objective space of the surrogate-predicted objectives, in
which the system F is replaced by the surrogates M. For all
optimizers, we allow 1,000 evaluations, including redundant
ones, on the surrogate (50 population size and 20 generations
in FLASHMmMo and BOCAwmmo) as from existing work [10],
[54], [76].

Similar to the previous sections, the statistical tesﬁ
and effect size are reported for every pairwise comparison
between the FLASHyvo and FLASH (BOCAywmo and BOCA)
over 50 runs.

5.4.2 Findings

From Table[d] it is clear that FLASHy\o obtains better results
than FLASH in general: it wins 15 out of 22 cases while

13. We use the Wilcoxon signed-rank test here since the comparisons
are paired, i.e., on each run, all optimizers use the same set of randomly
sampled training data for building the surrogate.

(w). Overall % win/loss/tie for using MMO in FLASH/BOCA based on Alg

loses 7 others. In particular, in those cases where FLASHMMo
wins, 12 of them are statistically significant. In contrast,
only 4 of those that it loses have p < 0.05 and non-trivial
effect size. The relative magnitude of gains has also been
significant, e.g., for VP9-O2 and STORM/RS-O2. Similar
results have also been registered for comparing BOCAnmwo
and BOCA. This means that, even when searching within the
surrogate-predicted space, our MMO can bring considerable
improvement on model-based tuning methods like FLASH
and BOCA.

To take a closer investigation, Figure 20|shows the overall
search trajectories for the 20 measurements that are actually
spent on tuning. Clearly, FLASHMMo produces a trajectory
with a steeper slope than that of FLASH over all cases
and runs. The standard error of the average performance
is also smaller, implying that MMO can also consolidate
the stability of outcomes. Of particular interesting points
are at the 32th and 41st measurement: the former means
that FLASHMMo improves the results at as little as the 2nd
measurement into the tuning (as the first 30 are for pre-
training the surrogate); while the latter reflects that the MMO
helps to improve resource efficiency, achieving a 59 = 1.22x
speedup over FLASH when reaching its best outcome under
the search budget. When comparing BOCApmo with BOCA,
the improvement on efficiency is less obvious since BOCA
leverages the information of important options. However,
we see that at the 46th measurement, BOCA o starts to
become superior to its counterpart while achieving the best
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Fig. 20: The search trajectories on the model-based tuning
methods extended by MMO and the original ones. Each point
shows the average and the corresponding standard error
over all cases and 50 runs. The target performance objectives
are normalized and converted as minimizing objectives, if
needed; hence the smaller, the better.

of BOCA at the 47th measurement, enabling a Z—g = 1.06x
speedup.

Although the use of a surrogate can transform the original
configuration landscape into a different one according to
the estimated value, the issue of local optima remains
present [40], providing that the accuracy is sufficient. There-
fore, the reason that improves BOCA can be attributed to
the fact that MMO relieves the issue of local optima trap,
as the search strategy in BOCA is restricted to a certain
region of the search space with respect to the important
options. As for FLASH, which is resilient to local optima due
to the random search nature, the improvement is the result of
MMO being able to preserve the tendency towards the best
of target performance objectives, providing better guidance
in the tuning.

Overall, for RQ4, we have:

The MMO can significantly consolidate model-based tun-
ing methods because
o it improves the results on both FLASH and BOCA for
15 out of 22 cases (68%), within which 12 and 13 cases
are statistically significant, respectively.
o it enables a 1.22x and 1.06x speedup over FLASH
and BOCA, respectively, with gradually more stable
outcomes across all the cases overall.

6 UsING MMO IN PRACTICE

Using MMO in practical scenarios for any new system is
straightforward. In what follows, we describe the basic steps
for the application of MMO in practice:

1) Build the benchmark under which the configurable
software system needs to be tuned. This is often se-
lected from some well-known ones (e.g., WORDCOUNT
for STORM) or emulated depending on the software
engineers’ understanding of the software’s running
environment.

2) Identify the key configuration options and their possible
values. In practice, one can either derive these from
previous studies (as we have done in this work) or
based on experience and domain understanding.

3) Confirm the target performance objective and an arbi-
trarily chosen auxiliary performance objective, as well
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as how they are measured. It is important to ensure that
both objectives can be influenced by different configura-
tions. For example, when runtime is an important target
for a system, then the auxiliary performance objective
may be chosen from CPU load, memory consumption, and
energy usage, etc.

