

 ■ EI
 ■ 2 北大核心期刊

 ■ Scopus
 □ 中国精品科技期刊

 □ DOAJ
 □ 中国科技核心期刊CSTPCD

 □ EBSCO
 □ 中国核心学术期刊RCCSE

 □ CA
 □ 世界期刊影响力指数(WJCI)报告

 □ FSTA
 □ 食品科学与工程领域高质量科技期刊分级目录第一方阵T1

 □ JST
 □

QuEChERS-超高效液相色谱-串联质谱法测定动物源性食品中30种抗寄生虫类药物残留

冯丽凤,黄芊,叶梦薇,黄永辉,黄燕,林浩学,梁 敏,许 晖 Determination of 30 Kinds of Antiparasitic Drugs in Animal-derived Foods by QuEChERS-UPLC-MS/MS FENG Lifeng, HUANG Qian, YE Mengwei, HUANG Yonghui, HUANG Yan, LIN Haoxue, LIANG Min, and XU Hui

在线阅读 View online: https://doi.org/10.13386/j.issn1002-0306.2023050175

您可能感兴趣的其他文章

Articles you may be interested in

组织研磨-QuEChERS-高效液相色谱-串联质谱法测定动物源食品中磺胺类药物残留以及基质效应的研究

Determination of Sulfonamides in Animal-originated Foods by Grinder-QuEChERS-High Performance Liquid Chromatography-Tandem Mass Spectrometry and Research on Matrix Effects

食品工业科技. 2020, 41(10): 259-264,270 https://doi.org/10.13386/j.issn1002-0306.2020.10.043

超高效液相色谱--串联质谱法检测动物组织中10种抗胆碱类药物残留方法建立

Simultaneous Determination of Ten Anticholinergic Drugs Residues in Animal Tissues Using Ultra Performance Liquid Chromatography Tandem Mass Spectrometry

食品工业科技. 2018, 39(16): 201-207 https://doi.org/10.13386/j.issn1002-0306.2018.16.036

多壁碳纳米管净化--超高效液相色谱--串联质谱法测定鸡蛋中44种药物残留

Determination of 44 Drug Residues in Eggs by Purified Multi-wall Carbon Nanotubes–Ultra High Performance Liquid Chromatography–Tandem Mass Spectrometry

食品工业科技. 2020, 41(10): 230-237 https://doi.org/10.13386/j.issn1002-0306.2020.10.038

通过型固相萃取净化-超高效液相色谱-串联质谱法检测鸡肉中23种磺胺类药物残留

Determination of 23 Sulfonamide Drugs Residues in Chicken by Ultra-performance Liquid Chromatography-Tandem Mass Spectrometry with Pass-through Solid Phase Extraction

食品工业科技. 2021, 42(18): 284-291 https://doi.org/10.13386/j.issn1002-0306.2020120074

UPLC-MS/MS法同时测定动物源性食品中37种兽药残留

Simultaneous Determination of 37 Veterinary Drugs in Animal–Derived Foods by Ultra–high Performance Liquid Chromatography–tandem Mass Spectrometry (UPLC–MS/MS)

食品工业科技. 2021, 42(17): 225-234 https://doi.org/10.13386/j.issn1002-0306.202009030

QuEChERS/超高效液相色谱-串联质谱法测定茶叶中28种农药残留

Determination of 28 Kinds of Pesticide Residues in Tea by QuEChERS/Ultra Performance Liquid Chromatography–Tandem Mass Spectrometry

食品工业科技. 2021, 42(2): 223-229,236 https://doi.org/10.13386/j.issn1002-0306.2020040021

关注微信公众号,获得更多资讯信息

冯丽凤,黄芊,叶梦薇,等. QuEChERS-超高效液相色谱-串联质谱法测定动物源性食品中 30 种抗寄生虫类药物残留 [J]. 食品工 业科技, 2024, 45(6): 280-288. doi: 10.13386/j.issn1002-0306.2023050175

FENG Lifeng, HUANG Qian, YE Mengwei, et al. Determination of 30 Kinds of Antiparasitic Drugs in Animal-derived Foods by QuEChERS-UPLC-MS/MS[J]. Science and Technology of Food Industry, 2024, 45(6): 280–288. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023050175

・分析检测・

QuEChERS-超高效液相色谱-串联质谱法测定 动物源性食品中 30 种抗寄生虫类药物残留

冯丽凤,黄 芊,叶梦薇,黄永辉*,黄 燕,林浩学,梁 敏,许 晖

(福建省产品质量检验研究院国家加工食品质量监督检验中心,福建福州350002)

摘 要:目的:采用超高效液相色谱-串联质谱法,建立测定动物源性食品中 30 种抗寄生虫类药物残留的方法。方法:样品经乙腈、1% 氨水乙酸乙酯提取,经 QuEChERS 净化。净化后采用 Waters ACQUITY UPLCTM BEH C_{18} 色谱柱分离,10 mmol/L 甲酸铵(含 0.1% 甲酸)水溶液-乙腈:甲醇(50:50, v:v)为流动相进行梯度洗脱,电喷雾离子源正负离子切换多反应监测(Multiple Reaction Monitoring, MRM)模式下进行检测,基质匹配外标法定量。结果:在优化的条件下,30 种抗寄生虫类药物在各自的线性范围内线性良好,决定系数(r^2)均大于 0.99;回收率为 70.1%~111%;相对标准偏差在 0.10%~9.1%之间(n=6);方法检出限为 0.001~0.3 µg/kg之间,方法定量限在 0.004~1 µg/kg。结论:该方法灵敏、准确,具有良好的重复性和稳定性,可用于动物源性食品中多种抗寄生虫药物残留的检测。

关键词:抗寄生虫药物,超高效液相色谱-串联质谱法,QuEChERS,动物源性食品,药物残留
 中图分类号:TS207
 文献标识码:A
 文章编号:1002-0306(2024)06-0280-09
 DOI: 10.13386/j.issn1002-0306.2023050175

Determination of 30 Kinds of Antiparasitic Drugs in Animal-derived Foods by QuEChERS-UPLC-MS/MS

FENG Lifeng, HUANG Qian, YE Mengwei, HUANG Yonghui^{*}, HUANG Yan, LIN Haoxue, LIANG Min, XU Hui

(Fujian Inspection and Research Institute for Product Quality, China National Quality Supervision and Testing Center for Processed Food, Fuzhou 350002, China)

Abstract: Objective: A method for determining the residues of 30 antiparasitic drugs in animal-derived food using ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was established. Methods: The samples were extracted with acetonitrile and 1% ammonia acetic ether and purified by QuEChERS. After purification, Waters ACQUITY UPLCTM BEH C₁₈ column was used for separation, and a gradient elution of 10 mmol/L ammonium formate (containing 0.1% formic acid) aqueous solution, acetonitrile:methanol (50:50, v:v) was performed as the mobile phase. Detection was carried out using electrospray ionization (ESI) in both positive and negative ion modes using multiple reaction monitoring (MRM). Matrix-matched external standard quantification was used. Results: Under the optimized conditions, the 30 antiparasitic drugs showed good linearity within their respective linear ranges, with coefficient of determination (r^2) greater than 0.99. The recoveries ranged from 70.1% to 111%, and the relative standard deviations were between 0.10% and 9.1% (n=6). The method detection limit ranged from 0.001 to 0.3 µg/kg, and the method quantification limit ranged from 0.004 to 1 µg/kg. Conclusion: The method is sensitive, accurate, and exhibits good repeatability and stability, making it suitable for detecting various antiparasitic drug residues in animal-derived food.

