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Abstract. The Electrical Discharge Machining (EDM) technique demonstrates proficiency in fabricating
precise and intricate geometries, especially in challenging-to-machine materials like high-entropy shape memory
alloys. Analyzing and optimizing machining parameters are crucial for their direct impact on mechanical
properties and overall product efficiency. The main responses chosen to evaluate the processes are material
removal rate (MRR), electrode wear rate (EWR), and surface roughness (Ra). At the same time, the associated
machining conditions were discharge current (Ip), pulse-on time (Ton), and pulse-off time (Toff). EDM is a multi-
response process; therefore, the method of Response Surface Methodology (RSM) is utilized to assess the
influence of machining parameters on Ni35Ti35Zr15Cu10Sn5 (at%) high-temperature high entropy shape memory
alloy (HT-HE-SMA) using a copper electrode. Based on a center composite design (CCD), experiments were
analyzed using Minitab19 software. To identify the most influential parameters, a thorough analysis of variance
(ANOVA) at various significance levels (5%) was performed, checking the sufficiency of all fitted second-order
regression models. Discharge current, pulse-on time, and pulse-off time were identified as significant factors that
affect output (MRR, EWR, and Ra). The model adequacy of the current experimental investigation is perfect,
with determination coefficients (R2) of 97.82% for MRR, 95.36% for EWR, and 99.53% for Ra.
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1 Introduction

Every day, traditional materials are gradually being
replaced by newer, more advanced engineering materials
in parallel with the development of technology. From the
moment shape memory alloys (SMAs) were discovered,
they have garnered substantial interest from researchers
and commercial sectors alike. Their unique characteristics
of shape memory effect (SME) and superelasticity (SE)
make them highly sought-after materials for diverse
applications [1–3]. Also, since the initial breakthroughs
achieved by Yeh, Cantor, and their associates in 2004, high
entropy alloys, often known as HEAs, have been at the
front of cutting-edge technological materials. They’ve been
the subject of much research lately due to their unique and
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appealing characteristics [4]. High Entropy Alloys (HEAs)
are alloys with a minimum of five primary elements and a
constituent element concentration ranging from 5 to 35 at%
[5].Despitehavingmanyalloying elements,HEAscan forma
single solid solution phase [6].

Combining the properties of shape memory alloys and
high entropy alloys presents an exciting opportunity for
creating materials with novel properties but poses signifi-
cant challenges [7–9].

In comparison to traditional shape-memory alloys
(SMAs), High-Entropy Shape Memory Alloys (HESMAs)
have the ability to provide much better characteristics and
property combinations than conventional alloys, for
instance, exhibit enhanced yield strength and a broader
phase transition temperature range [10–14]. These
improvements can be attributed to significant lattice
distortion and sluggish diffusion [15,16]. These remarkable
characteristics facilitate the utilization of high-entropy
shape-memory alloys across a broader spectrum of
applications.
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Fig. 1. Ni35Ti35Zr15Cu10Sn5 high entropy shape memory alloy.
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HE-SMAs can be utilized as components for electronics
coatings, tools, nozzles, stamping presses, refractory
constructions, nuclear power plants, chemical plants,
marine structures, and engines (including aircraft engines)
[17–19]. The electronic, electrical, thermoelectric, electro-
magnetic, and medical areas could also use it [20]. This
functional material presents significant machining chal-
lenges due to its varied shape memory properties that are
temperature-dependent, its super elasticity, and the
pronounced increase in hardness due to strong work
hardening, which makes using traditional machining
techniques difficult [1,21,22]. Their characteristics can
often make them difficult to machine. Materials that are
challenging to process are the focus of unconventional
machining techniques such as electrochemical machining
(ECM), ultrasonic machining (USM), electrical discharg-
ing machine (EDM), recently created hybrid machining,
etc. [23].

