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The effect of marker types and
density on genomic prediction
and GWAS of key performance
traits in tetraploid potato
Trine Aalborg*, Elsa Sverrisdóttir , Heidi Thorgaard Kristensen †

and Kåre Lehmann Nielsen

Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
Genomic prediction and genome-wide association studies are becoming

widely employed in potato key performance trait QTL identifications and to

support potato breeding using genomic selection. Elite cultivars are tetraploid

and highly heterozygous but also share many common ancestors and

generation-spanning inbreeding events, resulting from the clonal

propagation of potatoes through seed potatoes. Consequentially, many

SNP markers are not in a 1:1 relationship with a single allele variant but

shared over several alleles that might exert varying effects on a given trait.

The impact of such redundant “diluted” predictors on the statistical models

underpinning genome-wide association studies (GWAS) and genomic

prediction has scarcely been evaluated despite the potential impact on

model accuracy and performance. We evaluated the impact of marker

location, marker type, and marker density on the genomic prediction and

GWAS of five key performance traits in tetraploid potato (chipping quality, dry

matter content, length/width ratio, senescence, and yield). A 762-offspring

panel of a diallel cross of 18 elite cultivars was genotyped by sequencing, and

markers were annotated according to a reference genome. Genomic

prediction models (GBLUP) were trained on four marker subsets [non-

synonymous (29,553 SNPs), synonymous (31,229), non-coding (32,388), and

a combination], and robustness to marker reduction was investigated. Single-

marker regression GWAS was performed for each trait and marker subset. The

best cross-validated prediction correlation coefficients of 0.54, 0.75, 0.49,

0.35, and 0.28 were obtained for chipping quality, dry matter content, length/

width ratio, senescence, and yield, respectively. The trait prediction abilities

were similar across all marker types, with only non-synonymous variants

improving yield predictive ability by 16%. Marker reduction response did not

depend on marker type but rather on trait. Traits with high predictive abilities,

e.g., dry matter content, reached a plateau using fewer markers than traits

with intermediate-low correlations, such as yield. The predictions were

unbiased across all traits, marker types, and all marker densities >100 SNPs.

Our results suggest that using non-synonymous variants does not enhance
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the performance of genomic prediction of most traits. The major known QTLs

were identified by GWAS and were reproducible across exonic and whole-

genome variant sets for dry matter content, length/width ratio, and

senescence. In contrast, minor QTL detection was marker type dependent.
KEYWORDS

Solanum tuberosum, genomic prediction, GBLUP, tetraploid potato breeding, GWAS,
marker density, marker type
1 Introduction

Since its original domestication from Peruvian wild species

progenitors into Andean and Chilean landraces (Spooner et al.,

2005, 2014), the cultivated potato has been globally disseminated,

and Solanum tuberosum L. is currently the world’s third most

important food crop (FAOSTAT, 2023). Its high efficiency in energy

yield per cultivated area and high nutritional value compared to

cereals have resulted in a cosmopolitan growth distribution (Wilson

et al., 2021), and potato remains a crop of key interest for future

global food security. However, to accommodate the expected 35%–

56% increase in food demand by 2050 compared to 2010 (Van Dijk

et al., 2021), as well as the exhaustion of fertile farmlands and

imminent climate changes, it is paramount to intensify and

accelerate the development of more sustainable crop strains

(Lenaerts et al., 2019) with improved yield, pest resistance, and

space/nutrient/water use efficiency.

The rapid progression of genome sequencing technologies and

the availability of reference genomes for potato (The Potato

Genome Sequencing Consortium, 2011; Sharma et al., 2013;

Pham et al., 2020) have paved the way for the implementation of

genome-assisted breeding methods, such as genomic selection (GS),

in potato crop breeding (Hickey et al., 2017). Genomic selection

breeding relies on a set of thousands of genome-wide markers,

obtained by, e.g., single-nucleotide polymorphism (SNP)

microarrays or genotyping by sequencing (GBS), and it is then

assumed that all quantitative trait loci (QTL) are in linkage

disequilibrium with at least one marker (Meuwissen et al., 2001).

The marker effects on traits are then estimated using a model

trained on a panel of genotypes and phenotypes, and the model is

used to calculate the genomic estimated breeding values (GEBVs)

from genotype data on a breeding population, facilitating directed

parent crossing and early selection of breeding candidates without

the need for direct phenotyping (Heffner et al., 2009). GS is

particularly useful for traits with complex, multigenic inheritance

patterns, such as chipping quality and dry matter content, where

optimization has been largely ineffective in traditional breeding by

phenotype-directed sexual crosses (Wilson et al., 2021). Several

studies have already evaluated the performance of different

statistical methods and machine learning approaches for the

reliable prediction of genomic estimated breeding values for a
02
host of agronomic performance traits, training on a vast

collection of elite breeding materials (Slater et al., 2016;

Sverrisdóttir et al., 2017, 2018; Stich and Van Inghelandt, 2018;

Byrne et al., 2020; Selga et al., 2021; Wilson et al., 2021; Ortiz et al.,

2022, 2023; Pandey et al., 2023). However, the development of

strategies for enhancing the power of GS is still highly relevant for

potato breeding.

While the crop fitness traits can have highly different genetic

characteristics and heritabilities, all phenotypic variations are

underpinned by causal alleles with either deleterious or

advantageous trait effects under selection pressure, the former

dominating in frequency in domesticated lineages (Zhu et al.,

2022). In contrast to diploid crops, deleterious alleles that, e.g.,

induce frameshift mutations, create non-synonymous base changes,

reform splice sites, or generate alternative stop codons, are

ineffectively purged from breeding population gene pools during

purifying selection due to the autotetraploid status of crop potato

(Pham et al., 2017). In addition, insufficient recombination events

in clonal propagation (Zhu et al., 2022) and the generally recessive

nature of those alleles (Dwivedi et al., 2023) have led to a high

abundance of deleterious alleles during domestication and clonal

propagation, which is why elite potato, despite their high

heterozygosity, exhibits signs of acute inbreeding depression (The

Potato Genome Sequencing Consortium, 2011; Zhang et al., 2019).

At the same time, the fixation of a few targeted desirable, recessive

alleles in a single breeding line or population is extremely

challenging in the case of tetrasomic inheritance (Muthoni et al.,

2015). For breeding purposes, the identification of the subset of

deleterious and beneficial alleles that manipulate phenotypic

variation would, in principle, allow more accurate genomic

prediction modeling based on the high information-carrying

diagnostic markers alone (Zhang et al., 2018; Ramstein and

Buckler, 2022). However, the complex multigenic signature and/

or low heritability of several tuber quality traits and yield combined

with the considerable environmental component of the observed

phenotypes of such traits have complicated full genetic trait

characterization (van Eck, 2007). GS models are instead

traditionally based on a high density of anonymous genome-wide

markers (Heffner et al., 2009), but the introduction of large amounts

of redundant data has unknown consequences for model

performance. An issue of similar concern arises for genome-wide
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association studies (GWAS). GWAS can be used to identify the

subset of the total genetic variation that underpins target tuber and

plant quality traits (Naeem et al., 2021). Elucidation of trait genetic

architectures and trait-associated markers by this method as well as

QTL mapping can be used to direct breeding efforts and selection

models toward high-impact alleles, and several markers for the

selection of tuber traits have already been identified (Fischer et al.,

2013; D’hoop et al., 2014; Schreiber et al., 2014; Li et al., 2019; Byrne

et al., 2020; Zia et al., 2020; Park et al., 2021; Ahmad et al., 2022).

However, the sheer quantity of genetic variation in the potato

genomes with, on average, one SNP per 29 bp (The Potato

Genome Sequencing Consortium, 2011) represents a challenge.

