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Abstract. For integration in real-world environments, it is critical that autonomous
agents are capable of behaving responsibly while working alongside humans and
other agents. Existing frameworks of responsibility for multi-agent systems typ-
ically model responsibilities in terms of adherence to explicit standards. Such
frameworks do not reflect the often unstated, or implicit, way in which responsi-
bilities can operate in the real world. We introduce the notion of implicit respon-
sibilities: self-imposed standards of responsible behaviour that emerge and guide
individual decision-making without any formal or explicit agreement.
We propose that incorporating implicit responsibilities into multi-agent learning
and decision-making is a novel approach for fostering mutually beneficial coop-
erative behaviours. As a preliminary investigation, we present a proof-of-concept
approach for integrating implicit responsibility into independent reinforcement
learning agents through reward shaping. We evaluate our approach through simu-
lation experiments in an environment characterised by conflicting individual and
group incentives. Our findings suggest that societies of agents modelling implicit
responsibilities can learn to cooperate more quickly, and achieve greater returns
compared to baseline.

1 Introduction

When tasked with navigating complex social decision-making scenarios alongside hu-
mans and other agents, it is important that agents can balance potential incentive con-
flicts, and find ways to perform their allocated role effectively whilst acting in a manner
that is considered responsible and ethical by human standards [4, 11]. Existing works
have outlined various facets of responsibility in multi-agent systems (MAS) [12].

Responsibility. A general definition of responsibility, outlined in [12], involves the ex-
pectation for an agent or group of agents, A, to realise a future state, φ, of the environ-
ment [5, 8].

Explicit Responsibility. Typically, responsibilities are modelled in terms of standards
of behaviour that are prescribed “top-down”, such as accountability for the fulfilment
of allocated tasks or sanctionability for the violation of a social norm [12]. In this
paradigm, agents are responsible to the extent that they adhere to an explicit system



of rules. Similarly, responsibility can be imposed through explicit agreements or com-
mitments between agents [1, 6]. We group these treatments as explicit responsibility,
which can always be described by “A is responsible for φ under z”, where z represents
the explicit source of the responsibility, which may be enforced top-down, agreed upon
peer-to-peer, or otherwise entered into knowingly.

Example 1 (Explicit Responsibility). Alice adopts a puppy in the UK. By adopting the
puppy, Alice has agreed to an explicit duty of care; they are aware that they are ac-
countable for the welfare of the dog under UK law, and that adopting and subsequently
neglecting a dog would violate social convention. If Alice proceeds to neglect the puppy,
they may be subject to legal repercussions, or disapproval and alienation from family
and friends.

Implicit Responsibility. In contrast to explicit responsibility, relatively little attention
has been given to aspects of responsibility that emerge without any imposed standards
or explicit agreement between parties. Self-imposed responsibilities can play an im-
portant role in ethical decision making amongst people. Affective responses to differ-
ent scenarios and outcomes can reinforce an individual sense of responsibility, moti-
vating subsequent cooperation and altruistic behaviour. Individual differences in these
affective responses can give rise to variations in self-motivated responsible behavior be-
tween people. Understanding this type of responsibility and how it can lead to alignment
and misalignment of individual perceptions of responsibility in society is important for
citizen-centric design of MAS. We extend the conceptual framework of explicit respon-
sibility in MAS by introducing the notion of implicit responsibility: a self-imposed
responsibility for bringing about some φ, that emerges bottom-up, and is internally
motivated and voluntarily assumed without any explicit mandate, commitment or ex-
pectation.

Example 2 (Implicit Responsibility). Alice comes across a stunned pigeon near their
home. Alice reasons that the pigeon will likely be in danger if left in its current state,
and that they could carefully transfer the pigeon to a cardboard box and leave it to rest
in a safe quiet area to recover. Alice is driven to help the pigeon by an internal sense of
responsibility, although there is no explicit expectation to do so.

In Example 2, a situation emerges in which Alice feels implicitly responsible for the
fate of another entity. Even if Alice does not assume the responsibility for assisting the
other entity as a goal, they are nevertheless aware that they are capable of providing that
assistance, and the consequences of not doing so. Failure to help may confer a negative
affective state, motivating Alice to help in similar scenarios in the future.