The method of electrical discharge machining operates
through the utilization of a mechanism known as spark
erosion, and it possesses the capability to fabricate complex
geometries with exceptional accuracy in materials that are
challenging in hard-to-machine. It is a method that uses
high-frequency electric sparks for electro-erosion purposes
and removes material from a surface by repeatedly melting,
evaporating, and solidifying it. Difficult-to-machine mate-
rials are processed without considering their physical,
mechanical, or metallurgical properties [24,25]. When
employingHE-SMAs in practical applications components,
it must be assured that they are safe to manufacture and
process. There haven’t been many books or articles about
the machining of HEAs components up to the present, and
there is no systematic knowledge concerning the safe and
reliable machining of these materials [26,27]. Therefore,
this study aims to investigate the MRR, EWR, and Ra of
EDMed parameters and evaluate conceivable modifica-
tions in relation to the parameters it possesses. In order to
use statistical methods to achieve higher MRR, smaller
EWR, and Ra. The experiments are employed in this study
to consider the impacts of the Ip, Ton, and Toff on MRR,
EWR, and Ra.

2 Experimental details

The studies were conducted using an electrical discharge
machine (EDM). (CHMER, Die-sinking EDM, CNC) It
functions using an ISO-pulse in the dielectric medium of
kerosene. In this study, the workpiece material utilized was
a high-temperature high entropy shape memory alloy (HT-
HE-SMA) characterized by an atomic composition of
35%Ni – 35%Ti – 15%Zr – 10%Cu – 5%Sn, (at.), which was
synthesized through the powder metallurgy method. The
synthesis process involved 80 hours of mechanical alloying,
utilizing an eccentric rotary ball mill. This involved
employing jars and balls constructed from hardened alloy
steel (AISI 52100) with a hardness of 63 HRC, a ball-to-
powder weight ratio of 1:15, and a rotational speed of 150
rpm in alternating directions. The addition of 1.5% stearic
acid served to regulate the cold-welding effect and improve
the efficiency of the ball milling process. The atmospheric
conditions were maintained at 1 bar of argon pressure.
Subsequently, the resulting powder underwent sintering at
1100 °C for one hour within a vacuum tube furnace. The
resultant samples demonstrated an average hardness of
1200MPa. The distribution of elements in the sintered
sample is illustrated in Figure 1 by Scanning electron
microscopy (SEM) elemental mapping elemental mapping
with energy dispersive spectroscopy (EDS). The average
hardness (1200MPa). The workpiece was a specimen
having a diameter of 10mm and thickness of 5mm as
illustrated in Figure 2 and 1.5mm for surface roughness Ra.
Cylindrical copper electrodes 60mm long and 10.5mm in
diameter were positioned along the axis of the workpiece
and utilized as positive polarity electrodes as illustrated in
Figure 3. The workpiece to electrode gap was 10mm, and
the depth of cut was 0.6mm. The characteristics and levels
described in Table 1 were chosen based on the scope of
EDM machines (Fig. 4).



Fig. 2. The workpiece of HE-SMAs.

Fig. 3. Copper electrodes.
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A digital balance (Denver Instruments) was used to
measure the weight of the workpiece and electrode with an
accuracy of 0.01mg or less. Following the EDM procedure,
the weight loss of the workpiece and electrode wasmeasured
andutilized to estimate theMRRandEWR.Calculating the
roughness profile using its mean deviations along the
measurementpath, starting at the center line to characterize
the surface condition of each workpiece. The Maher
Company’s portable stylus profile meter, Pocket Surf (III/
PMD 90101), was utilized to evaluate surface roughness.

The machined samples underwent for cleaning
process using acetone solvent, followed by a drying step
with a hot air blower before being measured for Ra. In
order to ensure validity and precision, each Ra calcula-
tion was repeated six times in each of the six different
orientations, and the roughness value for each treatment
combination was established as the average sum of the
six replications.

To investigate the characteristics of both samples, they
are subjected to an electro-polishing procedure to treat the
surfaces as well as the sub-surfaces, after which they are
examined using a scanning electron microscope with EDX
mapping (SEM model; Axia ChemiSEM, Thermo Fisher
Scientific Inc.).
3 Mathematical modeling based on RSM

The second-ordermodel is usually appliedwhen the response
function is unknownornon-linear.A second-ordermodel has
been used in the current investigation; after analyzing the
experimental results, a mathematical model was built to
depict the correlation between the process variable and the
response. The second-order model, as represented by
equation (1) provides the explanation for the system’s
behavior.

Y ¼ bo þ
Xk

i¼1

biXi þ
Xk

i¼1

biiX
2
i þ

X2

i<j¼2

bijXiXj ± e; ð1Þ

where Y represents the response, Xi represents the input
variables, and Xi2 and XiXj, the input variables, are
represented by their corresponding squares and interaction
terms, respectively. The regression coefficients that are not
known are represented by the symbol. o, i, ij, and ii, and the
model’s error is shown as.