收稿日期: 2023-05-16

基金项目:福建省市场监督管理局科技项目(FJMS2020004);国家市场监督管理总局科技计划项目(2021MK054)。

作者简介:冯丽凤(1988-),女,硕士,工程师,研究方向:食品安全,E-mail:635847814@qq.com。

^{*}通信作者:黄永辉(1982-),男,硕士,工程师,研究方向:食品安全,E-mail: huangyonghui1982@163.com。

Key words: antiparasitic drugs; ultra-high-performance liquid chromatography-tandem mass spectrometry; QuEChERS; animal derived food; drug residues

动物在生长过程中由于食物和环境原因常会感 染寄生虫病。寄生虫病是动物的主要疾病之一,导致 动物生产性能下降甚至死亡,影响畜牧养殖业的健康 发展和经济效益,甚至威胁人类的健康^[1]。为了预防 和治疗动物寄生虫病,大量抗寄生虫药物被应用于养 殖过程。目前使用传统化学合成类药物居多,也有一 些中草药被补充使用[2]。常规抗虫药作用时间有限, 需要反复用药,也造成了其在动物体内的蓄积。食用 抗寄生虫药物残留较多的畜禽产品会对机体健康产 生危害,如引起人体的过敏反应或急性中毒,甚至可 能致畸或致癌^[3-4]。我国以及欧盟、美国、日本等国 家都已将多种抗寄生虫类药物列入限制使用的兽药 药物中,并制订出各种抗寄生虫类药物(包括其某些 代谢物)在不同动物体内(包括肌肉、组织、奶等)的 最高残留限量(maximum residue limit, MRL)^[5]。中 国于 2019 年 9 月 6 日发布了 GB 31650-2019《食品 安全国家标准食品中兽药最大残留限量》,其中对动 物性食品有最大残留量规定的兽药共 104 种, 而抗 寄生虫药物达 55 种^[6]。

目前检测分析抗寄生虫药物的方法主要包括高 效液相色谱法[7-8]、液相色谱-串联质谱法[9-22]、酶联 免疫吸附测定法(ELISA)^[23-24]、免疫层析试纸法^[25]、 毛细管电泳法[26] 等,其中液相色谱-串联质谱法相对 于其他方法,具有准确性和灵敏度高,选择性和抗干 扰性较强,可实现多目标组分同时分析等优势,被广 泛应用于动物源性食品中兽药残留的分析测定。陈 瑞等[9] 采用超高效液相色谱-串联质谱法测定牛奶和 奶粉中五种苯并咪唑类药物;温海滨等^[10]和 Xu 等[11]采用超高效液相色谱-串联质谱法测定水产品 中苯并咪唑类药物;张绍伟等[12] 采用超高效液相色 谱-串联质谱法测定牛奶中的三聚氰胺、环丙氨嗪、 地昔尼尔; Zhao 等[13]、奚照寿等[14] 和 Wang 等[15] 分 别采用超高效液相色谱-串联质谱法测定牛肉、鸡 肉、鸡蛋中的抗球虫药物;吴映璇等[17]采用高效液相 色谱-串联质谱法测定乳制品中的莫奈太尔及其代谢 物;张敏等[18] 采用超高效液相色谱-串联质谱法测定 牛乳中硝碘酚腈等6种兽药残留。可见近年来国内 外对抗寄生虫类药物残留的研究大多是针对单个抗 寄生虫药物、单一类别或者作用机制相似的几种药 物进行分析,且适用的样品基质也比较单一。目前针 对抗寄生虫药物残留的检测缺少一种可同时检测多 种抗寄生虫药物且适用于多种样品基质的检测方法, 难以满足现代分析技术快速、高效的要求。

本方法通过对仪器和前处理方法的优化,采用 超高效液相色谱-串联质谱法,实现了动物源性食品 (畜禽肉、水产品、牛奶、鸡蛋)中共计 30 种抗寄生 虫类药物残留的检测。该方法具有高效、快速、检测 成本低、灵敏度高的特点,是一种高通量的筛查方法,可为相关监管部门监控动物源性食品中的抗寄生 虫药物残留提供技术支持。

1 材料与方法

1.1 材料与仪器

动物源性食品 畜禽肉、水产品、牛奶、鸡蛋 均购自本地市场;氨丙啉、地昔尼尔、罗硝唑、双咪 苯脲、左旋咪唑、噻苯达唑、奥芬达唑、常山酮、乙氧 酰胺苯甲酯、奥苯达唑、甲苯咪唑、氟苯达唑、阿苯 达唑、吡喹酮、氯苯胍、芬苯达唑、非班太尔、三氯苯 达唑、癸氧喹酯、莫西克丁、米尔贝肟、莫能霉素、拉 沙洛西、盐霉素、马杜霉素、甲基盐霉素、硝碘酚 腈、硝唑尼特、莫奈太尔、氯氰碘柳胺 德国 Dr. Ehrenstorfer 公司;甲酸、乙腈、甲醇、甲酸铵、二甲 亚砜 色谱纯,德国 Merck 公司;氨水、乙酸乙酯、 无水硫酸钠、无水硫酸镁 分析纯,西陇科学股份有 限公司;乙二胺-N-丙基甲硅烷(PSA,粒度 4 µm)、十 八烷基键合硅胶吸附剂(ODS-C₁₈, 粒度 4 µm) 日 本 GL Sciences 公司; Milli-Q 超纯水(电导率> 18.2 mΩ) 美国 Millipore 公司; 0.22 µm 聚四氟乙 烯(PTFE)滤膜 美国 ASC 公司。

LC-30AD 超高效液相色谱仪、Shimadzu 8050 三重四极杆-串联质谱仪 日本岛津公司; ACQUITY UPLCTM BEH C₁₈ 色谱柱($2.1 \times 100 \text{ mm}$, $1.7 \mu \text{m}$) 美 国 Waters 公司; BT 224 S 电子分析天平 德国 Sartorius 公司; Aanti J-E 高速冷冻离心机 美国 Beckman Coulter 公司; Milli-Q 超纯水纯化系统 美 国 Millipore 公司; DS-8510 DTH 超声波振荡器 上 海分析超声仪器有限公司; MS 3 basic 旋涡混均器 美国 IKA 公司; AUTO EVA-80 自动氮吹仪 中国 睿科公司。

1.2 实验方法

1.2.1 标准溶液的配制 标准储备液:分别称取适量 固体标准品,用合适的溶剂溶解并定容至 10 mL 容 量瓶中,配制成约 100 mg/L 的储备液,-18 ℃ 避光 密闭保存。(双咪苯脲、三氯苯达唑、氟苯达唑、甲 苯咪唑、噻苯达唑、阿苯达唑、芬苯达唑、奥芬达唑、 奥苯达唑、非班太尔用适量二甲亚砜溶解并用甲醇 定容;其它药物标准品用甲醇溶解并定容)

混合标准中间液:分别移取一定量的各个标准 储备液用乙腈定容至刻度线,配制成混合标准物质中 间液(表 1),4 ℃ 避光密闭保存。

基质匹配系列标准溶液:取适量体积的混合标 准物质中间液,用空白基质提取液稀释成标准系列工 作曲线溶液(表 1),上机测试。

1.2.2 样品前处理 准确称取均质后的试样 2 g(精 确至 0.0001 g)于 50 mL 离心管中, 加入 5 g 无水硫

表 1	30 种抗寄生.	虫类药物浓度、	线性方程、	决定系数(r ²)检出限及定量限
~ v ~ -					

Table 1 Concentration, regression equations, coefficient of determination (r^2) , LODs, LOQs of the 30 antiparasitic drugs