Contributions. In this work, we introduce the notion of implicit responsibility in MAS.
We present a novel approach for promoting cooperation within the framework of multi-
agent reinforcement learning (MARL) by operationalising implicit responsibility for
reward shaping. We investigate our approach by conducting simulation experiments in
a constrained task environment designed to incorporate well-defined implicit respon-
sibilities. We compare the learning of cooperative behaviour by implicit responsibility
agents to baseline reinforcement learning agents that do not shape rewards. We find
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that agents that model implicit responsibility learnt cooperative strategies faster, and
demonstrate improved performance on the task compared to baseline agents.

2 Operationalising Implicit Responsibility in MAS

In MARL, reward shaping is the process of modifying an agent’s reward function by
introducing additional “pseudo-rewards” to guide agents towards learning specific pat-
terns of behaviour that may not be adequately incentivised by the original reward func-
tion. Shaping rewards according to violation or satisfaction of implicit responsibility
provides a novel framework for learning desirable behaviour. For a pair of agents A,B,
A has an implicit responsibility, Rt

A,B(φB), for realising a future state of the environ-
ment, φB , if at some time, t, the environment state, st satisfies all of three conditions

1. Existence of Dependency, ψA,B(1) - Agent B’s ability to achieve their goals in a
future state s ∈ φB is contingent on the actions or resources of A.

2. Capability to Influence, ψA,B(2) - Agent A possesses the capacity to address the
needs of B and bring about φB through its actions or resources.

3. Awareness or Capability of Perception, ψA,B(3) - Agent A can perceive or is ca-
pable of perceiving conditions (1) and (2) even if B does not communicate this
explicitly.

These conditions describe circumstances in which the realisation of some φB , in
which B can pursue their goals without assistance, is not possible through the actions
of B alone, or from the influence of the dynamics of the environment itself.

2.1 Foraging Survival Simulation Environment

We designed a multi-agent grid-world environment that incorporates well-defined op-
portunities for implicit responsibilities, as an evaluation test-bed. The environment is
illustrated in Figure 1.
Setup In this environment, a population of agents, I , navigate an M by N grid-world
with the goal of collecting berries. Initially, each agent i ∈ I starts from a random
empty position, and |I| berries are placed at random empty positions so that the number
of berries is equal to the number of agents.
Agent attributes Agents have two attributes which relate to their survival in the envi-
ronment: (1) energy and (2) health. These are represented by the integers ei ∈ Z+ :
ei ∈ [0, E] and hi ∈ Z+ : hi ∈ [0, H] respectively. Agents are initialised with ei = E
and hi = H .
Attribute decay Agents are in one of three possible states at any time, based on their
attributes: (1) Healthy: (ei > 0, hi = H), (2) Helpless: (ei = 0, hi > 0), and (3)
Dead : (ei = 0, hi = 0). While agents are Healthy, ei decays by one per time step.
When ei = 0, agents become Helpless, and hi begins to decay by one per time step.
Agents can only take actions while Healthy. If the agent transitions into the Dead state,
hi = 0, the agent is removed from the simulation for the remainder of the episode.
Berry collection Agents collect berries by moving to their positions. When an agent
collects a berry, the agent receives a reward rb, and a new berry is generated at a random
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Fig. 1: (Left) Two agents i and j (a) navigate a 4×4 grid world and collect berries (b).
The agents health hi, hj and energy ei, ej are indicated by indicated by the upper and
lower bars above the agents respectively, and the number of stored berries is indicated
by bi, bj. (Right) (c) In the illustrated scenario, j has ej = 0, and no stored berries, and
i has ei > 0 and one stored berry. (d) In the next time step, i throws their stored berry
to j, illustrated by the green shading, and ej is restored.

unoccupied position. If an agent dies, the next berry collection will not trigger a new
berry to be generated. This ensures that there is only one berry per living agent in the
environment.
Berry inventory Agents store collected berries in an inventory. The number of stored
berries is bi ∈ Z+ : bi ∈ [0, B], where B is the inventory capacity.
Berry consumption Agents consume stored berries to fully restore ei and hi. If an
agent has bi > 0 when ei = 0, the agent automatically consumes a stored berry. Agents
therefore have an effective energy of e′i = ei + E ∗ bi.
Agent actions Agents have five discrete movement actions for navigating the environ-
ment:up, down, left, right, and stay. Additionally, agents have a throw action which
passes a stored berry to the agent, j, with the lowest effective energy, e′j . If bi = 0, or if
all other agents are dead, the throw fails and the berry remains in the agents inventory.
If an agent successfully throws a berry, their energy does not decay in that time step.
Decision module Agents automatically consume a berry if: (1) hi < H and bi > 0 at
the start of a time step, (2) hi < H and i has just been passed a berry by another agent,
or (3) bi = B and i has just collected a new berry.