Statistical regression analysis of the experimental
data acquired by Table 2 allowed the relationship
between the MRR, EWR, and Ra, and the other process
parameters will be investigated. Acceptance was deter-
mined by evaluating high measurements to extremely
high correlation coefficients for non-linear and linear
regression models. A polynomial regression model was
employed to model each of the three factors under
consideration in this evaluation. A quadratic model
incorporating MRR, EWR, and Ra has been proposed, as
indicated in equation (1) and according to the results of
experiments, the regression model’s coefficients can be
computed using the experimental observations. These
variables’ effects and interactions were considered in this
investigation, and the resulting model is expressed as an
equation that represents the interaction. Table 3 sum-
marizes the results after the backward elimination
method.

Paper All three input parameters (A: discharge
current, B: pulse-on time, and C: pulse-off time) have
essential effects on Table 3, with at least a 0.05 level of
significance or (95%) confidence interval, and P-values
for all responses (MRR, EWR, and Ra) were close to zero.
The more significant the influence was, the smaller the P-
value, a term commonly used in statistical modeling
language [28]. The second way pulse current and pulse-on
time interact (A�B) and pulse current and pulse-off time
interact (A�C) has more of an impact on MRR. For
measuring EWR, the interactive effects of pulse current
and pulse-on time (A�B) and the interactive effects of
pulse current and pulse-off time (A�C), as well as the
second-order impacts of pulse current (A2), were found to
affect the results. Finally, the pure quadratic effects of
pulse current (A2), pulse-on time (B2), and pulse-off time
(C2), as well as the interactions between pulse current
and pulse-on time (A�B), pulse current and pulse-off
time (A�C), and pulse-off time (BC), and pulse-on time,
were also discovered to be significant factors in
determining Ra.



Fig. 4. CNC, CHMER EDM.

Table 1. Independent input Parameters, Coded and Actual levels.

Parameters Notation Unit Coded/actual levels
−1 0 1

Discharge current (Ip) A Amp 8 12 16
Pulse-on time (Ton) B ms 50 100 150
Pulse-off time (Toff) C ms 25 50 75
Voltage (V) D volts 140 140 140
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Table 4 presents the ANOVA outcomes for the model’s
three response functions with a confidence level of 95%. It
was noted that all quadratic regression models display
either a higher level of significance (P-value=0) or a
significant level between (0 < P-value < 0.05), except for
A2, B2, C2, and B�C forMRR, B2, C2, and B�C for EWR
(P-value > 0.05), as well as all models adequately capture
data from experiments. The lacks of fits for Ra transpired
to be insignificant in relation to the pure error. As a result,
the sufficiency of the model verification for the Ra output
measure is completely ensured.

Ordinary R-squared is another statistical diagnostic
index that is mainly used to assess the model’s goodness of
fit, the representation of R-squared (R2), adjusted
R-squared (R2

adj.), and predicted R-squared (R2
pred.)

[29], The model for each response can be found in Table 4.
The values under consideration are 97.82%, 97.05%, and
91.05% for MRR; 95.36%, 93.22%, and 83.4% for EWR;
and 99.53%, 99.11%, and 96.21% for Ra, respectively.
Generally, the more accurate theR2s are to unity, the more
closely the model matches experimental data [30,31].
Standard statistic R2, also called the multiple determina-
tion coefficient, expresses the proportion of the model’s
total variations that can explained. While the R2adj.
Statistic, which is adjusted for the model’s size (number of
components), indicates the percentage of total variability
that the model can explain after accounting for significant
terms (in the reducedmodel); the value ofR2 increases with
every additional variable or regressor incorporated into the
model, whether significant or insignificant.

On the contrary, the adjusted R2 does not necessarily
increasewhenadditional predictorvariablesare introduced
into the model. In reality, the value ofR2

adj. will frequently
diminish when superfluous terms are included. So, whenR2

andR2
adj. are very different, there is a good chance that the

model incorporates terms that are not significant [30,31].
Hence, it’s an appropriate standard for assessing a model’s
goodness of fit when it includes only significant terms
compared to the scenario where all terms are caught up.

