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Abstract
Realized variance option and options on quadratic variation normal-

ized to unit expectation are analyzed for the property of monotonicity in
maturity for call options at a �xed strike. When this condition holds the
risk neutral densities are said to be increasing in the convex order. For
Lévy processes such prices decrease with maturity. A time series analysis
of squared log returns on the S&P 500 index also reveals such a decrease.
If options are priced to a slightly increasing level of acceptability then the
resulting risk neutral densities can be increasing in the convex order. Cal-
ibrated stochastic volatility models yield possibilities in both directions.
Finally we consider modelling strategies guaranteeing an increase in con-
vex order for the normalized quadratic variation. These strategies model
instantaneous variance as a normalized exponential of a Lévy process.
Simulation studies suggest that other transformations may also deliver an
increase in the convex order.

Financial markets now trade options on numerous underliers other than
stocks and stock indices. Examples include options on the VIX index, realized
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variance on stocks and stock indices, cumulated losses from natural disasters,
cumulated losses on defaults by a basket of �rms, among other possibilities. The
underlying outcomes on which these option contracts are written are not traded
assets. As a consequence, the calendar spread inequality usually satis�ed by
call options on stocks need no longer hold. This property is often referred to
as the condition for positive forward variance, re�ecting the principle that total
variance to the later maturity exceeds total variance to the earlier maturity.
Speci�cally, for stock options one may consider them as written on the price

relative to the forward price for the appropriate maturity. Viewed this way, the
underlier, now taken as the forward de�ated stock price, has unit expectation
for all maturities. If one now �xes a strike, at a prespeci�ed level of moneyness
relative to the forward, it is well known by static arbitrage arguments that call
prices for this strike, are increasing in maturity. It follows then that all convex
functions of the forward de�ated stock price, delivered as promised payo¤s, have
a higher current market value for a longer maturity. Equivalently one states that
risk neutral marginal densities for the forward de�ated stock price, are increasing
in convex order as convex functions delivered later are worth more. We refer
to Carr and Madan (2005), Föllmer and Schied (2002) and Davis and Hobson
(2007), for the relationship between such convex orders and the existence of
martingales meeting all the risk neutral marginals. This same proposition allows
one to de�ne forward variance v(K;T1; T2) at strike K over the interval T1 < T2
by the positive quantity

�
�2(K;T2)T2 � �2(K;T1)T1

�
=(T2 � T1):

The arbitrage argument underlying this monotonicity in call prices relies
quite critically on the ability to trade the underlying asset. When we have an
underlying outcome that is not a traded asset price, it is no longer the case that
risk neutral marginal densities for outcomes de�ated to a unit mean, should
be related in any way by the convex order for densities. Put another way, for-
ward variances may be negative. The marginal densities may still be recovered
from option prices in the usual way, as described for example in Breeden and
Litzenberger (1978), but call option prices at �xed levels of moneyness relative
to the mean may be increasing in maturity for some strikes and decreasing for
others, or even lose monotonicity with respect to maturity at some strikes. The
primary reason for such possibilities is that unlike an underlying traded asset,
that refers at all times to the present value of some terminal cash �ow, thereby
constituting an underlying price process that is a martingale: For nontraded
underliers, the level of the underlier at di¤erent time points, is more like two
totally di¤erent stocks and then there is no reason for the volatility of one of
them to be above or below another.
This paper considers the question of monotonicity in convex order of mar-

ginal densities, or the increase in price for calls with respect to maturity at a
�xed strike, for options on realized variance normalized to a unit expectation.
We shall consider both the physical and risk neutral densities in this context or
the monotonicity in maturity of the expected call payo¤ and its price. Though
realized variance options are not yet exchange traded, there is a developing over
the counter market in these contracts permitting the observation of some risk
neutral information. When working with data we shall take account of the nec-
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essary discretization of realized variance in terms of averaged squared daily log
price relatives. At a theoretical level we study the behavior of the rate of realized
quadratic variation, de�ned as the quadratic variation to time t de�ated by the
time to re�ect the averaging implicit in the de�nition of the realized variance
contract.
We begin with an analysis of some simple models. The classic model of

