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Pieri rules for Schur functions in superspace

Miles Eli Jones1†and Luc Lapointe1‡

1Instituto de Matemática y F́ısica, Universidad de Talca, Casilla 747, Talca, Chile

Abstract. The Schur functions in superspace sΛ and s̄Λ are the limits q = t = 0 and q = t = ∞
respectively of the Macdonald polynomials in superspace. We present the elementary properties of the
bases sΛ and s̄Λ (which happen to be essentially dual) such as Pieri rules, dualities, monomial expansions,
tableaux generating functions, and Cauchy identities.

Résumé. Les fonctions de Schur dans le superespace sΛ et s̄Λ sont les limites q = t = 0 et q = t =

∞ respectivement des polynômes de Macdonald dans le superespace. Nous présentons les propriétés

élémentaires des bases sΛ et s̄Λ (qui sont essentiellement duales l’une de l’autre) tels que les règles de

Pieri, la dualité, le développement en fonctions monomiales, les fonctions génératrices de tableaux et les

identités de Cauchy.
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1 Introduction
An extension to superspace of the theory of symmetric functions was developed in [2, 6, 7]. In
this extension, the polynomials f(x, θ), where (x, θ) = (x1, . . . , xN , θ1, . . . , θN ), not only depend
on the usual commuting variables x1, . . . , xN but also on the anticommuting variables θ1, . . . , θN
(θiθj = −θjθi, and θ2

i = 0). In this extended abstract, we are concerned with two natural
generalizations to superspace of the Schur functions that arise as special limits of the Macdonald
polynomials in superspace and whose combinatorics appears to be extremely rich.

The extension to superspace of the Macdonald polynomials, {PΛ(x, θ; q, t)}Λ, is a basis of the
ring Q(q, t)[x1, . . . , xN ; θ1, . . . , θN ]SN of symmetric polynomials in superspace, where the super-
script SN indicates that the elements of the ring are invariant under the diagonal action of the
symmetric group SN (that is, invariant under the simultaneous interchange of xi ↔ xj and
θi ↔ θj , for any i, j). They are indexed by superpartitions Λ and defined as the unique basis
such that

1. PΛ(q, t) = mΛ+ smaller terms

2. 〈〈PΛ(q, t), PΩ(q, t)〉〉q,t = 0 if Λ 6= Ω
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where the scalar product 〈〈·, ·〉〉q,t is given by

〈〈pΛ, pΩ〉〉q,t = δΛΩ q
|Λa|zΛs

∏
i

1− qΛsi

1− tΛsi
(1)

on the power sum symmetric functions in superspace (see Section 2 for all the relevant definitions).
It was shown in [2] that even though the limits q = t = 0 and q = t = ∞ of this scalar product
are degenerate and not well-defined respectively, the corresponding limits sΛ := PΛ(0, 0) and
s̄Λ := PΛ(∞,∞) of the Macdonald superpolynomials exist and are related to Key polynomials
[8, 11]. As we will see, the rich combinatorics of these functions makes them the genuine extensions
to superspace of the Schur functions. In comparison, the a priori more relevant limit q = t = 1
of the Macdonald polynomials in superspace, which corresponds to the limit α = 1 of the Jack
polynomials in superspace, does not seem to be very interesting from the combinatorial point of
view.

The basis sΛ is especially relevant since it plays the role of the Schur functions in the gener-
alization to superspace of the original Macdonald positivity conjectures [1]. To be more specific,
let JΛ(q, t) = cΛ(q, t)PΛ(q, t) be the integral form of the Macdonald superpolynomials (cΛ(q, t) is
a constant belonging to Z[q, t]) and let ψ(sΛ) be a certain plethystically transformed version of
the function sΛ (see [1] for more details). Then the coefficients KΩΛ(q, t) appearing in

JΛ(q, t) =
∑
Ω

KΩΛ(q, t)ψ(sΩ) (2)

are conjectured to be polynomials in q and t with nonnegative integer coefficients (the conjecture
is known to hold when the degree in the anticommuting variables is either zero, which corresponds
to the usual Macdonald case, or sufficiently large [3]).

