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Abstract 

 

Implementing Virtual Reality-based Design Review in the Construction 

Industry 

 

Bing Han, Ph.D. 

The University of Texas at Austin, 2022 

 

Supervisor: Fernanda Leite 

 

Building Information Modeling (BIM)-enabled digitalization has been innovating 

the entire workflow and information management in the Architecture, Engineering, and 

Construction (AEC) industry. Emerging visualization technologies such as Virtual 

Reality (VR) have extended BIM-based 3D visualization to an immersive and intuitive 

virtual prototyping experience. VR applications have shown their potential for making 

construction design review tasks more effective and collaborative, thus attracting 

growing research attention and efforts. However, despite the increasing technological 

capabilities, the adoption of VR applications has still been lagging in the AEC industry, 

leaving the theoretical potential unrealized. 

One major reason for the gap between the state-of-the-art and state-of-practice is 

the lack of validation on VR performance. Therefore, the first research question in this 

dissertation addressed this issue by measuring user performance when undertaking four 

design review tasks using VR-based or desktop-based devices. The experiment controlled 

more testbed-related variables, such as functions and navigation methods, than existing 

VR performance validation research to reveal the contribution exclusively from VR 
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technology. Results show that VR users can detect significantly more design errors and 

commit significantly fewer mistakes in scheduling installation sequence when using VR 

as compared to desktop-based interactions. Experiments in the first research question 

revealed the lack of approaches to visualize occluded objects in 3D models. In order to 

facilitate a comprehensive design review, the second research question proposed a semi-

automatic occlusion detection framework for building information models. It converts 

objects in a 3D model to point clouds and overlaps them with a virtual scan of the model 

to identify occlusion. A ready-to-implement VR application does not guarantee industry 

adoption because the development cost for VR can be demanding. The last part of this 

dissertation proposed a Generic Extended Reality (GenXR) model that supports all XR 

development in the AEC industry. The author compared BIM-to-XR durations in two 

case studies and six XR prototype development. The result shows that the GenXR model 

could save over 65% of model transfer time for XR development. 
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Chapter 1: Introduction 

Effective construction design review and coordination play an indispensable role 

in financial success in the Architecture, Engineering, and Construction (AEC) industry 

projects (Mehrbod et al. 2019a). However, the review and coordination processes are 

challenged by scattered industry organizations and the growing complexity of building 

systems, such as Mechanical, Electrical, and Plumbing (MEP) systems (Wang and Leite 

2016). Consequently, issues such as design errors and inadequate constructability 

continue causing cost overruns and schedule delays in the AEC industry.  

Visualizations supported by Building Information Modeling (BIM) have 

mitigated some of these issues (Kumar and Cheng 2015, Moon et al. 2015, Kim, Cho, 

and Zhang 2016, Guo, Yu, and Skitmore 2017, Martinez-Aires, Lopez-Alonso, and 

Martinez-Rojas 2018). The growing industry acceptance of BIM applications (Hartmann, 

Gao, and Fischer 2008, Mostafa and Leite 2018) and their beneficial results 

(Ghaffarianhoseini et al. 2017, Kim et al. 2017) indicate that visualization is a promising 

solution for these design review tasks. However, BIM has not mitigated design review-

related issues as prototyping did in the manufacturing industry (Mujber, Szecsi, and 

Hashmi 2004, Huang et al. 2007). Currently, BIM software programs were deliberately 

designed for information integration and processing (Ding, Zhou, and Akinci 2014, Li et 

al. 2017), and visualization functions were developed to an extent merely sufficient for 

presenting the information (Ivson et al. 2018b). Enhancing the performance of model-

based design and constructability review demands integrating BIM with other advanced 

visualization and interaction solutions (Seth, Vance, and Oliver 2011, Leite et al. 2016). 