4) Define a tuning budget in terms of the number of
measurements. The parameters of the underlying NSGA-
II of MMO can be chosen from some widely used ones.
At this point, one can also decide on whether to use
MMO as a measurement-based optimizer or a model-
based one (e.g., by pairing MMO with optimizers like
FLASH or BOCA). In general, the model-based version
is recommended if the budget is small.

5) Run MMO on the system.

7 THREATS TO VALIDITY

Threats to internal validity can be related to the search
budget. To tackle this, we have set a budget that reaches a
reasonable convergence for all the optimizers compared—a
typical setup when the study aims to examine the effective-
ness of mitigating local optima [74]. The other parameter
settings follow what has been pragmatically used from the
literature [26]], [801, [31], [10], [54], [76]. or tuned through
preliminary runs. However, we acknowledge that examining
alternative parameters can be an interesting topic and we
leave this for future work. To mitigate bias, we repeated 50
experiment runs under each case.

The metrics and evaluation used may pose threats to
construct validity. Since there is only a single performance
concern, there is no need to consider metrics with respect to
multi-objective optimization [63]. We conduct the compar-
ison based on the target performance objective and to the
resource (number of measurements) required to converge
to the same result. Both of these are common metrics in
software configuration tuning [70], [36]. To verify statistical
significance and effect size, we use the Wilcoxon test (includ-
ing both the paired and non-paired versions depending on
the research questions) and 12112 to examine the results. While
the MMO model is optimizer-agnostic, we examine mainly
on NSGA-II in this work; using alternative multi-objective
optimizers is unlikely to invalidate our conclusion but we
admit the usefulness of evaluating over a wide range of
optimizers with MMO, which can be part of the future work.

Threats to external validity can be raised from the
subjects studied. We mitigated this by using 11 system-
s/environments that are of different domains, scales, and
performance attributes, as used by prior work [70], [511, [67],
[52], [75]. We also compared the proposed MMO (under the
new normalization) with four state-of-the-art single-objective
counterparts for software configuration tuning, PMO model,
and the MMO-FSE. Further, we examine how it can help
to consolidate FLASH, a recent model-based tuning method
from the software engineering community. Nonetheless, we
agree that studying additional systems and optimizers may
prove fruitful.

8 RELATED WORK

Broadly, optimizers for software configuration tuning can be
either measurement-based or model-based.
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In measurement-based tuning methods, the optimizer is
guided by directly measuring the configuration of the soft-
ware systems. Despite the expensiveness, the measurements
can accurately reflect the good or bad of a configuration
(and the extents thereof). A wide range of optimizers have
been studied, such as random search [8]], [99], [Z1]], [Z8], hill
climbing [95], [62], [34], single-objective genetic algorithm [7],
[80], [84] and simulated annealing [37], [42]], to name a few.

Under such a single-objective model, a key difference for
those optimizers lies in the tricks that attempt to overcome
the issues of local optima. For example, some extend the
random search to consider a wider neighboring radius of
the configuration structure, hence it is more likely to jump
out from the local optima [71]. Others rely on restarting
from a different point, such as in restarted hill climbing,
hence increasing the chance to find the “right” path from
local optima to the global optimum [102], [95]. More recently,
Krishna et al. [57] has relied on probabilistically accepting
worse configurations to jump out of local optima—a typical
feature of the simulated annealing [34], [42].

Our MMO differs from all the above as it lies in a higher
level of abstraction—the optimization model—as opposed
to the level of optimization method. In particular, with the
new normalization, the purposely-crafted Pareto relation in
MMO has been shown to be able to better overcome the local
optima for software configuration tuning.

Measurement-based Tuning

8.2 Model-based Tuning

Instead of solely using the measurements of software sys-
tems, the model-based tuning methods apply a surrogate
(analytical [59], [30], [31]] or machine learning based [70], [51],
[39], [41]) to evaluate configurations, which guides the search
in an optimizer. The intention is to speed up the exploration
of configurations as the model evaluation is much cheaper.
Yet, it has been shown that the model accuracy and the
availability of initial data can become an issue [102].

Studies on model-based tuning for software systems
differ mainly on the way of building surrogates and the
choice of acquisition function. Among others, Jamshidi and
Casale [51] use Bayesian optimization to tune software
configuration, wherein the search is guided by the Gaussian
Process based surrogate trained from the data collected. Nair
et al. [70] follow a similar idea to propose FLASH, but the
CART is used instead as the surrogate. More recently, Chen et
al. [17] also follow BO and CART to propose BOCA, but they
additionally identify the “important configuration options”
from the Random Forest model. Such information would
then inform the optimization of the acquisition function in
determining what to sample next.