In this extended abstract we will present the elementary properties of the bases sΛ and s̄Λ

(which as we will see are essentially dual) such as Pieri rules, dualities, monomial expansions,
tableaux generating functions, and Cauchy identities. It is important to note that the combina-
torics of the bases sΛ and s̄Λ was first studied in [4]. Our work stems in large part from a desire
to develop the right framework to prove the conjectures therein, especially those concerning Pieri
rules and tableaux generating functions.

We are confident that this work is only the tip of the iceberg and that deeper properties of
the bases sΛ and s̄Λ will be uncovered in the future, such as for instance a group-theoretical
interpretation of the generalization to superspace of the Macdonald positivity conjecture. At the
tableau level, we are hopeful that this work will eventually lead to a Robinson-Schensted-Knuth
insertion algorithm in superspace, and ultimately to a charge statistic on tableaux that would
solve the case q = 0 of (2).

The most technical parts of this work, which are not included in this extended abstract, are
the proofs of the Pieri rules [9]. They rely on the correspondence between the Schur functions
in superspace and Key polynomials [2] that allows to use the powerful machinery of divided
differences [10]. Once the Pieri rules are assumed to hold, the remaining results follow somewhat
easily from duality arguments or well-known techniques of symmetric function theory [9, 12, 13].
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2 Symmetric function theory in superspace: basic definitions
A polynomial in superspace, or equivalently, a superpolynomial, is a polynomial in the usual N
variables x1, . . . , xN and the N anticommuting variables θ1, . . . , θN over a certain field, which
will be taken in the remainder of this article to be Q. A superpolynomial P (x, θ), with x =
(x1, . . . , xN ) and θ = (θ1, . . . , θN ), is said to be symmetric if the following is satisfied:

P (x1, . . . , xN , θ1, . . . , θN ) = P (xσ(1), . . . , xσ(N), θσ(1), . . . , θσ(N)) ∀σ ∈ SN (3)

where SN is the symmetric group on {1, . . . , N}.

2.1 Superpartitions

Before defining superpartitions, we recall some definitions related to partitions [12]. A partition
λ = (λ1, λ2, . . . ) of degree |λ| is a vector of non-negative integers such that λi ≥ λi+1 for
i = 1, 2, . . . and such that

∑
i λi = |λ|. Each partition λ has an associated Ferrers diagram with

λi lattice squares in the ith row, from the top to bottom. Any lattice square in the Ferrers diagram
is called a cell (or simply a square), where the cell (i, j) is in the ith row and jth column of the
diagram. The conjugate λ′ of a partition λ is represented by the diagram obtained by reflecting λ
about the main diagonal. We say that the diagram µ is contained in λ, denoted µ ⊆ λ, if µi ≤ λi
for all i. Finally, λ/µ is a horizontal (resp. vertical) n-strip if µ ⊆ λ, |λ| − |µ| = n, and the skew
diagram λ/µ does not have two cells in the same column (resp. row).

Symmetric superpolynomials are naturally indexed by superpartitions(i). A superpartition Λ
of degree (n|m) is a pair (Λ~,Λ∗) of partitions Λ~ and Λ∗ such that:

1. Λ∗ ⊆ Λ~;
2. the degree of Λ∗ is n;
3. the skew diagram Λ~/Λ∗ is both a horizontal and a vertical m-strip(ii)

We refer to m and n respectively as the fermionic degree and total degree of Λ. Obviously,
if Λ~ = Λ∗ = λ, then Λ = (λ, λ) can be interpreted as the partition λ.