geometric Brownian motion (Black and Scholes (1973) and Merton (1973)) is
not a reasonable candidate for options on the rate of realized quadratic variation,
as in this model, this rate is a constant and not a random variable. A class of
processes with independent increments, like Brownian motion, that has now
successfully been employed for equity options is the class of in�nite activity,
pure jump Lévy processes with examples including the variance gamma model
(Madan and Seneta (1990), Madan, Carr and Chang (1998)), the normal inverse
Gaussian model (Barndor¤-Nielsen (1998)), the generalized hyperbolic model
(Eberlein and Kellerer (1995), Eberlein (2001) and Eberlein and Krause (2002))
and the CGMY model (Carr, Geman, Madan and Yor (2002)). We show that
the densities for the rate of realized quadratic variation in all these models are
decreasing in the convex order. In fact in these models the rate of realized
quadratic variation is a backward martingale. A particularly simple example
for the rate of realized quadratic variation is the rate of increase of the gamma
process and we explicitly describe and graph its call option prices. For these
models call options on realized quadratic variation display negative forward
variance. The result may be intuitively understood on noting that for reasons
related to the law of large numbers, the variance of the rate of realized quadratic
variation decreases like the recirpocal of maturity and the standard deviation
falls like the reciprocal of square root of maturity. Call prices on mean adjusted
rates of realized quadratic variation should therefore fall with maturity. The
issue is not connected with mean reversion in volatility as the normalization to
unit expectation puts aside all matters of mean reversion, whether existent or
not. The decline is a pure consequence of the e¤ects of averaging sequences of
independent centered variates. As a practical implication we note that if market
data were to reveal an increase with respect to maturity for call prices at �xed
strikes on realized quadratic variation normalized to unit expectation, then one
would need to entertain models that keep the central limit theorem at bay. This
is a modeling problem that has also been commented on in Eberlein and Madan
(2009).
Next we consider the behavior of realized variance for data on the S&P

500 index under the physical measure including the highly volatile period of
the last quarter of 2008 in our study. Here we observe that the densities are
slowly decreasing in the convex order. If we employ the operational concepts of
acceptability introduced in Cherny and Madan (2009) and follow Madan (2009)
to price options to levels of acceptability that are slightly increasing in maturity,
with a view to re�ecting a deteriorating con�dence in the model used, we �nd
the implied risk neutral densities to be increasing in convex order. Hence there
is a real possibility that these densities are increasing in convex order in the
markets. A small sample of over the counter market prices is also suggestive of
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an increase in the convex order.
Numerically we investigate the property of monotonicity in a wide class of

stochastic volatility models, including the Heston (1993) model, the stochastic
volatility Lévy models of Carr, Geman, Madan and Yor (2003) and Niccolato
and Venardos (2003). We �nd that these models primarily deliver densities for
the rate of realized quadratic variation that are both increasing and decreasing
in convex order.
Finally we explore modeling strategies that will deliver densities that are

increasing in the convex order for the rate of realized quadratic variation. An
increase is guaranteed when we model instantaneous volatility as a normalized
exponential of a Lévy process. Simulation studies suggest that other functional
transformations may also work.
The outline of the paper is as follows. Section 1 presents the results for Lévy

processes and the example of the gamma process. In Section 2 we describe the
analysis of densities for the rate of realized quadratic variation on the S&P 500
index under the physical measure, and the risk neutral measure as implied by
pricing to acceptability and observing a small sample of over the counter prices.
Section 3 takes up the stochastic volatility models followed by strategies for
densities convex in the increasing order in Section 4. Section 5 concludes.

1 Lévy Process Results

Suppose the stock price process S = (S(t); t � 0) follows an exponential Lévy
model with a driving Lévy process X = (X(t); t � 0) with no Gaussian compo-
nent, and

S(t) = S(0) exp (rt+X(t) + !t)

where
! = � log(E(X(1)):

Well known examples of such Lévy processes employed in the �nance literature
were cited earlier in the introduction. The quadratic variation to time t, Q(t);
for such a process is given by

Q(t) =
X
s�t

(�X(s))
2

and it was observed in Carr, Geman, Madan and Yor (2005) that the process
Q(t) is itself a Lévy process with Lévy density q(y) de�ned in terms of the Lévy
density k(x) for the process X; by

q(y) =
k(
p
y)

2
p
y
+
k(�py)
2
p
y

; y > 0:

Now for any Lévy process Z = (Z(t); t � 0) with E [jZ(t)j] <1 we have

Z(t)

t
�!
t�!1

E [Z(1)]
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and �
Z(t)

t
; t > 0

�
is a backwards martingale (Jacod and Protter (1988)), i.e. if

F+t = � fZ(s); s � tg

then

E

�
Z(s)

s
jF+t

�
=
Z(t)

t
; s < t: (1)

