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High-throughput sequencing has created an exponential increase in the amount

of gene expression data, much of which is freely, publicly available in repositories

such as NCBI’s Gene Expression Omnibus (GEO). Querying this data for patterns

such as similarity and distance, however, becomes increasingly challenging

as the total amount of data increases. Furthermore, vectorization of the data

is commonly required in Artificial Intelligence and Machine Learning (AI/ML)

approaches. We present BioVDB, a vector database for storage and analysis of

gene expression data, which enhances the potential for integrating biological

studies with AI/ML tools. We used a previously developed approach called

Automatic Label Extraction (ALE) to extract sample labels from metadata,

including age, sex, and tissue/cell-line. BioVDB stores 438,562 samples from

eight microarray GEO platforms. We show that it allows for e�cient querying of

data using similarity search, which can also be useful for identifying and inferring

missing labels of samples, and for rapid similarity analysis.

KEYWORDS

gene expression database, vector database, data mining, Gene Expression Omnibus,

meta-analysis, Artificial Intelligence, Deep Learning

1 Introduction

High-throughput sequencing data is being generated in large amounts, Reuter et al.

(2015) creating an exponential increase in experimental gene expression data (Giles et al.,

2017). Millions of freely accessible -omic samples are being deposited in public biological

databases, and are an invaluable source of information for meta-analysis of gene expression

networks, which can be used to predict gene function (Wren, 2009) or identify novel

biomarkers of various disease phenotypes (Griffith et al., 2006). Simultaneously with the

increase in high-throughput sequencing data, there has been an increase in the popularity

of Machine Learning (ML) and Deep Learning (DL) models in biomedical sciences,

which typically require massive data sets (Martorell-Marugán et al., 2019). Meta-analytical

approaches can aid in the replication of results and provide increased statistical power

and external validity. However, to effectively use experimental data and AI models, it is

desirable to create a database in a standardized format amenable to such algorithms, which

will provide easy querying and retrieval of the analyzed samples.

There are many repositories for transcriptional data, such as NCBI’s Gene Expression

Omnibus (GEO; Clough and Barrett, 2016), EBI ArrayExpress (Sarkans et al., 2020),

and Sequence Read Archive (SRA; Katz et al., 2021). GEO alone, at the time of
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writing this manuscript, contains more than 6.6 million samples

from over 25,000 technological platforms and over 200,000

experiments, and is rising exponentially (Supplementary Figure 1).

It also archives gene expression experimental data derived from

various types of assays (Supplementary Table 1). The data being

available is only the first step in the process. Performing meta-

analyzes also requires processing natural language into tabular

annotations and standardization of independently-performed

experiments, which is a challenge of its own (Hawkins et al.,

2022). Further, the samples may be annotated well for a particular

study (e.g., Alzheimer’s status), but lacking other important

annotations for meta-analyzes (e.g., Diabetes status in those same

Alzheimer’s samples). In addition to the sample-level difficulties

mentioned above, there are also platform and data-type challenges

to overcome. Multiple platforms contain information about gene

expression, but these may be stored as raw or pre-transformed

values in the matrices processed by each investigator. Microarrays

can alleviate this problem, as we can re-derive the expression values

from the raw data efficiently, but there is no obvious best solution

for sequencing. The annotation of genes is also difficult when

approaching cross-platform problems; array experiments contain

probes that must be coerced into a common gene annotation space

from a mixture of probes covering different gene segments. The

bioinformatics community has responded to these needs in part

(Hruz et al., 2008; Cheng et al., 2010; Lakiotaki et al., 2018; Franzén

et al., 2019). However, none of these resources provide a vectorized

data format that is AI-amenable, which would greatly facilitate the

use of these databases for end-users.

A vector database (VDB) is a specialized type of database

that is based on storing data in the form of a sequence of

numbers—vectors. In this data storage format, each data point

is encoded in a multidimensional vector space along with

its metadata as an optional object associated with it. Several

GRAPHICAL ABSTRACT

Graphical summary of the research framework. Experimental raw data was downloaded from GEO and metadata labels were extracted using ALE

(Giles et al., 2017) on GEOmetadb R package (Zhu et al., 2008). Qdrant (https://qdrant.tech/) was used as a vector search engine for the database.