Though most variants will have a neutral effect and not impact

trait phenotype, the inclusion of these observations results in

reduced power of association due to increased stringency of

correction for multiple testing but might not necessarily

contribute to proportional amplifications of the QTL

signal intensities.

Intuitively, reducing the background of redundant marker

density by selecting only non-synonymous variants, which are

expected to underpin the largest genetic contribution to

phenotypic variance, can be expected to increase genomic

prediction accuracy. While marker reduction to a set of non-

synonymous variants is certain to reduce the stringency of

correction in GWAS, it is also possible that including only

functional effect variants will improve the signal power of

additional minor effect QTLs by concentrating high-information

variants. Following this hypothesis, we evaluated how GS model

prediction accuracy and the resolution of GWAS were impacted by

using different single-nucleotide polymorphism marker subsets: (i)

amino acid-changing SNPs within protein-coding genes, non-

synonymous SNPs (nsSNPs), (ii) amino acid-conserving SNPs

within protein-coding genes, synonymous SNPs (sSNPs), (iii)

SNPs located outside exons, non-coding SNPs (ncSNPs), and (iv)

a combination of all types, as well as assessing the effect of marker

reduction on GS models. We genotyped a panel of 762 clones called

MASPOT by GBS, used in previous studies (Sverrisdóttir et al.,

2017, 2018), and trained GBLUP models to predict GEBVs for five

agronomic traits with different heritabilities and modes of

inheritance, namely, chipping quality, dry matter content, yield,

length/width ratio, and senescence using each of the filtered marker

subsets in order to evaluate model response to marker type and

robustness to marker reduction. We used single-trait GWAS to

identify the associated loci for each of the five traits and assessed

whether the information level of the trait genetic architecture

carried by different functional variants differed.
2 Materials and methods

All statistical analyses and graphics were performed using R

Statistical Software (v4.3.1) (R Core Team, 2023) in RStudio

(v2023.6.2.561) (Posit team, 2023). Graphics were generated using
Frontiers in Plant Science 03
the ggplot2 package (v3.4.3) in R (Wickham, 2016) unless

otherwise stated.
2.1 Plant material

A mapping population called the MASPOT population,

consisting of circa 5,000 offspring, was established at the LKF

Vandel breeding station (presently Danespo A/S) in Vandel,

Denmark. The MASPOT population was generated by the

systematic cross-pollination of 18 elite potato cultivars in a full-

diallel crossing design, the parents being either established cultivars

or advanced breeding clones (Sverrisdóttir et al., 2017). The design

was, however, limited by low fertility in specific crosses and male

sterility in some of the parents. Male sterility is not an unusual trait

in elite potato cultivars (Sanetomo and Gebhardt, 2015). A total of

762 clones were chosen randomly from the full mapping population

and is henceforth referred to as the MASPOT panel in this paper

(Supplementary Figure 1). The 762 offspring were planted in field

trials in Vandel, Denmark, in 2013 and 2014 as described in

Sverrisdóttir et al. (2017, 2018). The plants were grown to a plant

density of approximately 40,000 plants/hectare with 30 cm between

plants and 75 cm between rows. In 2013, the tuber seedlings were

planted in April 24 and 25 (no replicates) in 24-parcel blocks and

harvested in August 11–29 (109–128 days after planting). The

plants were desiccated 1 to 2 weeks before harvest. No checks

were used. In 2014, the clones were divided into four groups based

on parent earliness and planted in a randomized 28-parcel block

design with two replicates. The groups were planted in April 24, 25,

28, or 29 and harvested in August 11–29 (109–129 days after

planting), also with 1 to 2 weeks of desiccation. The groups were

harvested in chronological order. A total of 19 checks were planted

in two replicates, 18 of which were the MASPOT panel parents. The

checks were inspected manually for signs of unusual development/

disease infection. No abnormalities were observed, taken as an

indication of credible plant material for all clones. As the population

was highly diverse, not all plants had fully matured at harvest. The

soil type was sandy loam. Fertilization was performed with 1,000

kg/hectare NPK 14-3-15. Pests and diseases were controlled with

Fenix and Titus (weed) before and immediately after sprouting,

Mospilan (insects) ultimo June and again ultimo July, and

alternating Ranman and Revus (late blight) from approximately

June 23 until desiccation as needed, depending on the weather. The

fields were irrigated as needed. Additional details about the

population can be found in Sverrisdóttir et al. (2017). Since

the propagation of the population happened simultaneously with

the trials, the number of seed tubers available in 2013 were lower

than in 2014. Therefore, we have not used a formally established

incomplete block design. Furthermore, the trial data is not corrected

for soil heterogeneity due to the following reasons: (i) Danish

regulations for crop rotation do not allow growing potatoes at the

same site in two consecutive years and (ii) since significant

senescence variation was observed in 2013, the plants were
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grouped by senescence in 2014 to minimize “neighbor vigor effects”

in the trials. As a consequence, the data could be corrected reliably

for soil heterogeneity.
2.2 Phenotyping and adjustment for
environmental effects

Phenotyping of dry matter content and chipping quality is

described in Sverrisdóttir et al. (2017). In short, dry matter content

[%] was determined for the MASPOT panel and parent clones

harvested in 2013 (one replicate) and 2014 (two replicates). The

tubers were washed, and a basket holding 1.5–10 kg of tubers was

weighed above and under water shortly after harvesting. The dry

matter content was then calculated using the following empirical

equation:

DM %½ � = 214

·
weight   in   air

weight   in   airð Þ − weight   in  waterð Þ
� �

− 0:988

� �
Chipping quality was determined as the chip color following

frying in oil after the cold storage of tubers. Phenotyping of

chipping quality was performed only for the 2013 harvested

clones. The tubers were stored at either 4°C for roughly 2

months, after which they were incubated at ambient temperature

2–6 h prior to frying. Four to six slices (1 to 2 mm) of each tuber

were fried in sunflower oil at 180°C until the bubbles ceased to

emerge (generally 2 to 3 min). The frying color was visually assessed

to a standard set on an arbitrary grading scale from 1 (dark) to

9 (light).

Yield was measured for the 2014 harvested clones in the field at

harvest as the total weight of five tubers from each clone in two

replicates, i.e., 2 × 5 tubers each. The weight was converted into hkg/

ha values, assuming 40,000 plants/hectare to account for plot

variations from year to year.

Length/width ratio was determined as the length/width ratio

(LW) for the 2014 harvested clones:

LW =
length
width

Tuber length was defined as the longest measure and the width

as the measure perpendicular to this and measured on a SCOUT

camera (Newtec A/S, No. 0213). The measures do not consider

tuber anatomy, where length is defined as the distance from the rose

(apex) to the heel (attachment of stolon). The true definition will

only be violated for irregular tubers, which are relatively rare and

hence assumed to not significantly affect the downstream analyses.

Outliers were identified on the length or width (diameter)

parameter relative to the nearest neighbor and removed following

Dixon’s Q test (Dean and Dixon, 1951) before the calculation of

length/width ratio, where the critical confidence level, Qcrit, was

estimated for batches of up to 200 tubers by regression and used for

a two-tailed test as outlined by Rorabacher (1991).

Senescence (an earliness proxy) was scored manually on a scale

from 9 (late senescence) to 1 (no senescence). Phenotyping was
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performed for the 2013 and 2014 harvested clones. The scoring was

performed temporally at three points, splitting the scale

accordingly: the first scoring (when the first cultivars begin dying

off) used the upper end of the scale (9-8-7), the second used the

middle of the scale (6-5-4), and the third scoring, capturing

cultivars that display late senescence, used the lower end of the

scale (3-2-1). Each clone was only scored once.