Now from equation (1) one easily deduces that for every convex function
 (x)

E

�
 

�
Z(t)

t

��
� E

�
 

�
Z(s)

s

��
It follows that the marginal densities for the rate of realized quadratic vari-

ation Q(t)=t are decreasing in the convex order. A particularly example is pro-
vided by the variance gamma model for which the quadratic variation is given
by a gamma process 
 = (
(t); t � 0) in the case of unit volatility or � = 1: In
this case the backward martingale is particularly simple using the beta gamma
algebra. Let B(�; �) be a beta random variable with parameters �; � and note
that for a < b, 
a=
b is distributed as B(a; b � a) and is independent of 
b: It
follows that for s < t; and F+t = � f
uju � tg ;

E
h
s
s
jF+t

i
= E

�

s

t


t
s
jF+t

�
= E

h
B(s; t� s)
t

s
jF+t

i
=


t
t
:

The price of a call option c(a; t) on the rate of realized quadratic variation
with strike a and maturity t; for an interest rate of r, is

c(a; t) = e�rtE

��
t
t
� a

�+�
= e�rt

Z 1

at

�x
t
� a

� xt�1e�x
�(t)

dx

= e�rt
�Z 1

at

xte�x

�(t+ 1)
dx� a

Z 1

at

xt�1e�x

�(t)
dx

�
The result is easily computed using the incomplete gamma function and Figure
(1) presents a graph of call prices for strikes relative to the mean ranging from
0:5 to 1:5 for the maturities of one month, and 3,6,9 and 12 months. The
decrease in convex order is quite evident at this unit volatility for the gamma
process.
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Figure 1: Graph showing prices of call options for gamma process quadratic
variation as a function of the strike for the maturities of one month, 3, 6, 9, and
12 months in blue, red, black, magenta and green.
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2 Analysis of S&P 500 data

We analyse in this section the physical densities for the rate of realized quadratic
variation on the S&P 500 index. For this purpose we took daily data on the level
of the index, St; from January 2 1990 to December 17 2008 and we constructed
the time series for daily squared log price relatives by

vt =

�
log

�
St
St�1

��2
:

In order to construct the densities for realized variance under the physical mea-
sure, and to investigate there monotonicity in convex order it su¢ ces to con-
struct the expectation under the physical measure of the payout to call options
on realized variance options. For this purpose we need to model the physical
measure and to simulate paths for vt: It is well known that vt is highly autocor-
related. The property we refer to is also called long memory as re�ected in an
autocorrelation function that sums to in�nity across the lags. Long memory is
an interesting property from a �nancial viewpoint as it will keep monotonicity in
maturity for call prices written on the rate of realized quadratic variation. These
considerations suggest a regression model for vt based on many lagged values for
vt: However, such a model would not give positive values for vt when simulated
forward. For this reason we consider a regression model on yt = log(vt): We
then exponentiate simulated paths for yt to build the paths for vt:
The model for yt; regressed yt on its lagged values using a robust regression

procedure, given the length of the data period and the presence of some fairly
volatile periods in the data set. The speci�c model used is

yt = a+
20X
i=1

biyt�i + ut

The results of the robust regression are presented in Table 1. We observe
the pattern of possible long range dependence in the signi�cance of t�statistics
lagged up to 20 days.
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TABLE 1
Regression Results
for log squared returns

Coe¢ cient t-stat
constant -2.4798 -7.465
lag 1 -0.0007 -0539
lag 2 0.0285 2.0734
lag 3 0.0506 3.6805
lag 4 0.0524 3.8111
lag 5 0.0753 5.4666
lag 6 0.0573 4.1504
lag 7 0.0304 2.1985
lag 8 0.0457 3.3062
lag 9 0.0299 2.1605
lag 10 0.0540 3.9111
lag 11 0.0444 3.2115
lag 12 0.0393 2.8418
lag 13 0.0296 2.1422
lag 14 0.0281 2.0313
lag 15 0.0292 2.1138
lag 16 0.0218 1.5849
lag 17 0.0233 1.6955
lag 18 0.0529 3.8441
lag 19 0.0294 2.1347
lag 20 0.0315 2.2864
Rsquare 11.01%

