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Lung cancer, ranking second globally in both incidence and high mortality

among common malignant tumors, presents a significant challenge with

frequent occurrences of drug resistance despite the continuous emergence of

novel therapeutic agents. This exacerbates disease progression, tumor

recurrence, and ultimately leads to poor prognosis. Beyond acquired

resistance due to genetic mutations, mounting evidence suggests a critical role

of epigenetic mechanisms in this process. Numerous studies have indicated

abnormal expression of Histone Methyltransferases (HMTs) in lung cancer, with

the abnormal activation of certain HMTs closely linked to drug resistance. HMTs

mediate drug tolerance in lung cancer through pathways involving alterations in

cellular metabolism, upregulation of cancer stem cell-related genes, promotion

of epithelial-mesenchymal transition, and enhanced migratory capabilities. The

use of HMT inhibitors also opens new avenues for lung cancer treatment, and

targeting HMTs may contribute to reversing drug resistance. This comprehensive

review delves into the pivotal roles and molecular mechanisms of HMTs in drug

resistance in lung cancer, offering a fresh perspective on therapeutic strategies.

By thoroughly examining treatment approaches, it provides new insights into

understanding drug resistance in lung cancer, supporting personalized

treatment, fostering drug development, and propelling lung cancer therapy

into novel territories.
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1 Introduction

Lung cancer, a prevalent malignant tumor, maintains high

incidence and mortality rates globally (1). Data from 2020 show

approximately 2.2 million new lung cancer cases worldwide,

accounting for 11.4% of all new malignant tumor cases, ranking

second after breast cancer. Lung cancer-related deaths are estimated

at 1.8 million, representing 22% of all cancer fatalities, thus

becoming the primary cause of cancer-related deaths (2). Lung

cancer encompasses various types, including non-small cell lung

cancer (NSCLC), which constitutes 85%, and small cell lung cancer

(SCLC) (3). These types exhibit distinct clinical manifestations and

treatment strategies (4), adding complexity to lung cancer treatment

and underscoring the necessity for an in-depth understanding of its

pathological and molecular basis. Conventional lung cancer

treatments, such as surgical resection, radiotherapy, and

chemotherapy (5), have improved patient survival to some extent.

However, advances in molecular biology and genetics have fostered

the development of new treatment strategies, like targeted therapy

and immunotherapy, offering more personalized and innovative

options for lung cancer patients (6–8). Targeted therapy, based on

molecular targets for precisely treating tumor cells (9), selectively

inhibits specific molecules in tumor cells, effectively impeding their

growth and spread (9). Key targets in NSCLC, including epidermal

growth factor receptor (EGFR), anaplastic lymphoma kinase (ALK),

ros proto-oncogene 1 (ROS1), have become central to targeted

therapy (10). Immunotherapy, by activating the patient’s immune

system to attack tumor cells, enhances the capability of T cells and

other immune cells to target cancer cells (11, 12). Although these

therapeutic approaches bring new hope to the treatment of lung

cancer, they still face significant challenges, particularly with

regards to the issue of drug resistance (13). The emergence of

drug resistance poses a major obstacle to precision medicine (14–

16),limiting the effectiveness of traditional chemotherapy, targeted

therapy, and immunotherapy (17). Therefore, understanding and

overcoming drug resistance remains a crucial challenge in current

lung cancer research (18).

Recent years have seen a growing focus on the role of epigenetic

regulation in lung cancer drug resistance (19). Epigenetic regulation

alters gene expression levels without involving DNA sequence

changes (20). In this complex network, HMTs have garnered

widespread interest due to their pivotal role in epigenetics, chiefly

in regulating histone methylation modifications, influencing gene

expression, and cellular signaling pathways (21). HMTs are

aberrantly activated in various cancers, with their role in lung

cancer drug resistance becoming increasingly prominent.

This review aims to thoroughly delineate the critical role of HMTs

in lung cancer drug resistance, exploring their molecular mechanisms

related to resistance. By systematically reviewing relevant studies, we

aim to provide new insights into the molecular mechanisms underlying

lung cancer drug resistance. We will also delve into therapeutic

strategies targeting HMTs, including existing and developmental

drugs. We will evaluate the potential efficacy of these strategies in

overcoming lung cancer drug resistance and look forward to future
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research directions. By deeply exploring the relationship between

HMTs and lung cancer drug resistance, we hope to support

personalized lung cancer treatment and new drug development,

offering more effective treatment options for patients.
2 HMTs and its function

HMTs play a crucial role in cellular epigenetics, primarily by

catalyzing methylation reactions on histones, thereby regulating

chromatin structure and gene expression (22). Depending on their

substrates, HMTs are categorized into two main types: lysine

methyltransferases (KMTs) and protein arginine methyltransferases

(PRMTs) (23). KMTs encompassenhancer ofzeste homolog 2 (EZH2),

euchromatic histone-lysine N-methyltransferase 2 (EHMT2/G9a),

disruptor of telomeric silencing 1-like (DOT1L), SET domain,

bifurcated 1 (SETDB1), SET domain, bifurcated 2 (SETDB2), SET

domain families, mixed Lineage Leukemia (MLL) families, and others

(24). They predominantly catalyze methylation modifications on lysine

residues of histone proteins within the context of chromatin regulation

(24). PRMTs, comprising PRMT1 to PRMT9, specifically methylate

arginines on histones (25). The lysine residues undergomono-, di-, and

trimethylation based on the addition of methyl groups (Figure 1A),

while arginine residues undergo mono- and dimethylation (26, 27).

Different methylation types, catalyzed by various HMTs, result in

asymmetric and symmetric dimethylarginines (28, 29). Typical lysine

methylation sites are found on histone H3 at lysine 4 (H3K4), 9

(H3K9), 27 (H3K27), 36 (H3K36), and 79 (H3K79), as well as on

histone H4 at lysine 20 (H4K20) (30). These modifications regulate a

range of chromatin functions (Figure 1B). Beyond these classic sites,

core histones also possess several less characterized lysine methylation

sites (e.g., H3K23me, H3K63me3, H45me1, and H4K12me1).