All phenotypic data were corrected for variation across years by

fitting a linear mixed model to the phenotypic data via restricted

maximum likelihood (REML) using the following model:

yij = μ+   genotypei +   yearj +   eij

where yij is the observed phenotype, m is the overall mean,

genotypei is the random effect of the ith genotype, yearj is the fixed

effect of the jth year, and eij is the error term (Sverrisdóttir et al.,

2017). The model was made with the lme4 package in R (Bates et al.,

2015). Terms for genotype-by-environment (G × E) were not

included in either the GS or GWAS models since the

experimental design did not produce sufficiently robust

phenotyping to allow the rigorous estimation of this in the

MASPOT panel (Sverrisdóttir et al., 2017, 2018), which is why

the model was simplified to avoid infusion of additional error and

lessen the risk of overfitting.
2.3 Genotyping

Genotyping was performed by GBS. GBS libraries were

prepared according to Sverrisdóttir et al. (2017), following a

protocol adapted from Elshire et al. (2011). The 5′ and 3′
adapters for Illumina sequencing were designed for a 96-

multiplexing system. DNA was extracted from leaf tissue and

digested with ApeKI. The fragments were ligated to adapters,

pooled in 96-plex libraries, purified, and amplified by PCR. The

MASPOT panel libraries were sequenced on a HiSeq 2000

(Illumina, San Diego, CA, USA) with single-read sequencing (100

bp), and each 96-plex library was sequenced on three channels on a

flow cell.
2.4 Filtering raw sequence data, mapping,
and SNP calling

Sequenced reads were processed as described in Sverrisdóttir

et al. (2017). The reads were demultiplexed, trimmed, and mapped

onto the S. tuberosum Group Phureja reference genome sequence

[DM v4.03; (Sharma et al., 2013)]. SNPs were called using the

Genome Ana lys i s Too lk i t s (McKenna e t a l . , 2010)

UnifiedGenotyper tool with ploidy set to 4 and the minimum

phred-scaled confidence threshold of 50 for variant calling and of

20 for variant omission (and filtered with LowQual if less than the

calling threshold), as described in Sverrisdóttir et al. (2017). The

SNPs were then filtered to a root mean squared quality of 30,

including only biallelic variants. Since potatoes are not tetraploid

across all loci, but rather have a mean gene copy number of 3.2 (Sun
frontiersin.org
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et al., 2022), enforcing the expectation of tetraploidy across all

marker sites would constitute a confounding error. As a

consequence, the called tetraploid genotypes were not used

explicitly, but rather variant allele frequencies estimated from the

sequencing data for each variant were used directly as genotypes for

statistical analyses cf. (Ashraf et al., 2016) to accommodate the gene

copy number variation across the potato genome. Minor allele

frequency (MAF) was calculated from read coverage, and SNPs

were filtered to a MAF of 1% (average variant frequency<0.99 and

>0.01), a read coverage >5, and a missing rate of maximum 50%.
2.5 Marker reduction and filtering

SNPs were annotated using SnpEff (Cingolani et al., 2012) using

a custom database built from the S. tuberosum DM v4.03 reference

genome. The SNPs were filtered into three subsets based on

annotation: non-synonymous (including missense, stop codon

gain/loss, start codon gain/loss, frameshift, and exon loss

variants), synonymous (including synonymous variants), and

non-coding (excluding all exonic variants, reduced to every third

non-coding variant), in addition to a combination set of the former

three subsets. For GWAS, a 1-in-3 reduction of the combination set

was also analyzed. For each of the four annotated SNP sets, the

SNPs were further filtered to read coverage between 5 and 60, while

individuals with >70% missing data were removed.

Reduced marker sets, for the evaluation of genomic prediction

model tolerance to marker reduction, were prepared for each of the

four SNP sets by iteratively reducing the sets to every other position,

resulting initially in two bins. This was done to ensure whole-

genome dispersion of the SNPs and avoid the introduction of

regional bias. Following the second iteration, resulting in four

bins, only four bins were kept for each iteration. Iterations were

performed this way until ~150 markers remained in each SNP set. A

final reduction to every 10th marker was then performed on each

set. Supplementary Figure 2 presents an overview of the marker

reduction strategy. The SNP density plots were generated using the

CMplot package in R (LiLin-Yin, 2023).
2.6 Statistical analyses

2.6.1 Assessment of population structure
The population structure of the MASPOT panel was ascertained

by performing a principal component analysis (PCA) using the

prcomp function of the built-in stats package (R Core Team, 2023)

on the genomic relationship matrix (G) computed from the

combina t ion se t o f annota ted SNPs (93 ,170 SNPs)

(Supplementary Figure 3). The genomic relationship matrix was

created from the genotype matrix (Z) based on the first VanRaden

(2008) method. The Zmatrix contains the genotypes taken as allele

frequencies for each sample and SNP from sequence data (Ashraf

et al., 2016). The allele frequencies were calculated as the ratio

between allele counts of the alternative allele and the total allele

count, producing a value between 0 and 1. This allows the genotype

matrix to capture tetraploid allele dosages.
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AF   =  
ACalt

ACref + ACalt

The allele frequencies were corrected for missing data following

the correction, wi, described by VanRaden (2008):

wi =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
opk 1 − pkð Þ   over   all   loci

opk 1 − pkð Þ     over   only   non −missing   loci

s

where pk is the mean allele frequency at locus k. A total of

16.26% of all markers were imputed. The genotype matrix was

centered and adjusted for missing values according to Ashraf et al.

(2016), whereafter means were set to zero, corresponding to mean

imputation for missing data.

Zik = Xik − pkð Þ · wi

where Xik is the allele frequency in family i at locus k. The

genomic relationship matrix was computed from Z using global

scaling, following method 1 of VanRaden (2008), with a

modification to adjust for tetraploidy (Ashraf et al., 2014, 2016).

G =
ZZ 0

0:25opk 1 − pkð Þ
where 0:25opk 1 − pkð Þ is the sum of genotypic variance and

also the average diagonal of ZZ'.

2.6.2 Genomic prediction models
Genomic predictions for each of the single traits, using each of

the generated SNP sets, were performed using a standard additive

GBLUP model, equivalent to a ridge-regression with uniform

shrinkage of SNP effects, without accounting for marker effect

size, i.e., assuming that each marker accounts for an equal

proportion of the total genetic variance, though shrinkage is

dependent on sample size and allele frequency (Gianola, 2013). A

G × E term was not included due to insufficient robustness of

across-year phenotyping (Sverrisdóttir et al., 2017). GEBVs are

directly estimated using the genomic relationship matrix

(Meuwissen et al., 2001):

y = 1m + g + e

where y is a vector of observed phenotypes, µ is the mean, e is a
vector of residual effects with e eN 0,   Is 2

e

� �
, where I is an identity

matrix and s 2
e is the residual variance, and g is a vector of random

genomic breeding values with distribution g eN 0,Gs 2
g

� �
is the

genetic variance of the model. All models were computed using the

BGLR package in R (Pérez and de los Campos, 2014) with default

settings for priors and settings of 12,000 iterations and a burn-in of

2000. All analyses were performed using an eightfold cross-

validation scheme, where clones were randomly divided into eight

groups, one group being used for validation while the model was

trained using the data of the seven remaining groups. This process

was repeated, each time with a different group as validation set, until

predictions had been calculated for all individuals. Each analysis

was repeated with 10 different cross-validation groupings, and the

GEBV was calculated as the average across all samplings. The

accuracy of the GEBVs was determined as the Pearson correlation
frontiersin.org
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coefficient between the predicted GEBVs and the observed

phenotypes, described here as the prediction correlation:

r GEBV : yð Þ
Correlation coefficients for each trait, when using ~30k

markers, were compared pairwise by Welch two-sample t-test

with Bonferroni correction of significance level to 0.05/N, where

N is the total number of tests for each trait. A linear regression of the

observed phenotypes on the predicted values was used as a measure

of bias of the GEBVs, where a regression slope of b=1 indicates no

bias, b<1 implies that extremely high (low) GEBVs over-(under)

estimate the observed phenotype and vice versa for b>1 (Luan et al.,

2009). The prediction correlation and bias summary statistics were

evaluated for all modeled SNP sets.