For the simulation we draw from the empirical density of the residuals. We
present in Figure (2) the density for the residual employed employed in the
simulation.
We simulate forward from the end of the data set on December 17 2008

for 252 days 10; 000 paths for vt on this model. We then compute the realized
variance at maturities of 1; 3; 6; 9 and 12 months for each of the 10; 000 paths
and divide by the mean value for each maturity. This gives us 10; 000 readings
for realized variance normalized to a unit expectation for our �ve maturities
and we evaluate the price of call option payo¤s under this physical measure for
a range of strike ranging from 0:5 to 1:5: We present in Figure (3) the prices
of these call options for all the �ve maturities, and we present in Figure (4) a
graph of the densities for realized variance normalized to a unit mean.
We observe clearly that these densities are slightly decreasing in the convex

order. We have explored this construction over varied time sub-intervals with
similar results. The physical densities re�ect the force of averaging in generating
densities that are decreasing in the convex order.
The question remains as to what one may expect risk neutrally. For a po-

tential perspective on this we follow Madan (2009) and consider pricing to pre-
speci�ed levels of acceptability, the residual cash �ow held on selling the realized
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Figure 2: Density of residuals in the log squared return regression

variance option for an ask price. The levels of acceptability of residual cash �ows
were axiomatized in Cherny and Madan (2009). For each level 
 of acceptabil-
ity for a residual cash �ow X; there is a convex set of measures D
 supporting
such acceptability with the requirement that EQ[X] � 0; for all Q 2 D
 : The
higher the level of acceptability the larger is the set of supporting measures with
D
 � D
0 for 
 < 
0: The set of cash �ows acceptable at level 
; A
 ; forms a
convex cone of random variables that contains all the non-negative cash �ows.
When the acceptability of a cash �ow is just a function of its probability law one
may de�ne acceptability using a concave distortion. In this case one associates
with each level 
 a concave distribution function 	
 de�ned on the unit interval
and X is acceptable at level 
 just ifZ 1

�1
xd	
(FX(x)) � 0;

where FX is the distribution function of the random variable X: The set of
supporting measures related to a particular distortion are de�ned in Cherny
and Madan (2009).
The ask price for a cash�ow X attaining the acceptability level 
; is the

smallest constant a one may add to the cash �ow to make a + X acceptable
at level 
: It is shown in Madan (2009) that this ask price is the negative of
the expectation under concave distortion at level 
; of the distribution function
for negative of the cash �ow. We employ here just a slight increase in the level
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Figure 3: Prices of Call Options on normalized realized variance under the
Physical measure for the maturities of one, three, six, nine and twelve months
in blue, red, black, magenta and green respectively.
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the physical measure for one, three, six, nine and twelve months in blue, red,
black, magenta and green respectively.
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Figure 5: Call prices under acceptability pricing with acceptability levels slowly
rising with maturity. The maturities are one, three, six, nine and twelve months
in blue, red, black magenta and green respectively.

of acceptability for longer maturities, re�ecting a decreased con�dence in the
underlying model employed. We used an initial acceptability level of 0:025;
that increases monthly by 0:025; for the distortion MINMAXV AR: For this
distortion,

	
(u) = 1� (1� u
1

1+
 )1+
 :

Figure (5) presents the graph for the resulting call prices across a range of
strikes for our �ve maturities. We observe that these prices are increasing in
the convex order. Hence we conclude that it is a real possibility that �nancial
markets may well display marginals for normalized realized variance options
that are increasing in the convex order.

3 Prices in Markets

We obtained data for three at the money straddle prices for options on realized
variance on the SPX. There were two at the money straddle prices on February 4
2009 maturing December 2009 and December 2010 with bid and ask at 14:7=16:0
and 13:85=15:5 respectively with the variance swap reference price at 41:5 and
39:5. We also have an at the money straddle quoted on January 15 2009 for a
June 9 maturity with a bid and ask at 16:25=18:25 at a variance swap reference
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at 48:5. The maturities for the �rst two straddles are 0:8685 and 1:8675 while
for the third straddle it is 0:4247:
For the monotonicity in convex order we are interested in the prices of the

options written on random variables of unit expectation and so we relativize the
strikes and option prices to the level of the variance swap rate or the level of the
risk neutral expectation of realized variance. The dollar midquote price of the
�rst two relativized unit strike straddles are 0:7397 and 0:7430: The relativized
dollar midquote price of the third straddle is 0:7113: Since the longer maturities
have the higher relativized price these observations support the hypothesis that
in the market we have possibly a slight increase in the convex order.
We also obtained two other prices, a February 4 2009 quote for a 60 strike

call of 3:1 with a variance swap reference of 42: A January 23 2009 quote for a
March 9 at the money put at 9:0 for a variance swap reference of 50:5:

4 Stochastic Volatility Models

There are two important classes of stochastic volatility models in the litera-
ture. These are the Heston (1993) model and its extensions to underlying Lévy
processes by Carr, Geman, Madan and Yor (2003) and the OU models driven
background Lévy processes with only positive jumps entertained in Barndor¤-
Nielsen and Shepard (2001), Nicolato and Venardos (2003). We investigate in
this section the behavior in convex order of the marginal densities for the rate
of realized quadratic variation normalized to a unit expectation, in the Heston
(1993) model (HSV ), the CGMY SA model and the model CGMY SG that
were developed in Carr, Geman, Madan and Yor (2003). Given the relevance
of stationary solutions to the OU equations employed and the resulting impact
of ergodic theorems on the behavior of averages we anticipate that though one
may have an initial increase in the convex order, these models will primarily be
characterized by an eventual decrease in convex order for the relevant marginals.
The task of creating risk neutral models generically re�ecting an increase in the
convex order in then taken up in the �nal section of the paper.
We begin with the HSV model. In this model realized quadratic variation

to time t; takes the form

Q(t) =

Z t

0

y(u)du:

The characteristic function for Q(t) is readily available from the cited papers
and may be used to build the Laplace transform of the rate of realized quadratic
variation normalized to unit expectation or Q(t)=E[Q(t)]: We then numerically
price options on this variable for all the models using an extension of the Carr
and Madan (1999) method to Laplace transforms that was also employed in
Carr, Geman, Madan and Yor (2005).
More speci�cally we de�ne by

�(�; t) = E [exp (��Q(t))] :
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We may obtain by di¤erentiation that

E [Q(t)] = ���(0; t)

The Laplace transform of the normalized quadratic variation is then

�(�; t) = �

�
�

���(0; t)
; t

�
:

The expectation of the normalized random variable is unity and hence following
Carr, Geman, Madan and Yor (2005) the Laplace transform in the strike a of
the option prices

w(a; t) = e�rtE

"�
Q(t)

E[Q(t)]
� a

�+#
are given by

�(�; t) = e�rt
�
�(�; t)� 1

�2
+
1

�

�
; where

�(�; t) =

Z 1

0

e��aw(a; t)da:

The option prices follow on Laplace inversion.
For the CGMY SA model the quadratic variation to time t is the quadratic

variation of the CGMY process up to the random time given by the integral
of the square root process. The Laplace transform of the quadratic variation of
CGMY process to time t; QCGMY (t), was derived in Carr, Geman, Madan and
Yor (2005) and we have

E [exp (��QCGMY (t))] = �(�; t)

= exp (�t	(�))

We are now interested in the expectation of

E

�
exp

�
��QCGMY

�Z t

0

y(u)du

���
= E

�
exp

�Z t

0

y(u)du	(�)

��
= � (	(�); t)

A similar construction is made for the CGMY SG model. For the details on
the two functions �(�) and 	(�) we refer respectively to Carr, Geman, Madan
and Yor (2003) and Carr, Geman, Madan and Yor (2005). For the numerical
inversion of Laplace transforms we follow Abate and Whitt (1995), and Rogers
(2000).
Before proceeding with this investigation we comment on the consequences

for the Sato process introduced in Carr, Geman, Madan and Yor (2007) and
studied further with respect to options on variance in Eberlein and Madan
(2009). The Sato process is an additive process with independent but inhomo-
geneous increments. It is constructed from a self decomposable random variable
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X at unit time by scaling and de�ning the probably law of X(t) at time t as
that of t
X: Sato (1999) shows that there exists an additive process X(t) with
these marginal laws for each time t: The Lévy system for this process may be
explicitly derived from the Lévy measure of X at unit time and is given in Carr,
Geman, Madan and Yor (2005). It was demonstrated in Eberlein and Madan
(2009) that for the Sato process, options on realized variance remain a random
variable and do not lose variance with maturity provided the scaling coe¢ cient
is equal to or above 1=2:
Furthermore, it is shown in Carr, Geman, Madan and Yor (2005, Theorem

