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ABSTRACT. 

      This paper brings together random field generation and finite element technique to model steady 

state seepage through two dimensional soil domain in which the hydraulic conductivity is randomly 

distributed in space. The analysis treats the hydraulic conductivity as a spatially random property with 

specified mean, variance and spatial correlation length. The results of the combined model used in an 

optimization procedure to obtain the optimum dimension of the hydraulic structure seepage control 

techniques.  
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INTRODUCTION. 

       The work presented in this paper brings together finite element analysis for analyzing the seepage 

phenomena and random field theory to simulate the foundation beneath hydraulic structures to be 

anisotropic hetrogeneous media. This model couppled with optimization procedure to obtain the 

optimum dimensions of hydraulic structure seepage control techniques with minimum cost of these 

techniques.  As it is known, the dimensions of seepage control techniques have different effects on the 

factors of safety against piping and uplift pressure. For example increasing the length of d/s cutoff will 

increase the factor of safety against piping and decreases that for uplift pressure. Hence a model is 

required to find the optimum dimension of such length and other control techniques .The constrains 

adopted was the factors of safety against uplift pressure and piping phenomena. The objective 

function adopted was the cost of those seepage control techniques. 

      Smith and Freeze (1979) were the first to study the problem of confined flow through a stochastic 

medium using finite differences method, in which two dimensional (2D) examples of flow between 

parallel plates and beneath a single sheetpile were presented. Recent developments in random field 

and finite element 

 

 methodology have led to further studies by Griffiths and Fenton (1994) for two dimensional seepage 

beneath water retaining structures and Griffiths and Fenton  
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(1997) for three dimensional seepage problem under sheetpile.  

 

SEEPAGE EQUATION. 

 In order to perform a seepage analysis, a general model describing the phenomena of seepage 

must be available supplied with specific boundary conditions and soil properties. This model can be 

used to determine head and flow distribution. The field equation is the mathematical basis for several 

models or methods used in seepage analysis. The hydraulic conductivity in the two-dimensional case 

is so oriented that maximum and minimum values occur along the preferred axes, which are called 

principal axes. Other directions through the domain yield values of hydraulic conductivity which are 

between the principal values and are distributed as an ellipse, which the principal values making the 

major and minor axes. 

 The theory of seepage flow through anisotropic heterogeneous porous media is found in many 

researches. The following derivation was taken from Harr (1962). Consider a domain of flow under 

hydraulic structure at anisotropic soil foundation, where the domain of flow is oriented in the (x, y) 

coordinate axes will makes an angle � with the principal axes of hydraulic conductivity of the porous 

media. The coordinate system (�, �) is designed with the principal axes of the hydraulic conductivity. 

The general  seepage equation in heterogeneous anisotropic porous media in two dimensional space is: 
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consider the term in equation above as a simple form : 
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In this research, the piezometric head represents the differences of piezometric head, thus: 

2H1H

1HH
H

−

−
= ………………………………………………………………….(2) 

Where:  

Ho: difference ratio of piezometric head  

H1, H2: the piezometric head in upstream and downstream of the structure respectively. 

H: the piezometric head at any point in the flow domain. 

         Basically there are two kinds of boundary condition to deal with, the first, is a specific head 

along a given boundary, an important special case for this boundary condition is where the specified 

head is a constant along the boundary called an equipotential line. 

In mathematical term H = Ho on boundary S1 

Where H is the peizometric head on (S1) hence all reservoir boundaries represent equipotential lines. 

          A second type of boundaries is where the normal component of the gradient is specified, along 

the boundaries. Thus, we use the term flux boundary or more commonly-flow boundary-; a special 

type of flow boundary is a no-flow boundary that is expressed mathematically.  

�H/�N = 0 

Or in general  
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         Where Lx and Ly are a direction cosine of normal vector on the surface with direction X and Y 

respectively. These boundaries represent a streamline of constant stream function. In modeling two-

dimensional seepage beneath hydraulic structure where the lateral boundary of the model typically are 
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no-flow boundary, experience suggested that the distance to these lateral boundary at least three times 

the depth of the flow system for isotropic media .In anisotropic medium the boundary should be 

located at a distance of 3(kxx / kyy)
1/2

 times the depth of the flow system. 