Complete datasets are available at: https://huggingface.co/collections/mwinn99/biovdb-658daf0c3ceccd00f3ad63a9.

vector databases/vector search engines such as Pinecone (https://

www.pinecone.io/), Weaviate (https://weaviate.io/), ChromaDB

(https://www.trychroma.com/), Milvus (Wang et al., 2021), and

Qdrant (https://qdrant.tech/) are already available. Even the once

popular MongoDB recently released the Atlas Vector Search

tool (https://www.mongodb.com/products/platform/atlas-vector-

search), which allows semantic database searching. These recent

examples suggest a new trend in the field. Importantly, VDBs

significantly differ in schema compared to traditional databases.

In the case of databases organized in a tabular format, searching

is based on finding a given value in specific columns. In

contrast, VDBs, after creating a query, search data points through

similarity search, using distance metrics such as Euclidean distance,

dot product, or cosine similarity (Taipalus, 2023). Moreover,

such retrieved data is in a ready-to-use format for training

Deep Learning models. In terms of AI applications, VDBs offer

improved performance, reduced latency and function with billions

of data points, allowing us to scale to most meta-analytical

needs. With these features, such a data storage format has many

advantages for use in microarray or sequencing experiments

where experimental data often benefits from being represented

as annotated vectors, allowing quick comparison across tissues,

cell types, and disease states. Leveraging the unique features of

VDBs to store inherently multidimensional biological data, and

be compatible with state-of-the-art neural network architectures,

stands to greatly benefit bioinformatics and biomedical sciences in

general.

2 Methods

The graphical summary of our framework is shown in

Graphical Abstract.
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2.1 Gene expression data

Experimental gene expression data, for Homo sapiens and

Mus musculus were downloaded from GEO. For Homo sapiens

we currently include 335,962 samples from the GPL570, GPL96,

GPL10558, GPL6947 platforms, and for Mus musculus we include

102,600 samples from the GPL1261, GPL6885, GPL6887, and

GPL7202 platforms. Probes were collapsed to gene-level, based on

average expression per gene, using official gene symbols associated

with Entrez Gene ID. Experimental expression values are in raw

format, in order to provide freedom in the context of choosing the

method of data normalization for end users that best suits their

needs.

2.2 Metadata

The metadata was obtained through the use of automated

label extraction software (ALE; Giles et al., 2017), which relies on

heuristic algorithms like string-matching and regular expressions

approaches for labels extraction from GEO textual metadata. It

contains information about the platform and experiment from

which the sample came, as well as the age, sex, tissue, and organism

of origin. All samples stored in the BioVDB are described in a

uniform way. The “GSM” field contains the name of the particular

GEO GSM sample (e.g., GSM1003121). In the same way, the

“PlatformID” field describes the GEO GPL platform that was used

in a given experiment (e.g., 10,558 stands for GPL10558), and the

“ExperimentID” field contains the name of the GEO GSE series to

which a given sample belongs (e.g., 40,841 stands for GSE40841). In

addition, fields such as “Age” or “Sex” are included, describing the

age of the sample’s organism of origin and its sex (in 0–1 encoding;

e.g., 0 stands for female and 1 stands for male). Moreover, the tissue

of origin is described in two fields, “TissueID” which refers to the

Brenda Tissue Ontology (BTO; Chang et al., 2014; e.g., 89 stands

for BTO:0000089), and “TissueName” containing the name of the

tissue from the BTO. The name of the origin species is included in

the “Species” field (e.g.,Homo sapiens). An example of the metadata

format is shown in Supplementary Table 2.

2.3 Database design

BioVDB uses the current latest Qdrant version (1.7.2) to store

vectorized data. Every sample in our database is represented by

a vector of a length corresponding to the number of genes in

a given GEO platform. Vector indexing is performed using the

Hierarchical Navigable Small World Graph (HNSW), which is

a default Qdrant graph-based indexing algorithm (Malkov and

Yashunin, 2018). Metadata is stored along vectors as a payload,

containing eight fields, covering information about GSM, GPL and

GSE IDs, age, sex, tissue ID, tissue name, and species of the sample.

Data is stored split between eight Qdrant collections, one per GEO

platform. By default, the Euclidian distance is used as a metric for

similarity search, however it is also possible to use dot product,

cosine similarity or Manhattan distance.

2.4 Data structure analysis

To analyze the overall data structure and compare the raw

and normalized data, we selected all samples from the two most

common tissues in GPL570, blood, and breast. After filtering the

samples, only those with ExperimentID and TissueName labels

were included, resulting in a total of 27,348 samples (19,533

blood and 7,815 breast samples). Then only samples belonging

to an ExperimentID that had two or more samples within were

selected to allow batch correction. The final data set included only

samples belonging to the top five most popular ExperimentIDs

for blood and breast (5,573 samples in total). To process the

data, we log transformed the raw gene expression values if not

already log transformed, quantile normalized, and did batch effect

correction based on ExperimentID, using pyComBat version 0.2.3

(Behdenna et al., 2023). To show the structure of the data and

visually compare raw and processed data, we used Uniform

Manifold Approximation and Projection (UMAP) version 0.5.3

(McInnes et al., 2020) and the Python library seaborn version 0.12.0

(Waskom, 2021).