化合物	中间液浓度(mg/L)	线性范围(µg/L)	线性回归方程	决定系数(r ²)	检出限(µg/kg)	定量限(µg/kg)
氨丙啉	1.00	1.00~50.0	Y=118986X+298045	0.9983	0.02	0.06
地西尼尔	1.00	1.00~50.0	Y=4623.8X+12084	0.9995	0.2	0.8
罗硝唑	1.00	1.00~50.0	Y=31112X+66997	0.9999	0.02	0.06
双咪苯脲	1.00	1.00~50.0	Y=73074X+147955	0.9986	0.1	0.4
左旋咪唑	0.500	0.500~25.0	Y=43378X+70131	0.9970	0.03	0.1
噻苯达唑	0.200	0.200~10.0	Y=71640X+18772	0.9997	0.02	0.06
奥芬达唑	1.00	1.00~50.0	Y=27873X+90090	0.9964	0.04	0.1
常山酮	1.00	1.00~50.0	Y=8064.5X+18747	0.9990	0.04	0.1
乙氧酰胺苯甲酯	0.200	0.200~10.0	Y=91253X+52608	0.9985	0.004	0.01
奥苯达唑	0.0200	0.0200~1.00	Y=1E+06X+46316	0.9992	0.001	0.004
甲苯达唑	0.200	0.200~10.0	Y=167434X+76679	0.9996	0.01	0.04
氟苯达唑	0.200	0.200~10.0	Y=115535X+46360	0.9991	0.01	0.02
阿苯达唑	0.10	0.100~5.00	Y=391021X+113444	0.9979	0.003	0.01
吡喹酮	1.00	1.00~50.0	Y=50795X+95961	0.9996	0.05	0.2
氯苯胍	1.00	1.00~50.0	Y=28992X+65410	0.9980	0.1	0.4
芬苯达唑	0.100	0.100~5.00	Y=263625X+69199	0.9980	0.003	0.01
非班太尔	0.200	0.200~10.0	Y=83622X+29374	0.9991	0.004	0.01
三氯苯达唑	0.500	0.500~25.0	Y=43264X+37943	0.9992	0.02	0.05
癸氧喹酯	0.500	0.500~25.0	Y=60166X+41980	0.9980	0.01	0.03
莫昔克丁	10.0	10.0~500	Y=419.68X+5611.9	0.9993	0.1	0.4
米尔贝肟	10.0	10.0~500	Y=5987.1X+121343	0.9986	0.3	1
莫能霉素	1.00	1.00~50.0	Y=6001.4X-47.666	0.9999	0.02	0.07
拉沙洛西	1.00	1.00~50.0	Y=57948X+128990	0.9990	0.07	0.2
盐霉素	1.00	1.00~50.0	Y=13199X+29194	0.9994	0.04	0.1
马杜霉素	1.00	1.00~50.0	Y=36028X+54891	0.9997	0.02	0.05
甲基盐霉素	0.200	0.200~10.0	Y=126919X+53423	0.9994	0.003	0.01
硝碘酚腈	1.00	1.00~50.0	Y=4583.5X+15315	0.9987	0.05	0.2
硝唑尼特	1.00	1.00~50.0	Y=24664X+3629.8	0.9999	0.04	0.1
莫奈太尔	1.00	1.00~50.0	Y=4606.2X+14766	0.9978	0.02	0.07
氯氰碘柳胺	1.00	1.00~50.0	Y=6087.2X+63425	0.9984	0.08	0.3

酸钠,加入 5 mL 乙腈,涡旋 30 s,超声提取 20 min, 以 4000 r/min 离心 5 min,上清液转移至另一 50 mL 离心管中,残渣中加入 5 mL1% 氨水乙酸乙酯重复 提取一次,离心,合并 2 次上清液,待净化。将提取 液加入到含有 200 mg 无水硫酸镁、100 mg C₁₈ 和 100 mg PSA 的离心管中,涡旋 2 min,离心,取 5 mL 净化后的上清液,于 40 ℃ 氮气吹至近干,用 1.00 mL 50% 乙腈-水溶液复溶,过 PTFE 滤膜,上机测试。

1.2.3 液相色谱-串联质谱条件 液相色谱条件:色谱柱:ACQUITY UPLCTM BEH C₁₈(2.1×100 mm, 1.7 µm);流动相:A 为 10 mmol/L 甲酸铵(含 0.1%甲酸)水溶液,B 为乙腈:甲醇(50:50);流速:0.30 mL/min;柱温:40 ℃;进样量:2 µL;洗脱梯度:0~1.00 min, 10% B; 1.00~9.00 min, 10%~95% B; 9.00~12.00 min, 95% B; 12.01~14.00 min, 10% B。

质谱条件:电喷雾离子源正负离子切换模式;多 反应监测模式;加热块温度:400 ℃;加热气流速: 10.0 L/min;接口电压(ESI⁺:+4000 V,ESI⁻:-3000 V); 雾化气流速:2.5 L/min;干燥气流速:10.0 L/min;脱 溶剂温度:600 ℃;定性离子、定量离子及其他质谱参

数见表2。

1.2.4 定性及定量处理 定性处理:在同样测试条件 下,试样溶液中各目标物的保留时间与基质匹配标准 溶液中相应目标物的保留时间,偏差在±2.5%以内, 且检测到的相对离子丰度,应当与浓度相当的基质匹 配标准溶液相对离子丰度一致。(相对离子丰度允许 偏差应符合以下要求:当相对离子丰度>50%时,允 许的最大偏差为±20%;当相对离子丰度介于 20%~ 50%时,允许的最大偏差为±25%;当相对离子丰度 介于 10%~20%时,允许的最大偏差为±30%;当相对 离子丰度≤10%时,允许的最大偏差为±50%。)

定量处理:按照 1.2.3 设定仪器条件,以基质匹 配标准溶液浓度为横坐标,以峰面积为纵坐标,绘制 标准工作曲线作多点校准,按外标法计算试样中药物 的残留量。

1.3 数据处理

UPLC-MS/MS 配有 LabSolutions 数据处理软件建立标准曲线、计算结果,采用 Microsoft Excel 处理数据及绘制图表。谱图为 Origin 2018 做图软件绘制。