 

BRIEF DESCRIPTION OF RANDOM FIELD MODEL. 

       In this paper a random field generator known as the Local Average Subdivision Method (LAS) 

devised by Fenton (1990). The reliability of many fields in presence of uncertainty has been a crucial 

factor in their analysis and design. Several of these fields are inherently random and can be modeled 

as a random processes, in seepage modeling one can use Monte Carlo random generation method to 

generate a field permeability through porous media to simulate a heterogeneous field hydraulic 

conductivity. 

          Field measurements of hydraulic conductivity have indicated an approximately lognormal 

distribution as seen before. The same distribution has therefore been adopted for the simulations 

generated in this research. Essentially the field's hydraulic conductivity obtained through the 

transformation. 

 

Ki = exp. (�lnk + �lnk Gi ) ……………………………………………………….(4) 

          Where Ki is the permeability assigned to the ith elements, Gi is the local average of a standard 

gaussian random field G over all the domain of the ith elements, �lnk and �lnk are the mean and 

standard deviation of the logarithm of K obtained from the prescribed mean and standard deviation �k 

and �k  via the transformation  

{ }kln
2

klnk
2

1exp σ+µ=µ ……………………………………………………..(5) 

}1{exp()( kln
22

kk −σµ=σ ……………………………………………………….(6) 

      This technique generate realizations of the local average  Gi that are derived from the isotropic 

random field G having zero mean and unit variance and Gauss markove spatially correlation function  

|}|
2

exp{)(
k

τ
θ

−=τρ   …………………………………………………………..(7) 

       Where | 	 | is the distance between points in the field and �k is the scale of fluctuation . The term 

realization in the context refers to the single generation of random field and subsequent finite element 

analysis of that field. 

      Loosely speaking, the scale of fluctuation is the distance over which points in the field are 

significantly correlated. 
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Brief Description of Finite Element Model. 

       In this paper a random field generator is combined with the power of finite element method for 

modeling spatially varying soil properties. The problem chosen for study is a simple boundary value 

problem of steady seepage beneath hydraulic structure with two cutoffs, one in u/s side and the other 

in the d/s side.    

Finite Element Formulation of Governing Equation. 

      The behavior of field variable on each element is defined approximately by a function depending 

on nodal value. 

                         Η Ν =�
=

ii  H
n

1i

e ………………………………………………….(8) 

H
e
 : approximate solution of field variable in the element 

Hi : nodal value of (H) of element (e) 

n   : number of nodes for the element (e) 

Ni : shape function of the element (e) 

One can write the equation  in matrix form 

H
e
 = [Ni] {Hi}                            

Where;    Hi : vector matrix of nodal value,  Ni : shape function matrix of element (e) 

And for overall domain the approximate solution will be 

   {Hi} [Ni]or         Hi Ni  H
ne

1e

ne

1e

n

1i

���
== =

= ……………………………………………(9) 

      Where (ne) is the total No. of elements.  
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Fig. (1). Soil's hydraulic conductivity ellipsoid  and boundary condition.��
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 GALERKIN PROCEDURE OF WEIGHTED RESIDUAL METHOD.  

 The weighted residual method is a technique used to result a solution of a linear differential 

equations. If this method is used, the finite element equation is directly derived from the governing 

differential equation of the problem. 

Let A be the field domain, H the field variable then the governing equation can be written as 

F (H) = 0                      at (A)  

Letting Ha as the approximate solution, by substituting in above equation. 

F (Ha) = R � 0              in the domain (A) 

Where R is the residual obtained to the use of the approximate solution Ha. 

 The aim is to make the weighted residual to be minimum. In order to perform this aim the 

weighted residual should be integrated on the problem domain using suitable  weighting function and 

equated to  zero. 

              0 A  d R Wj
A

=�  

and in the element form:- 

0 A  d Re  Wj 
n

1 Ae

=� � …………………………………………………………(11) 

Where :   Wj: weighted function, R
e
: element residual 

 Galerkin’s method, which applied to weighted residual procedure, assumed that the weighted 

function is the same as the (shape function) which describe the variable variation within the element. 