Since MMO lies in the level of optimization model, it is
complementary to the model-based methods in which the
MMO would take the surrogate values as inputs instead of
the real measurements. This, as we have shown using FLASH
as a case, can better consolidate the tuning results.

8.3 General Parameter Tuning

Optimizers proposed for the parameter tuning of general
algorithms can also be relevant [12], [47], [9], [77], includ-
ing IRace [64], ParamILS [49], SMAC [48], GGA++ [5],
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as well as their multi-objective variants, such as MO-
ParamlILS [11] and SPRINT-Race [101]. To examine a few
examples, ParamlILS [49] relies on iterative local search—a
search procedure that may jump out of local optima using
strategies similar to that of SA and SHC-r. Further, a key
contribution is the capping strategy, which helps to reduce
the need to measure an algorithm under some problem
instances, hence saving computational resources. This is one
of the goals that we seek to achieve too. Similar to Nair et
al. [70], SMAC [48] uses Bayesian optimization but relies on
a Random Forest model, which additionally considers the
performance of an algorithm over a set of instances.

However, their work differs from ours in two aspects.
Firstly, general algorithm configuration requires working
on a set of problem instances, each coming with different
features. The software configuration tuning, in contrast, is
often concerned with tuning software systems under a given
benchmark (i.e., one instance) [70], [51]], [102], [26]. Therefore,
most of their designs for saving resources (such as the
capping in ParamILS) were proposed to reduce the number
of instances measured. Of course, it is possible to generalize
the problem to consider multiple benchmarks at the same
time, yet this is outside the scope of this paper. Secondly,
none of them works on the level of optimization model, and
therefore, similar to the case of FLASH and BOCA, our MMO
is still complementary to their optimizers.

8.4 Multi-objectivization in SBSE

Multi-objectivization, which is the notion behind our MMO
model, has been applied in other SBSE problems [100], [33],
[68], [86]. For example, to reproduce a crash based on the
crash report, one can purposely design a new auxiliary
objective, which measures how widely a test case covers
the code, to be optimized alongside with the target crash
distance [33]. A multi-objective optimizer, e.g., NSGA-II, is
directly used thereafter. A similar case can be found also
for the code refactoring problem [68]. However, during the
tuning process, such a model, i.e., PMO in this paper, can
result in poor resource efficiency as it wastes a significant
amount of resources in optimizing the auxiliary objective,
which is of no interest. This is a particularly unwelcome issue
for software configuration tuning where the measurement is
expensive. As we have shown in Section [, PMO performs
even worse than the classic single-objective model in most of
the cases.

9 CONCLUSION AND FUTURE WORK

To mitigate the local optima issue in software configuration
tuning, this paper takes a different perspective—multi-
objectivizing the single objective optimization scenario. We
do this by proposing a meta multi-objective model (MMO),
at the level of optimization model (external part), as opposed
to existing work that focuses on developing an effective
single-objective optimizer (internal part). This work provides
a sound analysis to interpret the principle behind MMO
and explain what causes its limitation, namely eliminating
the need for the weight parameter in the MMO model.
Deriving on the theoretical understanding of the root cause,
we then overcome such a limitation by proposing a simple
yet effective new normalization.
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We compare MMO under the new normalization with
four state-of-the-art single-objective optimizers, the plain
multi-objectivization model, and the MMO model with the
old normalization from our prior FSE work over 22 cases
that are of diverse performance attributes, systems, and
environments. The results reveal that the MMO model:

o can generally be more effective in overcoming local
optima with better results;

« and does so by utilizing resources more efficiently (better
speedup) in most cases;

e saves a considerable amount of extra resources that
would otherwise be required for identifying the best
weight.

Furthermore, we use MMO as part of FLASH and BOCA,
two recent model-based efforts from the software engineering
community for configuration tuning, and revealing that it
can:

o considerably consolidate the results;
 while enabling good speedup overall.

Future directions of this work are exciting and fruitful,
as it paves a new way of thinking about the resolution
for mitigating local optima in software configuration and
perhaps in a wider context of SBSE—multi-objectivizing
at the level of optimization model instead of working at
the level of an optimizer/algorithm. Specifically, the most
immediate next steps include extending MMO beyond two
meta-objectives (e.g., through considering multiple auxiliary
objectives if any) and exploring the possibility of designing a
tailored multi-objectivization model for other SBSE problems.
At the same time, through the analysis discussed in this
work, we hope that there will be subsequent studies that take
the unique characteristics of MMO into account, which can
further advance software configuration tuning and beyond.
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