Table 5 lists the finalized values for each regression
coefficient for each response. The experimental outcomes
enhancements to regression (prediction) equations to each
response attribute (MRR, EWR, and Ra) in relation to the
three EDM parameters as a function, as shown below.
Some terms of the quadratic equations (2)–(4) have had
their unimportant coefficients deleted.

MRR ¼ �0:409þ0:6323Aþ0:00018B
þ0:00867C�0:001557AB�0:003162AC; ð2Þ

EWR ¼ �0:681þ0:0697Aþ0:00441B

þ0:00757Cþ0:00294A2�0:000514AB
�0:000898AC; ð3Þ

Ra ¼ 1:049� 0:1719Aþ0:01204B

þ0:13191Cþ 0:02152A2þ0:000047B2

�0:001113C2�0:000343AB
�0:001380AC�0:000116BC: ð4Þ

4 Results and discussion

4.1 Parametric analysis of EDM parameters on MRR

The main influence plot of the MMR for every variable, as
illustrated in Figure 5. The MRR can be seen to increase
gradually as the discharge current rises. The erosion rate is
increased because higher discharge currents cause greater



Table 2. Planned methodology and actual experimental.

S.
No.

Ip
A

Ton
ms

Toff
ms

MRR
g/min

EWR
g/min

Ra
mum

1 12 100 50 3.99142 0.254015 5.62100
2 12 100 50 4.08900 0.249015 5.82200
3 8 50 75 2.67140 0.131417 4.08000
4 8 150 25 2.36393 0.108047 5.40567
5 16 50 25 7.12016 0.874483 6.19600
6 16 150 75 2.38838 0.149014 6.57600
7 8 100 50 2.57649 0.163251 5.14600
8 16 100 50 5.27020 0.444000 7.06800
9 12 100 25 4.42270 0.288194 5.33000
10 12 150 50 3.05569 0.236526 6.51167
11 12 50 50 4.76031 0.333216 5.24900
12 12 100 50 3.88142 0.248861 5.83300
13 12 100 50 3.97700 0.247000 5.72100
14 12 100 75 3.46191 0.067761 4.80467
15 12 100 50 4.08900 0.244015 5.79300
16 12 100 50 3.87799 0.269000 5.72100
17 16 50 75 5.35558 0.472043 5.78700
18 8 150 75 1.31516 0.107143 4.97033
19 8 50 25 3.53647 0.062381 3.76400
20 16 150 25 5.06717 0.396980 7.39000

Table 3. Model Parameters and Regression Coefficients for MRR, EWR, and Ra.

Term MRR model EWR model Ra model

Coef. T-value P-value Coef. T-value P-value Coef. T-value P-value

Constant 3.8636 76.97 0.000 0.2438 16.11 0.000 5.7562 201.25 0.000
A 1.2738 17.94 0.000 0.1764 11.66 0.000 0.9651 36.68 0.000
B �0.9254 �13.04 0.000 �0.0876 �5.79 0.000 0.5778 21.96 0.000
C �0.7318 �10.31 0.000 �0.0803 �5.30 0.000 �0.1868 �7.10 0.000
A2 – – – 0.0471 2.20 0.046 0.3443 6.86 0.000
B2 – – – – – – 0.1176 2.34 0.041
C2 – – – – – – �0.6954 �13.86 0.000
A B �0.3114 �3.92 0.002 �0.1027 �6.07 0.000 �0.0686 �2.33 0.042
A C �0.3162 �3.98 0.001 �0.0898 �5.31 0.000 �0.1380 �4.69 0.001
B C – – – – – – �0.1445 �4.91 0.001
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amounts of electrical discharges that can remove a larger
amount of material from the workpiece [32]. There’s a
decrease in the MRR as the pulse-on time increases.
Despite common opinion, shorter pulse-on times actually
allow for more electrical discharge to occur than longer
ones; when the pulse duration is increased, the plasma
channel enlarges excessively, which diminishes the effi-
ciency of plasma flushing and the density of electrical
discharge happening within the gap space. This is coupled
with an increased resolidification of the molten material
instead of it being effectively removed [33,34]. On the other
hand, the most important influence of pulse-off time
demonstrates a tendency to behave in the opposite
direction. As the pulse-off time increases, the plasma
channel shrinks, reducing the attack of positive ions on the
workpiece surface and lowering the MRR. Significantly,
these results were determined by examining the impact of
each factor independently (while maintaining the constant
of the other parameters); however, more practically useful
insights can be unveiled when the collective effects of these
factors are studied simultaneously; this can be accom-
plished by examining 3D surface and 2D contour plots of
response metrics in connection with each significant pair of
input variables.