Wj = Nj 
   A quadratic element has curved edges varying as a parabolas. For curved boundaries it is more 

desirable to use a quadratic element, which is known as “a higher order Isoparametric element”. a 

two-dimensional eight nodes quadratic Isoparametric element are used here. 
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BRIEF DESCRIPTION OF OPTIMIZATION MODEL. 

The objective function and decision variables. 

            Decision variables in the optimization model used herein consist of the variables that define by 

the objective function which is 

F = c1 s1 + c2 s2  

Where (F) as above is the objective function which represent the total cost of the seepage control 

techniques component. The optimization procedure will minimize it to obtain the minimum cost and 

result the optimum dimension of seepage control techniques (s1, s2) where: 

s1: the u/s cutoff   dimension       ,         s2: the D/s cutoff dimension  

 The costs (c1, c2) is the real in time costs and transformed as a unit by dividing one into 

another to solve with unit less cost, therefore, the solution will be more general in this case. 

 Seepage Control Component Cost  

1 Sheet pile + related costs 150000 ID /m
2 

The result factor after dividing on sheet pile cost will be: 

c1 = 1, c2 = 1 

 

CONSTRAINS: 

  The objective function defined before is subject to the following constrains: 

1. Design constraints: The factor of safety against piping (Fsi) and factor of safety against 

floating (Fsf) is fixed along the optimization procedure as recommended in design texts. Factor 

of safety against piping (Fsi) taken as 3 as recommended, and Cedergren as reported in, and the 

factor of safety against floating (Fsf) processed as (4) as suggested by soil mechanics 

experiences as Terzaghi and Peck  in formulas form. 

           Fsi  � 3  

           Fsf � 4  

          V = 
3
1 *(uplift pressure with no seepage control techniques)  

     Where V is the assumed force down which fixed during the optimization process to find the 

factor of safety against floating (Fsf). The third constrain was adopted according to the USBR 

recommendation. They recommend that the weight of the small hydraulic structures assumed 

to be {1/3 *(uplift pressure with no seepage control techniques)}.  

2. Geological constraints the use of partial cutoffs in shallow impervious foundation is not 

recommended and if a complete cutoff satisfy, there is no need to a blanket as a seepage effect 

control techniques in function form. 

s1,s2 � 95% T  

Where T is the thickness of impervious layer  

 

OPTIMIZATION PROCEDURE: 

 Searching-iteration optimization method was used to explore the minimum value of objective 

function (F) “that is the minimum cost”). The optimization procedure started from an initial value for 

all decision variables (s1, s2), and using these initial values with FEM for seepage analysis, the exit 

gradient and uplift pressure for these values of seepage control techniques dimensions will be 

performed. After that the factor of safety against floating (Fsf) and factor of safety against piping (Fsi ) 

can be found. If these factors satisfy the constraints, the objective function (F) “cost function” will be 

Table (1). Costs of hydraulic structure seepage control devices by ID in year of 

2000 from [�] 
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evaluated and stored in a matrix with the decision variables “seepage control techniques dimensions”. 

If the constrains are not satisfied the four dimensions values will be changed. These four dimensions 

will be changed using nested loops. Four loops were needed with small increment. These loops 

associated with these small increments were used to cover all possible sets of the four variables. The 

set that minimizes F will be adopted as the optimum dimensions. However the selection of the 

minimum values will be according to the designer judgment. 

 

 

 SUMMARY OF RESULTS FROM COMBINED MODEL. 

        The results of the combined model presented. The model results shown in form of charts with 

different angle of orientation (�).Structure with two cutoffs only was adopted, Different anisotropy 

ratio (kmax / kmin), for three different types of soils: sandy soil, silt soil and clayey soil presented. 

        Random generation of stochastic soil properties (kx, ky) was used to model the heterogeneity of 

soils. For each type of soil five random series of k-values was generated for three standard deviations, 

every set of trials has the same mean and standard deviation. 

Various cases were investigated to determine the effect of angle of anisotropy ellipse (�) for a various 

types of soil foundation. 

