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Background: Previous studies have reported that genes highly expressed in
leukemic stem cells (LSC) may dictate the survival probability of patients and
expression-based cellular deconvolution may be informative in forecasting
prognosis. However, whether the prognosis of acute myeloid leukemia (AML)
can be predicted using gene expression and deconvoluted cellular abundances
is debatable.

Methods: Nine different cell-type abundances of a training set composed of the
AML samples of 422 patients, were used to build amodel for predicting prognosis
by least absolute shrinkage and selection operator Cox regression. This model
was validated in two different validation sets, TCGA-LAML and Beat AML (n =
179 and 451, respectively).

Results: We introduce a new prognosis predicting model for AML called the LSC
activity (LSCA) score, which incorporates the abundance of 5 cell types,
granulocyte-monocyte progenitors, common myeloid progenitors, CD45RA +
cells, megakaryocyte-erythrocyte progenitors, and multipotent progenitors.
Overall survival probabilities between the high and low LSCA score groups
were significantly different in TCGA-LAML and Beat AML cohorts (log-rank
p-value = 3.3 × 10−4 and 4.3 × 10−3, respectively). Also, multivariate Cox
regression analysis on these two validation sets shows that LSCA score is
independent prognostic factor when considering age, sex, and cytogenetic
risk (hazard ratio, HR = 2.17; 95% CI 1.40–3.34; p < 0.001 and HR = 1.20; 95%
CI 1.02–1.43; p < 0.03, respectively). The performance of the LSCA score was
comparable to other prognostic models, LSC17, APS, and CTC scores, as
indicated by the area under the curve. Gene set variation analysis with six
LSC-related functional gene sets indicated that high and low LSCA scores are
associated with upregulated and downregulated genes in LSCs.

OPEN ACCESS

EDITED BY

Zishan Wang,
Icahn School of Medicine at Mount Sinai,
United States

REVIEWED BY

Zhen Miao,
University of Pennsylvania, United States
Jiaqiang Zhu,
University of Michigan, United States
Hailong Hu,
Children’s Hospital of Philadelphia,
United States

*CORRESPONDENCE

Tae-Min Kim,
tmkim@catholic.ac.kr

RECEIVED 28 November 2023
ACCEPTED 06 February 2024
PUBLISHED 07 March 2024

CITATION

Han D-J, Kim S, Lee S-Y, Kang SJ, Moon Y,
Kim HS, Kim M and Kim T-M (2024), Cellular
abundance-based prognostic model
associated with deregulated gene expression of
leukemic stem cells in acute myeloid leukemia.
Front. Cell Dev. Biol. 12:1345660.
doi: 10.3389/fcell.2024.1345660

COPYRIGHT

© 2024 Han, Kim, Lee, Kang, Moon, Kim, Kim
and Kim. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Cell and Developmental Biology frontiersin.org01

TYPE Original Research
PUBLISHED 07 March 2024
DOI 10.3389/fcell.2024.1345660

https://www.frontiersin.org/articles/10.3389/fcell.2024.1345660/full
https://www.frontiersin.org/articles/10.3389/fcell.2024.1345660/full
https://www.frontiersin.org/articles/10.3389/fcell.2024.1345660/full
https://www.frontiersin.org/articles/10.3389/fcell.2024.1345660/full
https://www.frontiersin.org/articles/10.3389/fcell.2024.1345660/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2024.1345660&domain=pdf&date_stamp=2024-03-07
mailto:tmkim@catholic.ac.kr
mailto:tmkim@catholic.ac.kr
https://doi.org/10.3389/fcell.2024.1345660
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2024.1345660


Conclusion: We have developed a new prognosis prediction scoring system for
AML patients, the LSCA score, which uses deconvoluted cell-type abundance only.
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transcriptomic profiles

Introduction

It has long been recognized that hematopoietic defects underlie the
pathogenesis of acutemyeloid leukemia (AML) (Yamashita et al., 2020).
Several decades ago, leukemic stem cells (LSCs) were proposed to be a
major cause of leukemia (Vetrie et al., 2020), and also associated with
drug resistance and disease relapse (Zhai and Jiang, 2022). However, less
is known about the cellular origins of LSCs, and the abnormal bone
marrow microenvironment that can facilitate their survival (Chen
et al., 2022).

Transcriptomic profile-based disease subclassification has been
applied to various types of cancer, including hematopoietic
malignancies of AML and myelodysplastic syndrome (Shiozawa
et al., 2017; Cheng et al., 2022). These studies demonstrate that
patients can be segregated into subgroups by gene expression
profiles alone with potential clinical utility; however, the bulk-
level molecular taxonomy hardly probes the direct clinical-genetic
association (e.g., LSCs and prognosis) largely due to limited
resolution and tumor heterogeneity.