Table 4. ANOVA and fit summary for the second-order models of MRR, EWR, and Ra.

Source DF Adj. SS Adj. MS F-value P-value Remarks

For MRR
Model 5 31.7197 6.3439 125.88 0.000 More significant
Linear 3 30.1440 10.0480 199.38 0.000
A 1 16.2258 16.2258 321.97 0.000
B 1 8.5629 8.5629 169.91 0.000
C 1 5.3553 5.3553 106.27 0.000
Square 0
2-Way interaction 2 1.5757 0.7879 15.63 0.000
A�B 1 0.7759 0.7759 15.40 0.002 Significant
A�C 1 0.7998 0.7998 15.87 0.001
Error 14 0.7055 0.0504
Lack-of-fit 9 0.6616 0.0735 8.37 0.015
Pure error 5 0.0439 0.0088
Total 19 32.4252

R2 = 97.82% R2
adj. = 97.05% R2

pred. = 91.05%
For EWR
Model 6 0.612492 0.102082 44.57 0.000 More significant
Linear 3 0.452410 0.150803 65.84 0.000
A 1 0.311269 0.311269 135.89 0.000
B 1 0.076708 0.076708 33.49 0.000
C 1 0.064434 0.064434 28.13 0.000
Square 1 0.011099 0.011099 4.85 0.046 Significant
A2 1 0.011099 0.011099 4.85 0.046
2-Way interaction 2 0.148982 0.074491 32.52 0.000
A�B 1 0.084445 0.084445 36.87 0.000
A�C 1 0.064537 0.064537 28.18 0.000
Error 13 0.029777 0.002291
Lack-of-Fit 8 0.029376 0.003672 45.83 0.000
Pure Error 5 0.000401 0.000080
Total 19 0.642269

R2 = 95.36% R2
adj. = 93.22 % R2

pred. = 83.41%
For Ra
Model 9 14.7535 1.63928 236.80 0.000 More significant
Linear 3 13.0011 4.33372 626.03 0.000
A 1 9.3142 9.31418 1345.49 0.000
B 1 3.3381 3.33815 482.21 0.000
C 1 0.3488 0.34882 50.39 0.000
Square 3 1.3953 0.46510 67.19 0.000
A2 1 0.3260 0.32600 47.09 0.000
B2 1 0.0381 0.03806 5.50 0.041 Significant
C2 1 1.3297 1.32971 192.08 0.000
2-Way interaction 3 0.3571 0.11902 17.19 0.000
A�B 1 0.0377 0.03768 5.44 0.042
A�C 1 0.1523 0.15226 21.99 0.001
B�C 1 0.1671 0.16714 24.14 0.001
Error 10 0.0692 0.00692
Lack-of-fit 5 0.0370 0.00740 1.15 0.442* Insignificant
Pure error 5 0.0322 0.00644
Total 19 14.8227

R2 = 99.53% R2
adj. = 99.11% R2

pred. = 96.21%
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Table 5. Response model finalized regression coefficients.

Coefficient MRR
g/min

EWR
g/min

Ra
mm

bо �0.409 �0.681 1.04900
bA 0.6323 0.0697 �0.17190
bB 0.00018 0.01204 0.01204
bC 0.00867 0.00757 0.13191
bA

2 Insignificant 0.00294 0.02152
bB

2 Insignificant Insignificant 0.000047
bC

2 Insignificant Insignificant �0.001113
bAB �0.001557 �0.000514 �0.000343
bAC �0.003162 �0.000898 �0.001380
bBC Insignificant Insignificant �0.000116

Fig. 5. Main effect plots for MRR.
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Figures 6a and 6b illustrate the combined effect of
discharge current (A) and pulse-on time (B) at a steady
middle value of pulse-off time (C) in both 3D surface and
2D contour presentations. The upper left area of the
contour plot demonstrates that maximum material
removal rates (MRRs) can be achieved when the discharge
current reaches its peak and the pulse-on time is set to its
lowest permissible values within the scope of process
parameters investigated in this study. The influence that
current (A) and pulse-off-time (C) have on MRR is seen in
Figures 6c and 6d. It is common knowledge that while
keeping the pulse-on time at certain levels, which in this
situation is the level at medium, higher MRR amounts can
be attainedmainly in the region identified by a high current
and a low pulse off-time. A rise in Ip generates a powerful
spark, and when Toff decreases, the workpiece’s tempera-
ture doesn’t significantly drop before the ignition of the
next spark, leading to an increased material removal rate
(MRR). An exhaustive analysis of residuals has been
performed for each formulated response, with the corre-
sponding graphs illustrated in Figure 7.