Virtual Reality (VR) has been applied in a variety of industries to improve the 

consistency between product design and its manufacturing process (National Academy of 
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Engineering 2017). Research in the construction domain also implied that VR can 

potentially enhance the performance of professionals in construction design review tasks 

(Wolfartsberger 2019). Theoretically, VR technology empowers industry practitioners to 

intuitively review and interact with virtual representations of construction projects 

(Whyte et al. 2000). As a result, they can effectively detect design errors and 

constructability issues (Johnston et al. 2016). However, the slow progress of VR 

implementation in the construction industry conflicts with its theoretical advantages. A 

gap between state-of-the-art and state-of-practice was identified in 2005 and has 

remained valid since then (Bouchlaghem et al. 2005, Leite et al. 2016). In spite of the 

increasing amount of VR research conducted after 2011 (Li et al. 2018, Wang et al. 

2018), industry generally maintains a conservative attitude towards integrating VR 

applications into their workflows.  

This dissertation aims to facilitate the industrial implementation of VR-based 

design review applications. Three engineering challenges that impeded VR 

implementation were identified from the standpoint of performance measurement, field-

specific techniques, and collaborative development with other Extended Reality (XR) 

applications. This dissertation proposed three Research Questions (RQs) that revealed 

fundamental knowledge gaps in correspondence to identified engineering challenges, 

which will be discussed in section 1.2. In RQ 1, the dissertation compared user 

performance between VR users and desktop users in the same design review tasks and 

used statistical analysis to reveal the variance caused by VR. Next, a point cloud-based 

algorithm that automatically detects occluded objects in 3D models was developed in RQ 

2 to expand the scope of VR-based design review from visible objects to all objects in 3D 

construction models. Finally, a generic XR model will be developed with a BIM-to-XR 

framework in RQ 3 to avoid repetitive development efforts when multiple XR 
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applications are used in the same AEC project and consequently, decreasing 

implementation cost for VR-based design review applications. 

1.1 ENGINEERING CHALLENGES 

1.1.1 Performance Measurement 

Researchers have acknowledged the Head-Mounted Display (HMD) as a defining 

characteristic of VR in the AEC industry (Kasireddy et al. 2016, Institute 2019). 

Therefore, clarifying the contribution, or interference, of the HMD to user performance is 

essential to prove the necessity of VR (Huang, Rauch, and Liaw 2010). Unfortunately, 

research dedicated to performance comparison between HMD-based VR and best 

practice of its desktop-based counterpart is still lacking in the construction research 

domain. Paes, Arantes, and Irizarry (2017) compared user performance in a desktop-

based VR environment to a projector-based semi-immersive VR environment. Although 

this comparison was conducted in a scientific manner, it did not provide direct support to 

the HMD-based, fully immersive VR experience. Other researchers compared VR 

performance versus guidebooks (Chittaro and Buttussi 2015), images (Perlman, Sacks, 

and Barak 2014), presentations (Leder et al. 2019), and 2D drawings (Sampaio and 

Martins 2014). Although VR applications outperformed these dated methods, their results 

did not support replacing the current 3D model-based design review with VR 

applications. 

Cross-project comparison of user performance is also challenging due to 

variances in experimental design. Han and Leite (2020) observed significant variance in 

user performance due to different VR environment settings. Meanwhile, the quality and 

quantity of samples can impact the reliability of experimental results (Button et al. 2013). 

For example, Niu, Pan, and Zhao (2016) observed enhanced user performance in 
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occupancy information integrity in HMD-based VR programs. However, they only 

validate the results on groups with a maximum of three participants. Their results may 

include false positives due to limited sample size (Simon and Greitemeyer 2019). To the 

best of the authors' knowledge, to date, scholars have yet to draw a comparison between 

HMD-based VR and its desktop equivalent unaffected by extraneous variables in the 

construction research community. 

1.1.2 Visualizing Occluded Objects 

The objective of a design review or virtual walkthrough is to comprehensively 

inspect all relevant objects instead of only inherently visible ones (Neuville, Pouliot, and 

Billen 2019). However, occluded objects are common in construction models (Liu et al. 