To overcome tumor heterogeneity along with elevated cellular
resolution, single cell RNA sequencing (scRNA-seq) has emerged to
facilitate transcriptomic profiling at single-cell resolution (Wang
et al., 2022; Zhai et al., 2022). Although the transcriptional profiling
of individual cells by scRNA-seq has revealed unique cellular
populations and dysregulated cellular ecosystems (Lu et al.,
2022), the current availability of scRNA-seq in hematologic
malignancies for large-scale clinical correlation analyses is
still limited.

The use of deconvolution-based algorithms has been used as an
approach to address tumor heterogeneity. The deconvolution of
estimated cell type fractions from bulk RNA-seq data can be
achieved with or without the prior information of cell type-
specific expression or signatures. The latter has a particular
advantage, such as the discovery of latent features (i.e., novel cell
types) (Miller et al., 2022), but more commonly used regression-
based methods, such as CIBERSORT (Newman et al., 2015) rely on
the former approach. The signature matrix represents a subset of
genes with cell type-specific expression. The biological insights (e.g.,
cell types to be deconvoluted) and also the performance of signature-
based deconvolution are dependent upon the signature matrices
(Newman et al., 2015; Wang et al., 2019; Li et al., 2020; Chu et al.,
2022). Signature matrices have often been designed in the process of
devising their accompanying deconvolution algorithms, e.g.,
LM22 of CIBERSORT and the signature matrix composed of
13 cell types for validation of LinDeconSeq (Li et al., 2020).

There have been efforts to design gene signatures to represent
the hematologic hierarchy and a study demonstrates that the
deconvoluted cellular fractions can be implemented into a
prognostic scoring system, for instance, GES25-150 was used to
calculate CTC score (Dai et al., 2021). They used scRNA-seq data

composed of 21 cell types derived from bone marrow specimens of
16 AML patients (van Galen et al., 2019) highlighting a
deconvolution-based prognostic system based on the bulk-level
transcriptome data. Although other studies have proposed scores
based on gene expression that can be used to predict the prognosis of
patients (Gentles et al., 2010; Ng et al., 2016; Docking et al., 2021),
these clinic-oriented score systems do not take into account the
direct relationship between LSCs and patients’ prognosis.

In this study, we built a signature matrix representing the 9 cell
types encompassing both normal progenitors and LSC lineages
(HemLin9). The deconvoluted cellular fractions of 9 cell types of
the AML cohort composed of 422 patients [GSE37642 (GPL96)
(Kuett et al., 2015)] were subject to least absolute shrinkage and
selection operator (LASSO) for feature selection. Using the selected
features, we formulated the leukemic stem cell activity (LSCA) score
that stratifies the patients with respect to clinical outcomes. Then,
two different cohorts were further used to validate the LSCA score.
In addition, we performed gene set variation analysis (GSVA) using
six LSC-related gene sets to show that the LSCA score is associated
with LSC functionality, that is, gene sets that are up or
downregulated transcriptionally in LSCs are more enriched in
patients with a high or low LSCA score, respectively. Lastly, we
found that this tendency is shown not only in bulk-level expression
profiles but also in cell type-specific expression data inferred by
CIBERSORTx high-resolution mode.

Materials and methods

HemLin9 signature matrix

Differentially expressed genes (DEGs) in cell type sortedmicroarray
data (GSE24006) composed of 9 cell types were obtained through the
“lmFit” function of the limma (Ritchie et al., 2015) R package. The cell
types were as follows: Lin-CD34−, AML blast; common myeloid
progenitors (CMPs, Lin-CD34+CD38+CD123+CD45RA-); granulocyte-
monocyte progenitors (GMPs, Lin-CD34+CD38+CD123+CD45RA+);
hematopoietic stem cells (HSCs, Lin-CD34+CD38−CD90+CD45RA-);
leukemic progenitor cells (LPCs, Lin-CD34+CD38+); LSC, Lin-
CD34+CD38−CD90−; megakaryocyte-erythrocyte progenitors (MEPs,
Lin-CD34+CD38+CD123-CD45RA-); multipotent progenitors (MPPs,
Lin-CD34+CD38−CD90−CD45RA-); CD45RA + cells (RApos, Lin-
CD34+CD38−CD90−CD45RA+). The DEGs criteria were logFC
(fold change) ≥ 1 and adj.P.Val ≤0.05 except LSCs, RApos, and
MPPs. To find at least 25 DEGs for each cell type, we made an
exception by setting adj.P.Val for LSC, RApos, and MPP at 0.1, 0.1,
and 0.2, respectively. We sorted DEGs in the order of logFC and
then obtained 150 DEGs at most by each cell type. Five cell types
(AML_blast, CMP, GMP, MEP, and MPP) have 150 DEGs and the
other 4 cell types, HSC, LPC, LSC, and RApos have 72, 28, 56, and
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25 DEGs (Supplementary Figure S1E). The full list of 841 non-
redundant DEGs is available in Supplementary Table S1. We
further tested four different signature matrices by using the top
25, 50, 100, and 150 DEGs based on logFC and the resulting
matrices (composed of non-redundant 205, 361, 609, and
841 genes, respectively) can be found in Supplementary Tables
S2–S5. Heat maps corresponding to individual signature matrices
are represented in Supplementary Figures S1A–D.