2.6.3 Heritability
The pedigree narrow sense heritabilities (h2p) were estimated for

each trait as the linear regression coefficient of the mid-parent

phenotypic value (i.e., mean parental phenotype) against the

offspring value. The offspring of one or more parent with missing

phenotypic data was not included. Genomic narrow sense

heritability was estimated as the ratio of genomic to phenotypic

variance using the genomic relationship matrix of the full

combination data set in a REML analysis (de los Campos et al.,

2015).

h2g =
s 2
g

s 2
y

2.6.4 Genome-wide association studies
Genome-wide association studies were conducted for each of

the four fully annotated SNP sets. Additionally, for the combination

SNP set, a reduced dataset was prepared by taking every third SNP,

generating a reduced set of 31,032 SNPs, for which GWAS was also

conducted. GWAS was performed by single marker regression with

the regress package in R (Clifford and McCullagh, 2006, 2020) using

the following model for each SNP in the respective data subsets,

cumulating the marker effects:

y = 1m + Xib i + g + e

where y is a vector of observed phenotypes, µ is the mean, Xi is

the vector of SNP genotype values taken as allele frequency at the ith

position, bi is the corresponding additive genetic effect of the ith

SNP, g is a vector of random genomic breeding values with

distribution g eN 0,Gs 2
g

� �
, where G is the genomic relationship

matrix of Sverrisdóttir et al. (2017) computed for the MASPOT

panel, and each SNP set, s 2
g , is the genetic variance of the model,

and e is a vector of residual effects with e   e  N 0,   Is 2
e

� �
. The

genomic relationship matrix was included as a fixed effect in the

model to correct for the genomic relationship between the

MASPOT offspring. For each chromosome, a G-matrix was

calculated based on the SNPs mapped to the remaining

chromosomes, excluding the target chromosome. This G-matrix
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was then used to correct for population structure for the SNPs of the

excluded chromosome to ensure that SNPs were not included in the

model twice (Kristensen et al., 2018).

Potatoes are clonally propagated, and modern cultivars can be

expected to have a significant proportion of recurrent genetic

variation in their pedigree. This leads to a population structure

which, in turn, has a tendency to cause overdispersion of the test

statistics in association analyses (Devlin et al., 2001). This would

result in an increased number of false positive associations. To

adjust for this, we calculated genomic inflation factors, lgc, for each
trait and SNP subset and used to correct p-values for inflation due to

systematic effects not captured by the model according to Hinrichs

et al., (2009) and Kristensen et al. (2018). Inflation factors were

computed as the median value of the chi-squared statistic of the

SNPs divided by the expected median value, i.e., assuming no

association between the SNPs and the trait.

c2 = Q−1
c2 P,   1ð Þ

lgc =
median c2

� �
Q−1

c2 0:5,   1ð Þ

Each p-value (P) is converted to a c2 quantile using the quantile
function of the chi-squared distribution, i.e., the inverse of the

cumulative distribution function (CDF) Qc2 , with one degree of

freedom. To determine the genomic inflation factor, lgc, the median

of the c2-quantiles is then divided with the chi-square of the 50th

percentile with one degree of freedom, i.e., the expected median c2,
assuming no SNP–trait association.

For lgc>1, the chi-squared quantile of the p-values was divided

by the inflation factor and used to calculate corrected p-values using

the CDF of the chi-squared distribution with one degree of freedom.

Pcorrected = 1 − Qc2
c2

lgc

 !
, 1

 !

To control false positive associations, Bonferroni correction was

used with a false discovery rate of p < 0:05=N , where 0.05 is the

overall significance threshold and N is the total number of markers

tested in the analysis. The proportion of phenotypic variance

explained by markers was calculated using the formula from

Shim et al. (2015). QQ and Manhattan plots were plotted using

the qqman package in R (Turner, 2018).

3 Results

3.1 Genotyping statistics

Sequencing yielded an average of four million trimmed and

filtered reads per sample for the MASPOT panel of 762 clones. A

total of 3.4 million variant sites were found. Following filtering for

MAF > 1%, minimum coverage of five, and a missing rate of

maximum 50%, 182,757 variants remained with sequence

positions as in Sverrisdóttir et al. (2017).
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3.1.1 Filtering and reduction of markers according
to SNP annotation

Four subsets of SNP data were created from the annotation

filter: (1) non-synonymous variants (32,352 nsSNPs), synonymous

(34,695 sSNPs), non-coding (33,743 ncSNPs), and a combination

set (100,790 of all SNPs). After filtering each data set to read

coverage between 5 and 60 and individuals with >70% missing

data, the data sets were reduced as presented in Table 1

(Supplementary Files 1–4).

Markers were well distributed over each of the 12 chromosomes

in each of the four annotation-based data sets (Figure 1,

Supplementary File 5), consistent with marker density

distributions found in another study of tetraploid potato (Wilson

et al., 2021). The markers most densely populated the

apocentromeric regions (The Potato Genome Sequencing

Consortium, 2011) in all sets, with the two exonic variant sets

presenting with Mb-sized windows of SNP sparsity in and around

the centromeres. This is consistent with low gene density (Sun et al.,

2022) and repressed meiotic recombination (Marand et al., 2017) in

the pericentromeric regions of potato genomes, leading to reduced

polymorphisms, and hence marker density as well as enrichment of

fixed deleterious alleles (Zhang et al., 2019), and tight genetic

linkage in these genomic areas.
3.2 Phenotypes and trait
heritability estimates

Phenotypes for yield, dry matter content, chipping quality,

length/width ratio, and senescence (a proxy of earliness) were

assessed for the 755 individuals retained in the MASPOT panel

after full SNP data filtering (Figure 2, Supplementary File 6). The

phenotypes were corrected for yearly effects between seasons using

a linear mixed model only, as our data did not allow the rigorous

estimation of G × E effects (Sverrisdóttir et al., 2017). Chipping
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quality phenotypes were missing for 31% of the MASPOT panel.

Following correction, the phenotypic data appeared approximately

normally distributed for all traits, except for length/width ratio,

following a quotient distribution, and chipping quality

(Supplementary Figure 4), presenting with a right skew. This was

most pronounced for length/width ratio and was likely a result of

this being a ratio distribution of two normally distributed variables

(length and width, respectively) (Dıáz-Francés and Rubio, 2013).

Regardless, all phenotypes were used for GS and GWAS models

without transformation, and the significance threshold indicator

lines used in Manhattan plots were based on Bonferroni correction

for all phenotypes.

Pedigree heritabilities (Supplementary Figure 5) were generally

estimated as higher compared to genomic narrow sense heritability

(Table 2). Yield exhibited the lowest heritability, with genomic and

pedigree heritabilities of 22% and 30%, respectively, while dry

matter content had the highest pedigree heritability of 91%, but

only 41% genomic heritability. The difference in genomic narrow

sense heritabilities may be a result of insufficient sampling of the

true genomic diversity in the 93,170 marker combination set to

accurately estimate relatedness as suggested in Sverrisdóttir et al.

(2017). However, the specific large difference for dry matter content

cannot be explained by such a general effect. We speculated that this

may be related to the fact that the cytoplasmic type of potato.

cytoplasmic type W/g, is positively correlated with starch content

(Sanetomo and Gebhardt, 2015) and therefore dry matter content.