We will also need another characterization of a superpartition. A superpartition Λ is a pair of
partitions (Λa; Λs) = (Λ1, . . . ,Λm; Λm+1, . . . ,ΛN ), where Λa is a partition with m distinct parts
(one of them possibly equal to zero), and Λs is an ordinary partition (with possibly a string
of zeros at the end). The correspondence between (Λ~,Λ∗) and (Λa; Λs) is given explicitly as
follows: given (Λ~,Λ∗), the parts of Λa correspond to the parts of Λ∗ such that Λ~

i 6= Λ∗i , while
the parts of Λs correspond to the parts of Λ∗ such that Λ~

i = Λ∗i .
The conjugate of a superpartition Λ = (Λ~,Λ∗) is Λ′ = ((Λ~)′, (Λ∗)′). A diagrammatic

representation of Λ is given by the Ferrers diagram of Λ∗ with circles added in the cells corre-
sponding to Λ~/Λ∗. For instance, if Λ = (Λa; Λs) = (3, 1, 0; 2, 1), we have Λ~ = (4, 2, 2, 1, 1) and
Λ∗ = (3, 2, 1, 1), so that

Λ
~

: Λ
∗

: =⇒ Λ :

eee Λ
′

:

eee , (4)

(i) Superpartitions correspond, after a trivial bijection, to the overpartitions studied in [5].
(ii) Such diagrams are sometimes called m-rook strips.
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where the last diagram illustrates the conjugation operation that corresponds, as usual, to
replacing rows by columns.

The extension of the dominance ordering to superpartitions is

Ω ≤ Λ iff deg(Λ) = deg(Ω), Ω∗ ≤ Λ∗ and Ω~ ≤ Λ~ (5)

where the order on partitions is the usual dominance ordering

µ ≤ λ iff |µ| = |λ| and µ1 + · · ·+ µi ≤ λ1 + · · ·+ λi ∀i . (6)

2.2 Simple bases

Four simple bases of the space of symmetric polynomials in superspace will be particularly relevant
to our work [6]:

1. the extension of the monomial symmetric functions, mΛ, defined by

mΛ =
∑
σ∈SN

′
θσ(1) · · · θσ(m)x

Λ1

σ(1) · · ·x
ΛN
σ(N), (7)

where the sum is over the permutations of {1, . . . , N} that produce distinct terms, and
where the entries of (Λ1, . . . ,ΛN ) are those of Λ = (Λa; Λs) = (Λ1, . . . ,Λm; Λm+1, . . . ,ΛN )
(the semicolon is removed);

2. the generalization of the power-sum symmetric functions pΛ = p̃Λ1
· · · p̃ΛmpΛm+1

· · · pΛ` ,

where p̃k =

N∑
i=1

θix
k
i and pr =

N∑
i=1

xri , for k ≥ 0, r ≥ 1; (8)

3. the generalization of the elementary symmetric functions eΛ = ẽΛ1
· · · ẽΛmeΛm+1

· · · eΛ` ,

where ẽk = m(0;1k) and er = m(∅;1r), for k ≥ 0, r ≥ 1; (9)

4. the generalization of the homogeneous symmetric functions hΛ = h̃Λ1
· · · h̃ΛmhΛm+1

· · ·hΛ` ,

where h̃k =
∑

deg(Λs)=k
deg(Λa)=1

(Λ1 + 1)mΛ and hr =
∑

deg(Λs)=r
deg(Λa)=0

mΛ, for k ≥ 0, r ≥ 1

(10)

Observe that when Λ = (∅;λ), we have that mΛ = mλ, pΛ = pλ, eΛ = eλ and hΛ = hλ are
respectively the usual monomial, power-sum, elementary and homogeneous symmetric functions.
Also note that if we define the operator d = θ1∂/∂x1 + · · ·+ θN∂/∂xN , we have

(k + 1) p̃k = d(pk+1) , ẽk = d(ek+1) and h̃k = d(hk+1) (11)

that is, the new generators in the superspace versions of the bases can be obtained from acting
with d on the generators of the usual symmetric function versions.
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2.3 Scalar product and duality

The relevant scalar product in this article is the specialization q = t = 1 of the scalar product
(1)(iii), that is, 〈〈pΛ, pΩ〉〉 = δΛΩ zΛs (12)

where, as usual, zλ = 1nλ(1)nλ(1)! 2nλ(2)nλ(2)! · · · with nλ(i) the number of parts of λ equal to
i. This scalar product is such that

〈〈hΛ,mΩ〉〉 = δΛΩ (13)

The homomorphism ω defined by

ω(p̃r) = (−1)rp̃r and ω(pr) = (−1)r−1pr (14)

which is obviously an involution and an isometry of the scalar product 〈〈·, ·〉〉, is also such that

ω(hΛ) = eΛ (15)

The Schur functions in superspace sΛ and s̄Λ were defined in the introduction as the special
limits q = t = 0 and q = t = ∞ respectively of the Macdonald polynomials in superspace.
Remarkably, the functions sΛ and s̄Λ are essentially dual with respect to our scalar product [2].