			_	-				
序号	化合物名称	保留时间(min)	母离子(m/z)	子离子(m/z)	四级杆1电压(V)	碰撞电压(V)	四级杆3电压(V)	ESI模式
1	氨丙啉	1.50	243.2	150.2*/94.2	22/22	13/11	19/16	+
2	地昔尼尔	2.27	191.1	150.1*/109.2	27/12	20/26	30/22	+
3	罗硝唑	2.93	201.1	140.1*/55.1	14/13	13/23	14/21	+
4	双咪苯脲	3.29	349.2	188.2*/162.2	12/12	28/24	21/18	+
5	左旋咪唑	3.50	205.0	178.2*/91.2	30/30	20/39	23/18	+
6	噻苯达唑	4.26	201.9	175.2*/131.2	30/29	24/31	20/14	+
7	奥芬达唑	5.46	316.1	159.1*/284.0	21/20	40/17	29/21	+
8	常山酮	5.53	415.6	120.2*/138.3	26/25	21/20	25/27	+
9	乙氧酰胺苯甲酯	5.56	237.8	206.2*/136.2	15/23	10/26	23/15	+
10	奥苯达唑	5.98	249.8	218.2*/176.2	30/16	18/26	24/20	+
11	甲苯咪唑	6.30	296.1	264.1*/105.1	10/14	24/34	28/20	+
12	氟苯达唑	6.50	314.1	282.1*/123.2	14/15	24/36	28/23	+
13	阿苯达唑	6.87	266.1	234.1*/191.0	12/12	20/33	16/19	+
14	吡喹酮	7.18	312.8	203.2*/174.2	20/20	17/29	23/19	+
15	氯苯胍	7.22	333.9	155.2*/138.2	20/20	21/26	29/27	+
16	芬苯达唑	7.32	299.9	268.1*/159.2	15/30	23/35	21/30	+
17	非班太尔	7.76	446.6	383.1*/415.1	28/30	20/13	28/30	+
18	三氯苯达唑	8.31	358.8	274.1*/198.1	22/23	34/27	30/22	+
19	癸氧喹酯	9.27	418.2	372.2*/204.1	20/20	25/44	20/21	+
20	莫西克丁	9.84	640.1	199.1*/528.2	22/40	27/11	23/40	+
21	米尔贝肟	9.92	556.1	167.2*/538.3	34/34	24/18	30/40	+
22	莫能霉素	9.95	693.6	461.3*/479.3	40/40	54/55	24/25	+
23	拉沙洛西	10.1	613.4	377.3*/359.3	28/20	39/37	28/27	+
24	盐霉素	10.1	773.6	431.3*/531.3	26/26	51/44	23/40	+
25	马杜霉素	10.3	935.5	877.5*/895.6	26/20	34/54	30/36	+
26	甲基盐霉素	10.6	787.6	431.2*/531.4	30/30	45/45	20/30	+
27	硝碘酚腈	5.57	288.8	127.1*/162.2	13/18	25/22	12/10	-
28	硝唑尼特	7.09	264.0	217.1*/144.2	24/30	14/17	23/28	-
29	莫奈太尔	8.13	471.9	186.2*/166.3	22/22	23/45	12/30	-
30	氯氰碘柳胺	9.10	660.9	315.1*/344.9	28/28	33/35	21/11	-

	表 2 目标化合物的质谱参数
Table 2	Mass parameters of analytes mass parameters of analytes

注:*为定量离子。

2 结果与分析

2.1 质谱条件的优化

分别取适量储备液以 50% 乙腈稀释成浓度约 为 1.0 mg/L 的单个标准使用液进入质谱, 分别选择 正、负离子模式进行一级全扫描,确定各目标化合物 的母离子。本研究涉及的大多数目标药物在正离子 模式下离子强度更高,如阿咪唑类、聚醚类、化学合 成抗球虫药等更易形成带正电荷的离子,如[M+H]+、 [M+Na]⁺;小部分目标药物在负离子模式下离子响应 更好,如硝碘酚腈、氯氰碘柳胺、硝唑尼特、莫奈太 尔更易失去质子生成带负电荷的离子 [M-H]-。将得 到的母离子施加一定的碰撞能量进行 Product Ion(MS2)扫描,获得各自的二级碎片离子,选择2个 信号较强且干扰小的碎片离子与其母离子组成监测 离子对。再将得到的母离子和碎片离子,采用多反应 监测模式进行仪器自动优化各化合物的四级杆1电 压、碰撞电压和四级杆 3 电压, 定量和定性离子见 表 2。

2.2 色谱条件的优化

2.2.1 色谱柱的选择 本研究涉及的药物多为中等 极性或弱极性的化合物,现有研究多采用 C18 及 T3 色谱柱进行检测。本研究考察了 ACQUITY UPLCTM BEH C₁₈(2.1 mm×100 mm, 1.7 µm)、ACQ-UITY UPLCTM HSS T3(2.1 mm×150 mm, 1.8 µm)的 分离效果。结果表明,在相同液相条件下大多数化合物在 T3 柱及 C₁₈ 柱上的的峰形并无太大差异,但双 咪苯脲、米尔贝肟、拉沙洛西在 BEH C₁₈ 柱上的峰 形及响应优于 T3 柱。且 T3 柱对大多数化合物的保 留比 C₁₈ 柱强,但部分弱极性物质保留过强,洗脱耗 时更长。最终根据分离效果、峰型及保留时间的稳 定性,本研究选择 ACQUITY UPLCTM BEH C₁₈ 色谱 柱作为分析柱。

2.2.2 流动相的选择 本研究比较了采用乙腈-水和 甲醇-水作为流动时的分离效果与保留情况,结果表 明乙腈洗脱能力更强,药物出峰时间更早也更密集, 且洗脱时会产生较多杂峰。而使用甲醇为有机相时 杂峰较少,但有部分极性较弱的聚醚类药物如拉沙洛 西、马杜梅素、盐霉素等无法洗脱下来。故选择采用 甲醇和乙睛的混合溶剂作为有机相。当甲醇和乙睛 的比例为 50:50 时,各药物的分离度与保留时间较 为合适。本研究的大部分目标药物采用 ESI⁺模式进 行检测,加入甲酸可以有效改善峰形,提高质子化能 力,增强响应。但部分目标化合物如米尔贝肟、三氯 苯达唑、莫西克丁、莫奈太尔、癸氧喹酯、盐霉素、甲 基盐霉素等仍然出现不同程度的拖尾现象。加入甲 酸铵,甲酸铵溶液中的 NH4+可竞争性地与色谱柱中 的硅羟基结合,从而减少色谱峰的拖尾现象[27]。经实 验比对,最终采用 10 mmol/L 甲酸铵(含 0.1% 甲酸) 水溶液-乙腈:甲醇(50:50)作为流动相,能够最大程 度地兼顾全部目标化合物的峰形与响应。优化后得 到的 30 种抗寄生虫类药物的总离子流色谱图见 图 1。

2.3 提取溶剂的选择

由于本研究涉及的药物种类较多,且各类药物

性质差异较大。本研究选择了研究对象中具有代表 性的4种动物源性食品基质:猪肉、鱼肉、鸡蛋、牛 奶,采用空白添加试验比较了乙腈、甲醇、乙酸乙 酯、1%氨水乙酸乙酯的提取效果,添加水平为 10μg/kg。结果表明乙腈对大部分药物的回收率较 好,尤其是对于极性较强的氨丙啉、常山酮、地苷尼 尔、罗硝唑等化合物的提取效率明显优于其他提取 溶剂,且乙腈沉淀蛋白效果较好,提取液比较清亮,杂 质含量少。而1%氨水乙酸乙酯对聚醚类等极性较 弱药物的回收率明显优于乙腈、甲醇。对氨丙啉、双 咪苯脲、氯氰碘柳胺和部分聚醚类抗生素,乙腈和 1%氨水乙酸乙酯表现出了互补的优势,图2为猪肉 空白样品添加实验结果。为避免氨水对其他药物提 取效率的影响,最终选择先用乙腈提取,再用1%氨 水乙酸乙酯提取的方式进行复合提取。

2.4 净化方式的优化

本研究采用 QuEChERS 净化方式,常用的 QuEChERS 净化剂有 N-丙基乙二胺(PSA)、十八烷 基键合硅胶(C18)、石墨碳化黑(GCB)、无水硫酸镁 等。C18 能够去除脂肪、蛋白质、矿物质等化合物, 石墨化碳黑(GCB)的作用是去除色素和甾醇类干 扰,PSA 可以去除有机酸、色素、金属离子和酚类化 合物,无水硫酸镁则主要利用其盐析和除水作用[28]。 本研究对 C18、PSA、GCB 以及无水硫酸镁的净化 效果进行了考察。分别仅添加其中一种净化剂 50 mg 于 5 mL 空白(猪肉、鱼肉、鸡蛋、牛奶)添加 提取液中进行净化。实验结果表明 GCB 对大多数 强极性及中等极性化合物有较强的吸附作用,大部分 化合物回收率低于 30%; C18、 PSA 未发现明显的吸 附现象。因此本研究选用 C18、PSA 以及无水硫酸 镁作为净化剂。并对净化剂的用量进行考察,当无水 硫酸镁为 200 mg, C18 为 100 mg, PSA 为 100 mg 时,各目标物在猪肉、鱼肉、鸡蛋、牛奶基质中回收 率和净化效果均为最优。