The cytoplasmic type is captured in the pedigree heritability

estimates, but since genomic markers are derived from nuclear

DNA, this is likely not captured in the genomic heritability estimate.

The means and median dry matter contents of offspring of W/g-
type cytoplasm mother (male-sterile) were compared with the

remaining panel. Indeed they were significantly different (p =

2.2*10-16), indicating that the cytoplasmic markers related to male

sterility, not captured in the genomic markers, could constitute

some/all of the unaccounted genetic diversity underpinning the trait

heritability. However, removing W/g individuals and parents from

the analysis, the pedigree heritability was 95% and the genomic

estimates 40%, in essence the same values as obtained with the

entire panel.
3.3 Population structure characterization

Figure 3 shows the first three principal components from the

PCA of the genomic relationship matrix of the 93,170 marker

annotated combination data set. The offspring of the full diallel

cross showed no clear separation into distinct genetic groupings

based on PC1 and PC2, though same-father siblings generally

congregated closer within the span of the full panel. This trend

was less pronounced for same-mother siblings. Plotting PC1 against

PC3 showed some offspring diverging genetically from the main

group. These individuals were generally progeny of 93-CAQ-14

(father), Agria (mother), or 96-BYM-8 (mother) [Agria

grandmother], in addition to a few clones with miscellaneous

parentage. Beyond 96-BYM-8 being a descendent of Agria, their

pedigrees do not allude to any distinct features of these MASPOT
TABLE 1 Number of single-nucleotide polymorphisms (SNPs) and
individuals in each data set.

SNP set SNPs after
first
filtering

SNPs after
second
filtering

Individuals
after
filtering

MAF > 1%,
coverage >
5,
missing
rate<50%

5< coverage
<60,
missing
rate<70%

MASPOT
panel

Full 182,757 171,859 755

Non-synonymous 32,352 29,553 755

Synonymous 34,695 31,229 755

Non-coding 33,743 32,388 751

Combination
(non-synonymous,
synonymous,
non-coding)

100,790 93,170 755
Total number of individuals before filtering: 762 in MASPOT panel.
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parents’ heritages (data not shown). The population structure is

corrected for in both GS and GWAS through the G-matrix.
3.4 Genomic prediction

3.4.1 Effect of marker filtering and density
Genomic predictions with marker reduction were conducted

based on the four annotated subsets, non-synonymous,

synonymous, non-coding, and the combination set. The

correlations between observed phenotypes and GEBVs calculated

for each individual using GBLUP models with eightfold cross-

validation and 10 repeats are shown in Figure 4A. The highest

correlation was obtained for dry matter content of 0.75 using the

ncSNPs (Table 3). However, performance was not significantly

different from sSNPs and the combined SNP set. Only the

nsSNPs produced a significantly poorer prediction accuracy than

the other three sets (p = 7.9*10-5 vs. sSNP, 5.0*10-6 vs. ncSNPs, and
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2.0*10-5 vs. all SNPs), but still yielding a mean correlation coefficient

of 0.74. In all dry matter content cases, the prediction accuracies

plateaued at around 1,000 markers. Chipping quality and length/

width ratio could be modeled to intermediate correlations of

maximum 0.54 and 0.50, respectively. For chipping quality,

filtering the markers to nsSNPs and sSNPs produced significantly

lowered prediction accuracies compared to using ncSNPs alone (p =

6.2*10-4 and 4.1*10-5, respectively) or a combination of all SNPs for

over 25,000 markers (p = 6.3*10-3 and 3.5*10-4), while the

correlation coefficients plateaued at ~10,000 markers. The

numerical difference in performance was, however, only slight.

For length/width ratio, only sSNPs performed significantly better

than nsSNPs (0.50 compared to 0.48, p = 3.3*10-3), while no

statistically significant difference could be observed between the

remaining data sets for over 25,000 markers. Traits senescence and

yield had the lowest correlation coefficients of maximum 0.35 and

0.28, respectively, and the correlation coefficients did not reach a

plateau for other than the combination set when using ~50,000
D
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C

FIGURE 1

Heat map of marker density in 1-Mb windows for each chromosome. (A) Non-synonymous variants, (B) non-coding variants, (C) synonymous
variants, and (D) combination set of annotated variants. The color gradient denotes marker count.
D EA B C

FIGURE 2

Distribution of phenotypes in the MASPOT panel. (A) Chipping quality, (B) length/width ratio, (C) senescence, (D) dry matter content, and (E) yield.
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markers. For senescence, there was not a statistically significant

best-performing annotation set—only the ncSNP models gave a

statistically significant worse prediction accuracy >25,000 SNPs,

with a mean correlation coefficient of 0.32 (p = 4.9*10-6 vs. nsSNPs,

5.1*10-5 vs. sSNPs, and 7.3*10-7 vs. all SNPs). For modeling yield,

the nsSNPs produced significantly best results, improving

correlation coefficients by 0.03–0.04 compared to the other SNP

types when using >25,000 markers (p = 2.8*10-6 vs. sSNP, 9.1*10-7

vs. ncSNPs, and 9.0*10-5 vs. all SNPs).

In general, reducing the number of markers used to model

GEBVs disintegrated the model performance at low marker
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counts, with the highest obtained correlation coefficient of the

trait being proportional to the number of reductions tolerated

before model collapse. Model collapse was indicated by reduced

mean correlation coefficients and substantial widening of

variance. For traits with robust, high prediction accuracy, like

dry matter content, as few as 1,000 markers were able to produce

correlation coefficients close to the best obtained performance,

while 10,000 markers are required to model chipping quality and

length/width ratio to optimum prediction accuracies, closest

approximating the trait pedigree narrow sense heritabilities. For

senescence and yield, with generally low prediction accuracy
TABLE 2 Mean, range, phenotypic and genetic variance, coefficient of variance (CV), genomic narrow sense heritability, and pedigree narrow
sense heritability.

Phenotype Mean Range Phenotypic
variance

Genetic
variance

Phenotypic
CV (%)

Genetic
CV (%)

h2
p

(%)
h2
g

(%)

Chipping
quality

4.24 1–8 2.02 1.25 98.44 77.34 74.02 61.73

Length/
width ratio

1.45 1.18–2.53 0.04 0.02 3.33 2.25 59.01 45.56

Senescence 5.83 2–9 1.41 0.53 20.33 12.47 60.55 37.61

Dry
matter content

19.98 10.7–27.95 6.89 2.80 13.14 8.37 91.17 40.55

Yield 540.81 56.73–
1,259.68

26,528.26 5,710.41 30.12 13.97 29.71 21.53
frontie
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FIGURE 3

Principal component analysis of the genomic relationship matrix of the annotated combination set of 93,170 SNP markers for 755 MASPOT panel
clones colored by (A) mother and (B) father. Principal component 1 is plotted against principal component 2 in the top and against principal
component 3 in the bottom. The principal components explain 19.62%, 10.8%, and 9.5% of the total explained variance, respectively.
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models, increasing the number of markers will improve

model performance.

Filtering the markers according to annotation did not notably

improve or worsen model performance for any of the analyzed

traits, in either top performance (with a high number of markers)—

except for yield—or model collapse during marker reduction.
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The ability to predict the amplitude of the phenotypic variance,

prediction bias, was evaluated for each model as the slope (b) of the
regression line between the predicted (x) and observed (y)

phenotypic values (Figure 4B) and was quite robust. For all traits

and across all annotation subsets, the biases approximate 1

regardless of the number of markers included, except for<100
A B

FIGURE 4

GBLUP prediction correlation coefficient and bias within the MASPOT panel over a number of annotated markers. The markers were reduced from
full annotated SNP data sets by iterative reduction to every other marker (every 10th for the final reduction) to avoid the introduction of positional
bias. Each reduction was repeated up to four times for each iteration. Color by marker annotation (SNPtype). (A) Prediction correlation coefficient
between observed and predicted phenotypic values. Boxplots of correlation coefficients determined for each marker count with connecting lines
through the mean. (B) Bias of GEBVs estimated as the slope of the linear regression line between observed and predicted phenotypic values.
Boxplots of biases determined for each marker count with connecting lines through the mean bias.
TABLE 3 Mean prediction correlation ± standard deviation observed for each trait across all annotation datasets using ~30,000 markers for modeling.