HMTs are involved in the regulation of gene expression through

methylation. For instance, EZH2 catalyzes the trimethylation of

H3K27, forming H3K27me3 modifications, thereby suppressing

gene transcription (31). In contrast, HMTs like SET domain

containing 1A/B (SETD1A/B) are responsible for methylating

H3K4, promoting the activation of specific genes (32). This

regulation of gene expression plays a crucial role in cellular

biology. Beyond directly impacting gene expression, HMTs adjust

chromatin structure by altering the methylation of histone tails,

affecting chromatin compaction (33, 34). These structural changes

subsequently regulate gene accessibility, impacting cellular

responses to environmental stimuli and various biological

functions, including cell growth and differentiation.

Overall, HMTs participate in multiple cellular biological processes

through their complex and finely tuned methylation regulatory

network. Their dual mechanism in gene expression regulation and

chromatin remodeling provides a precise switch within the complex

regulatory networks of the cell. A deeper understanding of these

mechanisms is essential for comprehending the fundamental

principles of cell biology and the development and progression of

tumors, offering a theoretical foundation for the design of new

therapeutic strategies.
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3 Role of HMTs in lung cancer:
tumorigenesis and progression

Previous studies have explored the relationship between HMTs

and tumorigenesis, indicating a significant regulatory role of HMTs

in tumor biology (35). With advancing research, an increasing

number of HMTs have been identified as dysregulated in cancer,

profoundly influencing tumor phenotypes. Particularly, the

expression and aberrant regulation of HMTs are closely

associated with the initiation and progression of lung cancer (36).

For instance, EZH2, found to be overexpressed in lung cancer

tissues compared to normal lung tissues, is significantly associated

with the development and progression of lung cancer (37, 38). The

level of EZH2 expression correlates positively with the malignancy

and poor prognosis in lung cancer (37, 38). Similarly, EHMT2/G9a

is overexpressed in aggressive lung cancer cells and is linked to

unfavorable prognosis (39). In NSCLC cells resistant to EGFR-TKI,

increased expression and enzymatic activity of EHMT2 have been

observed (40). Overexpression of G9a, enhancing the focal adhesion

kinase (FAK) signaling pathway via the nuclear factor kappa-B (NF-

kB) signaling route, promotes invasion and migration in NSCLC

cells (41). Other HMTs, such as SET domain containing 8 (SETD8),

SET and MYND domain containing 3 (SMYD3), SETDB1, and

PRMT5, are also overexpressed in lung cancer, correlating with the

tumor’s aggressiveness and clinical characteristics (42–45).

Conversely, the downregulation of certain HMTs, such as SET

domain containing 8 (SETD2), a tumor suppressor gene

significantly reduced in lung cancer, leads to decreased regulation

of H3K36me3 modifications, affecting the activity of the signal
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transducer and activator of transcription 1/interleukin-8 (STAT1/

IL-8) signaling pathway. This downregulation promotes epithelial-

mesenchymal transition (EMT) in lung adenocarcinoma cells,

further facilitating tumor growth and metastasis (46).

Additionally, mixed lineage leukemia 4 (MLL4) shows reduced

expression in NSCLC tissues and is negatively correlated with

disease progression. MLL4 regulates the PI3K/AKT/SRY-related

SRY-related HMG-box gene 2 (SOX2) signaling pathway in NSCLC

cells, diminishing its role in inhibiting tumor growth and

metastasis (47).

The aberrant regulation of HMTs plays a crucial role in lung

cancer pathogenesis. For example, EZH2-mediated chromatin

remodeling, driven by its specific mark H3K27me3, promotes the

transformation of human bronchial epithelial cells (HBEC) into

pre-cancerous lesions (48), inducing tumorigenesis. Other studies

have shown (49) , that SETDB1, as a major his tone

methyltransferase with oncogenic activity in lung cancer cells,

drives lung cancer phenotype by regulating epigenomic

landscapes, 3D genome organization, and overall nuclear

structure and mechanics. Loss-of-function mutations in SETDB1

can reverse its oncogenic potential (49). In mouse models, MLL

deficiency leads to reduced histone H3K4me3, subsequently

suppressing the expression of Ras protein-specific guanine

nucleotide releasing factor 1 (RASGRF1) and attenuating Kras-

driven lung tumorigenesis (50). The Ras oncogene family, activated

in most human cancers (51), is a common event in lung

adenocarcinoma. In lung adenocarcinoma mouse models, SMYD3

enhances MAP kinase signaling through methylation of MAP3K2,

promoting Ras-driven cancer formation (52).
A

B

FIGURE 1

(A) Lysine residues can undergo mono-, di-, or trimethylation. (B) Typical methylation sites on lysine residues.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1376916
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2024.1376916
Aberrant regulation of some HMTs is also associated with the

metastasis and spread of lung cancer. G9a, for instance, promotes

tumor cell growth and invasion in NSCLC by silencing cysteine

aspartic acid specific protease (CASP1) and the cell adhesion

molecule epithelial cell adhesion molecule (EpCAM) through

increased H3K9me2 around promoters (39, 53). SMYD3, by

upregulating H3K4me3 in the promoter region of anoctamin-1

(ANO1), promotes ANO1 transcription, thereby facilitating

abnormal proliferation of NSCLC cells (54). PRMT5 promotes

EMT through the regulation of the EGFR/AKT signaling axis

(55). Furthermore, studies have indicated that SETDB1 enhances

the migration and invasion capabilities of NSCLC cells by

reinforcing the formation of invasive pseudopods and mediating

extracellular matrix (ECM) degradation (56).