2016, Han, Cline, and Golparvar-Fard 2015, Yu, Zhou, et al. 2020). For example, 

designers can intentionally occlude mechanical, electrical, plumbing, and fire protection 

(MEPF) systems for aesthetics purposes, and heat insulation occludes pipe spools when 

processing heated materials in industry facilities. Visualizing such occluded objects in 3D 

models is a challenge in VR-based design review applications (Johansson, Roupe, and 

Bosch-Sijtsema 2015, Son, Bosche, and Kim 2015). 

Occluded 3D objects can be revealed manually in BIM-based design review 

applications, although it is an error-prone and time-consuming process (Yu, Liang, et al. 

2020, Elmqvist and Tsigas 2007). Mehrbod et al. (2019b) found that navigational 

interactions constituted over 60% of all participants’ interactions in building design 

coordination meetings, and two out of the 13 recognized navigational interactions aimed 

to reveal occluded objects. Ivson et al. (2018b) adjusted object transparency to visualize 

occluded objects in their Building Information Modeling (BIM)-based 4D virtual 

construction planning application. Neuville, Pouliot, and Billen (2019) found that the lack 
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of visualization tools for occluded objects is a major limitation for BIM-enabled visual 

tasks. These findings demonstrate that visualizing occluded objects is an indispensable 

function for design review applications. 

Occluded 3D objects also require a revealing function in VR-based design review 

applications. Researchers in the domain of VR technology developed real-time see-

through or highlighting functions for all objects in a 3D model (Feiner and Seligmann 

1992, Elmqvist and Tsigas 2007). These functions can automatically identify and reveal 

occluded objects, but the computational cost increases with the number of objects in the 

VR model. Currently, a building information model with a level of development (LOD) 

of 300 or higher can contain thousands or tens of thousands of objects (Meza, Turk, and 

Dolenc 2014), and many research projects proved the required computational power 

exceeded what commercially available desktop computers can provide. For example, Yu, 

Liang, et al. (2020) designed the 3DWedge+ visualization technique that facilitated users’ 

awareness of off-screen and occluded objects in VR. However, their experiments did not 

show if the technique can support 3D models with thousands of objects. Lin et al. (2018) 

experienced a similar challenge when attaching an interactive function to all objects in 

one floor of a hospital model. The real-time computational cost impaired the frame rate 

and thereby, the performance of their VR-based communication application. These 

research projects shed light on how occluded objects can be visualized in real-time in 

VR, but they are neither practical nor efficient for complex models in the construction 

industry.  

1.1.3 Complex and Repetitive Development Process 

Despite theoretical benefits, implementing multiple XR applications in different 

stages of a construction project can be financially challenging for companies in the AEC 
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industry (Lin et al. 2018). The Construction Industry Institute (CII) reported that 

developers' salary constituted 62% of overall VR investment in pilot projects (Institute 

2019). Unfortunately, the developing effort for XR applications is unaffected by whether 

they leveraged the same BIM or shared similar BIM-to-XR process. Current XR 

applications were developed in an ad-hoc approach (Li et al. 2018, Zhang, Liu, et al. 

2020), and developers lacked knowledge and techniques to avoid the repetitive and time-

consuming BIM-to-XR process. Moreover, facilities – and, consequently, their digital 

twins – commonly experience updates through a construction project's lifecycle (Leite et 

al. 2016). The lack of seamless information retrieval approaches for XR applications 

from BIM leads to additional BIM-to-XR iterations.   

1.2 RESEARCH VISION AND RESEARCH QUESTIONS 

This research aims to facilitate VR implementation in design review tasks in the 

construction industry. The author depicted the following vision when design review or 

coordination is needed. First, 3D models of different building systems are collected from 

stakeholders and federated in BIM. BIM-based clash detection is performed to solve hard 

clashes before moving onto any VR applications.  