Trait Non-synonymous
SNPs (29,553)

Synonymous
SNPs (31,229)

Non-coding
SNPs (32,388)

Combination
(46,585)

Chipping quality 0.527 ± 0.010 (1.027) 0.519 ± 0.010 (1.024) 0.544 ± 0.011 (1.052) 0.536 ± 0.011 (1.046)

Length/
width ratio

0.482 ± 0.010 (1.012) 0.495 ± 0.005 (1.025) 0.493 ± 0.009 (1.042) 0.489 ± 0.010 (1.022)

Senescence 0.347 ± 0.012 (1.011) 0.346 ± 0.015 (1.006) 0.315 ± 0.008 (0.967) 0.339 ± 0.008 (0.997)

Dry
matter content

0.735 ± 0.004 (1.016) 0.743 ± 0.002 (1.023) 0.746 ± 0.003 (1.028) 0.744 ± 0.003 (1.029)

Yield 0.280 ± 0.014 (0.970) 0.242 ± 0.011 (0.901) 0.239 ± 0.010 (0.885) 0.253 ± 0.013 (0.920)
Highest obtained correlation for each trait in bold. Bias in brackets.
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markers. However, a slight dip in bias below 1 and subsequent re-

stabilization at ~1 were observed for intermediate marker counts for

both senescence and yield—increasing axis resolution reveals that

the same trend can be observed for all traits (not shown), indicating

that the GEBVs became less biased with increasing model fitting

using ~10,000 markers. Using as many markers as possible

produced the most reliable prediction accuracies, while a reduced

set can still yield models of similar performance for some traits.
3.5 Genome-wide association studies

Single-marker regression GWAS was conducted chromosome-

wise for the full combination set of 93,170 SNPs for each trait

(Supplementary File 7) as well as for non-synonymous,

synonymous, non-coding, and a 1-in-3 reduction of the

combination set (Supplementary Figures 6-10, Supplementary File

8). Population structure was accounted for by including G-matrices

based on all chromosomes, except the one encoding the marker

being tested for association. The Q–Q plots of the observed versus

expected -log10(p-value) for each analysis showed some inflation of

the p-values from the expected, assuming no association

(Figure 5A) for most traits, which was why the genomic inflation

factors (lgc), ranging from 1.03 to 1.17, were used to correct the p-

values for traits where lgc>1 (Figure 5B). Deviation in the tail after

correction indicated that significant marker effects were found.

The Manhattan plots of the corrected -log10(p-values) are

shown in Figure 6 for the full combination set. For chipping

quality, a single significant marker was identified on chromosome

X (p-value = 3.6*10-7) , explaining 3.9% of the total

phenotypic variance.

The length/width ratio phenotypes follow ratio distribution, but

regardless we have used Bonferroni correction for correction for

multiple testing, and the weak QTL peaks for the trait might be false

positive associations from lenient correction. Two regions with

significant SNPs were found for length/width ratio—a single SNP

on chromosome II (p-value = 1.1*10-7, Chr2;33033331, 3.7%

explained variance), while significant associations were detected

almost chromosome-wide for chromosome X (142 in total), but

most densely around 48 Mb, with a distinct peak of p-value =
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1.9*10-30, explaining 16% of the phenotypic variance. A region of

three same-gene SNPs in the unmapped pseudomolecules

(chromosome 0) (p-value = 2.3*10-9, PGSC0003DMG400026855)

was also found but has been mapped to chromosome X (48.6 Mb) in

the DMv6.1 reference genome (Pham et al., 2020) and is hence part

of the 48-Mb major QTL.

Dry matter content also displayed a region of significant SNPs

on chromosome X between 48 and 58 Mb (peak p-value = 3.7*10-10,

explaining 5.7% phenotypic variance).

For senescence, two regions of significant SNPs were identified:

two same-gene SNPs on chromosome II (p-value = 1.4*10-10,

PGSC0003DMG400012642, 5.5% explained phenotypic variance)

and a major peak on chromosome V from 10 to 60 Mb with peak p-

value = 3.9*10-25 that explained 13.7% phenotypic variance. No

significant associations were found for yield.

GWAS was also performed for four of the marker sets, namely,

the non-synonymous, synonymous, non-coding, and 1-in-3

reduced combination SNP sets, each being ~30,000 SNPs.

Generally, all data sets yielded similar results; however, a

positional shift of the major QTL could be observed for all traits

using the ncSNP sets (with the lowest SNP density in genic regions

and highest centromeric SNP density) either from a distal arm

position to the pericentromeric region of that chromosome (e.g., for

senescence) or to a distal position in another chromosome (e.g., for

length/width ratio and dry matter content). In addition,

associations on different chromosomes outside the signals could

be observed for all traits and were found to differ in position

across datasets.

The observed QTLs are in close agreement with those previously

observed for the traits analyzed. Chipping quality is dependent on the

genetically controlled mechanism of cold-induced sweetening (CIS)

that is caused by reducing sugar accumulation in the cold storage of

tubers (Fischer et al., 2013; Xiao et al., 2018). Maillard reaction during

frying affects the quality of chips and French fries (D’hoop et al.,

2014). The reducing sugars glucose and fructose are dissimilated from

amyloplastic storage starch granules to serve as osmo- and

cryoprotectants as part of the tuber starch metabolism during CIS

(Schreiber et al., 2014; Van Harsselaar et al., 2017), which explains

why chipping quality and starch content are correlated traits. Studies

have identified loci on all chromosomes associated with frying color,

and indeed several of the genes affecting the trait are related to starch

and sucrose metabolism (Li et al., 2008; Werij et al., 2012; Fischer

et al., 2013; D’hoop et al., 2014; Xiao et al., 2018; Byrne et al., 2020).

Using nsSNPs, a SNP on chromosome III at 38.4 Mb was associated

with chipping quality, located proximal to the Pain-1 invertase

(PGSC0003DMG400013856, 39255023-9538), involved in

enzymatic sucrose conversion into reducing sugars (Draffehn et al.,

2012), which has previously been associated with chip quality and

tuber starch content (Li et al., 2008; Draffehn et al., 2010; Schreiber

et al., 2014). Chipping quality-associated SNPs on chromosome X at

55.4 Mb (combination set) and 58–59 Mb (nsSNP, sSNP) were

located within the starch metabolism gene-rich region at 50–60 Mb

(Sharma et al., 2013). Previous studies have also found fry color and

starch content associations in this region of cell wall invertases (e.g.,

in the Inv-ap-a locus of InvCD111 and InvCD141 at 55.8 MB),

invertase inhibitors (e.g., InvInh-10/4), a sucrose phosphatase, a
A B

FIGURE 5

Q–Q plots of expected -log10(p-values), assuming no marker–trait
association, against observed (chipping quality and the full
combination set in this example). (A) Before correction with the
genomic inflation factor and (B) after correction.
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fructose-1,6-biphosphatase, a fructose-biphosphate aldolase, and

patatins (the main tuber storage proteins) (Li et al., 2008; Draffehn

et al., 2010; Schreiber et al., 2014; Byrne et al., 2020). We found

numerous associations for dry matter content in this region,

consistent with the traits being correlated through the shared

metabolic pathway. Additionally, single-SNP chipping quality

associations on chromosome XI at 42.7 Mb (1-in-3 combination)