Tumorigenesis in lung cancer is sometimes accompanied by

mutations in methyltransferases. For example, the mutation rate of

DOT1L in lung cancer is about 3% (57). The R231Q mutation variant

of DOT1L selectively activates the MAPK/ERK signaling pathway in

lung cancer cells by enriching H3K79me2 on the RAF1 promoter and

epigenetically regulating the expression of downstream targets. This

activation subsequently promotes proliferation, colony formation, and

migration of lung cancer cells (58). In NSCLC, the mutation rate of

MLL2 is 17.5%, and patients with mutant MLL2 have significantly

reduced overall survival (59).

In addition to directly modulating histone methylation, certain

HMTs may also possess methylation-independent functions,

directly influencing the development of lung cancer. For instance,

EZH2 has been implicated in augmenting the growth and

metastasis of cancer via enhancing the protein levels of mutant

p53 variants that drive cancer-driven gain-of-function (GOF)

mechanisms (60). EZH2 also exhibits non-catalytic and PRC2-

independent roles in stabilizing DNA damage binding protein 2

(DDB2) to facilitate nucleotide excision repair (NER) and control

cisplatin resistance in SCLC (61).

Moreover, HMTs can regulate the development of lung cancer

through methylation of non-histone substrates. For instance, the

transcription factor TWIST1 serves as a non-histone substrate of

PRMT1. PRMT1-mediated methylation of twist-related protein 1

(TWIST1) induces EMT, characterized by reduced E-cadherin

expression and increased N-cadherin expression, thereby

promoting migration and invasion of lung cancer cells (62). In

lung cancer cells, downregulation of PRMT5 or overexpression of

PRMT1 promotes apoptosis induced by docetaxel and pemetrexed

by modulating the degradation of the anti-apoptotic protein

CFLARL (63). These findings further underscore the significant

role of HMTs in lung cancer.
4 Mechanisms of drug resistance
mediated by HMTs in lung cancer

In the realm of epigenetic histone modifications, HMTs play a

pivotal role in gene expression control, and mounting evidence

suggests their close association with lung cancer, making them

viable targets for drug development. Lung cancer cells often acquire
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drug-resistant phenotypes through intracellular epigenetic

alterations. The role of HMTs in promoting lung cancer drug

resistance will be discussed in the following sections, with a

summary presented in Figure 2.
4.1 Immune escape

As one of the effective means against lung cancer, immunotherapy

faces the challenge of drug resistance in some patients, characterized

initially by effectiveness but gradually diminishing response of the

immune system over time, leading to reduced or lost treatment efficacy

(7). The immunosuppressive microenvironment plays a key role in the

resistance to immune checkpoint inhibitors (ICIs) (64). Studies have

shown that controlling interferon-stimulated gene expression is one of

the key pathways promoting tumor cell immune resistance (65). EZH2

negatively correlates with type I and III interferons and CD8+ T cell

infiltration in NSCLC, altering the tumor microenvironment and

inhibiting NSCLC response to programmed death 1 (PD1) blockade

(66). High expression of PRMT1 or PRMT5 negatively correlates with

immune activation of CD8+ T and NK cells, but positively with the

infiltration of myeloid-derived suppressor cells (MDSC) and cancer-

associated fibroblasts (CAF), indicating an immunosuppressive

microenvironment (67). High expression of PRMT1 and PRMT5

correlates with poorer immunotherapy outcomes in lung

adenocarcinoma (LUAD) immunotherapy datasets such as

IMvigor210, Kim cohort 2019, and Cho cohort 2020 (67).
4.2 Cell cycle abnormalities

Aberrant regulation of the cell cycle can lead to disordered

proliferation and development of drug resistance in tumor cells (68).

Proteins involved in cell cycle regulation, such as cyclins and kinases,

when abnormally expressed, may lead to treatment drug resistance.

EZH2, for instance, collaborates with hox transcript antisense

intergenic RNA (HOTAIR) to silence the expression of p16 and p21,

thereby enhancing NSCLC resistance to gefitinib (69). Furthermore,

EZH2 regulates the promoter region of cyclin-dependent kinase

inhibitor 1C (CDKN1C) H3K27me3 methylation, promoting its

transcriptional silencing and driving NSCLC and SCLC resistance to

cisplatin (70, 71). Another study found that the long non-coding RNA

urethral epithelium cancer antigen (UCA1) interacts with EZH2,

reducing CDKN1A expression, thereby leading to gefitinib resistance

(72). Additionally, euchromatic histone lysine methyltransferase 1

(EHMT1) downregulation of CDKN1A expression plays a crucial

role in lung cancer proliferation (73), indicating the potential for

further research on EHMT1 in lung cancer drug resistance. These

studies reveal HMTs’ involvement in cell cycle regulation leading to

lung cancer drug resistance.
4.3 Cancer stem cells

Increasing research suggests that cancer stem cells (CSC) may

play a crucial role in promoting cancer drug resistance and
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metastasis due to their self-renewal and multi-directional

differentiation capabilities (74). Aldehyde dehydrogenase (ALDH)

is widely used as a marker in CSC (75), and inhibition of EHMT2/

G9a promotes transcription of ALDH2, increasing stemness in

NSCLC cells and significantly enhancing resistance to paclitaxel

(PTX) (76). Overexpression of human epidermal growth factor

receptor 3 (HER3) contributes to the formation of CSC-like tumor

spheroids. In EGFR-positive lung cancer, upregulation of G9a,

through silencing of miR-145-5p, promotes HER3 expression,

facilitating EGFR-TKI resistance (77). G9a activity maintains the

expression of CD133 and CD24, participating in NSCLC stemness,

further promoting tumor-initiating cell (TIC) spheroid formation

and growth (78, 79). Inhibition of G9a leads to reduce in vitro and

in vivo stemness and tumorigenicity. In SCLC, increased expression

of erythropoietin-producing hepatocellular A2 (EphA2) leads to

enhanced expression and activity of PRMT1, bolstering the

expression of stemness-related biomarkers SOX2, thereby

inducing stemness and chemoresistance in SCLC (80). SETD4 is

highly expressed in drug-resistant NSCLC patient cells, regulating

CSC in NSCLC patients, contributing to chemoresistance, tumor

progression, and poor prognosis (81). These studies reveal that

HMTs can influence the expression of CSC marker genes, leading to

lung cancer drug resistance.
4.4 Abnormal signaling pathways

Under normal conditions, cells regulate proliferation,

differentiation, and apoptosis through complex signaling networks

(82). However, abnormalities in these signaling pathways can lead

to treatment drug resistance in tumor cells (83). Taking NSCLC as
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an example, the expression of EZH2 shows a negative correlation