Proposition 1 Let s∗Λ and s̄∗Λ be the bases dual to the bases sΛ and s̄Λ respectively, that is, let
s∗Λ and s̄∗Λ be such that

〈〈s∗Λ, sΩ〉〉 = 〈〈s̄∗Λ, s̄Ω〉〉 = δΛΩ (16)

Then
s∗Λ = (−1)(

m
2 )ωs̄Λ′ and s̄∗Λ = (−1)(

m
2 )ωsΛ′ (17)

where m is the fermionic degree of Λ.

When m = 0, we have sΛ = s(∅;λ) = sλ and s̄Λ = s̄(∅;λ) = sλ. In this case the proposition is
simply stating that the dual of the Schur function basis sλ with respect to the Hall scalar product
is the basis sλ = ωsλ′ , which is an elementary result [12].

3 Pieri rules
Pieri rules for the multiplication of a Schur functions in superspace sΛ or s̄Λ by e` and ẽ` were
established in [9] using Key polynomials. By Proposition 1 and (15), these Pieri rules are the
transposed of those corresponding to the multiplication of s∗Λ or s̄∗Λ by h` and h̃` which will be
presented in this section.

3.1 Pieri rules for s∗Λ
Theorem 2 Let Λ be a superpartition of fermionic degree m. Then, for k ≥ 1 and ` ≥ 0, we
have

s∗Λ hk =
∑
Ω

s∗Ω and s∗Λ h̃` =
∑
Ω

(−1)#(Ω,Λ)s∗Ω (18)

where the sum is over all superpartitions Ω of fermionic degree m (hk case) or m + 1 (h̃` case)
such that
(iii) The scalar product (1) differs from that of [2] by a sign depending on the fermionic degree.
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1. Ω∗/Λ∗ is a horizontal k-strip (hk case) or Ω~/Λ~ is a horizontal `-strip (h̃` case).

2. There exists in the h̃` case a (unique) circle of Ω (the new circle), let’s say in column c,
such that

• column c does not contain any cell of Ω∗/Λ∗.

• there is a cell of Ω∗/Λ∗ in every column strictly to the left of column c.

3. If Ω̃ is Ω without its new circle (Ω̃ = Ω when there is no new circle), then the i-th circle
(starting from below) of Ω̃ is either in the same row as the i-th circle of Λ (if Ω∗/Λ∗ does not
contain a cell in that row) or one row below that of the i-th circle of Λ (if Ω∗/Λ∗ contains a
cell in the row of the i-th circle of Λ). In the latter case, we say that the circle was moved.

and where #(Ω,Λ) is the number of circles in Ω below the new circle.

We illustrate the rules by giving the expansions of s∗(4,1,0;2) h3 and s∗(4,1;3) h̃3.
eee
 ( ��� )

=

���eee +

��
� eee +

�
�
�
�Z

Z
Z
Z

��e
�ee +

��ee
�e +

�
�� eee +

�
�
��@

@
@@

�
� e
�ee +

�
� ee

�e +

�e
�
� ee +

e
�
�
� ee

s∗(4,1,0;2) h3 = s∗(2,1,0;7) + s∗(3,1,0;6) + s∗(2,1,0;6,1) + s∗(4,1,0;5) + s∗(3,1,0;5,1) + s∗(2,1,0;5,2) + s∗(4,1,0;3,2)

To generate all Ω described in Theorem 2, draw all possible horizontal strips on Λ∗. For each
partition obtained this way, start from the bottom row and proceed row by row. If a new square
occupies the place of a circle in Λ~, move the circle to the next row and slide it to the first
available column. If there already is a circle occupying the row then the resulting diagram is not
a superpartition and should be discarded. Note that this happens twice in our example. ee  ( ��� e• ) =

���eee• +

��
� eee• −

�e
� e•
� e −

e
�

� e•
� e −

ee•
��
� e

s∗(4,1;3) h̃3 = s∗(3,1,0;7) + s∗(4,1,0;6) − s
∗
(3,2,1;5) − s

∗
(4,2,1;4) − s

∗
(4,3,1;3)

This rule is very similar to the previous one but in this case but keep in mind that every column
to the left of the new circle must have a new box. Also, multiply by (−1) for every circle below
the new circle.