2.5 滤头和复溶液的选择

将不同乙腈比例的水溶液配制的标准品溶液分 别过尼龙滤膜和 PTFE 滤膜后进行测定,当乙腈比例 低于 40% 时,尼龙滤膜和 PTFE 滤膜都对多种弱极 性化合物如聚醚类化合物有明显的吸附现象。而当 乙腈比例大于 40%, PTFE 滤膜不再吸附任何目标化 合物,但尼龙滤膜对奥芬达唑、常山酮、乙氧酰胺苯 甲酯、芬苯达唑、拉沙洛西、硝唑尼特、氯氰碘柳胺 仍存在不同程度的吸附,因此选择采用 PTFE 滤膜。 测定不同比例乙腈水配制的标准溶液,结果表明当乙 腈比例今于 20%~60% 时,各化合物的响应最优,当 乙腈比例>70% 后多数化合物响应有所下降。因此 选择 50% 乙腈水溶液作为样品复溶液,采用 PTFE 滤膜。

2.6 基质效应的评价

基质效应(matrix effect, ME)是由于待测液中的

杂质和目标化合物在离子源端竞争离子化导致目标 化合物的响应增强或者抑制的效应^[10]。计算公式为 ME(%)=(基质匹配标准溶液曲线斜率/溶剂标准溶 液曲线斜率-1)×100%。当 ME 为正值时表示基质 增强,反之则为基质抑制,绝对值越大则表示基质效 应越强。本研究对猪肉、草鱼、鸡蛋和牛奶进行了基 质效应评估,具体结果见表 3、4。结果显示,猪肉基 质效应介于-24.3%~19.0%;鱼肉基质效应介于 -22.7%~4.39%;鸡蛋基质效介于-17.3%~15.0%;牛 奶基质效介于-22.4%~18.2%,每种基质均出现部分 化合物基质效应大于 10%。因此本研究采用基质匹 配曲线外标法定量。

2.7 方法学验证

2.7.1 线性范围、检出限 选取不含目标化合物的 空白猪肉样品,用1.2.2 的前处理方法,得到空白基 质提取液,制备基质标准系列溶液,上机测定。以定 量离子对的峰面积作为Y轴,质量浓度(μg/L)作为 X轴绘制标准曲线。中间液浓度、线性范围浓度、线 性回归方程、检出限、定量限见表1。从表1可以看 出,在各自的线性范围内 30 种抗寄生虫类药物线性 关系较好,相关系数(r²)>0.99。此外,分别以空白猪 猪肉、草鱼、鸡蛋和牛奶为基质,进行加标回收试验, 以 3 倍信噪比和 10 倍信噪比确定检出限和定量 限。30 种化合物在不同基质中的检出限在 0.001~ 0.3 µg/kg 之间,定量限在 0.004~1 µg/kg 之间(表 1), 均低于文献检出限^[10,13,19,28-30]。

2.7.2 准确度与精密度 在优化后的实验条件下,分别在不含目标物的猪肉、草鱼、鸡蛋、牛奶样品中做3个添加水平的加标回收试验,每个水平做6个平行,回收率和精密度结果见表3、4。在3个不同添加水平下,30种抗寄生虫药物的加标回收率为70.1%~111%,相对标准偏差(RSD)为0.10%~9.1%,表明方法的准确度和精密度均较好,适用于动物源性食品中抗寄生虫药物残留的定性定量分析。

2.8 实际样品测定

本研究采用新建立的方法对市场上购买的猪肉、鸡鸭肉、牛羊肉、鱼肉、鸡蛋、牛奶共计150批次样品进行检测分析。检出了噻苯达唑、阿苯达唑、

表 3	猪肉和草鱼在不同加标水平下 30 种抗寄生虫类药物的加标回收率与精密度(n=6)
-----	--

Table 3 Recovery and precision of 30 antiparasitic drugs in pork and grass carp at different labeling levels (n=6)

化人物	加标水平	猪肉			草鱼			
化 日 10	$(\mu g/kg)$	回收率(%)	RSD(%)	ME(%)	回收率(%)	RSD(%)	ME(%)	
氨丙啉	2.00, 5.00, 10.0	75.6, 88.5, 88.4	6.1, 3.5, 5.7	-13.6	80.1, 85.5, 82.4	3.8, 5.6, 7.8	-15.2	
地西尼尔	2.00, 5.00, 10.0	82.9, 92.5, 93.4	5.2, 3.2, 0.78	-19.3	83.0, 93.5, 93.2	3.5, 4.4, 2.7	-19.4	
罗硝唑	2.00, 5.00, 10.0	85.4, 92.0, 95.4	4.3, 3.2, 4.2	-23.6	86.6, 91.0, 96.0	4.2, 1.5, 2.9	-18.7	
双咪苯脲	2.00, 5.00, 10.0	71.3, 73.5, 72.4	8.0, 4.9, 1.7	19.0	75.5, 78.0, 79.0	7.6, 5.1, 3.2	1.98	
左旋咪唑	1.00, 2.50, 5.00	87.3, 97.5, 104	4.7, 3.3, 3.5	-11.2	88.6, 97.0, 96.6	4.4, 2.6, 1.9	-17.8	
噻苯达唑	0.400, 1.00, 2.00	92.8, 96.5, 100	2.6, 2.6, 1.9	-24.3	91.1, 96.0, 103	2.7, 2.1, 1.3	-21.1	
奥芬达唑	2.00, 5.00, 10.0	105, 103, 105	3.7, 4.7, 3.8	15.0	102, 103, 99.6	1.3, 2.7, 3.3	-2.81	
常山酮	2.00, 5.00, 10.0	82.1, 90.0, 97.8	7.2, 2.9, 4.2	-13.0	84.6, 96.0, 95.2	6.9, 2.3, 1.1	4.39	
乙氧酰胺苯甲酯	0.400, 1.00, 2.00	95.3, 100, 106	5.0, 3.1, 1.9	-10.6	91.1, 97.0, 104	5.1, 2.6, 3.4	1.66	
奥苯达唑	0.0400, 0.100, 0.200	90.1, 92.5, 95.4	3.6, 3.9, 3.0	-14.7	90.0, 88.0, 97.6	3.7, 3.8, 3.4	2.72	
甲苯达唑	0.400, 1.00, 2.00	102, 98.5, 98.0	3.8, 4.6, 4.9	-10.1	98.0, 98.0, 99.4	3.6, 3.4, 1.6	2.95	
氟苯达唑	0.400, 1.00, 2.00	100, 95.0, 96.4	3.4, 3.6, 1.7	-23.3	98.0, 98.0, 101	1.2, 0.84, 1.3	-2.96	
阿苯达唑	0.200, 0.500, 1.00	89.0, 91.0, 94.2	3.4, 4.5, 3.5	-12.5	92.0, 93.5, 98.8	2.6, 4.3, 2.4	1.91	
吡喹酮	2.00, 5.00, 10.0	97.0, 93.0, 99.2	4.3, 3.7, 4.5	-7.20	95.7, 94.5, 104	2.6, 2.7, 1.8	-8.36	
氯苯胍	2.00, 5.00, 10.0	76.2, 82.0, 81.2	4.4, 6.9, 6.5	-14.3	75.1, 80.5, 82.6	5.5, 3.1, 2.4	-19.3	
芬苯达唑	0.200, 0.500, 1.00	86.7, 87.5, 91.8	5.1, 4.5, 5.4	-8.70	85.1, 86.5, 89.8	1.6, 2.6, 0.89	-13.5	
非班太尔	0.400, 1.00, 2.00	103, 98.5, 99.2	6.7, 4.5, 5.3	-9.50	97.2, 103, 103	2.1, 3.6, 2.7	-22.4	
三氯苯达唑	1.00, 2.50, 5.00	84.2, 82.5, 89.4	5.4, 6.8, 4.3	-8.70	83.3, 83.5, 90.6	2.6, 2.4, 1.9	-22.7	
癸氧喹酯	1.00, 2.50, 5.00	86.4, 84.5, 82.6	6.3, 5.7, 6.0	-15.4	90.1, 93.5, 99.2	3.3, 2.1, 2.8	-17.5	
莫昔克丁	20.0, 50.0, 100	80.8, 73.0, 72.6	6.4, 5.4, 5.7	-24.1	75.3, 75.0, 73.8	5.0, 2.6, 3.0	-20.8	
米尔贝肟	20.0, 50.0, 100	70.2, 73.0, 75.2	5.1, 4.2, 5.5	-17.6	72.2, 75.5, 72.6	4.4, 2.3, 2.9	-15.4	
莫能霉素	2.00, 5.00, 10.0	78.0, 91.0, 87.6	8.1, 4.1, 7.3	-18.3	77.7, 90.0, 88.6	5.6, 4.2, 4.6	-12.1	
拉沙洛西	2.00, 5.00, 10.0	70.9, 72.5, 72.2	2.4, 3.4, 3.6	-20.0	72.5, 77.0, 74.2	2.8, 1.3, 2.6	-19.0	
盐霉素	2.00, 5.00, 10.0	72.1, 75.0, 78.8	5.1, 2.9, 2.5	-22.2	72.6, 74.5, 74.2	3.0, 2.5, 2.9	-15.0	
马杜霉素	2.00, 5.00, 10.0	75.3, 74.0, 73.4	3.7, 4.3, 6.5	-19.6	76.2, 79.0, 75.8	3.1, 2.7, 2.3	-1.83	
甲基盐霉素	0.400, 1.00, 2.00	77.8, 71.0, 83.2	7.7, 7.9, 5.1	-12.4	80.3, 83.5, 88.4	6.9, 5.3, 4.7	-14.8	
硝碘酚腈	2.00, 5.00, 10.0	72.6, 105, 89.8	6.4, 2.7, 4.7	11.0	73.9, 92.0, 89.4	5.3, 1.6, 3.3	-21.1	
硝唑尼特	2.00, 5.00, 10.0	110, 108, 109	5.9, 5.5, 4.8	12.0	106, 105, 105	2.9, 3.1, 2.6	-9.19	
莫奈太尔	2.00, 5.00, 10.0	98.3, 104, 106	6.3, 4.2, 8.0	9.00	97.4, 98.0, 103	6.2, 54, 1.3	-6.59	
氯氰碘柳胺	2.00, 5.00, 10.0	75.9, 81.5, 87.0	6.8, 6.7, 5.7	-7.90	74.6, 78.0, 88.4	5.6, 2.3, 5.3	-15.5	