with MET activation and EGFR-TKI resistance, suggesting that

EZH2 may serve as a potential biomarker for EGFR-TKI sensitivity.

Studies have revealed that downregulation or inhibition of EZH2

upregulates MET expression and phosphorylation, concurrently

enhancing cell proliferation and resistance to EGFR-TKI in vitro

(84). Additionally, ectopic expression of mutated SETD2

(mtSETD2) induces cisplatin resistance in NSCLC cells by

suppressing H3K36me3 and ERK signaling (85). In NSCLC,

upregulation of EHMT2 leads to downregulation of phosphatase

and tensin homolog (PTEN), promoting activation of the AKT

pathway and consequently facilitating resistance to EGFR-TKI (40).
4.5 DNA damage repair

DNA damage repair mechanisms play a crucial role in

maintaining genomic stability in normal cells. However,

hyperactive repair systems in tumor cells might be a fundamental

cause of drug resistance (86). For instance, EZH2 facilitates

platinum resistance in SCLC by stabilizing DDB2 and promoting

NER (61). Flap endonuclease 1 (FEN1), playing a key role in DNA

replication and repair (87), is maintained at high expression levels

by PRMT1, crucial for DNA repair and chemotherapy resistance in

lung cancer cells (88). Studies indicate that the expression of

Schlafen11 (SLFN11) is closely related to the sensitivity to DNA-

damaging agents (89). Under chemotherapy induction, EZH2-

mediated H3K27me3 deposition in the SLFN11 gene body

suppresses SLFN11 expression, thereby enhancing DNA repair

efficiency, enabling tumor cell adaptation and survival (90).

Additionally, different phases of the cell cycle impact DNA
FIGURE 2

HMTs regulating genes involved in drug resistance mechanisms in lung cancer. In lung cancer, HMTs mediates drug tolerance in lung cancer by
altering the expression of lung cancer cell immune escape, cell cycle abnormalities, cancer stem cells, signaling pathways, DNA damage repair, EMT
and autophagy related genes.
frontiersin.org

https://doi.org/10.3389/fonc.2024.1376916
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2024.1376916
damage repair. G1 and G2 phases are critical for DNA damage

repair, and repairs during these phases may lead to chemotherapy

resistance in tumor cells. For example (91), the splicing variant of

LIM kinase 2 (LIMK2b), a direct target of p53, involved in cell

proliferation and division control, plays a crucial role in promoting

the G2/M DNA damage checkpoint. EZH2 upregulates LIMK2b

expression, promoting growth and chemotherapy resistance in

SCLC resistant cells (platinum, doxorubicin, etoposide) (92).

These findings highlight the profound connection between

HMTs-involved DNA damage repair and tumor drug resistance.
4.6 EMT

EMT participates in the development of tumor drug resistance,

providing tumor cells with a more treatment-tolerant state by

affecting cell characteristics, microenvironment, and survival

mechanisms (93). PRMT1 mediates EMT by methylating Twist-1

and increasing p120-catenin expression, enhancing the invasiveness

of NSCLC and consequently promoting osimertinib resistance (94).

On the other hand, PRMT5, as a key oncogenic regulator, promotes

the EMT process in human lung cancer cells through the EGFR/

AKT signal ing axis , thereby exacerbat ing res is tance

development (95).
4.7 Autophagy

In cancer therapy, therapeutic drugs typically eliminate tumor

cells by inducing cell death. However, tumor cells might escape

therapy-induced cell death by initiating autophagy (96). For

instance, EZH2-mediated H3K27me3 trimethylation suppresses

the expression of tuberous sclerosis complex 2 (TSC2), thereby

inhibiting autophagy and reducing NSCLC cell resistance to

cisplatin (97). Unc-51 like autophagy activating kinase 1 (ULK1),

a key regulator of autophagy in lung cancer cells, is methylated by

overexpressed PRMT5, enhancing the autophagic process and

improving the survival rate of lung cancer cells under hypoxic

conditions (98), promoting resistance to carboplatin.
4.8 Others

Neuroendocrine differentiation (NED), a key process in the

transformation of cancer cells into neuroendocrine-like cells post-

treatment, is widely considered one of the significant mechanisms

of acquired treatment resistance (99). Studies show that in NSCLC,

PRMT5 plays a key role in chemotherapy-induced NED, and

targeting PRMT5 effectively restores sensitivity to etoposide in

NSCLC cells (100). On the other hand, SMYD2 is overexpressed

in drug-resistant LUAD cell lines, mediating cisplatin resistance

through epigenetic regulation of p53 (101). Additionally, some

HMTs also influence chemotherapy resistance. For example, the

DOT1L R231Q mutation significantly reduces cell sensitivity to

cisplatin, vincristine, and the small molecule inhibitor SGC0946
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(58), though its exact mechanisms remain to be explored, providing

a useful direction for further research.
5 HMTs inhibitors in lung
cancer treatment

HMT inhibitors are emerging as a novel approach in cancer

therapy (102), leading to the development of numerous inhibitors.