Then, stakeholders, particularly the general contractor, evaluate if a VR-based 

design review or coordination meeting is needed based on quantified VR benefits 

(generated by RQ 1) and the characteristics of the project, such as system complexity and 

site constraints. The decision may be to implement VR due to the number of remaining 

issues after a traditional BIM-based design review.  

Next, a federated BIM is converted into a generic XR model composed of 3D 

geometry, relevant information, and links to align BIM objects in VR. The generic XR 

model supports the development of all XR applications throughout the project lifecycle. 
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It contains all BIM-supported information required by existing XR applications in an 

interoperable data format for XR development software systems. In addition, the generic 

XR model can automatically update itself with an evolving BIM to keep geometry and 

attached information up-to-date. Thereby, repetitive BIM-to-XR activities can be avoided 

when the model used in the VR application needs update or when other XR applications 

are implemented in the same project.  

Eventually, a point cloud representation of each 3D object is overlapped with the 

virtual scan of the federated BIM. The visibility of points determines the visibility of 

objects, and the generic XR model is separated into one "Occluded model" and one 

"Visible model" before importing into VR development software systems. The occlusion 

identification process is automated so that end-users, such as VR developers in 

construction companies, can simply execute the algorithm as a "black box". 

Subsequently, highlight effects are implemented to the "Occluded model" during VR 

development to reveal occluded objects when needed. Both implementing highlight 

effects and following VR development for design review applications have been well-

developed. The three key knowledge gaps in the research vision were explored with the 

following research questions. 

Research Question #1: What is the impact of the Head-Mounted Display (HMD) on 

user performance in construction design review tasks when compared to desktop-based 

Virtual Reality (VR)? 

• What are the influential factors for user performance in design review? How can 

factors that are independent of an HMD in experiment design be controlled? 

• How can both VR-based and desktop-based user testing environments be 

developed to their best available practices? 
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Research Question 2: How can occluded building elements be automatically identified 

in 3D Models for VR-based construction design review applications? 

• What are the appropriate approaches and procedures for occlusion detection in 

complex construction models which are normally composed of more than 1,000 

objects?  

• How can the occlusion identification process be automated? 

Research Question 3: How can a generic 3D model for BIM-based XR applications 

throughout the lifecycle of a construction project be developed? 

• What are the model and information requirements from existing XR applications 

in the AEC industry? 

• How can information from BIM be retrieved while keeping a comprehensible 

geometry-information link for VR development software? 

• How can model changes be automatically identified so as to update the generic 

XR model? 

1.3 READER’S GUIDE TO THE DISSERTATION 

This Ph.D. dissertation is divided into five chapters. Chapter 1 introduced state-

of-the-art VR research for construction design review and coordination and discussed 

engineering challenges associated with VR implementation. The following three chapters 

answered each research question of this dissertation. Specifically, chapter 2 presents 

performance measurements for HMD-based VR in design review tasks. Chapter 3 

introduces a semi-automatic occlusion detection algorithm for 3D construction models, 

while Chapter 4 proposes a generic XR model that standardized BIM-to-XR workflow. 

Notably, Chapters 2, 3, and 4 are each written as stand-alone documents that contain 

independent introduction, literature review, research method, results, and conclusions 



 25 

sections. Chapter 5 summarizes the dissertation’s findings, contributions, and limitations, 

and finally, Chapter 6 proposes future research directions. 
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Chapter 2: Virtual Reality Performance Measurement in Construction 
Design Review Applications 

This chapter has been published on ASCE’s Journal of Construction Engineering 

and Management. DOI: https://doi.org/10.1061/(ASCE)CO.1943-7862.0002056 

As the first and corresponding author of the journal article, Bing Han designed 

and performed the experiment described in this chapter, performed data analysis, and 

wrote the manuscript. The co-authors of the journal article, Fernanda Leite and Daniel 

Oliveira, provided guidance and feedback on the study and manuscript, and revised the 

manuscript. 

2.1 INTRODUCTION 

The low efficiency and effectiveness of the construction design review process is 

a long-lasting challenge for the construction industry (Mehrbod et al. 2019b). With wide 

industry implementation of Building Information Modeling (BIM), a multi-dimensional 

representation of the construction project becomes more accessible (Leite 2019). 