and chromosome XII at 1.5 Mb (nsSNP) were proximal to genes

functional in plant starch interconversion (Schreiber et al., 2014),

namely, invertase Inv-n-11/3 (PGSC0003DMG400026530,

39907597-13829) and AGPaseB-12 (PGSC0003DMG400046891,

1226599-30218), respectively. A selection of single SNP associations

for dry matter content could also be found in using the different

annotation data sets. On chromosome III, a dry matter content
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association was found (50.3 Mb, 1-in-3 combination) downstream of

the SEX4 phosphoglucan phosphatase (PGSC0003DMG400015246,

50875724-85587)—a region at 50.8 Mb where Wilson et al. (2021)

have also found associations to dry matter content. The nsSNPs and

ncSNPs gave significant associations on the north arm of

chromosome XI (0.5–4 Mb and 7.1 Mb). For the ncSNPs alone, no

association was seen on chromosome X, indicating missing linkage

on that chromosome when using only ncSNPs. The upstream region

of chromosome XI is scattered with starch and sucrose conversion

genes, e.g., UGPase-11 (PGSC0003DMG401013333, 808268-14810),

sucrose transporter Sut1 (PGSC3000DMG400009213, 9052433-

7333), invertase inhibitors InvInh-11 (PGSC0003DMG400038811,

7433845-4381), invertases INV-11/1 (PGSC0003DMG400019494,

5046813-52945), and debranching enzyme DBE-11 (start 3945240,
D
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FIGURE 6

Manhattan plots of -log10(p-value) GWAS results of the full 93,170 marker annotated combination set. (A) Chipping quality, (B) length/width ratio, (C)
senescence, (D) dry matter content, and (E) yield. Chromosome 0 is pseudomolecules. The significance threshold with Bonferroni correction is
indicated with a horizontal line.
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not annotated). UGPase-11 was screened by Schreiber et al. (2014),

who did not find an association in a 208-genotype tetraploid

population. While not reproducible in more than two of the

annotated data sets, the associations on chromosome XI do

coincide with genes involved in trait-related processes.

Length/width ratio has a major QTL peak at ~48 Mb on

chromosome X. The major QTL controlling overall tuber shape

was identified as the R0 locus (Van Eck et al., 1994), and trait effect

has been mapped to this region in previous studies (Endelman and

Jansky, 2016; Manrique-Carpintero et al., 2018; Zia et al., 2020).

Most recently, the R0 locus was fine-mapped to a 200-kb region

from 49.5 to 49.7 Mb in the DMv6.1 reference genome (Pham et al.,

2020) spanning 18 candidate genes. RNA sequencing indicated that

five genes had differential gene expression, including genes of a lipid

transfer protein and a HSI2-like protein, both with roles in plant

growth hormone response, regulating plant growth and

development (Fan et al., 2022). It is uncertain whether the

remaining associations for length/width ratio on chromosome X

are spurious hits because of linkage to the R0 locus or true

associations without additional fine-mapping. Using the ncSNPs

alone reveals a major QTL on chromosome XI from 0.1-4.1 Mb and

9.6 Mb rather than on X. Tuber shape QTLs have, however,

previously been identified on the north arm of chromosome XI

(D’hoop et al., 2014; Manrique-Carpintero et al., 2018), which is

why it cannot be refuted as a true positive data-dependent

association. Additional tuber shape associations were found using

the four SNP sets on chromosomes I, II, VI, and VII. While D’hoop

et al. (2014) found tuber shape associations in the upstream region

of chromosome II, the downstream end of chromosome VI

(Manrique-Carpintero et al., 2018), and Park et al. (2021)

identified a QTL on chromosome VII, the associations found in

chromosome I (sSNP) appear previously undetected.

Senescence is a major QTL effect trait. Deletion alleles in the

StCDF1 gene (PGSC3000DMG400018408, 4538880-41736) in the

north end of chromosome V result in early maturing plants. The gene

encodes a transcription factor, mediating between the circadian clock

and the tuberization signal (Kloosterman et al., 2013). We identified

this major QTL, with a total of four within-gene SNPs having a

significant association in the four analyses. Additional associations

were also found on chromosomes II, III, and VII using different SNP

sets. A maturity trait association has previously been found on

chromosome II (D’hoop et al., 2014), but not on III or VII.

Interestingly, the associations found between 2.8 and 2.9 Mb on

chromosome III (nsSNPs) are located upstream of auxin response

factor 8-1 (PGSC3000DMG401018664, 2955745-64135) and two

auxin hydrogen symporters (PGSC3000DMG400018678, 2976443-

2982482 and PGSC3000DMG400018668, 3084832-91586). In

addition to short-day photoperiods, tuberization and plant

development are under hormonal control, and high yield is

correlated with late plant maturity (van Eck, 2007). Auxin affects

growth, the rate of tuberization, and cell differentiation at all stages of

life, but plant response is genotype dependent (Kolachevskaya et al.,

2019). A confirmation of these candidate genes as senescence QTLs

requires further analysis.
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4 Discussion

4.1 Marker type and density consequences
for genomic prediction

We found that the performance of GS was generally insensitive

to marker types. It was somewhat surprising that the ncSNPs

expected to have the least importance for phenotypic expression

were equally capable of prediction performance as nsSNPs, which

have a more direct relationship with phenotypic performance, given

that each nsSNP directly causes an amino acid change in the gene

product. However, other studies on the impact on genomic

prediction of using rare and low-frequency variants in dairy cattle

(Zhang et al., 2018) and functionally prioritized variants in maize

(Ramstein and Buckler, 2022) also reported a lack of model

improvement. This indicates that there is sufficient marker

density to adequately describe the relevant genomic variation

independently of how markers are filtered. In fact, the distance of

the marker to causal polymorphisms, as well as the density of

markers needed to characterize the population, is related to the LD

span in the genome (Abera Desta and Ortiz, 2014) rather than to

the much higher number of individual polymorphisms. Vos et al.

(2017) estimated the LD block size to be 0.6–1.5 Mb and even up to

2.5 Mb in introgressed regions in an analysis of 537 tetraploid

cultivars. Coarsely extrapolating these results to this study and

assuming an average LD block size of 1 Mb in the MASPOT

population, this would suggest that SNPs within a window of 500

kb on either side of a causal polymorphism are reliable as markers.

Such a large window size includes multiple markers of any of the

types analyzed and suggests that performance difference between

marker types can only be expected when comparing more distantly

related genotypes, where the LD block size is smaller. In summary,

the linkage between the causal alleles and neutral variants is likely

sufficiently strong to render the effect of concentrating the causal

variants mute, with the causal variant effects becoming diluted in

their linkage patterns.

It was also found that the minimum number of markers

required to satiate the model was dependent on the trait

considered. Traits with lower maximum prediction accuracies,

e.g., yield and senescence, still showed improvement in prediction

performance when using SNP densities higher than 10k markers as

compared to traits of intermediate-high heritability, where training

on 10k markers amply reached model optimum performance.

Indeed for the high-heritability trait dry matter content only ~1k

SNPs were needed to border the plateau optimum. Yield also

represents an exception to the rule that marker type is

unimportant. Using nsSNPs compared to the full combination set

leads to a 12% improvement of model performance at 30k marker

density and 16% compared to the worst-performing ncSNPs.