Most work by competitively binding to the S-adenosylmethionine

(SAM) binding sites, thereby inhibiting HMT activity and affecting

histone methylation levels (103). This regulation can impact gene

expression and cell function, playing a crucial role in tumor

development and progression.

Recent studies have found that HMT inhibitors show significant

potential in treating NSCLC and SCLC. For example, the EZH2

inhibitor DZNep inhibits NSCLC cell proliferation, induces

apoptosis, and causes G1 phase arrest (104). Other EZH2

inhibitors like GSK343 (105) and PRMT5 inhibitors [GSK591

(106), PF-06939999 (107)] also demonstrate inhibitory effects on

A549 cells. Novel EZH2 inhibitors such as 6Y reduce EZH2

expression and induce cell cycle arrest at G2/M phase (108). In

SCLC, EPZ-6438 inhibits proliferation and diminishes the chronic

inflammatory impact of the senescence-associated secretory

phenotype (SASP) on the cancer microenvironment (109).

Additionally, HMT inhibitors play a key role in promoting

apoptosis. For instance, EZH2 inhibitors GSK343 or DZNep

induce apoptosis in A549 and H1299 cells by downregulating the

phosphorylation of EGFR and AKT (110).

In targeting specific mutant forms of lung cancer, HMTs

inhibitors can also exhibit a certain level of efficacy. At the

transcriptional and epigenetic regulation levels, EZH2 inhibitors

DZNep and EPZ6438 reduce the transformation of human

bronchial epithelial cells (HBEC) into pre-cancerous lesions and

achieve transcriptional reprogramming (111). At the transcriptional

and epigenetic regulation levels, EZH2 inhibitors DZNep and

EPZ6438 reduce the transformation of HBEC into pre-cancerous

lesions and achieve transcriptional reprogramming (48).

Moreover, the EZH2 inhibitor DZNep shows significant

therapeutic potential in mouse models, notably slowing the

growth rate of lung adenomas in A/J mice by 55% (48). Other

inhibitors like G9a inhibitors UNC0642 (78) and UNC0638 (21),

and the specific PRMT5 inhibitor GSK591 (95), have demonstrated

growth-inhibitory effects on lung adenocarcinoma in xenograft

mouse models.

In lung cancer therapy, apart from the significant effects of

individual HMT inhibitors, various combination regimens have

shown notable synergistic effects both in vitro and in vivo, including

with chemotherapy and immunotherapy agents. For instance, the

specific PRMT5 inhibitor GSK591 combined with anti-PD-L1

therapy shows significantly enhanced efficacy in treating LLC

mouse models compared to anti-PD-L1 therapy alone (112).

Despite these HMT inhibitors showing anti-tumor activity in in

vitro and in vivo experiments against lung cancer, clinical trials

specifically targeting HMT inhibitors in lung cancer therapy remain
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limited. For example, the clinical trial of the EZH2 inhibitor EPZ-

6438 (Tazemetostat) combined with topotecan and pembrolizumab

for treating recurrent SCLC has entered Phase I (Trial ID:

NCT05353439). Similarly, clinical trials of the oral PRMT1

inhibitor CC-90011 combined with platinum-based chemotherapy

in SCLC are ongoing (Trial ID: NCT03850067). Additionally,

PRMT1 inhibitor GSK3368715 and EZH2 inhibitor GSK2816126

have achieved satisfactory positive results in solid tumors (Trial IDs:

NCT03666988, NCT02082977), demonstrating their potential

research value in lung cancer.
6 Impact of HMT inhibitors on lung
cancer drug resistance

HMT inhibitors serve not only as direct therapeutic targets for

lung cancer but also influence lung cancer drug resistance. These

inhibitors may reverse cancer cells’ resistance to traditional

chemotherapy and targeted therapies (Table 1). For example, in

SCLC, the EZH2 inhibitor GSK126 reduces platinum and etoposide

resistance induced by chromodomain Y-like (CDYL) through

inhibiting CDKN1C (70). Studies suggest (115) that in EGFR

wild-type NSCLC patients, conventional EGFR-TKI treatments

are ineffective, but using EZH2 inhibitors (such as GSK343 or

DZNep) sensitizes lung adenocarcinoma cells to gefitinib (110).

Additionally, the inhibitor EPZ-6438 (116) inactivates EZH2,

increasing A549 cell’s chemosensitivity to cisplatin. Similarly, the

PRMT5 inhibitor C9 (98) significantly enhances lung cancer cells’

sensitivity to carboplatin. These findings indicate the potential role

of HMT inhibitors in reversing drug resistance in lung cancer

treatment by modulating gene expression and increasing tumor cell

sensitivity to therapy.

Combining HMT inhibitors with other therapeutic methods

(such as chemotherapy, immunotherapy, etc.) may create more

effective treatment regimens, especially in addressing drug
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resistance. For instance, the combination of the EZH2 inhibitor

GSK343 with gefitinib inhibits cell viability, proliferation, and

promotes apoptosis in gefitinib-resistant PC9 cells (113). In

SCLC-resistant xenograft mouse models, the EZH2 inhibitor

EPZ011989 restores tumor sensitivity to irinotecan by

upregulating SLFN11, and its combination with irinotecan

significantly inhibits tumor growth (90). Similarly, G9a inhibitors

UNC0642 and UNC0638 sensitize resistant NSCLC cells in vivo to

TKIs by inhibiting the AKT pathway, and their combination with

erlotinib markedly suppresses tumor growth in transplanted mice

(40). Specific DOT1L inhibitors like EPZ5676, EPZ004777, and

SGC0946, as well as over 20 other small molecule inhibitors, have

shown significant inhibitory effects on NSCLC cells with the

DOT1L R231Q mutation when combined with chemotherapy

drugs (117). The R231Q mutation of DOT1L induces resistance

of lung cancer cells to cisplatin and vinorelbine both in vitro and in

vivo. The DOT1L small-molecule inhibitor SGC0946 reverses drug

resistance in vivo, enhancing its anti-tumor activity (58). The newly

synthesized inhibitor CM-1 demonstrates the ability to enhance

sensitivity of DOT1L R231Q mutant NSCLC cells to EGFR-TKIs

and chemotherapy, potentially reversing resistance to these

treatments (117). Additionally, the SMYD3 inhibitor EPZ031686,

by reducing the methylation level of ring finger protein 113A

(RNF113A), makes SCLC cells more sensitive to alkylating agents

and promotes sustained response to chemotherapy (114). The

SMYD2 inhibitor BAY-598 not only enhances the sensitivity of

cisplatin-resistant NCI-H460 cells to cisplatin but also inhibits cell

migration and tumor sphere formation (101). HMT inhibitors may

enhance the toxicity of treatments to cancer cells, potentially

overcoming these resistances and inhibiting the malignant

phenotype of lung cancer cells.