Preparing training and validation data sets

The training set (GSE24006) was downloaded from the GEO
database through the GEOquery (Davis and Meltzer, 2007) R
package. Since a gene symbol can correspond to multiple probe IDs,
we calculated the median expression value of probes having the same
gene symbol. We downloaded TCGA-LAML RNA-seq data composed
of 179 patients through https://gdc.cancer.gov/about-data/publications/

laml_2012 (RNAseq GAF 2.0 normalized reads per kilobase of
transcript per million mapped reads, RPKM). Also, the clinical data
of TCGA-LAML was downloaded from the same web page (Patient
Clinical Data) except for overall survival time and vital status in TCGA
pan-cancer clinical data https://gdc.cancer.gov/about-data/
publications/pancanatlas (TCGA-Clinical Data Resource Outcome).
Beat AML RNA-seq data and clinical data were acquired from the
Supplementary Data (Supplementary Tables S5, S8, respectively) of
Tyner et al. (2018). Clinical information such as age, sex, French-
American-British (FAB) classification, and cytogenetic risk of the three
cohorts are presented in Table 1.

Pseudo-bulk gene expression data design
and deconvolution tool candidates

There are tools for inferring cell-type abundance such as
CIBERSORTx (Newman et al., 2019), LinDeconSeq (Li et al.,

TABLE 1 Clinical information on the three cohorts. One training set, GSE37642, and two validation sets, TCGA-LAML and Beat AML, were used for creating
and validating a LASSO Cox regression model. Age, sex, FAB classification, and cytogenetic risk of patients are described in the table. Sex and cytogenetic
risk are not available in GSE37642.

GSE37642 TCGA-LAML Beat AML

N 422 179 451

Sample source Bone marrow (Mononuclear cells) Bone marrow Bone marrow (239)

Leukapheresis (9)

Peripheral blood (203)

Age

Range (Median) 18–83 (57) 18–88 (58) 2–87 (61)

Sex

Female — 84 193

Male — 95 258

FAB classification

M0 14 16 6

M1 84 42 8

M2 117 41 10

M3/M3v 19 16 10

M4/M4Eo 104 36 25

M5/M5a/M5b 47 21 32

M6 15 2 0

M7 2 3 2

Unknown/NOS 20 2 358

Cytogenetic risk

Favorable — 33 131

Intermediate — 104 150

Poor — 40 169

NA — 2 1

FAB, French-American-British; NOS, not otherwise specified; NA, not available.
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2020), MuSic (Wang et al., 2019), and BayesPrism (Chu et al., 2022).
Among these, scRNA-seq data are required to use MuSic and
BayesPrism. Instead, we used a deconvolution tool FARDEEP
(Hao et al., 2019) along with CIBERSORTx and LinDeconSeq for
the deconvolution performance comparison. We created pseudo-
bulk gene expression data with cell-type sorted microarray data
(GSE24006). First, we calculated medians of the same cell type by
gene. Then, we made a random cell-type fraction matrix composed
of 100 samples. After that, we multiplied random fractions and
median expression values by gene. Finally, pseudo-bulk expression
data was made by summing gene expression values of the 9 cell
types by gene.

Deconvolution of cell type-
specific abundance

We used the CIBERSORTx (Newman et al., 2019) “Impute Cell
Fractions” module to calculate the cell type compositions of each
patient. For validation, RPKM gene expression data of TCGA-
LAML and Beat AML were used respectively. We disabled
quantile normalization as recommended. Also, we did not apply
the “Enable batch correction” and “Run in absolute mode” options.
All options were default. All results in this study were obtained by
using HemLin9 signature matrix composed of 50 DEGs, unless
otherwise stated.