The normal probability plot is a visual method used to
assess if a dataset closely follows a normal distribution. The
normal probability plot of residuals indicates that the
experimental data roughly aligned along a straight line,
validating a strong correlation between the observed and
predicted values for the response (Fig. 7a). Only minor
fluctuations are noticeable in the plot of residuals versus
fitted values (Fig. 7b). The histogram of residuals in
Figure 7c displays a Gaussian distribution, indicating that
the error frequency falls within the�0.5 to 0.3 range, which
is desirable. Finally, the plot of residuals against the order
of experiments can be seen in Figure 7d. Both negative and
positive residuals suggest no specific trend, which is
statistically significant.

4.2 Parametric analysis of EDM parameters on EWR

Figure 8 illustrates the graphical representation of the
three primary effects plot of the EWRmodel, each of which
was created with the other parameters held constant at the
median level. A similar pattern is observed when compar-
ing the main effect plots of MRR. The EWR increases
with increased discharge current and can reach up to
0.4673 g/min on its own. This is the highest amount of
EWR in these graphs, confirming that the discharge
current, above all other parameters, has the most
significant influence on EWR. It’s evident from the main



Fig. 6. 3D response surface plot and contour plot of EDM parameters on MRR.
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effect plot of pulse-on time that establishing longer pulse-
on times can be beneficial, as shorter pulse durations can
contribute to tool wear, while shorter pulse durations will
decrease tool wear. Figure 9 illustrates a single electrical
discharge with constant polarity across the two electro-
des and the created plasma channel. Accelerating
electrons bombard the anode surface (positive pole:
tool) with each discharge, while ions attempt to migrate
towards the cathode, which is the negatively charged
(negative pole: workpiece); they collide with the work
material’s surface. With short pulse durations, it has the
opportunity to activate large amounts of negatively
charged particles, which are thousands of times lighter
than ions, to strike the tool’s positive (anode) electrode,
which helps to increase the erosion rate of the electrode
material [35]. Finally, choosing a higher Toff results in a
smaller EWR. This is the same justification for the MRR,
which can be applied here while maintaining other
variables unchanged.
Figures 10 a and 10b depicts the EWR response surface
plot and its related contour plot for current (A) and pulse-
on time (B). Lower electrode wear rates (EWRs) are always
desirable, and they can be achieved by utilizing reduced
discharge currents in combination with extended pulse-on
times (as seen on the upper left side of the contour
diagram). Lengthening the pulse duration allows heavier
positive ions to reach the target workpiece on the cathode,
controlling the plasma channel trajectory and safeguarding
the anode tool fromdamage caused by excited electrons [36].
Additionally, due to the elevated plasma temperature
during sparking, the carbon emitted from the breakdown
of hydrocarbon-based dielectric fluid adheres to the tool’s
surface, forming a wear-resistant coating.

This subsequently results in a notable reduction in
EWR during periods of extended pulse duration [37].

Figures 10 c and 10d show how Ip and Toff affect the
predicted response surface and contour plot of EWR, with
Ton remaining constant in their middle level. It is



Fig. 7. Residual plots for MMR.

Fig. 8. Main effect plots for EWR.
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important to note that the EWR gets lower as the Ip gets
lower with increasingToff, and EWRdecreases as a lower Ip
fails to generate a potent spark, coupled with the cooling
effect induced by a high Toff.

The residual plots of EWR (Fig. 11a) indicate a normal
distribution of residuals with minimal deviation, under-
scoring the appropriateness of the predictive model.
Moreover, the residuals don’t follow any consistent pattern
and are randomly dispersed around zero, regardless of the
magnitude of the fitted values. The residual vs. fitted value
plot (Fig. 11b) shows that the residuals are relatively
small and decrease as the fitted values increase. The
histogram of residuals in Figure 11c displays a Gaussian
distribution, indicating that the error frequency falls



Fig. 9. Electrical discharge diagram.
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within the �0.1 to 0.075 range, which is optimal, and the
Residual vs. observation order plot (Fig. 11d) shows no
observable time trend or inclination towards lower values
in the model. This proves that the model did not
underestimate MRR values.