Furthermore, the nsSNP model for yield, in contrast to all other

traits, was consistently more resilient to marker reduction than

models based on other marker types. We speculate that the reason

for this difference in behavior is that yield is genetically the most

complex of the traits and that the developed models are, in fact, only
frontiersin.org

https://doi.org/10.3389/fpls.2024.1340189
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Aalborg et al. 10.3389/fpls.2024.1340189
metastable, the nsSNP model being the most stable and thus most

resilient to marker reduction. An alternative strategy to filtrating

markers by type alone could be identification of candidate causal

variants (Zhang et al., 2018) by, e.g., bioinformatics analysis (Lee

et al., 2020; Høie et al., 2022) based on homology and/or predicted

structural information to drive filtration and introduce weighting

according to predicted functional impact.
4.2 Dry matter content heritability
estimate discrepancy

Notably, we observed a substantial difference between genomic

and pedigree heritability estimates for dry matter content, a trait

known to be highly heritable (Ortiz et al., 2023). This indicates that

some genetic variance is not captured in the G-matrix-based model

employed in GS. This might stem from cryptic data structures

resulting from phenotypic grouping, e.g., according to starch

content performance, during breeding and subsequent in-group

crossing, generating a systematic SNP × group interaction that is

not captured in the heritability estimation, where SNP effects on

phenotype are differential across groups, and the average SNP effect

across the panel does not capture the variance. However, the specific

reason for the observed genomic heritability deflation remains

obscure. As a consequence, we only evaluate the performance on

genomic prediction models relative to the pedigree narrow

sense heritabilities.
4.3 Pedigree heritability versus
genomic prediction

Correlations of 0.54 and 0.75 were reproduced for chipping

quality and dry matter content, respectively, from those reported for

GBLUP models trained on the MASPOT panel in Sverrisdóttir et al.

(2017, 2018). These results are also consistent with those found in

other studies using different statistical models (Stich and Van

Inghelandt, 2018; Byrne et al., 2020; Wilson et al., 2021; Ortiz

et al., 2022; Pandey et al., 2023). However, from the pedigree

narrow-sense heritabilities, higher correlations of up to relations

of 0.86 and 0.95 could be observed for chipping quality and dry

matter content, respectively. Similarly, the highest obtained

correlation for length/width ratio of 0.49 was somewhat lower

than the theoretical maximum attainable of 0.77 based on

pedigree narrow-sense heritability. A rather poor model

performance with correlation of 0.35 was also obtained for

senescence using GBLUP, as could be expected for a single-gene

trait, despite an estimated pedigree narrow-sense heritability of 61%

for the trait, i.e., a theoretical maximum correlation of 0.78. In

summary, this indicates that some additional additive variations are

still not captured by the prediction models. For the single, large

effect QTL traits length/width ratio (Fan et al., 2022) and senescence

(Kloosterman et al., 2013), including the major QTL associations as

fixed effects in the models, might improve prediction (Kim

et al., 2022).
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At best, yield correlation coefficients were low or modest, falling

between 0.24 and 0.28 using GBLUP. The narrow-sense pedigree

heritability indicates that 29% of yield phenotypic variance can be

explained by additive genetic effects, corresponding to a maximum

correlation of 0.55. The relatively poor model performance is likely

attributable to the putative metastability of the model. Increasing

the number of individuals in the training population is likely needed

to improve this in the future. This will presumably reduce the

linkage block size and hence increase the resolution of marker–

phenotype relationship. Reduced linkage block sizes will, in turn,

change the minimum marker density requirements to create stable

models compared to those found here.
4.4 Marker type importance in GWAS

In contrast to genomic prediction, marker type was important

for GWAS analysis. We observed both intra- and inter-

chromosomal displacements of major and minor QTL signals

when using ncSNPs compared to other marker types. For both

dry matter content and length/width ratio, the major QTL signal is

transferred from chromosome X to XI. However, the signal

amplitude is not diminished, which suggests that a portion of the

non-coding part of chromosome X is erroneously mapped to

chromosome XI, still allowing full capture of the association

signal but translocating it. We speculate that the risk of such

errors in mapping to the genome reference model is more likely

to happen for non-coding regions than for coding regions due to an

enrichment of repetitive elements in intergenic regions (Mehra

et al., 2015). Similarly, the inter-chromosomal shift of the

chromosome V senescence signal of senescence using ncSNPs

could also be a result of mis-mapped sequencing reads. Minor

QTL shifts were observed across all marker types, also indicating

that the finer resolution of GWAS is indeed marker type dependent.

Whether the minor QTL hits produced with different SNP types are

true associations or spurious hits, however, is pending verification.
4.5 Consequences for breeding

The MASPOT panel clones used to train GBLUP genomic

prediction models in this study were not selected for any

agronomical performance traits following the full-diallel cross

from 18 parents of elite cultivars and breeding clones,

representing a diverse selection of alleles from the gene pool and

contributing to a broad phenotype range for training. For

application in breeding schemes, it is attractive to generate

models with high reliability in a broad phenotype range to

facilitate both selection and deselection of progeny during

breeding selection cycles (Sverrisdóttir et al., 2018). The unbiased

correlations obtained for all traits indicate that the range of

predicted phenotypic variation is not inflated or deflated

compared to the observed, the high-accuracy genomic prediction

models being suitable in evaluating both high- and low-performing

clones. Using a panel of unselected clones also reduces the potential
frontiersin.org

https://doi.org/10.3389/fpls.2024.1340189
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Aalborg et al. 10.3389/fpls.2024.1340189
load of fixed trait-associated alleles in the population, as can be seen

in populations of elite breeding material (Kristensen et al., 2018).

This can be expected to improve the detection of genome-wide trait

associations. However, using a diallel cross as genotype panel also

introduces family structure, as is seen in the family-clustered heat

map of the genomic relationship matrix (Supplementary Figure 3),

where clusters of strong genetic relationship between full and half

sibs are found along the diagonal. However, the panel is highly

heterogenous across families (Sverrisdóttir et al., 2017), and while

some sibling-based subgroupings are seen in the PCA plot of the

genomic relationship matrix (Figure 3), most overlap to form a

cohesive group, where the genetic diversity between alleles

dominates origin. Regardless, working with populations with

family structure, which is almost always the case during potato

breeding, necessitates extra caution when evaluating results from

association analyses to control false positives. In this study, we have

used adjustment by genomic inflation factor in combination with

the genomic relationship matrix to successfully obtain robust

identification of QTLs.

Based on the evaluated effect on GBLUP prediction model

performance imposed by marker density and marker type,

respectively, we have found that using 1–10k markers, depending

on trait (and possibly population size), distributed evenly across the

potato genome, but with no particular demand to location relative

to genomic features, is sufficient for the prediction of single traits in

tetraploid cultivars. Increasing marker density beyond this level did

not notably improve performance gains, particularly for high-

heritability traits. This conveniently converges with the marker

densities of available SNP arrays like the 20-k SolSTW array (Vos

et al., 2015) or the commercial Infinium 12K V2 Potato Array. SNP

arrays can generate highly robust genotypes compared to low-depth

GBS (Gentzbittel et al., 2019), with ample marker density for high-

performance prediction modeling of even low heritability traits,

even though for some very complex traits such as yield, large

training populations are likely necessary.

In this study, we used a single-trait standard additive GBLUP

model for evaluating the impact of marker type and marker density

on prediction performance since using a simple model on the

individual traits facilitated the interpretation of these effects.

However, in breeding programs, clones are selected on multiple

traits concurrently, and in such a case, multi-trait models are more

suitable to use for optimizing genomic prediction models to support

selection (Ortiz et al., 2023).
5 Conclusions

The aim of this study was to study the effects of marker type and

density on genomic predictions and GWAS of key tuber

performance traits and to elucidate prediction accuracy

dependency on marker density. Overall, it was found that

relatively few markers, 1k–10k, were sufficient to support genomic

prediction models in tetraploid potato. This is consistent with most

high-throughput marker technologies. Marker type was found to be

largely unimportant for genomic prediction but could influence
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QTLs’ placement in GWAS, where ncSNPs alone do not

perform satisfactorily.
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