Agents have an immediate incentive to act in self-interest by collecting berries as
quickly as possible. However, the Throw mechanic allows Healthy agents to cooperate
by paying a cost to revive Helpless agents and prevent their death. We can introduce a
long-term incentive for mutual cooperation which outweighs the immediate incentive
for self-interest through careful choice of environment parameters, (M,N), E, H , B
and |I|. In Appendix B, we choose environment parameters for our experiment such
that mutual cooperation can facilitate longer survival times, and thus greater overall
returns.
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2.2 Reward Shaping using Implicit Responsibility Conditions

We now apply the conditions described in Section 2 for formation of implicit responsi-
bility to our environment. For two agents i, j ∈ I , let φj be the set of states in which j
is Healthy, such that stj ∈ φj if htj = H . Rt

i,j(φj) = Rt
i,j then describes whether i has

an implicit responsibility towards j at time t for realising φj if all three conditions (Ex-
istence of Dependency, Capability to Influence, Awareness or Capability of Perception)
are met.

For our environment, the condition ψt
i,j(1) for Existence of Dependency is true if j

has no energy or berries, but is not yet Dead.

ψt
i,j(1) =

{
1, if etj = 0, AND btj = 0, AND htj > 0

0, otherwise
The condition ψt

i,j(2) for Capability to Influence is true if i has enough energy and
berries to throw one to j, and i will not run out of energy as a result of the throw. Let ωt

i

be the Spare Effective Energy of i at t, e.g. the effective energy of i that would remain
after throwing a berry, ωt

i = eti +E · (bti −1). Let kti be the shortest Manhattan distance
between i and any berry at t. If kti < ωt

i , i can throw a berry and have enough energy
remaining to reach another.

ψt
i,j(2) =

{
1, if kti < ωt

i

0, otherwise
For ψi,j(3), Awareness or Capability of Perception, we assume full-observability of

the environment for all agents, therefore i always has sufficient information to know if
ψi,j(1) and ψi,j(2) are true, thus ψi,j(3) is true by default.

Once formed, an implicit responsibility is maintained until the next time step in
which any of the individual conditions are broken. If a responsibility is formed at a time
t and maintained until any condition is broken at some later time t′, the responsibility is
violated if the state st

′
does not belong to φj . Otherwise, if st

′ ∈ φj , the responsibility
is satisfied. Algorithm 1 in Appendix A describes our method for shaping rewards by
applying penalties, p, for violating an implicit responsibility.

3 Simulation Experiments

We conduct preliminary simulation experiments using the environment described in
Section 2.1 with the parameters outlined in Appendix B, Table 1. We simulate and
compare societies comprising pairs of agents, which are trained using Deep Q-Learning
as described in Appendix C, with hyper-parameters in Table 2. We train a baseline
agent society using only extrinsic rewards signals from berry collection, and an implicit
responsibility agent society using both extrinsic rewards and additional penalties for
violation of implicit responsibilities using our reward shaping algorithm (Section A,
Algorithm 1). To evaluate our implicit responsibility agents, we compare the length of
each episode during training to those achieved by baseline agents. Episode length tell
us the total survival time of an agent society, indicating the performance of the agents
during training.
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Fig. 2: Episode length (moving average, window size = 1000) vs total environment steps
elapsed during training. The mean across three random seeds is shown alongside each
individual seed.

4 Discussion

Figure 2 shows the training curves for baseline agents and implicit responsibility agents
across three random seeds. For each episode during training, the episode length is plot-
ted against the the total number of time steps that have elapsed prior to the episode
during training. In the early stages of training, baseline agents achieve greater survival
times than implicit responsibility agents. However, after roughly 106 steps, implicit re-
sponsibility agents demonstrate greater survival times on average. These results are a
promising indication that shaping rewards according to implicit responsibility can im-
prove the speed at which reinforcement learning agents learn to exploit mutually ben-
eficial cooperation behaviours. However, there are several limitations which must be
addressed. Firstly, we only evaluate under one set of environment parameters and learn-
ing hyper-parameters. It is possible that the benefits of our approach are less significant
when we compare to baseline under an optimised training protocol, or in societies of
more than two agents. Further experimentation would be needed to validate our findings
and assess scalability.

