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Editorial on the Research Topic
New advancement in tumor microenvironment remodeling and
cancer therapy

Tumor progression and treatment processes have the potential to remodel tumor
microenvironment (TME) (Benavente et al., 2020; Winkler et al., 2020; Arora and Pal,
2021). Conversely, the TME plays a substantial role in altering tumor growth, metastasis,
therapeutic response, and development of therapeutic resistance (Sahai et al., 2020; Winkler
et al., 2020; Wu et al., 2021; Mantovani et al., 2022). This Research Topic is dedicated to
publishing original research and review articles exploring critical factors reshaping TME
and the interplays between the TME remodeling and tumor progression, immune
therapeutic response, and resistance.

Cancer cells evade immune surveillance through PD-1/PD-L1 axis that inhibits
activation and functions of tumor-infiltrating lymphocytes (TILs) in TME. Blocking the
PD-1/PD-L1 signaling has shown remarkable effectiveness in restoring T cells from
exhaustion and normalizing the dysregulated TME, leading to cancer cell eradication
(Cha et al., 2019). Immune checkpoint therapies (ICTs) such as the antibodies against this
axis exhibit potent antitumor activities in various cancers, including lung adenocarcinoma
(LUAD) (Han et al., 2020; Sun et al., 2023). Determination of PD-L1 expression is crucial
for selecting patients benefiting from this therapeutic approach, as PD-L1 expression level
in cancer cells is positively associated with a favorable response (Ribas and Hu-Lieskovan,
2016). The regulation of PD-L1 involves intrinsic (cancer cell-associated) and extrinsic
(TME-originating) factors, including dysregulation of oncogenic signaling pathways and
dependence on inflammatory signals, cytokines, and metabolites. The TME, a complex
ecosystem supporting tumor growth, undergoes dynamic communication and metabolic
symbiosis between tumor and non-tumor cell populations. Iron, a multifunctional
micronutrient, plays a key role in signaling pathways within tumor cells and the TME,
influencing cancer progression (Sacco et al., 2021). The iron addiction phenotype, driven by
reprogramming intracellular iron metabolism and interactions with immune cells, has dual
effects, promoting cancer growth and suppressing antitumor immune functions (Cassim
and Pouyssegur, 2019). The study by Battaglia et al. revealed a significant correlation
between iron density and PD-L1 expression in LUAD tissues. In vitro analyses of H460 and
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A549 LUAD cells showed increased PD-L1 mRNA and protein
levels in an iron-enriched microenvironment, mediated by reactive
oxygen species (ROS)/c-Myc signaling pathway; iron-induced PD-
L1 overexpression inhibited T cell activity, demonstrated by reduced
IFN-γ release in a co-culture system of tumor and T cells,
emphasizing the impact of iron on immune modulation in
LUAD. In TCGA LUAD datasets, the levels of transferrin
receptor CD71, indicative of an iron-addicted phenotype,
correlate with elevated PD-L1 mRNA. This study explores a
novel association between high iron density and elevated PD-L1
expression in LUAD and the findings open a door for combinatorial
strategies that consider TME iron levels to enhance the efficacy of
anti-PD-1/PD-L1-based immune therapies for LUAD patients.

ICTs have significantly transformed clinical outcomes for cancer
patients, providing enduring clinical benefits, and even leading to a
cure in a subset of individuals (Sharma et al., 2023). Cancer patient
response to ICTs (e.g., pembrolizumab) varies across the tumor
subtypes, necessitating robust biomarkers for patient selection
(Sharma et al., 2023). While PD-L1 expression and microsatellite
instability-high (MSI-H) are FDA-approved indicators, tumor
mutational burden (TMB), the number of somatic mutations per
mega base of interrogated genomic sequence, is emerging as a
promising biomarker in solid tumors (Singal et al., 2019; Sha
et al., 2020). TMB varies across malignancies. The data from
KEYNOTE-158 study showing TMB-high (≥10 mut/Mb)
correlates with better pembrolizumab therapy outcomes in
multiple cancer types, lead to FDA approval of pembrolizumab
for TMB-high tumor subgroup (Marabelle et al., 2020). However,
concerns arise regarding the TMB cutoff of 10 mut/Mb and its
applicability beyond the KEYNOTE-158 study. The study by Mo
et al. aimed to statistically determine the optimal universal cutoff for
defining TMB-high in the published clinical trials, predicting anti-
PD-L1 therapy efficacy in diverse advanced solid tumors. By
integrating MSK-IMPACT TMB data and objective response rate
(ORR) across various solid cancer types, the authors identified
10 mut/Mb as the optimal cutoff, strongly correlated with PD-L1
blockade ORR. This study provides a new universal TMB-high
cutoff evidence in support of the KEYNOTE-158 study for
guiding clinical decisions and addressing challenges associated
with tumor-agnostic pembrolizumab approval in TMB-high cases.

Oral squamous cell carcinoma (OSCC) is a highly malignant
disease with increasing incidence and lacks effective treatments,
urging the exploration of new therapeutic targets. The B7 family, a
group of 10 structurally related, cell-surface protein ligands,
including PD-L1 (B7-H1), encoded by CD274 gene, and
inducible T cell costimulatory ligand (ICOSLG, B7-H2), encoded
by CD275 gene, bind to receptors on lymphocytes that regulate
adaptive immune responses in cancers (Ni and Dong, 2017). PD-L1
(B7-H1) plays a crucial role in immune escape in OSCC (Zhao et al.,
2023). The association of ICOSLG expression levels with
immunosuppression, tumor progression and prognosis of
different solid cancer types such as gastric cancer (Chen et al.,
2003), colorectal cancer (Cao et al., 2018) and glioblastoma (Iwata
et al., 2020) has been studied. However, the specific role of ICOSLG
in OSCC remains largely unexplored. In a retrospective study, Dong
et al. observed that ICOSLG was ubiquitously expressed in OSCC
cancer cells, cancer-associated fibroblasts, and TILs. Elevated
ICOSLG levels were found to be correlated with advanced TNM

stage and lymph node metastasis, serving as a predictive factor for
decreased overall or metastasis-free survival in OSCC patients.
These findings underscore the potential of ICOSLG as a
promising target for precision immunotherapy in the
context of OSCC.