Emerging information technologies, such as Virtual Reality (VR), can leverage the model 

and support industry professionals in visualization and decision making for construction 

design review tasks.  

VR has been applied in a variety of industries to improve the consistency between 

product design and its manufacturing process (National Academy of Engineering 2017). 

Research in the construction domain also implied that VR can potentially enhance the 

performance of professionals in construction design review tasks (Wolfartsberger 2019). 

Theoretically, VR technology empowers industry practitioners to intuitively review and 

interact with virtual representations of construction projects (Whyte et al. 2000). As a 

result, they can effectively detect design errors and constructability issues (Johnston et al. 
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2016). However, the slow progress of VR implementation in the construction industry 

conflicts with its theoretical advantages. 

The gap between state-of-the-art VR research and state-of-practice VR 

implementation was identified in 2005 and has remained valid since then (Leite et al. 

2016, Bouchlaghem et al. 2005). Implementing VR in an actual construction project 

requires investments in workforce, infrastructure, and changes in the existing workflow 

(Institute 2019). Construction companies need direct and quantitative evidence for the 

benefits of VR to justify the investment. Unfortunately, in spite of the increasing amount 

of VR research conducted after 2011 (Li et al. 2018, Wang et al. 2018), the actual 

contribution from VR technology to specific construction scenarios is still ambiguous. 

Therefore, the construction industry has maintained a conservative attitude towards 

integrating VR applications into its workflows, leaving the potential benefits unrealized.  

This research aims to identify measurable benefits of VR in construction design 

review scenarios and facilitate VR implementation in the construction industry. In 2019, 

The Construction Industry Institute (CII) (2019) defined that Immersive Virtual Reality 

(IVR) “is a computer-generated virtual simulation that is experienced through Head-

Mounted Displays (HMD) and other input–output devices”. HMD closely matches 

industry requirements in terms of portability and cost (Spanlang et al. 2014). Therefore, 

this paper derived CII’s definition and developed research and experiments using HMD-

based VR in order to keep consistency with industry practice. 

This paper bridges the gap between academia and industry by quantitatively 

measuring the contribution of HMD to construction design review tasks. The authors 

created four realistic design review tasks and performed between-subject user tests with 

both construction engineering novices (i.e., graduate students) and industry experts. 

Researchers measured and compared user performance in an HMD-based VR 
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environment to its desktop-based counterpart. Both testbeds leveraged a game engine and 

provided equivalent information to users; thereby, the results can shed light on the 

benefits and limitations of HMD in these applications. 

The paper is structured as follows: The first section briefly introduces the 

motivation of this research. The second section identifies the knowledge gap and presents 

the theoretical point of departure. The following section establishes the methodology for 

the user test design and data analysis. The fourth section demonstrates the user 

performance data and discusses its implications. Finally, the last section draws key 

conclusions and discusses the limitations of this research. 

2.2 LITERATURE REVIEW 

2.2.1 Visualization in Construction 

Visualizations supported by BIM have already proven their value in 

communication and collaboration in construction projects (Kumar and Cheng 2015, 

Moon et al. 2015, Kim, Cho, and Zhang 2016, Guo, Yu, and Skitmore 2017, Rock et al. 

2018). Researchers identified a growing industry acceptance of BIM applications 

(Hartmann, Gao, and Fischer 2008, Mostafa and Leite 2018) and observed beneficial 

results from these projects (Ghaffarianhoseini et al. 2017, Kim et al. 2017). However, 

BIM has not yet fully connected design and construction as prototyping has in the 

manufacturing industry (Mujber, Szecsi, and Hashmi 2004, Huang et al. 2007). BIM-

enabled visualizations have been developed to an extent merely sufficient for presenting 

particular information (Ivson et al. 2018b, Ding, Zhou, and Akinci 2014, Li et al. 2017). 