LASSO Cox regression

R package glmnet (Simon et al., 2011) (v4.1.7) was utilized for
conducting LASSO Cox regression to identify the impact of cell
type abundances on the prognosis of AML patients. Among
422 patients in the GSE24006 dataset, overall survival data
was only available for 417. Therefore, we used these samples
as a training set. Cell type fraction values of these 417 samples
were used for an input matrix, and overall survival time and vital
status were used for the response variable. We performed 10-fold
cross-validation using the “cv.glmnet” function and selected the
lambda value that resulted in the minimum error. Then, we built
a LASSO Cox regression model using the “glmnet” function. We
iterated this procedure 100 times, filtering out cell types with zero
coefficients occurring more than five times. Finally, we
considered the mean values of the 100 coefficients as the final
coefficient of the cell type. Among four signature matrices with
varying gene sizes, that composed of 50 DEGs showed the best
performance based on hazard ratio (HR) and its p-value along
with survival log-rank test p-value (Supplementary Figure S4).
Therefore, we selected this model and the corresponding
signature matrix as a reference and applied them to validation
sets. A patient-specific score can be calculated by summing the
product of each cell type fraction of the patient and the cell type
coefficient. We called this the LSCA score. The LSCA score can be
expressed as the following. LSCA score � −2.15 × FGMP −
1.64 × FCMP + 0.37 × FRApos + 0.49 × FMEP + 4.52 × FMPP If you
want to check the scripts for model construction and
validation, please visit the following website: www.github.com/
LabTMK/LSCA.

Multivariate Cox regression

Multivariate Cox regression analysis was performed by the
“coxph” function of survival (Therneau and Grambsch, 2000)
(v3.5.5) and the “forest_model” function of forestmodel
(Kennedy, 2020) (v0.6.2) R packages. In calculating hazard
ratios of TCGA-LAML and Beat AML data sets, four variables
were included: age, sex, cytogenetic risk, and LSCA score. Since
cytogenetic risk and sex are not available in training set,
GSE37642, we instead incorporated the mutation and fusion
in RUNX1 gene as covariables. To concord with TCGA-LAML
data set, we renamed terms of cytogenetic risk
“FavorableOrIntermediate,” “IntermediateOrAdverse,” and
“Adverse” in Beat AML data set as “Favorable,”
“Intermediate,” and “Poor,” respectively.

Gene set variation analysis

GSVA (Hanzelmann et al., 2013) (v 1.42.0) was performed
separately on three transcriptomic data. Using the msigdb
(Bhuva et al., 2021) (v1.2.0) R package, we manually inspected
and selected six gene sets related to LSCs within C2 chemical and
genetic perturbations (CGP); GENTLES_LEUKEMIC_STEM_
CELL_DN, GENTLES_LEUKEMIC_STEM_CELL_UP, EPPERT_
LSC_R, EPPERT_CE_HSC_LSC, GAL_LEUKEMIC_STEM_
CELL_DN, and GAL_LEUKEMIC_STEM_CELL_UP. We used
the “gsva” function setting kcdf option as “Gaussian” and other
options as default. After calculating the enrichment score (ES) of
each patient in each gene set, we calculated the Pearson correlation
coefficients (PCCs) among gene sets, LSCA, and CTC score using
corrplot (Wei and Simko, 2021) (v0.92).

CIBERSORTx docker was downloaded from https://
cibersortx.stanford.edu/, and high-resolution analysis was
performed to acquire nine sets of cell type-specific gene
expression data using the docker. Each of the training and
validation data sets was used as bulk gene expression data,
and HemLin9 composed of the top 50 DEGs was used as a
signature matrix. Quantile normalization was disabled, and all
other options were set to default. The ES of the six gene sets by
each patient was calculated in not only bulk but also cell type-
specific gene expression data. Then, patients were divided into
high and low LSCA groups by the median score of each data set.
Finally, the log2-scale fold change was calculated between high
and low LSCA groups using the limma R package. Gene sets
with no valid genes were ignored and shown as gray in
the heatmap.

Results

Signature matrix (HemLin9) of
hematologic lineages

The signature matrices were built by cell type-specific DEGs
(Supplementary Tanle S1). A total of 841 non-redundant genes
are identified as the DEGs excluding 89 genes shared by more
than 1 cell type. Based on a metric of differential expression
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(logFC), we made four different signature matrices with a varying
number of genes (i.e., top 25, 50, 100, and 150 DEGs;
Supplementary Tables S2–S5). From these, the top 50 gene-
based signatures demonstrated a superior performance and
were selected (Supplementary Figure S4)
(HemLin9 afterward). The number of genes representing
individual cell types is shown (Supplementary Figure S1E).
The cell type-specific gene expression of these signature
matrices is shown by row-wise normalized expression levels
(Supplementary Figures S1A–D). Among 72 HSC DEGS,
43 are shared by MPPs, and CMPs share common DEGs with
GMPs and MEPs (Supplementary Figures S1F, G).