4.3 Parametric analysis of EDM parameters on Ra

The effects of varying input parameters, such as those seen
in Figure 12, are pulse current, pulse-on time, and pulse-off
time on surface roughness. Surface roughness increases as
discharge current increases. The rise in surface roughness is
caused by an increase in spark energy, which causes the
surface pits that result from material removal to expand.
Similarly, Ra augmented in tandem with an escalation in
Ton, transitioning from a minimum to a maximum level,
with all other parameters remaining constant at their
intermediate values. When the expulsion pressure is held
steady, the insulating fluid is incapable of clearing away the
molten substance from the sample, which results from long
Ton. Furthermore, there is a minor increase of 0.231mm in
Ra, Toff elevates from 25 to 50ms, while it sees a reduction
of 0.605 when Toff is increased from 50 to 75ms.

The combined effects of pulse current (A) and pulse-on
time (B) on Ra are shown in Figure 13a. It becomes evident
that reducing the pulse-on time leads to smaller values for
Ra discharge current, which can produce smoother
surfaces, known as a low energy state. However, reducing
their variation ranges to minimum values may achieve
more smooth surfaces. The contour diagram and the
response surface to Ra are in with the machining
parameters Ip and Ton, where Ra tends to increase
substantially as Ip increases for any given Ton value, as
shown in Figure 13b. Hence, the lowest Ra is attained with
a reduced peak current (8 A) and pulse-on time (50ms).
Due to their ability to control input energy, a surge in Ip
will melt more material and be worn away from the
workpiece due to a more powerful spark, leading to larger
craters and higher temperatures.

Figures 14a and 14b illustrates the prediction of Ra’s
response surface and contour under the impact of Ip and
Toff, while Ton is maintained at a steady 100ms level.
Notably, as Ip rises, it also increases Ra; the rationale for
this is, as previously mentioned. However, Ra decreases
gradually with an increase in Toff, particularly at lower Ip
levels, while at higher Ip, Ra escalates. It’s worth noting
that Toff’s influence is considerably less than Ip and Ton’s.
In conclusion, Figures 14c and 14d displays Ra as a function
of Ton and Toff, with Ip fixed at 12 A. Based on these
findings, it can be deduced that both Ip and Ton share a
proportional relationship with Ra, and in comparison, to
these parameters, Toff’s impact is minimal within the
experimental range that was utilized for this test.

As demonstrated in Figure 15a, the normal distribution
of residuals affirms the appropriateness of the predictive
model used. Moreover, in Figure 15b, it can be observed
that the residuals lack any discernible pattern and are
randomly dispersed, regardless of the magnitude of the



Fig. 10. 3D response surface plot and contour plot of EDM parameters on EWR.
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fitted values. The histogram of residuals depicted in
Figure 15c demonstrates a Gaussian distribution, indicat-
ing that the errors are well-distributed within the range of
�0.125 to 0.075, which is considered desirable. The
Residual vs. observation order plot (Fig. 15d) shows no
discernible trend or drift in the model. This proves that the
model has not underestimated the Ra values. As a whole,
none of the yielded models show any inadequacy.

4.4 The results of scanning electron microscopy
(SEM)

The EDM process is highly intricate and fast-paced,
involving rapid localized heating and cooling, along with
the random action of the spark. Consequently, a thermally
affected layer is formed on the workpiece surface due to
melting and resolidification, which is not expelled or
removed by flushing. This layer, known as the white layer,
possesses a distinct structure from the original material and
is characterized by a fine-grained and hard nature. One can
find globules, cracks, and microcracks within the white
layer, and their density is contingent on the process
conditions. The structure of this surface contributes to an
increase in roughness, which Ip heavily influences. The
impact of EDM parameters on the formation of craters and
rough surfaces during the EDM process can be distinctly
seen in the SEM micrographs under varied parameter
combinations.