        Figures (3,4  and 5) illustrates the variation of the optimum dimensions with the angle of 

anisotropy  (�) with kmax / kmin =1, 2, 3, 4, 5. These figures show s1/b s2/b optimum values with no u/s 

and d/s blankets in sandy, clayey and silty soil respectively. It is shown that the optimum dimensions 

of s1/b and s2/b increase with the increase of the angle of anisotropy when theta < 90. The maximum 

optimum dimensions of s1/b and s2/b were found when theta =90. This behavior caused by the 

streamlines directed more toward the floor of the hydraulic structure leading to increasing in uplift 

pressure and exit gradient, particularly near the floor .the optimum dimensions then decreased as ( �) 
increased beyond �=90. 
       The effect of soil anisotropy ratio is seen from Figures (5 ,6 and 7) which indicate the values of 

optimum dimensions for different values of kmax / kmin, for kmax / kmin = 1 the optimum dimensions is 

the greatest. This is attributed to the relatively large hydraulic conductivity along the cutoff causing an 

increase in uplift pressure and the exit gradient. It is also shown that, for kmax / kmin = 5, the value of 

optimum dimensions is smallest. In fact, the effect of anisotropy ratio is small compared with the 

effect of the angle of orientation. 

       Three types of soil foundation were adopted in this research. Namely, clayey soil with 

permeability value from 1*10
-12

 – 4.7*10
-9

 m/s, silty soil with permeability value from 1*10
-9

 to 2*10
-

6
 m/s and sandy soil have a permeability value from 2*10

-6
 – 2*10

-3
 m/s. Those values were taken as a 

mean for random 7generation of k- values in order to simulate heterogeneity. 

        From Fig( 5 ,6 and 7) , it seen that the optimum dimension decrease with decrease in soil 

permeability, that is, for clayey soil optimum dimension less than for sandy soil as shown below in 

table (2 ).  

      Fig (6 (a, b, c)) illustrate the effect of random hydraulic conductivity distribution along the field. 

In these figures five random series was generated for the clayey soil which is log-normally frequency 

distribution, with fixed standard deviation and mean value and for three different standard deviation as 

shown in table (4-1). It is shown that  the difference between the five trials taken for a certain type of 

the soil (clay) and a structure with two cutoffs and anisotropy ratio kmax / kmin = 5 was small for the u/s 

cutoff dimension. that is, in fact, shows the view of the random generation as a tool to simulate the 

field in acceptable realization and more trust with model results. The optimum dimension was 

decrease with increase in covariance (Cov) value specially from ( 0.5)  to( 0.9)  which was (13.97 % ) 

in the other hand the  optimum dimension was increased with covariance (Cv) increased  from (0.9) to 

(1.1) by (0.35 %)  which can be ignored.  

 



R.H.Ei-suhaiali   and                                                                                                                    Modeling Seepage Control in Hydraulic Structures 

F.M.Al-Joubori�

 

��

��

���

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Journal of Engineering� �Volume 13   September2006       � �Number 3 
 

 

��

���

 

O
p

ti
m

u
m

 u
/s

 &
 d

/s
 c

u
to

ff
s 

d
im

en
si

o
n

s 
 

0.00 30.00 60.00 90.00 120.00 150.00

0.10

0.15

0.20

0.25

0.30

0.35

0.00 30.00 60.00 90.00 120.00 150.00

0.10

0.15

0.20

0.25

0.30

0.35

0.00 30.00 60.00 90.00 120.00 150.00

0.10

0.15

0.20

0.25

0.30

0.35

0.00 30.00 60.00 90.00 120.00 150.00

0.00

0.10

0.20

0.30

0.00 30.00 60.00 90.00 120.00 150.00

0.05

0.10

0.15

0.20

0.25

0.30

Theta �

Theta � Theta �

Theta �
Theta �

O
p

ti
m

u
m

 u
/s

 &
 d

/s
 c

u
to

ff
s 

d
im

en
si

o
n

s 
 

O
p

ti
m

u
m

 u
/s

 &
 d

/s
 c

u
to

ff
s 

d
im

en
si

o
n

s 
 

Clayey soil  

Kmax/ kmin =1 

            d/s cutoff 

            u/s cutoff 

Clayey soil  

Kmax/ kmin =2 

            d/s cutoff 

            u/s cutoff 

Clayey soil  

Kmax/ kmin =3 

            d/s cutoff 

            u/s cutoff 

Clayey soil  

Kmax/ kmin =4 

            d/s cutoff 

            u/s cutoff 

Clayey soil  

Kmax/ kmin =5 

            d/s cutoff 

            u/s cutoff 

Fig(3). relationship between angle of orientation (�) and the u/s and d/s optimum dimensions in clayey 