化入树	加标水平	鸡蛋			牛奶			
14日10	$(\mu g/kg)$	回收率(%)	RSD(%)	ME(%)	回收率(%)	RSD(%)	ME(%)	
氨丙啉	2.00, 5.00, 10.0	91.4, 84.0, 98.6	7.2, 4.9, 6.0	-11.0	88.0, 89.2, 88.5	0.12, 0.33, 0.19	-18.6	
地西尼尔	2.00, 5.00, 10.0	90.6, 108, 107	4.6, 6.7, 6.3	-13.0	93.9, 03, 102	6.4, 3.5, 3.4	-18.7	
罗硝唑	2.00, 5.00, 10.0	108, 106, 109	3.9, 3.2, 3.7	2.00	103, 107, 100	4.3, 1.62.2, 1.9	4.1	
双咪苯脲	2.00, 5.00, 10.0	70.6, 75.5, 75.6	4.8, 7.2, 2.2	7.00	76.2, 80.7, 74.0	0.45, 1.8, 3.5	17.9	
左旋咪唑	1.00, 2.50, 5.00	106, 107, 105	5.3, 5.3, 5.7	-2.40	104, 95.3, 89.0	2.2, 3.4, 1.5	-6.5	
噻苯达唑	0.400, 1.00, 2.00	105, 106, 104	6.2, 3.0, 5.3	-6.40	102, 99.2, 89.4	4.2, 1.9, 0.63	-11.0	
奥芬达唑	2.00, 5.00, 10.0	104, 103, 106	5.2, 2.4, 4.5	-1.60	109, 107, 97.9	1.8, 0.18, 1.1	18.2	
常山酮	2.00, 5.00, 10.0	72.2, 71.5, 73.9	7.8, 7.3, 6.9	-5.70	109, 109, 96.1	0.79, 3.5, 1.0	9.88	
乙氧酰胺苯甲酯	0.400, 1.00, 2.00	106, 103, 106	2.7, 3.4, 5.0	3.00	109, 109, 102	0.95, 2.1, 0.12	-1.95	
奥苯达唑	0.0400, 0.100, 0.200	99.2, 101, 103	4.5, 4.4, 6.9	-1.80	100, 97.2, 92.6	0.20, 0.43, 1.6	-13.9	
甲苯达唑	0.400, 1.00, 2.00	104, 98.8, 99.9	2.4, 2.9, 6.5	-1.30	104, 104, 97.2	0.70, 1.8, 0.59	7.53	
氟苯达唑	0.400, 1.00, 2.00	99.6, 96.4., 96.7	3.9, 2.9, 5.7	1.00	107, 107, 96.0	0.33, 0.54, 0.36	12.9	
阿苯达唑	0.200, 0.500, 1.00	101, 98.0, 96.9	3.2, 5.0, 5.1	-3.30	92.1, 87.1, 83.4	0.40, 2.9, 0.10	-21.0	
吡喹酮	2.00, 5.00, 10.0	102, 108, 106	4.0, 5.2, 5.1	6.00	93.3, 93.4, 89.1	0.80, 6.6, 2.4	-20.8	
氯苯胍	2.00, 5.00, 10.0	89.4, 91.7, 84.0	3.8, 4.4, 7.2	-10.0	91.3, 81.2, 84.6	6.5, 0.74, 5.8	-22.4	
芬苯达唑	0.200, 0.500, 1.00	90.5, 95.6, 96.4	4.3, 6.4, 7.1	-5.50	98.1, 101, 93.8	5.5, 1.6, 0.69	-12.8	
非班太尔	0.400, 1.00, 2.00	80.7, 99.0, 92.1	5.5, 7.6, 7.1	-7.30	84.4, 90.6, 88.1	1.8, 6.7, 2.9	-19.3	
三氯苯达唑	1.00, 2.50, 5.00	75.4, 70.1, 73.2	6.7, 6.6, 6.5	-2.30	92.5, 87.9, 88.8	1.4, 1.7, 20	-15.9	
癸氧喹酯	1.00, 2.50, 5.00	72.3, 73.0, 72.4	2.4, 2.6, 4.4	-15.1	103, 108, 101	3.2, 7.0, 3.6	-11.5	
莫昔克丁	20.0, 50.0, 100	81.4, 83.8, 87.4	3.4, 4.0, 6.5	15.0	84.1, 82.8, 85.7	5.6, 4.7, 6.6	8.73	
米尔贝肟	20.0, 50.0, 100	72.6, 73.9, 85.0	6.2, 5.3, 5.3	4.00	82.4, 79.8, 82.5	2.1, 5.2, 2.3	10.1	
莫能霉素	2.00, 5.00, 10.0	75.6, 81.5, 81.2	9.1, 4.0, 5.5	-17.3	97.0, 87.7, 83.6	6.6, 1.5, 0.22	13.1	
拉沙洛西	2.00, 5.00, 10.0	87.0, 89.3, 86.7	5.2, 4.9, 6.1	-8.30	73.3, 80.3, 78.3	0.40, 4.6, 4.2	-1.72	
盐霉素	2.00, 5.00, 10.0	87.3, 77.1, 82.0	5.4, 4.4, 5.0	-15.8	75.1, 74.0, 76.4	3.8, 4.2, 1.3	-15.8	
马杜霉素	2.00, 5.00, 10.0	89.6, 95.4, 98.0	4.6, 1.3, 2.8	9.00	82.2, 71.8, 78.9	6.7, 3.7, 2.5	-3.85	
甲基盐霉素	0.400, 1.00, 2.00	85.1, 79.7, 74.4	2.8, 5.1, 6.7	14.0	82.1, 72.1, 72.4	8.2, 3.5, 1.5	-14.4	
硝碘酚腈	2.00, 5.00, 10.0	89.6, 92.4, 96.9	3.3, 7.1, 1.1	1.00	101, 111, 95.9	0.90, 0.73, 0.42	1.05	
硝唑尼特	2.00, 5.00, 10.0	103, 108, 108	5.3, 6.8, 2.3	6.00	106, 109, 107	3.2, 2.9, 1.3	2.42	
莫奈太尔	2.00, 5.00, 10.0	84.5, 97.5, 99.4	7.1, 5.4, 1.8	2.00	99.5, 109, 96.1	4.3, 2.5, 1.2	3.20	
氯氰碘柳胺	2.00, 5.00, 10.0	72.3, 74.0, 73.4	1.9, 1.4, 1.3	-2.80	96.3, 102, 99.2	2.2, 1.3, 1.0	-16.7	