3.2 Pieri rules for s̄∗Λ
Theorem 3 Let Λ be a superpartition of fermionic degree m. Then, for k ≥ 1 and ` ≥ 0, we
have

s̄∗Λ hk =
∑
Ω

s̄∗Ω and s̄∗Λ h̃` =
∑
Ω

(−1)#(Ω,Λ)s̄∗Ω (19)

where the sum is over all superpartitions Ω of fermionic degree m (hk case) or m + 1 (h̃` case)
such that
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• Ω∗/Λ∗ is a horizontal k-strip (hk case) or Ω~/Λ~ is a horizontal (`+ 1)-strip whose right-
most cell (the new circle) belongs to Ω~/Ω∗ (h̃` case).

• the i-th circles (starting from the new circle and going down, or from the first row and going
down if there is no new circle) of Ω and Λ are either in the same row or the same column.
In the case where the i-th circles are in the same row r, the circle in column r of Ω cannot
be located passed row r − 1 of Λ (if r = 1 the condition does not apply).

and where #(Ω,Λ) is again the number of circles in Ω below the new circle.

We illustrate this time the rules by giving the expansion of s̄∗(4,1;5,4) h3 and s̄∗(4,1;5,4) h̃2.

 ee
 (

���
)

=

���ee +

��
�ee +

��e
� e +

��ee
�

+

�
�e

� e
+

�
�ee

�

+

�e
�� e +

�e
� e
�

+

�e
�
� e + �e

�� e +

e
�� e
�

+

e
��
� e

s̄∗(4,1;5,4) h3 = s̄∗(4,1;8,4) + s̄∗(4,1;7,5) + s̄∗(4,2;7,4) + s̄∗(4,1;7,4,1) + s̄∗(4,2;6,5) + s̄∗(4,1;6,5,1)

+ s̄∗(4,3;6,4) + s̄∗(4,2;6,4,1) + s̄∗(4,1;6,4,2) + s̄∗(4,3;5,5) + s̄∗(4,3;5,4,1) + s̄∗(4,1;5,4,3)

Notice here that the circle can be pushed down if there is room or pushed to the right. It
cannot be pushed to the right farther than the original row above it.

 ee
 (

�� e• ) =

�� e•ee +

� e•
�ee +

� e•e
� e +

� e•ee
�

+

e•
�e

� e
+

e•
�ee

�

+

e•e
�� e +

e•e
� e
�

+

e•e
�
� e +

�
�
��@

@
@@

e•e
�� e +

�
�
��@

@
@@

e
� e• e
�

−
e

� e•
� e

s̄∗(4,1;5,4) h̃3 = s̄∗(7,4,1;4) + s̄∗(6,4,1;5) + s̄∗(6,4,2;4) + s̄∗(6,4,1;4,1) + s̄∗(5,4,2;5) + s̄∗(5,4,1;5,1)

+ s̄∗(5,4,3;4) + s̄∗(5,4,2;4,1) + s̄∗(5,4,1;4,2) − s̄
∗
(4,2,1;5,4)

To generate these superpartitions, start with the previous rule and replace the new box that is
farthest to the right with the new circle. Discard any diagrams that have two circles in the same
row or column.