The scanning electron microscope examination showed
that the surface has a complicated appearance and that it is
enclosed with spherical particles, shallow craters, molten
droplets, pockmarks, debris globules, and voids, which are
the result of the high thermal energy released by discharges
followed by rapid cooling. The spherical particles aremolten
metals that are randomly discharged during the process,
which then solidify and adhere to the surface. Figure 16
shows SEM photograph of Ni35Ti35Zr15Cu10Sn5 (HT-HE-
SMAs). This occurs at different levels of Ip, Ton, and Toff, as
referenced in the accompanying figure descriptions.

The sample labeled with the symbol (A) exhibits the
greatest amount of metal removal rate, accompanied by a
roughness level that approaches the highest observed
roughness in the processes; whereas the sample containing
the symbol (b) exhibits a moderate metal removal rate, as



Fig. 11. Residual plots for EWR.

Fig. 12. Main effect plots for Ra.
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well as a slightly elevated roughness; while the sample
exhibiting the lowest metal removal rate in the processes,
characterized by a roughness level that is approximately
moderate, is denoted by the symbol (C); another instance
may be observed in the symbol (D) is utilized, indicating
that the surface roughness is at its minimum level during
the experiments. Additionally, the metal removal rate
associated with this process is lower compared to the
average.
The variation forms of crater rims, microcracks, and
globular attachments can be seen in the figures corre-
sponding to diverse machining parameters. A significant
enlargement of the crater and microcracks in the samples is
evident because an increase in spark energy with pulse
currents leads to a higher surface crack density and deeper,
broader craters on the surface. However, the crater’s
diameter is also affected by Ton and expands with its
increase. Subsequently, as Ton increases to some extent,



Fig. 13. 3D response surface plot and contour plot of EDM parameters on Ra.

Fig. 14. 3D response surface plot and contour plot of EDM parameters on Ra.

M.A. Al-Mousawi et al.: Manufacturing Rev. 11, 4 (2024) 13



Fig. 15. Residual plots for Ra.

Fig. 16. SEM photograph of Ni35Ti35Zr15Cu10Sn5 (HT-HE-SMAs) at various levels of Ip, Ton and Toff.
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more heat is provided over a longer duration, producing
more molten material with larger globules and craters.
During the cooling process, thermal stress is created,
leading to an increase in the density of surface cracks.
Consequently, the length of the surface cracks experi-
ences an increase. When the duty cycle is increased, the
outcome is a greater density of surface cracks due to
inadequate heat dissipation to the surrounding environ-
ment. This leads to oxidation and an increase in the
thickness of the recast layer. Whereupon, the recast layer
exhibits reduced thermal and electrical conductivity,
resulting in a decrease in the rate of metal removal and an
increase in surface roughness. Additionally, the effect of
Toff initially experiences a slight increase before subse-
quently decreasing [38–40].
5 Conclusion

In this study on the EDMof high-temperature high entropy
shape memory alloy (HT-HE-SMA), a second-order RSM
model was developed to analyze the significant effects of Ip,
Ton, and Toff, including their quadratic implications and
interactions, on MRR, EWR, and Ra. The research
findings underscore that the machining input parameters
have a critically significant influence. Based on the
experimental results and response model, the ensuing
conclusions can be deduced:
– In terms of the analysis of main effects, the MRR and
EWR behave similarly, though the MRR and EWR
behave more nonlinearly. Increasing either Ip results in
greater MRR and EWR values, whereas increasing Ton or
Toff causes the reverse effect. On the other hand, the work
roughness value, Ra, is directly proportional to both the Ip
andTon while Ra increases slightly from low to middle and
then decreases to high level when Toff increases.
–The two-way interaction effects of Ip withTon (A�B) and
Toff (A�C) have significantly controlled the MRR.
– On the EWR measure, the same dual interaction effects
that influenced the MRR and plus the pure quadratic
effects of Ip (A

2) were found to be statistically significant.
– The pure quadratic and the parameters’ interaction
effects are significant for the Ra response.
– The enlargement of the crater dimensions and the
presence of micro-cracks in the specimens are attributed to
the escalation in spark energy resulting from the applica-
tion of pulse currents.
– Utilizing RSM models, this research provides insights for
enhancing the EDM efficiency of Ni35Ti35Zr15Cu10Sn5 HT-
HE-SMA, offering a robust approach for precise machining
and a predictive equation for MRR, EWR, and Ra,
corroborated by R2 values of 97.82% for MRR, 95.36% for
EWR, and 99.53% for Ra, match between experimental
and predicted values.
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