2.5 Similarity search

A similarity search was performed for the 300 most similar

samples to randomly chosen lung sample (GSM1001648) from

GPL570. Euclidian distance was used as a distance metric, with

hnsw_ef = 128 (value specifying the ef parameter of the HNSW

algorithm). Processing and visualization were done using UMAP

and seaborn, as mentioned above.

3 Results

3.1 Data overview

The BioVDB is a biological vector database that addresses

current challenges in the field. Currently BioVDB contains

microarray data that was downloaded from GEO. It stores 438,562

samples, covering eight platforms from GEO. There are in total

335,962 samples from Homo sapiens and 102,600 from Mus

musculus.

3.2 Species distribution

Currently, BioVDB stores data from two species,Homo sapiens

and Mus musculus, which make up the vast majority of samples in

GEO (Figure 1). Samples from Homo sapiens account for 76.6% of

all samples, with the rest coming from Mus musculus (Figure 1A).

In the context of data distribution between platforms, BioVDB

consists of 8 of the most abundant microarray platforms, with

nearly 40% coming from GPL570 (Figure 1B). This platform,

together with GPL10558, accounts for more than 61% of the total

number of samples in BioVDB with the rest belonging to the other

six platforms.
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FIGURE 1

Distribution of samples by (A) species and (B) platform in the BioVDB.

3.3 Tissue distribution

To allow for meta-analyzes of the samples by tissue type of

origin, BioVDB also includes tissue name labels derived from

BTO. The 10 most common tissues from GPL570 are shown in

Supplementary Figure 2. Among the 196 unique tissues labeled

for this platform, blood is the most abundant, with data derived

from an ontology of tissues such as peripheral blood mononuclear

cells (PBMCs) and dendritic cells (DCs), which account for the

heterogeneous nature of this tissue. Blood accounts for twice as

many samples as breast tissue, the next most common label. In

addition, a comparison of the tissue distribution of the BioVDB

samples and all samples for which labels were extracted is shown

in Supplementary Figure 6.

3.4 Age distribution

Age distribution analysis was performed on all

samples containing labels for age, sex, and tissue name

(Supplementary Figures 3, 4). Of the total 21,853 samples,

10,165 were from females and 11,688 from males

(Supplementary Figure 3). The average ages for female and

male samples were 52.21 and 51.96, respectively. Among all tissues,

samples were selected from the 10 most common ones, whose age

distributions are shown in Supplementary Figure 4. Again, blood

was the tissue containing the largest number of samples from the

entire data set, and the samples taken from the human brain had

the largest age range. In addition, the data set analyzed did not

contain any breast-derived samples frommen. A comparison of the

Frontiers in Artificial Intelligence 04 frontiersin.org

https://doi.org/10.3389/frai.2024.1366273
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Winnicki et al. 10.3389/frai.2024.1366273

FIGURE 2

Data structure of raw (left side) and normalized (right side) blood and breast samples from GPL570, colored by (A) ExperimentID and (B) TissueName.

age and sex distribution of the BioVDB samples and all samples for

which labels were extracted is shown in Supplementary Figures 7,

8, respectively.

3.5 Structure of raw and normalized blood
and breast samples

In order to show the general data structure, we used UMAP

on raw and normalized blood and breast samples, two most

common tissues in GPL570. The raw data are clustered based

on ExperimentID, which was expected, given that it is the most

influential batch effect in the dataset (Figure 2A). However, it is

also worth noting that some of the samples in the analyzed dataset

are sparsely scattered across the data space. The reason for this is

the previously mentioned heterogeneous nature of blood, which

is composed of different types of cells, which explains the kind of

distribution shown in Figure 2B. After processing the data from

samples from both tissues and correcting for batch effect, six clearly

separated clusters stand out, based on the tissue type of origin of

the samples, with the exception of a few samples (Figure 2B). This

allows us to conclude that the stored data in BioVDB, after pre-

processing, allows high-throughput analyzes of gene expression

coming from different GEO platforms.