4 Kostka coefficients in superspace
Define the Kostka coefficients in superspace KΩΛ and K̄ΩΛ to be respectively such that

hΛ =
∑
Ω

KΩΛ s̄
∗
Ω and hΛ =

∑
Ω

K̄ΩΛ s
∗
Ω (20)

As expected, the Kostka coefficients in superspace give the monomial expansion of the Schur
functions in superspace.
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Proposition 4 We have

sΛ =
∑
Ω≤Λ

K̄ΛΩmΩ and s̄Λ =
∑
Ω≤Λ

KΛΩmΩ (21)

The triangularity in the previous equation follows from the fact that the Schur functions in
superspace are special cases of Macdonald polynomials in superspace, which are triangular by
construction. The Kostka coefficients in superspace turn out to be nonnegative integers, which
is relatively surprising given that signs show up in the Pieri rules.

Proposition 5 The Kostka coefficients in superspace KΩΛ and K̄ΩΛ are nonnegative integers.

A combinatorial interpretation in terms of tableaux for the coefficients K̄ΛΩ and KΛΩ will be
given in Proposition 8 and Proposition 9 respectively. We should note that a somewhat different
combinatorial interpretation for K̄ΛΩ and KΛΩ was conjectured in [4].

5 Duality
We will now see that there is a natural duality that relates sΛ and sΛ′ . Unexpectedly, for reasons
we will see later on, no such simple duality exists in the case of s̄Λ.

Applying ω on the first formula of (20), we obtain from (15) and Proposition 1 that

eΛ = (−1)(
m
2 )
∑
Ω

KΩΛ sΩ′ (22)

Now, let HΛ = p̃ΛahΛs , that is, HΛ is hΛ with the superspace generators h̃r replaced by p̃r. It is
shown in [9] that

HΛ =
∑
Ω

KΩΛ sΩ (23)

where we stress that the coefficients KΩΛ are exactly those that appear in the previous equa-
tion. This suggests a natural duality between the HΛ and eΛ bases. In effect, let ϕ be the
homomorphism defined by

ϕ(p̃r) = ẽr and ϕ(hr) = er (24)

that is, such that ϕ(HΛ) = eΛ. By (22) and (23), the following result is essentially immediate:

Corollary 6 We have

ϕ(sΛ) = (−1)(
m
2 )sΛ′ (25)

Moreover, the homomorphism ϕ is an involution, that is, ϕ ◦ ϕ is the identity.

Using Corollary 6, the Pieri rules for the multiplication of sΛ by p̃` and h` are identical to those
for the multiplication of s̄∗Λ by h̃` and h` respectively. We should note that these Pieri rules were
conjectured to hold in [4].

Corollary 7 We have, for k ≥ 1 and ` ≥ 0,

sΛ hk =
∑
Ω

sΩ and sΛ p̃` =
∑
Ω

(−1)#(Ω,Λ)sΩ (26)

where #(Ω,Λ) is as usual the number of circles of Ω below the new circle and where the sums
run over superpartitions Ω obeying the conditions of Theorem 3.
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It is immediate from Proposition 1 that the linear map ω ◦ϕ+ ◦ω sends s̄Λ to s̄Λ′ (up to a sign),
where ϕ+ is the adjoint of ϕ with respect to the scalar product (12). But ϕ+ turns out not to
be a homomorphism, and as such the duality between s̄Λ and s̄Λ′ is less natural (for instance, it
does not lead to any analog of Corollary 7).

6 Tableaux
In this section, we show that the Schur functions in superspace are generating series of certain
types of tableaux.

We will refer to {0̄, 1̄, 2̄, 3̄, . . . } as the set of fermionic nonnegative integers. In this spirit, we
will also refer to the set of nonnegative integers {0, 1, 2, 3, . . . } as the set of bosonic nonnegative
integers. For α ∈ {0, 0̄, 1, 1̄, 2, 2̄, . . . }, we will say that type(α) is bosonic or fermionic depending
on whether the corresponding integer is fermionic or bosonic. Finally, define

|α| =
{
a if α = ā is fermionic
a if α = a is bosonic

(27)

6.1 s-tableaux

By (20), the tableaux needed to represent the Schur function in superspace sΛ are those stemming
from the Pieri rules associated to the multiplication of s∗Λ by hr or h̃r given in Theorem 2. We
say that the sequence Ω = Λ(0),Λ(1), . . . ,Λ(n) = Λ is an s-tableau of shape Λ/Ω and weight
(α1, . . . , αn), where αi ∈ {0, 0̄, 1, 1̄, 2, 2̄, . . . }, if Ω = Λ(i) and Λ = Λ(i−1) obey the conditions of
Theorem 2 with k = αi whenever αi is bosonic or with ` = |αi| whenever αi is fermionic. An
s-tableau can be represented by a diagram constructed recursively in the following way:

1. the cells of Λ∗(i)/Λ
∗
(i−1), which form a horizontal strip, are filled with the letter i. In the

fermionic case, the new circle is also filled with a letter i.