B cell malignancies, encompassing B-cell non-Hodgkin’s
lymphomas (B-NHL) and B-cell chronic lymphocytic leukemias
(B-CLL), are prevalent in cancers that arise in B lymphocytes.
B-NHL ranks as the seventh most common cancer in the
United States, with 74,000 new cases annually. Obinutuzumab,
the first humanized type II glycoengineered anti-CD20
monoclonal antibody, displayed superior outcomes in clinical
trials for B-NHL and B-CLL (Goede et al., 2014; Gabellier and
Cartron, 2016). Despite these advancements, relapse remains
common, highlighting the need to further understand the
mechanisms to improve the patient therapy. Chemotherapy
resistance often stems from malignant B-cell migration to the
bone marrow and interaction with the stromal layer. The study
by Fagnano et al. explored whether stromal cells impeded this type II
anti-CD20 antibody mechanisms, contributing to therapeutic
resistance by employing co-cultures of Raji or Daudi human B
lymphoblastoid cells and M210B4 bone marrow stromal cells. The
results showed direct contact with stromal cell inhibited
obinutuzumab-induced programmed cell death, cellular
phagocytosis, and cytotoxicity; stromal interference with B-cell
adhesion and actin remodeling, was possibly linked to
CD20 downregulation. Understanding the significance of direct
interactions between stromal and tumor cells may provide great
insights for developing better strategies to enhance Obinutuzumab
efficacy by targeting both stromal and tumor cells and ultimately
improve outcomes in B-cell malignancies.

Heterotypic 3D human tumor cell models, combining tumor
cells and fibroblasts, strike a balance by mimicking solid tumor
phenomena effectively (Franchi-Mendes et al., 2021). The
anthracycline chemotherapy drug Doxorubicin (DOX) is used
for the treatment of various cancers, including colon cancer, by
disrupting tumor cell DNA to inhibit replication. However, DOX
resistance hinders its effectiveness (Chen et al., 2018). Valente et al.
study explored the interplay between fibroblasts, DOX resistance,
and spheroid characteristics. With establishing DOX-sensitive and
-resistant spheroids from HCT116 colon cancer cells with or
without fibroblasts, the study unveiled that fibroblasts stabilized
spheroids and altered hypoxia- and inflammation-related gene
expression. DOX resistance impacted drug internalization. These
findings underscore the significance of models resembling in vivo
tumor cell interactions with TME, offering valuable insights for
testing drug treatments, and understanding resistance
mechanisms.

Moreover, Yang et al. identified that SH3 domain-binding
glutamate-rich protein 3 (SH3BGRL3) was upregulated in acute
myeloid leukemia (AML) and was negatively correlated with
survival of AML patients. Furthermore, in-vitro studies showed
that circSH3BGRL3/circRNA_0010984 promoted AML cell
proliferation by inhibiting miR-375 activity and increasing
YAP1 expression. The study by Jiang et al. revealed that
miRNA-146a-5p expression was downregulated in gastric
cancer (GC) tissues, and in-vitro study showed that miRNA-
146a-5p inhibited GC cell growth and promoted GC cell
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apoptosis by directly suppressing CDC14A expression. Zhang
et al. identified a set of neurotransmitter receptor-related
colorectal cancer prognostic gene signature (CHRNA3,
GABRD, GRIK3, GRIK5), which were enriched in cellular
metabolic pathways. High expression of these genes was
positively correlated with immunosuppressive cell infiltration,
and their expression levels in cancer cells significantly affected
the response of cancer cells to chemotherapy.

There are also 4 review articles published under this Research
Topic. Yang et al. emphasized the cGAS/STING’s crucial role in
mediating innate immunity, enhancing interferon release, and
influencing TME. STING modulates diverse pathways, including
non-innate immune processes like autophagy-dependent
ferroptosis, ROS-induced cell death, endoplasmic reticulum
stress-mTOR signaling, apoptosis, senescence-associated secretory
phenotypes, and cellular metabolism. These effects collectively shape
tumor cell progression, highlighting the multifaceted role of cGAS/
STING signaling in cancer biology. 2) Zhang et al. discussed content
alterations of tumor-educated platelets, including their coding and
noncoding RNA, and protein and their role as potential cancer
biomarkers in diverse cancer diagnostics. 3) Chen et al. delved into
the role of mechanobiology including genetic, biochemical, and
mechanical factors and their interplays in cancer progression.
Mechanical alterations, such as changes in stiffness and
morphology, significantly impact cancer initiation and
dissemination. Exploring cancer mechanobiology offers insights
for personalized medicine and innovative treatments. Targeting
tumor and microenvironment physical properties provides
intervention opportunities, aided by advanced imaging and lab-
on-a-chip systems for personalized investigations and drug
screening. 4) Saxena et al. discussed the crucial role of
complement factor H (CFH) as an innate immune checkpoint in
cancer control. They also explored molecular functions, interaction
with immune cells, clinical implications, therapeutic potential of
CFH, and discussed the challenge for CFH as a target in cancer
immunotherapy.

In summary, all publications within this Research Topic have
improved our understanding of TME remodeling and cancer
therapy interplay. Furthermore, these papers may make valuable
contributions towards advancing the treatment options available for
diverse cancers.
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