5) that the quadratic variation of a Sato process with scaling coe¢ cient 
 is
itself a Sato process with scaling coe¢ cient 2
: One may explicitly derive the
Lévy system of quadratic variation as an additive process in its own right. The
characteristic exponent at unit time is then an integral of (eiux�1) against this
Lévy system that is then observed to be of the form required for a self decom-
posable law. One then shows that the Lévy system of this self decomposable law
when scaled at 2
 coincides with the Lévy system for the quadratic variation of
the original process. Hence we have for a Sato process with scaling coe¢ cient

; its quadratic variation satis�es

Q(t)
(d)
= t2
Q(1)

It follows that
E [Q(t)] = t2
E [Q(1)]

and so
Q(t)

E [Q(t)]

(d)
=

Q(1)

E [Q(1)]

whereby we have the distribution of realized quadratic variation normalized to a
unit expectation is constant in convex order. The property of increase in convex
order will therefore not be delivered by the Sato process, even if it does give
some reasonable value to options on realized variance as argued in Eberlein and
Madan (2009).
We estimate on data for 130 SPX options on February 4 2009 three sto-

chastic volatility models. These are the Heston stochastic volatility model, the
model CGMY SA (Carr, Geman, Madan and Yor (2003)), both of which have
instantaneous volatility modeled by a square root process, along with the model
CGMY SG also studied in Carr, Geman, Madan and Yor (2003) that takes the
instantaneous volatility to be given by an OU equation driven by a process that
only jumps upwards with a �nite jump arrival rate and exponential jump size
distribution.
We present �rst in Table 2 the �t statistics and in Table 3 the parameter

estimates. Graphs of the �t of model to market prices are also presented in
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Figures (6 to 8).

TABLE 2
Fit Statistics for SPX 2009 Feb. 4

Model
hsv cgmysa cgmysg

RMSE 1:0036 1:1294 0:8172
AAE 0:8340 0:9134 0:6657
APE 0:0206 0:0226 0:0165

TABLE 3
Parameter Values
HSV CGMYSA CGMYSG
v0 0:4029 C 0:8065 C 0:6210
� 0:4316 G 4:7142 G 2:4159
� 1:7358 M 15:3727 M 44:5588
� 1:0182 Y 0:9187 Y 0:9390
� �0:7961 � 4:2242 � 2:8320

� 0:3503 � 1:0503
� 2:7448 � 0:3423

For each of these models we have the Laplace transform in strike of the
option price on normalized quadratic variation and we present in Figures (9 to
11) the graphs of these call prices for the �ve maturities, :15; :27; :40; :65; and
:90 that match the option maturities to which the models were calibrated.
We observe an increase in convex order for HSV , and a decrease in convex

order for CGMY SA and CGMY SG.

5 Exponential Lévy Models for Instantaneous
Quadratic Variation

It may well turn out that in markets call prices on realized variance options
characteristically display an increase with respect to maturity for a �xed strike.
Model calibrations may however still be done by �tting prices of options on
the index or underlying asset. It is then of interest to know when we have a
structure for the asset dynamics that guarantees an increase in convex order
for the density of the rate of realized quadratic variation. We are then led
to consider modeling strategies guaranteeing an increase in convex order for
normalized quadratic variation. We do not wish to rely on chance calibrations
delivering this property but must organize it up front.
We begin by following Carr, Ewald and Xiao (2008) and Baker and Yor

(2008) by taking the instantaneous variance of the stock to be modeled by a
geometric Brownian motion. The absence of mean reversion in drift is not an
issue as our focus is on the law of normalized quadratic variation and the drift
will be put aside in any case by the normalization. Hence we take the stock
price (S(t); t � 0) to be driven by a Brownian motion (WS(t); t � 0) with an
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Figure 6: Model (red dots) and Market Prices (blue circles) for HSV. SPX
February 4 2009.
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Figure 7: Model (red dots) and Market Prices (blue circles) for CGMYSA. SPX
February 4 2009.
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Figure 8: Model (red dots) and Market Prices (blue circles) for CGMYSG. SPX
February 4 2009.
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Figure 9: Call prices on normalized quadratic variation in Heston for an increas-
ing set maturities in blue, red, black, magenta and green.
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Figure 10: Call prices on normalized quadratic variation in CGMYSA for an
increasing set maturities in blue, red, black, magenta and green.
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Figure 11: Call prices on normalized quadratic variation in CGMYSG for an
increasing set maturities in blue, red, black, magenta and green.
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instantaneous variance process (v(t); t � 0) driven by an independent Brownian
motion (WV (t); t � 0) satisfying

dS(t) = rS(t)dt+
p
v(t)S(t)dWS(t)

dv(t) = �v(t)dWv(t)