Cell-type abundance deconvolution
tool selection

Using three different tools, CIBERSORTx, LinDeconSeq, and
FARDEEP, the cell-type abundance of 100 samples of pseudo-bulk
expression data were deconvoluted using HemLin9 as a signature
matrix (see Methods). PCCs between the known cell type fractions
and the inferred values, were calculated and represented by bar plots
(Supplementary Figure S2). CIBERSORTx and LinDeconSeq
showed a comparable performance; however, FARDEEP showed

the poorest performance. For subsequent analyses, we selected
CIBERSORTx as a cell-type abundance deconvolution tool.

Cellular abundances of three AML cohorts

We curated the public transcriptomic data of three AML
cohorts; the clinical information is summarized in Table 1. Using
HemLin9 as a signature matrix, we inferred the cell-type abundances
of the three data sets using CIBERSORTx. The cell type
compositions of the three data sets were illustrated using box
plots for each cell type (Figure 1A), and the abundance
distribution of each cohort is depicted in a stacked bar plot
(Figure 1B). In signatures, differentiated lineages such as B, T,
and NK cells were excluded to focus on 9 cell types that included
hematopoietic stem or progenitor cell types. Although a difference
in overall cellular abundance was noted across cohorts, the
composition of normal progenitors such as MPP, CMP, MEP,
and GMP were similar to each other. Given that the
heterogeneity of cell type compositions can be observed even
within a single cohort (Fan et al., 2023), it is expected that there
are differences in cell type compositions among the three cohorts.
The cell-type abundance of each patient is sorted by cohort in
Supplementary Tables S6–S8.

FIGURE 1
Distribution of 9 cell types by cohort. (A) Cell type abundances of GSE37642, TCGA-LAML, and Beat AML are depicted as box plots by cell type. (B)
Compositions of 9 cell types are shown as a stacked bar chart by cohort. Patients are divided by survival period median into longer or shorter groups in
GSE37642 (C), TCGA-LAML (D), and Beat AML (E). Cellular abundances are compared between the two groups in each data set by cell type. Wilcoxon
rank-sum test results are shown as ns (non-significant) and asterisks (* and ** indicate p-value less than or equal to 0.05 and 0.01, respectively).
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Association between survival span and
cellular abundances

We hypothesized that the prognosis of patients is impacted by
the activity or the abundance of specific cell types. First, we divided
patients into two groups, longer or shorter survival, and then
determined, which cell type in the three data sets showed a
significant difference in abundance between the two groups
(Figures 1C–E). All 9 cell types showed no difference in
abundance between the two groups in Beat AML. In TCGA-
LAML and GSE37642, the abundance of GMP was the only
significant difference between the two survival groups. In the
CTC score, patients show a good prognosis with higher GMP-
like fractions because this cell type has the largest negative
coefficient. Also, in the two subgroups of TCGA-AML divided by
LinDeconSeq, the prognosis of the GMP fractions high subgroup
was better than the other subgroup (Li et al., 2020). Second, we
divided patients into two groups, high and low based on the
abundance of each cell type. To divide patients into high and low
groups, we used the mean values of each cell-type abundance rather
than medians to minimize cases that have a zero cutoff value.
Among the 9 cell types, significant differences in survival were
consistently observed across three AML cohorts between RApos
high and low patients (Supplementary Table S9; Supplementary
Figures S3A–C). However, when incorporating other clinical
features into a multivariate Cox regression, the significance of
RApos abundance diminished (Supplementary Figures S3D–F).
This indicates that relying on a single cellular feature is
insufficient for determining the clinical relevance.

Modeling of LSCA scores

To assess the potential independent impact of multiple cell type
fractions on prognosis, we conducted LASSO Cox regression
analysis on the data of 422 AML patients from GSE37642
(GPL96) (Kuett et al., 2015). To ensure robustness, we estimated
the coefficients of individual cell types using bootstrapping while
filtering out cell types with insignificant values (p > 0.05) (see
Methods). In the regression, the observed coefficients of GMPs,
CMPs, RApos, MEPs, and MPPs (−2.15, −1.64, 0.37, 0.49, and 4.52,
respectively) retained the significance and were incorporated into
the equation for the prognosis predicting scoring system.