soil  
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Fig(4). relationship between angle of orientation (�) and the u/s and d/s optimum dimensions in silty 

soil 
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Fig(5). relationship between angle of orientation (�) and the u/s and d/s optimum dimensions in sandy 

soil 
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 *      Clayey soil 

� Structure with two cutoffs 

�  kmax /kmin =5 

� Cv =0.5  
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Fig (6).  Effect of random generation of hydraulic conductivity with fixed mean and standard deviation on 

model results for clayey soil�
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Struct. Type With2- Cutoffs  Only 

soil type s2/b s1/b 

clay 0.232 0.203 

sand 0.256 0.218 

silt 0.254 0.210 

 

 

Soil Type Mean Standard Deviation 

Sandy soil 5* 10 
–5

 m/s 2.5* 10 
-5

 m/s 4.5* 10 
-5 5.5* 10 

-5
 m/s 

Silty soil 5* 10 
-8

 m/s 2.5* 10 
-8

 m/s 4.5* 10 
-8 5.5* 10 

-8
 m/s 

Clayey soil 5* 10 
-12

 m/s 2.5 * 10 
-12

 m/s 4.5 * 10 
-12 5.5 * 10 

-12
 m/s 

 

CONCLUDING REMARKS. 

     In this paper , 2D random field generator and Finite Element models have been combined with  

optimization model to result a design model give the optimum dimensions of hydraulic structure 

seepage control techniques . 

     The study shows that the optimum dimensions of u/s and d/s cutoffs for hydraulic structures with 

two cutoffs only increase with (�) beyond  (�) < 90 , when (�) =90 the value is maximum after (�)  
>90 the value of optimum dimensions will decrease. 

      The results illustrate that the anisotropy ratio have small effect on results compare with the effect 

of the angle of orientation  (�) . 
       From results of the model, it seen that the use of random generation  to generate the hydraulic 

conductivity of soil beneath hydraulic structure was be a good way to simulate the field when Cv � 1. 
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List of Symbols: Appendix A 
 

Symbol Definition Dimension 

[ N
e
 ] Number of Element in the Problem Domain   

c1,c2  Cost Factors   

F  Objective Function  ID 

Fsf Factor of Safety Against Floating   

Fsi Factor of Safety Against Piping   

Gi Local Average of Standard Gaussian Random field G    

H Pressure Head at Any Point in the Problem Domain  L 

H1 Piezometric Head Upstream the Structure  L 

H2 Piezometric Head Downstream the Structure  L 

Ho Difference Ratio of Piezometric Head   L 

k Hydraulic Conductivity  L / T 

k& Manor principal coefficient Hydraulic Conductivity   L / T 

k' Major principal coefficient Hydraulic Conductivity   L / T 

Lx , Ly Direction Cosines   

N  kmax / kmin  

n Number of Nodes Per Element   

Ni  Shape Function Matrix of Element e  

R
e
 Element Residual   

s1 Length of Upstream Cutoff  L 

P1 Constant Head Boundary  L  

s2 Length of Downstream Cutoff  L 

P2 Impervious Boundary L  

T Depth of Pervious Layer L  

Wj  Weighted Residual Function  

x,y Coordinate Axis in the Real Region  

( , ) Local Coordinate   

� Orientation of Soil Ellipsoid  
o 

' , & Coordinate Axis Paralleled to Direction of Maximum and 

Minimum Coeff. of Hydraulic Conductivity .   

 

'lnk , *ink Mean and Standard Deviation of the Logarithm of k L / T 
 

 

 

 

 

 