Further, we only test in one environment, which we designed to include easily de-
fined scenarios for implicit responsibility to arise, and in which cooperation is globally
beneficial. In doing so, we were able to test our approach by shaping rewards according
to rules representing an idealised and thus explicit model of implicit responsibility for
that environment. For application to unseen and more complex environments, agents
must be designed such that they are able to approximate these rules independently.
Causal attribution of responsibility and blameworthiness for outcomes are non-trivial
problems [9, 12], posing a challenge for reward function design.

Finally, we consider only a subset of implicit responsibilities that capture mutually
beneficial outcomes, and thus neglects the role of altruism captured by other approaches
for bottom-up learning of responsible behaviour [2, 3, 10].
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A Reward Shaping Algorithm

Algorithm 1 Reward shaping for implicit responsibility agents
1: Let i, j be any pair of agents from a population I .
2: Let bti be the number of berries that i has stored in their inventory at time t, where

0 ≤ bti ≤ B and bti, B ∈ Z+

3: Let eti be the energy of i at t, where
0 ≤ eti ≤ E and eti, E ∈ Z+

4: Let ht
i be the health of i at t, where

0 ≤ ht
i ≤ H and ht

i, H ∈ Z+

5: Let dti,j be the Manhattan distance between i and j at t.
6: Let kti be the shortest Manhattan distance between i and any berry at t.
7: Let ωt

i be the Spare Effective Energy of i at t, where
ωt
i = eti + E · (bti − 1)

8: Let st represent the full environment state at time t.
9: Let rti be the reward to i at time t.

10: Let p be the constant representing the penalty for violation of an implicit responsibility.
11: Let φj be the set of states in which j is Independent, such that stj ∈ φj if ht

j = H .
12: Let ψt

i,j(1) describe the condition for the Existence of Dependency such that

ψt
i,j(1) =

{
1, if etj = 0, AND btj = 0, AND ht

j > 0

0, otherwise
13: Let ψt

i,j(2) describe the condition for Capability to Influence such that

ψt
i,j(2) =

{
0, if kti > ωt

i

1, otherwise
14: Let Rt

i,j be the bool representing whether i has an implicit responsibility towards j at time t

Rt
i,j =

{
True, if ψt

i,j(1) = 1, AND ψt
i,j(2) = 1

False, otherwise
15: // Iterate over all permutations of agent pairs i, j ∈ I
16: for i ∈ I do
17: for j ∈ I : j ̸= i do
18: // If i was responsible before but not after the transition . . .
19: if Rt

i,j AND ¬Rt+1
i,j then

20: //. . . and if j has not reached φj

21: if ¬(st+1 ∈ φj) then
22: // Apply penalty for violation
23: rt+1

i = rt+1
i − p

B Environment Parameters

For an (M,N) grid with population |I|, if we do not allow agents to use the Throw
action, and if E is less than some threshold, E∗, the energy of each agent will on
average decay towards zero each time step, and all agents will eventually die even with
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an optimal coordinated foraging strategy. For our environment, we estimateE∗ to be the
average Manhattan distance between any agent and their closest berry for all possible
combinations of positions of |i| agents and |I| berries. In practice, E∗ will be slightly
lower since the optimal foraging strategy would also ensure that no two or more agents
target the same berry at any time. By allowing agents to Throw berries, the population
can cooperate to survive for longer and thus achieve greater overall returns. For our
experiments, we use the environment parameters shown in Table 1.

Table 1: Default environment parameters.
Parameter Default Value

Grid Shape (M,N) (4, 4)
Population Size |I| 2
Max Energy E 2
Max Health H 6
Inventory Capacity B 10
Berry Reward rb 0.1
Violation Penalty p −0.9

C Agent Architecture and Hyperparameters

Here we describe a schematic of the modular architecture used for our baseline and im-
plicit responsibility agents. In our experiments, both baseline and implicit responsibility
agents are trained using using independent Deep Q learning implemented with PyTorch.
Agents comprise a Deep Q-Network (DQN) architecture with with two fully connected
layers. We employ experience replay [13] to stabilise the learning process. Agents ex-
plore their shared environment using an epsilon-greedy [7] exploration strategy with
exponential decay. Table 2 lists the hyper-parameters of the learning procedure.
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Table 2: DQN hyperparameters.
Hyperparameter Value

Batch Size 64
Replay Buffer Capacity 10 000
Discount Factor 0.99
Initial Exploration Rate 0.9
Final Exploration Rate 0.005
Exploration Steps 1000
Tau 0.005
Learning Rate 0.001
Loss Function MSE
Target Network Update Frequency 500
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