Studies on the role of HMT inhibitors in resistance have entered

clinical trial phases, with the EZH2 inhibitor EPZ-6438

(Tazemetostat) undergoing trials in platinum-resistant small cell

lung cancer patients (Trial ID: NCT05353439). As an EZH2

inhibitor, EPZ-6438 holds the potential to reverse cancer cell
TABLE 1 The impact of HMT inhibitors on drug resistance in lung cancer.

HMTs Inhibitor Experimental object
Types of

lung cancer
Role of drug resistance in lung

cancer(Reference)

EZH2

GSK126 H69 cells SCLC Reduced resistance to cisplatin and etoposide (70)

GSK343
DZNep

Wild-type EGFR cells (A549 and H1299) LUAD Increased sensitivity to gefitinib (110)

GSK343 Gefitinib-resistant PC9 cells NSCLC
Inhibits cell viability, proliferation, and promotes

apoptosis (113)

EPZ011989 chemotherapy-resistant xenograft mice SCLC Restores sensitivity to irinotecan (90)

G9a
UNC0642
UNC0638

Erlotinib-resistant PC9 xenograft SCID mice NSCLC Restores sensitivity to erlotinib (40)

DOT1L SGC0946
H1299 xenograft mice with DOT1L

R231Q mutation
NSCLC Reduces resistance to cisplatin and vinorelbine (58)

SMYD3 EPZ031686 DMS-114 cells SCLC Restores sensitivity of SCLC to alkylating chemotherapy (114)

SMYD2 BAY-598 Cisplatin-resistant H460 cells SCLC Restores sensitivity to cisplatin (101)
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resistance to platinum-based chemotherapy drugs by modulating

histone methylation levels and affecting related gene expression.
7 Summary and prospect

HMTs play a crucial role in gene regulation, and their aberrant

activity can lead to malignant transformation in lung cancer cells

(36).Studies have shown that certain HMTs are overexpressed in

lung cancer patients (39), potentially leading to abnormal gene

methylation and thus regulating lung cancer cell growth,

differentiation, and drug resistance (48). By comprehensively

examining the expression patterns of HMTs in different subtypes

and grades of lung cancer patients, we can better understand their

relationship with cancer development and treatment response.

Inhibiting or modulating HMT activity could emerge as a

promising strategy for lung cancer treatment, potentially slowing

cancer progression or enhancing patient sensitivity to treatment.

While many HMT inhibitors have already shown effectiveness in

various cancers (102) and some even help reverse tumor cell drug

resistance (118), only a few have been confirmed effective in lung

cancer drug resistance. There are several major obstacles to

overcome: Firstly, lung cancer is a heterogeneous tumor with

diverse molecular mechanisms, including various subtypes and

molecular subgroups. Thus, HMT response may vary depending

on the lung cancer subtype, rendering inhibitors effective in some

situations but not in others. The patient’s treatment history, including

prior radiotherapy, chemotherapy, or targeted therapy, could also

affect HMT expression. Secondly, lung cancer’s drug resistance

mechanisms are highly diverse, including cell cycle regulation,

DNA damage repair, apoptosis, and more. Therefore, a single

HMT inhibitor might not adequately address the variety of

resistance mechanisms. Lastly, some HMT inhibitors may not have

undergone sufficient clinical research and validation, necessitating a

deeper understanding of their mechanisms, specificity, and effects in

different subtypes and clinical backgrounds to ensure their safety

and efficacy.

To address these challenges, more in-depth research and clinical

trials are needed. Specifically, the development of more specific

HMT inhibitors targeting various molecular subtypes of lung cancer

could enhance the precision of treatment. Using combination

therapy strategies, such as combining HMT inhibitors with other

treatments (e.g., chemotherapy, immunotherapy, or targeted

therapy), might produce synergistic effects, enhancing the overall

effectiveness of treatment and potentially overcoming drug

resistance. However, optimization of combination therapy

strategies, including adjustments in drug dosages and sequences,

is necessary to maximize their potential in reversing resistance.

Given lung cancer’s heterogeneity and various mutations or genetic
Frontiers in Oncology 08
alterations, including epigenetic changes, developing compounds

targeting multiple targets is essential. Ultimately, personalized

treatment plans based on the patient’s molecular characteristics

and resistance mechanisms could better address the complexity and

heterogeneity of lung cancer. Overall, treating drug resistance

remains a major challenge in the field of lung cancer treatment,

and further investigation into epigenetic drugs, particularly HMT

inhibitors, may offer new therapeutic avenues to overcome

this challenge.
Author contributions

LZ: Writing – original draft. XZ: Writing – original draft. YS:

Writing – original draft. YN: Writing – original draft. JF: Writing –

original draft. ZJ: Writing – original draft. WL: Writing – original

draft. XW: Writing – review & editing. NW: Writing – review

& editing.
Funding

The author(s) declare that financial support was received for the

research, authorship, and/or publication of this article. This work was

supported by supported by National Natural Science Foundation of

China (82072585, 82373329), Research Funds of Joint Research

Center for Regional Diseases of IHM (2023bydjk001).
Acknowledgments

We thank all authors for their contributions to the review.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. (2018)
68:7–30. doi: 10.3322/caac.21442
2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al.
Global cancer statistics 2020: globocan estimates of incidence and mortality worldwide
frontiersin.org

https://doi.org/10.3322/caac.21442
https://doi.org/10.3389/fonc.2024.1376916
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2024.1376916
for 36 cancers in 185 countries. CA Cancer J Clin. (2021) 71:209–49. doi: 10.3322/
caac.21660

3. Hoffman RM, Sanchez R. Lung cancer screening. Med Clin North Am. (2017)
101:769–85. doi: 10.1016/j.mcna.2017.03.008

4. Nooreldeen R, Bach H. Current and future development in lung cancer diagnosis.
Int J Mol Sci. (2021) 22:8661. doi: 10.3390/ijms22168661

5. Vansteenkiste J, Crinò L, Dooms C, Douillard JY, Faivre-Finn C, Lim E, et al. 2nd
esmo consensus conference on lung cancer: early-stage non-small-cell lung cancer
consensus on diagnosis, treatment and follow-up. Ann Oncol. (2014) 25:1462–74.
doi: 10.1093/annonc/mdu089

6. Seegobin K, Majeed U, Wiest N, Manochakian R, Lou Y, Zhao Y. Immunotherapy
in non-small cell lung cancer with actionable mutations other than egfr. Front Oncol.
(2021) 11:750657. doi: 10.3389/fonc.2021.750657

7. Lahiri A, Maji A, Potdar PD, Singh N, Parikh P, Bisht B, et al. Lung cancer
immunotherapy: progress, pitfalls, and promises. Mol Cancer. (2023) 22:40.
doi: 10.1186/s12943-023-01740-y

8. Wang M, Herbst RS, Boshoff C. Toward personalized treatment approaches for
non-small-cell lung cancer. Nat Med. (2021) 27:1345–56. doi: 10.1038/s41591-021-
01450-2

9. Lee YT, Tan YJ, Oon C. Molecular targeted therapy: treating cancer with
specificity. Eur J Pharmacol. (2018) 834:188–96. doi: 10.1016/j.ejphar.2018.07.034

10. Mayekar MK, Bivona TG. Current landscape of targeted therapy in lung cancer.
Clin Pharmacol Ther. (2017) 102:757–64. doi: 10.1002/cpt.810

11. Topalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven biomarkers
to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer. (2016)
16:275–87. doi: 10.1038/nrc.2016.36

12. Pardoll D. Does the immune system see tumors as foreign or self? Annu Rev
Immunol. (2003) 21:807–39. doi: 10.1146/annurev.immunol.21.120601.141135

13. Lategahn J, Keul M, Rauh D. Lessons to be learned: the molecular basis of kinase-
targeted therapies and drug resistance in non-small cell lung cancer. Angew Chem Int
Ed Engl. (2018) 57:2307–13. doi: 10.1002/anie.201710398

14. Vaquero J, Pavy A, Gonzalez-Sanchez E, Meredith M, Arbelaiz A, Fouassier L.
Genetic alterations shaping tumor response to anti-egfr therapies. Drug Resist Update.
(2022) 64:100863. doi: 10.1016/j.drup.2022.100863

15. Heersche N, Veerman GDM, deWith M, Bins S, Assaraf YG, Dingemans A-MC,
et al. Clinical implications of germline variations for treatment outcome and drug
resistance for small molecule kinase inhibitors in patients with non-small cell lung
cancer. Drug Resist Update. (2022) 62:100832. doi: 10.1016/j.drup.2022.100832

16. Lim Z-F, Ma PC. Emerging insights of tumor heterogeneity and drug resistance
mechanisms in lung cancer targeted therapy. J Hematol Oncol. (2019) 12:134.
doi: 10.1186/s13045-019-0818-2

17. Aldea M, Andre F, Marabelle A, Dogan S, Barlesi F, Soria J-C. Overcoming
resistance to tumor-targeted and immune-targeted therapies. Cancer Discovery. (2021)
11:874–99. doi: 10.1158/2159-8290.CD-20-1638

18. Tulpule A, Bivona TG. Acquired resistance in lung cancer. Annu Rev Cancer
Biol. (2020) 24:1120815. doi: 10.3389/fgene.2023.1120815

19. Wu J, Feng J, Zhang Q, He Y, Xu C, Wang C, et al. Epigenetic Regulation of Stem
Cells in Lung Cancer Oncogenesis and Therapy Resistance. Front Genet. (2023)
14:1120815. doi: 10.3389/fgene.2023.1120815

20. Bailey MH, Tokheim C, Porta-Pardo E, Sengupta S, Bertrand D, Weerasinghe A,
et al. Comprehensive characterization of cancer driver genes and mutations. Cell.
(2018) 173:371–385.e18. doi: 10.1016/j.cell.2018.02.060

21. Zhang K, Wang J, Yang L, Yuan Y-C, Tong TR, Wu J, et al. Targeting histone
methyltransferase G9a inhibits growth and wnt signaling pathway by epigenetically
regulating hp1a and apc2 gene expression in non-small cell lung cancer. Mol Cancer.
(2018) 17:153. doi: 10.1186/s12943-018-0896-8

22. Batista I, Helguero LA. Biological processes and signal transduction pathways
regulated by the protein methyltransferase setd7 and their significance in cancer. Signal
Transduct TAR (2018) 3:19. doi: 10.1038/s41392-018-0017-6

23. Deping L, Xiaopeng P, Zhihao H, Shuqing L, Jianjun C, Wanyi P. Small
molecules targeting selected histone methyltransferases (Hmts) for cancer treatment:
current progress and novel strategies. Eur J Med Chem. (2024) 264:115982.
doi: 10.1016/j.ejmech.2023.115982