2. the circles of Λ(i−1) that are moved a row below keep their fillings.

The sign of an s-tableau T , which corresponds to the product of the signs appearing in the
fermionic horizontal strips, can be extracted quite efficiently from an s-tableau. Read the fillings
of the circles from top to bottom to obtain a word (without repetition): the sign of the tableau
T is then equal to (−1)inv(T ), where inv(T ) is the number of inversions of the word.

Given a diagram of an s-tableau, we define the path of a given circle (filled let’s say with letter
i) in the following way. Let c be the leftmost column that does not contain a square (a cell of
Ω∗) filled with an i. The path starts in the position of the smallest entry larger than i (let’s say
j) in column c. The path then moves to the smallest entry (let’s say k) larger than j in the row
below (if there are many such k’s the path goes through the leftmost such k). We continue this
way until we reach the row below that of the circle filled with an i.

It is important to realize that a tableau can be identified with its diagram given that the
sequence Ω = Λ(0),Λ(1), . . . ,Λ(n) = Λ can be recovered from the diagram. We obtain the diagram
corresponding to Ω = Λ(0),Λ(1), . . . ,Λ(n−1) by removing the letters n from the diagram (including,
possibly, the circled one), and by moving the remaining circle one row above according to the
following rule. A circle (filled let’s say with letter i) in a given row r is moved to row r−1 if there
is an n in row r − 1 that belongs to its path. Otherwise the circle in row r stays in its position.
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Consider the tableau

1 2 2 3
2 4 6
3 5 g4
4 6g2 . The path for the

k2 is

1 2 2 3
2 4 6
3 5 g4
4 6g2 while the path for

k4 is

1 2 2 3
2 4 6
3 5 g4
4 6g2 .

The sequence of superpartitions associated to that s-tableau can then be recovered by stripping
successively the tableau of its largest letter:

1 2 2 3
2 4 6
3 5 g4
4 6g2 →

1 2 2 3
2 4 g4
3 5
4 g2 →

1 2 2 3
2 4 g4
3 g2
4

→
1 2 2 3
2 g2
3

→ 1 2 2 g2
2

→ 1

Now, define

(xθ)T =
∏
i

x
|αi|
i

∏
j : type(αj)=fermionic

θj (28)

if T is of weight (α1, . . . , αn). We stress that the product over anticommuting variables is or-
dered from left to right over increasing indices. For instance, for the s-tableau above, we have
(−1)inv(T )(xθ)T = −x1x

3
2x

2
3x

2
4x5x

2
6 θ2θ4.

Proposition 8 We have that

sΛ =
∑
T

(−1)inv(T )(xθ)T (29)

where the sum is over all s-tableaux T of shape Λ. Hence, from (21), K̄ΛΩ =
∑
T (−1)inv(T ),

where the sum is over all s-tableaux T of shape Λ and weight (Ω̄1, . . . , Ω̄m,Ωm+1, . . . ,ΩN ) (recall
that Ω = (Ω1, . . . ,Ωm; Ωm+1, . . . ,ΩN )).

We thus obtain the monomial expansion of s(3,1;2,1,1) by listing every filling of the shape (3, 1; 2, 1, 1)
whose weight corresponds to a superpartition:

1 1 1 g1
2 6
3 g2
4
5

1 1 1 g1
2 5
3 g2
4
6

1 1 1 g1
2 4
3 g2
5
6

1 1 1 g1
2 3
3 g2
4
5

Therefore, s(3,1;2,1,1) = 3m(3,1;1,1,1,1) +m(3,1;2,1,1).