3.6 Label inference through similarity
search

A visualization of the UMAP results of similarity search

is shown in Figure 3. The searched samples spanned six

different TissueNames, including “Unknown,” which symbolizes

samples with missing tissue labels (GSM2186545 and GSM218653;

Figure 3A). They were clustered together with samples from

a thyroid gland (GSE35570), even though they came from a

different ExperimentID (GSE82208; Figure 3B). In addition, it

is worth noting that two separate clusters of lung samples are

visible, originating from GSE40791. One of these clusters is lung

adenocarcinoma samples, and the other is healthy lung samples,

resulting in the clear separation of these clusters.

4 Discussion

4.1 Label accuracy and missing
annotations

Currently, BioVDB stores age, sex, and tissue labels, extracted

from GEO metadata, using ALE software. ALE uses a heuristic

string matching algorithm that, with multiple matches for tissue,
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FIGURE 3

Distribution of samples retrieved using a similarity search colored by (A) TissueName and (B) ExperimentID. The “Unknown” label represents samples

with missing TissueName label.

selects the most general node from BTO. This highly conservative

approach provides relatively high annotation accuracy while

causing generalization, which can be particularly noticeable in

highly heterogeneous tissues like blood. This tissue is the most

common in the GPL570 dataset we analyzed, as it includes samples

such as PBMCs, DCs, or blood serum (Figure 3). At the same

time, this affects the structure of the data, where some blood

samples from the same experiment are sparsely scattered across

space (Figure 2).

Another aspect worth mentioning is the need to address

the problem of distinguishing between healthy controls and case

samples from the same experiment. This would make it possible

to distinguish between cancer samples and healthy controls from

the same tissue and experiment, such as in Figure 3, where one

cluster was formed by lung adenocarcinoma samples and the

other by healthy lung samples. This problem has been addressed

by Lakiotaki et al. (2018), where the authors used predefined

keywords for this purpose, although to distinguish samples in

an experiment with multiple interventions it is insufficient and

requires more sophisticated text mining solutions. Ultimately, this

approach would allow differential gene expression (DGE) analysis

between such cohorts.
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In addition to the quality and accuracy of the stored

annotations, the sheer number of labeled samples in the BioVDB

is also important. Of the 168,570 samples from GPL570 stored in

BioVDB, only 21,853 have complete labels describing age, sex, and

tissue (Supplementary Figure 3). This limits the amount of data

available for analysis requiring all of these annotations and requires

further work to fill in the missing labels.

4.2 Further applications

Despite the relatively large amount of metadata information

stored in the BioVDB labels, it is possible to further expand them

with disease-specific annotations and the aforementioned case vs

control labels. Such information will allow robust comparative

analyzes, making it possible to identify, for example, specific tissues

where the difference in gene expression is largest in a given disease

phenotype or to observe such changes in different age groups using

the similarity search provided by Qdrant to do so. In the future, this

could be useful in determining the brain regions where the greatest

changes in gene expression occur in analyzes comparing healthy

controls to samples from patients diagnosed with Alzheimer’s or

Parkinson’s disease, which could yield new biological insights into

the genetic mechanisms underlying neurodegenerative diseases.

However, the most important aspect of such a research approach is

to provide insight into global changes in gene expression, increased

statistical power, and external reproducibility of analysis results

compared to studies focusing only on, for example, the effect of one

particular gene on a given phenotype.

The primary purpose of GEO was to store data from gene

expressionmicroarray experiments, but over the years, it also began

to incorporate data from high-throughput sequencing experiments

(e.g., RNA-seq), methylation arrays, and other types of biological

data (Supplementary Figure 5). The next improvement of BioVDB

will be to expand it to include those data that can be analyzed

using, for example, multimodal machine learning algorithms. That

will maximize the information in the analyzes contained in data

of different modalities taking into account not only genetic but

also epigenetic information, which may yield new conclusions of

biological significance.

The current version of BioVDB contains data from eight

microarray platforms, which are among the most abundant and

popular containing data from Homo sapiens and Mus musculus.

However, BioVDB will gradually be updated with data from

other platforms. Eventually, BioVDB will be a database that is

automatically updated weekly and will allow access to all samples

from GEO. In addition, with future updates, more capabilities are

planned to be added to BioVDB such as handling fusion genes and

splice variants.

5 Conclusion

Here we present BioVDB, to the best of our knowledge, the

first vector database of gene expression experiments. It stores

438,562 samples from eight microarray GEO platforms. With its

standardized metadata format, the tool allows for meta-analysis of

genomic data by selected cohorts, such as age, sex, or tissue of origin

of the samples in question. Additionally, it provides a ready-to-use

format for deep learning models due to encoded experimental gene

expression values in vector form. What’s more, it allows similarity

search, which, as we presented, can help determine missing labels

of the samples.
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