24. Husmann D, Gozani O. Histone lysine methyltransferases in biology and
disease. Nat Struct Mol Biol. (2019) 26:880–9. doi: 10.1038/s41594-019-0298-7

25. Liao Q, Yang J, Ge S, Chai P, Fan J, Jia R. Novel insights into histone lysine
methyltransferases in cancer therapy: from epigenetic regulation to selective drugs. J
Pharm Anal. (2023) 13:127–41. doi: 10.1016/j.jpha.2022.11.009

26. Qian C, Zhou MM. Set domain protein lysine methyltransferases: structure,
specificity and catalysis. Cell Mol Life Sci. (2006) 63:2755–63. doi: 10.1007/s00018-006-
6274-5

27. Maron MI, Lehman SM, Gayatri S, DeAngelo JD, Hegde S, Lorton BM, et al.
Independent transcriptomic and proteomic regulation by type I and ii protein arginine
methyltransferases. iScience. (2021) 24:102971. doi: 10.1016/j.isci.2021.102971

28. Migliori V, Müller J, Phalke S, Low D, Bezzi M, Mok WC, et al. Symmetric
dimethylation of H3r2 is a newly identified histone mark that supports euchromatin
maintenance. Nat Struct Mol Biol. (2012) 19:136–44. doi: 10.1038/nsmb.2209
Frontiers in Oncology 09
29. Bouchard C, Sahu P, Meixner M, Nötzold RR, Rust MB, Kremmer E, et al.
Genomic location of prmt6-dependent H3r2 methylation is linked to the
transcriptional outcome of associated genes. Cell Rep. (2018) 24:3339–52.
doi: 10.1016/j.celrep.2018.08.052

30. Zhang X, Wen H, Shi XJ. Lysine methylation: beyond histones. Acta BIOCH
BIOPH Sin. (2012) 44:14–27. doi: 10.1093/abbs/gmr100

31. Pediconi N, Salerno D, Lupacchini L, Angrisani A, Peruzzi G, De Smaele E, et al.
Ezh2, jmjd3, and utx epigenetically regulate hepatic plasticity inducing retro-
differentiation and proliferation of liver cells. Cell Death Dis. (2019) 10:518.
doi: 10.1038/s41419-019-1755-2

32. Wang S, Bleeck A, Nadif Kasri N, Kleefstra T, van Rhijn J-R, Schubert D. Setd1a
mediated H3k4 methylation and its role in neurodevelopmental and neuropsychiatric
disorders. Front Mol Neurosci. (2021) 14:772000. doi: 10.3389/fnmol.2021.772000

33. Donaldson-Collier MC, Sungalee S, Zufferey M, Tavernari D, Katanayeva N,
Battistello E, et al. Ezh2 oncogenic mutations drive epigenetic, transcriptional, and
structural changes within chromatin domains. Nat Genet. (2019) 51:517–28.
doi: 10.1038/s41588-018-0338-y

34. Kadoch C, Copeland RA, Keilhack H. Prc2 and swi/snf chromatin remodeling
complexes in health and disease. Biochemistry. (2016) 55:1600–14. doi: 10.1021/
acs.biochem.5b01191

35. Taylor-Papadimitriou J, Burchell JM. Histone methylases and demethylases
regulating antagonistic methyl marks: changes occurring in cancer. Cells. (2022)
11:1113. doi: 10.3390/cells11071113

36. Chen Y, Liu X, Li Y, Quan C, Zheng L, Huang K. Lung cancer therapy targeting
histone methylation: opportunities and challenges. Comput Struct Biotechnol J. (2018)
16:211–23. doi: 10.1016/j.csbj.2018.06.001

37. Fan K, Zhang B-H, Han D, Sun Y-C. Ezh2 as a prognostic-related biomarker in
lung adenocarcinoma correlating with cell cycle and immune infiltrates. BMC Bioinf.
(2023) 24:149. doi: 10.1186/s12859-023-05271-7

38. Kim NY, Pyo J-S. Clinicopathological significance and prognostic role of ezh2
expression in non-small cell lung cancer. Pathol Res Pract. (2017) 213:778–82.
doi: 10.1016/j.prp.2017.04.002

39. Huang T, Zhang P, Li W, Zhao T, Zhang Z, Chen S, et al. G9a promotes tumor
cell growth and invasion by silencing casp1 in non-small-cell lung cancer cells. Cell
Death Dis. (2017) 8:e2726. doi: 10.1038/cddis.2017.65

40. Wang L, Dong X, Ren Y, Luo J, Liu P, Su D, et al. Targeting ehmt2 reverses egfr-
tki resistance in nsclc by epigenetically regulating the pten/akt signaling pathway. Cell
Death Dis. (2018) 9:129. doi: 10.1038/s41419-017-0120-6

41. Sun T, Zhang K, Pangeni RP, Wu J, LiW, Du Y, et al. G9a promotes invasion and
metastasis of non-small cell lung cancer through enhancing focal adhesion kinase
activation via nf-Kb signaling pathway. Mol Cancer Res. (2020) 19:429–40.
doi: 10.1158/1541-7786.mcr-20-0557

42. Piao L, Feng Y, Che N, Li M, Li X, Jin Y, et al. Setd8 is a prognostic biomarker
that contributes to stem-like cell properties in non-small cell lung cancer. Pathol Res
Pract. (2020) 216:153258. doi: 10.1016/j.prp.2020.153258

43. Li J, Zhao L, Pan Y, Ma X, Liu L, Wang W, et al. Smyd3 overexpression indicates
poor prognosis and promotes cell proliferation, migration and invasion in non−Small
cell lung cancer. Int J Oncol. (2020) 57:756–66. doi: 10.3892/ijo.2020.5095

44. Cruz-Tapias P, Zakharova V, Perez-Fernandez OM, Mantilla W, RamÍRez-
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