6.2 s̄-tableaux

By (20), the tableaux needed to represent the Schur function in superspace s̄Λ are this time
those stemming from the Pieri rules associated to the multiplication of s̄∗Λ by hr or h̃r given in
Theorem 3. We say that the sequence Ω = Λ(0),Λ(1), . . . ,Λ(n) = Λ is an s̄-tableau of shape Λ/Ω
and weight (α1, . . . , αn), where αi ∈ {0, 0̄, 1, 1̄, 2, 2̄, . . . }, if Ω = Λ(i) and Λ = Λ(i−1) obey the
conditions of Theorem 3 with k = αi whenever αi is bosonic or with ` = |αi| whenever αi is
fermionic. An s̄-tableau can be represented by a diagram constructed recursively in the following
way:

1. the cells of Λ∗(i)/Λ
∗
(i−1) are filled with the letter i. In the fermionic case, the new circle is

also filled with a letter i

2. the circles of Λ(i−1) that moved along a column or a row keep their fillings.
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As is the case for s-tableaux, the sign of an s̄-tableau T is equal to (−1)inv(T ), where inv(T ) is
the number of inversions of the word obtained by reading the filling of the circles from top to
bottom.

It is important to realize that the sequence Ω = Λ(0),Λ(1), . . . ,Λ(n) = Λ can be recovered from
the diagram. We obtain the diagram corresponding to Ω = Λ(0),Λ(1), . . . ,Λ(n−1) by removing
the letters n from the diagram (including, possibly, the circled one), and by moving the circled
letters one cell above if there is a letter n above them or to their left if there are letters n to their
left and none above them. For instance, if one considers the s̄-tableau T below, the sequence of
superpartitions associated to it can then be recovered by stripping successively the tableaux of
their largest letter:

T =

1 1 1 5 6 6 g5
2 3 4 6 g7
3 5 6 g3
5 6 g2 →

1 1 1 5 6 6 g5
2 3 4 6
3 5 6 g3
5 6 g2 →

1 1 1 5 g5
2 3 4 g3
3 5 g2
5

→
1 1 1 g3
2 3 4
3 g2 →

1 1 1 g3
2 3
3 g2 → 1 1 1

2 g2 → 1 1 1

Proposition 9 We have

s̄Λ =
∑
T

(−1)inv(T )(xθ)T (30)

where the sum is over all s̄-tableaux of shape Λ. Hence, from (21), KΛΩ =
∑
T (−1)inv(T ), where

the sum is over all s̄-tableaux T of shape Λ and weight (Ω̄1, . . . , Ω̄m,Ωm+1, . . . ,ΩN ) (recall that
Ω = (Ω1, . . . ,Ωm; Ωm+1, . . . ,ΩN )).

The monomial expansion of s̄(2,0;3) is thus obtained by listing every filling of the shape (2, 0; 3)
whose weight is that of a superpartition

1 4 6
3 5 g1g2 1 4 5

3 6 g1g2 1 3 6
4 5 g1g2 ;

1 3 4
3 5 g1g2 1 3 5

3 4 g1g2 ;
1 3 4
3 4 g1g2 ;

1 3 3
3 4 g1g2 ;

1 1 5
3 4 g1g2 ;

1 1 4
3 3 g1g2 ;

1 1 3
3 3 g1g2

Hence,

s̄(2,0;3) = 3m(1,0;1,1,1,1) + 2m(1,0;2,1,1) +m(1,0;2,2) +m(1,0;3,1) +m(2,0;1,1,1) +m(2,0;2,1) +m(2,0;3)

7 Cauchy formulas

As is the case in symmetric function theory, the dualities of Proposition 1 translate into Cauchy
type formulas. The one most relevant to this work is the following:∏

i,j

(1 + xiyj + θiφj) =
∑
Λ

sΛ(x, θ) s̄Λ′(y, φ) (31)

where the variables y1, y2, . . . are ordinary variables while the variables φ1, φ2, . . . are anticom-
muting. The tableaux generating series of Propositions 8 and 9 suggest that there should exist a
bijective proof of that formula using an extension to superspace of the dual Robinson-Schensted-
Knuth algorithm [13].
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