The normalized quadratic variation to time t; U(t) is then

U(t) =
1

t

Z t

0

e�Wv(u)��2

2 udu:

Carr, Ewald and Xiao (2008) provide a proof that the process U(t) is increasing
in convex order and Baker and Yor (2008) provide a short proof of this result.
It is well known (Strassen (1965), Doob (1968) and Kellerer (1972)) that a
sequence of marginal densities are increasing in the convex order just if there
exists a martingale on possibly another probability space with the same marginal
densities. Baker and Yor (2008) exhibit explicitly the martingales supporting
the increasing convex order of the densities U(t):
Hirsch and Yor (2009a) take up a general approach to constructing processes

increasing in the convex order and simultaneously exhibiting the martingales
with the same marginal densities. We note in this context that Roynette (2009)
has recently demonstrated that for any martingale (M(t); t � 0) and an in-
creasing continuous process � = (�(t); t � 0); the marginal densities of the
process

1

�(t)

Z t

0

M(u)d�(u)

are increasing in the convex order. It follows from here that for any Lévy process
(X(t); t � 0) admitting exponential moments the process

1

t

Z t

0

e�X(u)

E
�
e�X(u)

�du
has marginals increasing in the convex order. Hence instantaneous variance
modeled as an exponential Lévy processes normalized to unit expectation deliv-
ers normalized quadratic variations increasing in the convex order. The task of
explicitly exhibiting the martingales with these marginal densities is taken up
in Hirsch and Yor (2009b).
We now consider other transformations that give results in both directions.

We leave for future research the characterization question of what result to
expect from each functional transformation. For an example of another potential
transformation we �rst consider constructing normalized daily instantaneous
variance, for N(x) the standard normal distribution function, as

vt =
N(X(t))

E [N(X(t))]

where we take for X(t) the V G process with parameters � = :5; � = :15;
and � = �:1: We simulated the V G process on 10000 paths of length 252 and
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Figure 12: Realized Variance Option Prices for instantaneous variance given by
the cum norm function evaluated on the VG process for the maturities of one,
three, six, nine and twelve months in blue, red, black, magenta and green.

constructed 10000 simulated paths for vts: We then constructed readings on
realized variance as

RNs =
1

N

NX
t=1

vts

obtaining 10000 observations for N corresponding to one, three, six, nine and
twelve months. We graph in Figure (12) the resulting option prices for a variety
of strikes.
For the opposite result consider the square of the V G process for vt: In this

case we get a decrease in the convex order as is shown in Figure (13).

6 Conclusion

Option on realized variance and quadratic variation normalized to a unit expec-
tation more generally are investigated with respect to the property of monotonic-
ity in convex order for their one dimensional marginal distributions. It is ob-
served that for Lévy processes these densities are decreasing in the convex order.
A time series analysis of squared log returns on the S&P 500 index also reveal
that the densities for realized variance are decreasing in the convex order under
the physical measure. Hence we have the reverse situation for calendar spreads

24



0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8
Realized Variance O ption Prices for  the Square of  VG

Strike relative to unit expectat ion

O
pt

io
n 

P
ric

e

Figure 13: Realized Variance Option Prices for instantaneous variance given
by the cum norm function evaluated on the square of the VG process for the
maturities of one, three, six, nine and twelve months in blue, red, black, magenta
and green.
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to that known to exist for stock options, with longer maturity calls declining in
value for the same strike.
It is observed that if options are priced to a slightly increasing level of ac-

ceptability then the risk neutral densities would be increasing in the convex or-
der. Calibrated stochastic volatility models yield possibilities in both directions.
Finally we consider modelling strategies that guarantee an increase in convex
order for the normalized quadratic variation based on modeling instantaneous
volatility as an exponential of a Lévy process normalized to a unit expectation.
Simulation studies suggest that transformations other than the exponential may
also deliver an increase in the convex order. A more detailed investigation of
such transformations is left as a topic for further research.
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