The patient-specific prognostic score, termed LSCA, can be
calculated by summing the product of the cell type’s specific
coefficient and its corresponding fraction of cell types in the
sample. The LSCA scores were validated in the TCGA-LAML
(n = 179) and Beat AML (n = 451) cohorts. Patients with lower
LSCA scores showed favorable clinical outcomes compared to those
with higher LSCA scores, the statistical significance of these was
observed in both validation sets (log-rank test p-value = 3.3 × 10−4

and 4.3 × 10−3, respectively) (Figures 2A, B). A multivariate Cox
regression model that considered age, sex, and cytogenetic risk was
used to analyze the LSCA scores as independent prognostic factors.
In both data sets, HRs of the LSCA score were significantly
independent of other factors (Figures 2C, D). Therefore, LSCA
scores were identified as independent prognostic factors in these
two data sets (HR = 2.17, 95% CI 1.40–3.34, p < 0.001 and HR = 1.20,

95% CI 1.02–1.43, p < 0.03). These findings suggest that the high
LSCA score is associated with an unfavorable clinical outcome
across datasets and can serve as a prognostic indicator for AML.

Evaluation of LSCA scores

To evaluate the predictive power of the LSCA score, we
compared the area under the curves (AUCs) of three leukemia-
predictive scoring systems, LSC17 (Ng et al., 2016), APS (Docking
et al., 2021), and CTC (Dai et al., 2021), by using a receiver operating
characteristic (ROC) curves (Figure 3). We used the TCGA-LAML
data sets to compare AUCs of 1, 2, 3, 4, and 5-year overall survival.
In all time points examined, the LSCA score was comparable to the
other three scoring systems. To verify that AUCs are not
significantly different among these four scoring systems, we
calculated the p-value using the “compare” function of timeROC
R package (Blanche et al., 2013) (Supplementary Table S10A). There
was no significant difference in the AUCs between the LSCA and the
other three scoring systems in all time points.

Using the training and validation datasets, we compared the
concordance between CTC and LSCA scores. We repeated the same
strategy to calculate the CTC score of the three data sets. Concordance
was evaluated for high and low-score groups using the Fisher’s exact test
(FET) (p − value � 6.7 × 10−6, 2.2 × 10−8, and 1.5 × 10−6)
(Supplementary Tables S10B–D). Additionally, PCCs were calculated
between CTC and LSCA scores in the three cohorts (Supplementary
Figures S5A–C). Despite positive correlations between these two scores,
PCCs were not larger than 0.5. It may be because these two scoring
systems reflect different pathological characteristics of AML. LSCA
showed better predictive power when testing on Beat AML cohort
compared to CTC score (Supplementary Figures S5D–K). It is implying
that predicting power of these two scoring system depends on cohort.
Taken together, the performance of the LSCA and CTC scores was
similar, however, they reflect different factors impacting
patients’ prognosis.

Association between LSCA score and
deregulated genes in LSCs

To determine which gene sets are differentially expressed
between high and low score groups, we conducted GSVA using
gene expression data from the three cohorts, based on 50 hallmark
gene sets (Liberzon et al., 2015) (Supplementary Figure S6).
However, none of the hallmark gene set demonstrated a
consistently contrasting enrichment pattern across the three
cohorts between LSCA and CTC scores. Given our hypothesis
that a high LSCA score better reflects the activity of LSCs
compared to the CTC score, we selected six gene sets associated
with LSCs from C2 CGP gene sets from MSigDB. Gene sets such as
GENTLES_LEUKEMIC_STEM_CELL_UP and GENTLES_
LEUKEMIC_STEM_CELL_DN include genes expressed higher or
lower in LSCs compared with leukemia progenitor cells (Gentles
et al., 2010). Likewise, genes differentially expressed in LSCs
compared to CD34+CD38+ cells are included in gene sets such as
GAL_LEUKEMIC_STEM_CELL_UP and GAL_LEUKEMIC_
STEM_CELL_DN (Gal et al., 2006). Also, the other two gene
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sets, EPPERT_LSC_R and EPPERT_CE_HSC_LSC, cover genes
upregulated in functionally defined LSCs or both HSCs and LSCs
(Eppert et al., 2011).

We clustered samples of three cohorts by partitioning around
medoids (PAM) with ES calculated by GSVA, and the two
subgroups were named PAM1 and PAM2 (Figures 4A–C).
Overall, upregulated genes in LSCs were enriched in
PAM2 whereas downregulated genes were enriched in PAM1. In
addition, patients included in the high-score LSCA group were more
often found in the PAM2 group of the two validation sets (FET
p-value = 3.0 × 10−5 and 2.2 × 10−16). On the other hand, the
patients with a high CTC score were not significantly enriched in
PAM1 or PAM2 of the two validation sets (FET p-value = 7.0 × 10−2

and 2.4 × 10−1). This implies that a high LSCA score can reflect
upregulated genes in LSC better than the CTC score. In the training
set, similar results were obtained although FET p-values were
significant not only in the LSCA but also in the CTC
score (Figure 4A).