表 4 鸡蛋和牛奶在不同加标水平下 30 种抗寄生虫类药物的加标回收率与精密度(n=6)

Table 4	Recovery and	l precision o	of 30 antiparas	sitic drugs	in egg and	l milk at d	lifferent labeli	ing levels	(n=6)
---------	--------------	---------------	-----------------	-------------	------------	-------------	------------------	------------	------	---

癸氧喹酯、莫能霉素、马杜霉素、甲基盐霉素等,共 计 29 批次。8 批次检出阿苯达唑,含量达到 0.345~ 10.1 μg/kg; 7 批次检出癸氧喹酯,含量达到 0.893~ 164 μg/kg; 7 批次检出马杜霉素,含量达到 0.500~ 52.0 μg/kg; 4 批次检出莫能霉素,含量达到 0.410~ 1.63 μg/kg; 1 批次检出噻苯达唑,含量为 1.72 μg/kg; 2 批次检出甲基盐霉素,含量为 0.545 μg/kg 和 0.638 μg/kg; 其中包含 16 批次鸡肉, 2 批次猪肉, 1 批次鸭肉, 6 批次鸡蛋,整体检出率为 16.7%,说明 动物源食品中中确实有存在抗寄生虫类药物兽药残 留的现象。

3 结论

本文通过对质谱、色谱条件和前处理方法的优 化,建立了 QuEChERS-超高效液相色谱-串联质谱法 测定动物源性食品中 30 种抗寄生虫类药物残留的 方法。应用该方法检测了 150 批次市售样品,整体 检出率为 16.7%,表明目前市场上确实存在抗寄生虫 类药物兽药残留的现象。本方法具有操作简单,试剂 用量少、分析时间短、测定结果稳定、高通量等优 点,可为畜禽肉、水产品、鸡蛋、牛奶中抗寄生虫药物残留快速筛查和定性定量分析提供技术支撑,有助于动物源性食品中抗寄生虫药物残留的市场监管。

参考文献

陈杖榴. 兽医药理学[M]. 北京: 中国农业出版社, 2007: 265-298. [CHEN Z L. Veterinary pharmacology[M]. Beijing: China Agricultural Press, 2007: 265-298.]

[2] 唐仁勇, 蔡婧, 郭秀兰, 等. 抗寄生虫药物在富禽产品中的残 留危害及安全控制对策[J]. 黑龙江农业科学, 2021, 43(8): 123-128. [TANG R Y, CAI J, GUO X L, et al. The residual hazards and safety control strategies of antiparasitic drugs in livestock and poultry products[J]. Heilongjiang Agricultural Sciences, 2021, 43(8): 123-128.]

[3] BAYNES R E, DEDONDER K, KISSELL L, et al. Health concerns and management of select veterinary drug residues[J]. Food and Chemical Toxicology, 2016, 88: 112–122.

[4] 胡京枝, 尚兵, 刘进玺, 等. 抗球虫药检测技术研究进展[J]. 食品安全质量检测学报, 2022, 13(9): 2825-2833. [HU J Z, SHANG B, LIU J X, et al. Advance of the coccidiostat detection methods[J]. Journal of Food Safety and Quality, 2022, 13(9): 2825-2833.] [5] 孙星雅,李强,王战辉,等.中国与欧盟和美国禽肉、禽蛋中兽 药残留限量标准的对比研究[J].中国富牧兽医,2022,49(6): 2362-2375. [SUN X Y, LI Q, WANG Z H, et al. Comparative study on veterinary drug residue limit standards for poultry meat and eggs in China, EU and USA[J]. China Animal Husbandry & Veterinary Medicine, 2022, 49(6): 2362-2375.]

[6] 中华人民共和国农村农业部,中华人民共和国国家卫生健 康委员会,国家市场监督管理总局.GB 31650-2019 食品中兽药最 大残留限量[S].北京:中国标准出版社,2019. [Ministry of agriculture and rural affairs of the People's Republic of China, National Health Commission of the People's Republic of China, State Administration for Market Regulation. GB 31650-2019 Maximum residue limits for veterinary drugs in foods[S]. Beijing: Standards Press of China, 2019.]

[7] 李丹, 吴翠玲, 张聪聪, 等. 亲水作用色谱柱-高效液相色谱法 测定鸡蛋中氨丙啉的残留量[J]. 食品安全质量检测学报, 2019, 10(17): 5648-5652. [LID, WUCL, ZHANGCC, et al. Determination of amprolium residues in egg by hydrop interaction liquid chromatography column-high performance liquid chromatography [J]. Journal of Food Safety & Quality, 2019, 10(17): 5648-5652.]

[8] 邹游, 邵琳智, 吴映璇. 高效液相色谱法测定鸡组织中苯并咪 唑类药物残留标志物[J]. 色谱, 2019, 37(10): 1112-1117. [ZOU Y, SHAO L Z, WU Y X. Determination of benzimidazoles residue markers in chicken tissue by high performance liquid chromatography[J]. Chinese Journal of Chromatography, 2019, 37(10): 1112-1117.]

[9] 陈瑞,杨志伟,朱凤妹,等.超高效液相色谱-串联质谱法测定 牛奶和奶粉中五种苯并咪唑类药物[J].核农学报,2020,34(8): 1776-1784. [CHEN R, YANG Z W, ZHU F M, et al. Determination of five benzimidazoles in milk and milk powder by UPLC-MS-MS[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(8): 1776-1784.]