We can merge LSCA and CTC scores into an ES matrix
composed of gene set rows and patient columns. With this
merged matrix we can calculate the PCCs among gene sets and
scores (Figures 4D–F). Overall, in all three cohorts, two scores
showed positive correlations with upregulated gene sets in LSCs.
In contrast, the scores showed negative correlations with
downregulated gene sets in LSCs. This tendency was more clearly

shown in the LSCA than in the CTC score. Additionally, four
upregulated or two downregulated gene sets in LSCs showed
mutually exclusive positive correlations.

GSVA of cell type-specific gene
expression data

We investigated whether six LSC-related gene sets are
differentially expressed between the high and low LSCA score
groups not only in bulk but also in cell type-specific gene
expression data. Although we can acquire sample-specific gene
expression values by cell type using CIBERSORTx high-
resolution mode, there are too many invalid genes which have
the same expression value or NAs in every sample
(Supplementary Figure S7). Nonetheless, as in the bulk
expression data, the high LSCA score group showed a higher
expression of upregulated genes in LSCs in cell type-specific
expression data and vice versa (Figures 4G–I). However, the MPP
and GMP of GSE37642 and LSC of Beat AML showed opposite
tendency in gene sets composed of relatively small genes, such as
GENTLES_LEUKEMIC_STEM_CELL_DN/UP (n = 19 and 29),
EPPERT_LSC_R (n = 41), and EPPERT_CE_HSC_LSC (n = 42).
It may be because the number of genes which have valid expression
values is too low in these cell types.

FIGURE 2
Survival and multivariate Cox regression analysis by LSCA score. The KM plot shows that the high LSCA score group tends to have a shorter survival
period than the low LSCA score group in TCGA-LAML (A) and Beat AML (B) cohorts. The results of themultivariate Cox regression analysis indicate that the
LSCA scores have significant hazard ratios regardless of age, sex, and cytogenetic risk in TCGA-LAML (C) and Beat AML (D) cohorts.
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Discussion

In this study, we present a new scoring system called the
LSCA score predicting the prognosis of patients based on nine
cell-type fractions. In both training and validation sets, we
found that the high LSCA score has an adverse impact on
the prognosis and survival of patients. The inference of cell
type abundances by deconvolution tool such as CIBERSORTx is
primarily dependent on gene expression data of multiple genes
as signature for robust determination of cell type abundances.
While scoring systems like LSC17 or APS rely on a smaller, but
clinically relevant set of 17 or 16 genes, the signature matrices
for CTC and LSCA scoring incorporate several hundred of
genes for robust estimation of cellular abundance. This
difference presents a trade-off between the clinical
practicability, which favors fewer genes, and the robustness
achieved by using a large number of gene.

Although it may appear contradictory that LSC abundance is
not factored into the LSCA score equation, the model still reflects
the relationship between the LSC and AML patient prognosis.
This is because patients with high LSCA scores tend to show
overexpression of genes known to be upregulated in LSCs
(Figure 4). In our model, instead of LSCs, MPPs showed the
largest positive coefficient value. Moreover, six MPPs DEGs
(HLF, SETBP1, HOPX, RBPMS, SLC37A3, and TMEM200A)

are included in the LSC signature compiled by Gentles et al.
(2010) (Supplementary Table S1; Supplementary Figure S1F). In
summary, our LSCA scoring system is able to quantify the impact
of LSCs’ activity on a patient’s prognosis, which might not
directly correlate with LSCs’ abundance.

Since AML is characterized by the immature differentiation
of myeloid cells (De Kouchkovsky and Abdul-Hay, 2016), we
assumed that lymphoid lineages are not associated with the
pathogenesis of AML. However, in the GES signature matrix
used to calculate the CTC score, lymphoid lineages such as B, T,
and NK cells are covered. In contrast, the HemLin9 signature
matrix contains only early progenitors and myeloid lineages,
excluding lymphoid lineages. Indeed, the abundance of T cells in
calculating the CTC score is an important factor together with
GMP-like and HSC-like. In addition, it is worth checking
similarities and differences between GMP of HemLin9 and
GMP-like of GES signature matrix.