[10] 温海滨,林洁纯,叶靖怡,等. QuEChERS-超高效液相色谱-串联质谱法同时测定水产品中 20 种苯并咪唑类药物及其代谢物 残留 [J]. 食品安全质量检测学报, 2021, 12(18): 7214-7221. [WEN H B, LIN J C, YE J Y, et al. Simultaneous determination of 20 kinds of benzimidazoles and their metabolites residues in aquatic products by QuEChERS-ultra performance liquid chromatographytandem mass spectrometry[J]. Journal of Food Safety and Quality, 2021, 12(18): 7214-7221.]

[11] XU N, DONG J, YANG Y B, et al. Development of a liquid chromatography-tandem mass spectrometry method with modified QuEChERS extraction for the quantification of mebendazole and its metabolites, albendazole and its metabolites, and levamisole in edible tissues of aquatic animals[J]. Food Chemistry, 2018, 269: 442–449.

[12] 张绍伟, 贾媛媛, 侯晓林. 牛奶中三聚氰胺、环丙氨嗪、地昔 尼尔的高效液相色谱-串联质谱检测方法的建立[J]. 北京农学院 学报, 2018, 33(3): 61-65. [ZHANG S W, JIA Y Y, HOU X L. Study on the determination of melamine, cyromazine and dicyclanil in milk by HPLC-MS/MS[J]. Journal of Beijing University of Agriculture, 2018, 33(3): 61-65.]

[13] ZHAO X, WANG B, XIE K Z, et al. Development and comparison of HPLC-MS/MS and UPLC-MS/MS methods for determining eight coccidiostats in beef[J]. Journal of Chromatography B, 2018, 1087-1088: 98–107.

[14] 奚照寿,赵霞,袁华根,等.超高效液相色谱-串联质谱法检 测鸡肌肉中8种抗球虫药物的残留[J].中国兽医学报,2018, 38(10):1938-1947.[[XIZS,ZHAOX,YUANHG, et al. Determination of eight coccidiostats residues in chicken muscle by ultra performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Veterinary Science, 2018, 38(10): 1938–1947.]

[15] WANG B, LIU J Y, ZHAO X, et al. Determination of eight coccidiostats in eggs by liquid-liquid extraction-solid-phase extraction and liquid chromatography-tandem mass spectrometry[J]. Molecules, 2020, 25(4): 987.

[16] DANIELA H, SOMPHOU S, JENNIFER K. Development and validation of an LC-MS/MS method for the quantification of the anthelmintic drug moxidectin in a volumetric absorptive microsample, blood, and plasma: Application to a pharmacokinetic study of adults infected with Strongyloides stercoralis in Laos[J]. Journal of Chromatogr B, 2021, 1166: 122556.

[17] 吴映璇, 林峰, 陈思敏. 高效液相色谱-串联质谱法测定乳制 品中的莫奈太尔及其代谢物 [J]. 食品科学, 2019, 40(10): 325-330. [WUYX, LINF, CHENSM. Determination of monepantel and its metabolite residues in dairy products by high performance liquid chromatography-tandem mass spectrometry [J]. Food Science, 2019, 40(10): 325-330.]

[18] 张敏, 王鸽, 马晓冲, 等. 超高效液相色谱-串联质谱法测定 牛乳中 6 种兽药残留 [J]. 食品工业科技, 2022, 43(5): 255-261. [ZHANG M, WANG G, MA X C, et al. Determination of 6 kinds of veterinary drug residues in milk by ultra performance liquid chromatography-tandem mass spectrometry [J]. Science and Technology of Food Industry, 2022, 43(5): 255-261.]

[19] 魏慧敏. 兽用抗寄生虫药物残留高效液相色谱-串联质谱筛 选法研究 [D]. 武汉:华中农业大学, 2013. [WEI H M. Multiresidues screening of veterinary antiparasite drugs by liquid chromatography tandem mass spectrometry (LC-MS/MS) [D]. Wu Han, Huazhong Agricultural University, 2013.]

[20] 郑幸果, 郭灵安, 赵珊, 等. UPLC-MS/MS 法测定动物源性 食品中氯苯胍及其代谢物残留 [J]. 中国畜牧兽医, 2020, 47(6): 1961–1970. [ZHENG X G, GUO L A, ZHAO S, et al. Determination of robenidine and its metabolites in animal derived food by UPLC-MS/MS[J]. China Animal Husbandry & Veterinary Medicine, 2020, 47(6): 1961–1970.]

[21] 孙晓娟, 梁雪燕, 郝祖慧, 等. 鸡组织中氢溴酸常山酮残留 的 UPLC-MS/MS 检测法及其消除规律[J]. 中国农业大学学报, 2019, 24(3): 72-77. [SUN X J, LIANG X Y, HAO Z H, et al. Determination of halofuginone residue and its depletion in chicken tissue by UPLC-MS/MS[J]. Journal of China Agricultural University, 2019, 24(3): 72-77.]

[22] TANG Y X, YU N, LIU C S, et al. Residue depletion of imidocarb in bovine tissues by UPLC-MS/MS[J]. Animals, 2022, 13(1): 104.

[23] ZHANG Y F, LI S F, PENG T, et al. One-step icELISA developed with novel antibody for rapid and specific detection of diclazuril residue in animal-origin foods[J]. Food Additives & Contaminants, Part A. 2020, 37(10): 1633–1639.

[24] BAI Y C, WANG Y H, LI Q, et al. Binding affinity-guided design of a highly sensitive noncompetitive immunoassay for small molecule detection[J]. Food Chemistry, 2021, 351: 129270.

[25] XU X X, LIU L Q, WU X L, et al. Ultrasensitive immunochromatographic strips for fast screening of the nicarbazin marker in chicken breast and liver samples based on monoclonal antibodies[J]. Analytical Methods, 2020, 12(16): 2143–2151.

[26] BOL'SHAKOV D S, AMELIN V G, TRET'YAKOV A V. Determination of polar pesticides in soil by micellar electrokinetic chromatography using QuEChERS sample preparation[J]. Journal

of Analytical Chemistry, 2014, 69(1): 89-97.

[27] 周鹏, 黄芊, 欧阳立群. 超高效液相色谱-串联质谱法测定茶 叶中 9 种天然植物源农药残留量 [J]. 质谱学报, 2020, 41(5): 490-501. [ZHOU P, HUANG Q, OUYANG L Q. Determination of nine botanical pesticide residues in tea by UHPLC-MS/MS[J]. Journal of Chinese Mass Spectrometry Society, 2020, 41(5): 490-501.]

[28] 彭树德. 鸡蛋中 26 种抗球虫药残留 UPLC-MS/MS 方法的 建立及应用[D]. 秦皇岛: 河北科技师范学院, 2022. [PENG S D. Establishment and application of UPLC-MS/MS method for 26 coccidiostats residues in eggs[D]. Qinhuangdao: Hebei Normal University of Science & Technology, 2022.]

[29] 邵丽, 董耀, 王晓, 等. QuEChERS-高效液相色谱-串联质谱

法快速测定鸡肉中 36 种兽药残留 [J]. 食品安全质量检测学报, 2021, 12(14): 5561-5567. [SHAO L, DONG Y, WANG X, et al. Rapid detection of 36 kinds of veterinary drug residues in chicken by QuEChERS-high performance liquid chromatographytandem mass spectrometry [J]. Journal of Food Safety and Quality, 2021, 12(14): 5561-5567.]

[30] 赵颖, 李典典, 张大卫, 等. QuEChERS 试剂盒-高效液相色 谱法检测鸡蛋中阿散酸和洛克沙砷残留[J]. 食品工业科技, 2021, 42(7): 252-257. [ZHAO Y, LI D D, ZHANG D W, et al. Determination of arsanilic acid and roxarsone residues in eggs by QuEChERS kit -high performance liquid chromatography[J]. Science and Technology of Food Industry, 2021, 42(7): 252-257.]