In the Beat AML data set, 16 patients are aged under 20. It is
reported that pediatric AML has fewer mutations and more
frequent structural variants than adult AML (Bolouri et al.,
2018; Chaudhury et al., 2018). Also, another study compared
gene expression by the age of patients, and many genes were
differentially expressed by age (de Jonge et al., 2009). IGKC and
GSAP are expressed higher in the older age group and are
included in the GAL_LEUKEMIC_STEM_CELL_DN and

FIGURE 3
Time-dependent receiver operating characteristic (ROC) curves of four different scoring systems applied to the TCGA-LAML cohort. Area under the
curves (AUCs) are similar among four different scoring systems from 1 year to 5 years (A–E). No statistically significant differences between LSCA and the
other three scoring systems are found at any time point (Supplementary Table S10A).
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GENTLES_LEUKEMIC_STEM_CELL_UP gene sets,
respectively. Further studies may need to identify whether
LSCA score can be applied to pediatric patients.

Among the 9 cell types included in HemLin9, only RApos
showed a significantly different survival probability between
cellular abundance high and low groups simultaneously in all
three data sets (Supplementary Figure S3). RApos is a cell type
derived from healthy bone marrow or umbilical cord blood and
has the same cell surface marker as LSC except for CD45RA.
Since this cell type has a positive coefficient in LSCA score, as its
abundance increases the prognosis of patients can be affected
adversely. In fact, it is reported that CD45RA can be used to
identify LSC subpopulations (Kersten et al., 2016). Although
RApos was obtained from healthy donors, further studies are
needed to verify the associations between RApos and LSC or to
investigate the probability that RApos can facilitate the
proliferation of LSC.

In the training set GSE37642 (GPL96), we did multivariate Cox
regression with the RUNX1-RUNX1T1 fusion and RUNX1mutation
status instead of cytogenetic risk, which is not available. Although it
is known that patients who have RUNX1-RUNX1T1 fusion show a
better prognosis (Krauth et al., 2014), the fusion status did not show
significantly high HR independently of age and LSCA score.
However, the RUNX1 mutation status showed significant HR and
this result is concordant with previous studies (Greif et al., 2012)
(Supplementary Figure S4).

Although the LSCA score shows comparable performance to
other prognosis prediction tools, this scoring system has some
limitations. First, our model is largely dependent on in silico
calculation results of cell-type abundance by deconvolution tools
such as CIBERSORTx. We demonstrated that, by using pseudo-
bulk gene expression data, we can effectively estimate the
abundance of different cell types through deconvolution
methods. Still, because we did not use actual data by

FIGURE 4
Gene set variation analysis (GSVA) in three data sets. Sixmanually curated LSC-associated gene sets were used to check the relationship between the
LSCA score and up or downregulated genes in LSCs in GSE37642 (A), TCGA-LAML (B), and Beat AML (C) data sets. Correlation matrices shows Pearson
correlation coefficients among ESs of six LSC-related gene sets and two prognosis prediction scores in GSE37642 (D), TCGA-LAML (E), and Beat AML (F)
data sets. Asterisks represent the significance of the adjusted p-value, *, **, and *** mean less than or equal to 0.05, 0.01, and 0.001, respectively. ES
log 2-fold change values of six LSC-related gene sets between high and low LSCA score groups were calculated in GSE37642 (G), TCGA-LAML (H), and
Beat AML (I). The adjusted p-values are tagged by asterisks in the samemanner of (D–F). Gray cells represent cases where there are no valid genes in the
gene sets. Red represents high enrichment of the gene set in LSCA score high group, and green means high enrichment of the gene set in LSCA score
low group.
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experimental technique such as scRNA-seq, in silico prediction
may not reflect real cell type compositions in the bone marrow or
the blood of patients. Second, we only considered the 9 cell types
and presumed that only these cells can affect the survival of
patients. The HemLin9 signature matrix includes fewer than half
the number of cell types included in GES signature matrix of CTC
score, which uses 21 cell types. Thus, there is a possibility that cell
types critical to the determination of the survival span have been
missed. In addition, as mentioned before, if lymphoid lineages
are included, the prediction model may need to be changed. To
achieve more accurate inferences, it is necessary to have scRNA-
seq data that covers a broader range of cell types including LSCs.
Lastly, as mentioned earlier, deconvolution tools such as
CIBERSORTx need signature matrices, however, sometimes we
cannot be certain if the signature matrices contain important
genes that are expressed only in specific cell types. Furthermore,
some DEGs included in HemLin9 are shared by more than 2 cell
types (Supplementary Figure S1E). Thus, it is essential to validate
whether the signature matrix includes genes that are known to be
highly expressed in a specific cell type.

In conclusion, we have developed a scoring system called the
LSCA score, which uses the LASSO Cox regression to predict
the prognosis of AML patients. This score shows comparable
predictive power to gene expression-based scoring systems such
as LSC17 and APS and the cell type composition-based CTC
score. Although we have demonstrated that a high LSCA score is
associated with a poorer prognosis, further studies are needed
before this scoring system can be applied clinically.
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