Realizing major prototyping functionalities, such as in-depth defect detection and 

constructability review, requires integrating BIM with other advanced visualization and 

interaction solutions (Seth, Vance, and Oliver 2011).  
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Advances in human-model interaction can be an opportunity to complement 

remaining visualization functions, and HMD-based VR is arguably one of the most 

practical approaches to reap full benefits through a virtual prototyping process (Huang et 

al. 2007, Kadir, Xu, and Hammerle 2011, Li et al. 2012). Alsafouri and Ayer (2018) 

reviewed currently available Information and Communication Technologies (ICTs) and 

concluded that HMD-based VR transcended many other competitors for information flow 

between virtual and realistic environments. In addition, Heydarian et al. (2015) and 

Maffei et al. (2016) both found that HMD-based VR can push the envelope of virtual 

experiences to their corresponding real-world situations. Therefore, HMD-based VR can 

be a promising technology for construction design review tasks. 

2.2.2 Established VR Applications 

Established VR research experiments and industrial applications in the 

construction industry include design review or optimization (Motamedi et al. 2017), 

preconstruction planning (Waly and Thabet 2003), skill or safety training (Manca, 

Brambilla, and Colombo 2013, Garcia et al. 2016, Perlman, Sacks, and Barak 2014), and 

remote communication and collaboration (Le, Pedro, and Park 2015, Zaker and Coloma 

2018). Unfortunately, when narrowing the scope down to HMD-based VR, qualified 

projects become scarce and recognized ones were developed in an ad hoc approach (Li et 

al. 2018). Du et al. (2018) developed a cloud-based platform that promoted collaborations 

among remote stakeholders by HMD-based VR. Boton (2018) proposed a comparable 

HMD-based VR environment for collaborative constructability analysis meetings. Shi et 

al. (2019) applied HMD-based VR to evaluate the effectiveness of training approaches 

for construction workers. Teizer et al. (2013) combined location-tracking data with an 

HMD-based VR-enabled training program to enhance ironworkers' safety awareness and 
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productivity. These projects developed HMD-based VR applications and demonstrated 

their potential for various use cases. However, they failed to provide scientific data on 

user performance to support industry implementation of these applications.  

2.2.3 Performance Measurement Issues 

Clarifying the contribution (or interferences) of an HMD to the aforementioned 

applications is essential to prove its necessity (Huang, Rauch, and Liaw 2010). 

Unfortunately, research dedicated to the performance comparison between HMD-based 

VR and its desktop-based counterpart is lacking in the construction research domain. 

Paes et al. (2017) compared user performance in a desktop-based VR environment to a 

projector-based semi-immersive VR environment. Although this comparison was 

conducted in a scientific manner, it did not provide direct support to the HMD-based, 

fully immersive VR experience.  

Cross-project comparison of user performance is also challenging due to 

variances in experimental design. Researchers compared user performance in HMD-

based VR with different traditional competitors in different projects, such as 2D images, 

drawings, and texts (Sampaio and Martins 2014, Perlman, Sacks, and Barak 2014, Leder 

et al. 2019). Even with the same competitor, Han and Leite (2020) observed significant 

variance in users’ performance due to differences in the VR environment setting. 

Meanwhile, the quality and quantity of samples can impact the reliability of experimental 

results (Button et al. 2013). For example, Niu et al. (2016) observed enhanced user 

performance in occupancy information integrity in HMD-based VR programs. However, 

they only validate the results on groups with a maximum of three participants. Their 

results may include false positives due to the limited sample size (Simon and 

Greitemeyer 2019). To the best of the authors' knowledge, to date, scholars have yet to 
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draw a comparison between HMD-based VR and its desktop equivalent unaffected by 

extraneous variables in the construction research community. 

User performance in VR applications has been extensively researched in the field 

of human-computer interaction (HCI). Proxies for the effectiveness of HCI can be 

automatically measured and documented via different sensing technologies. Zou et al. 

(2019) designed an electroencephalograph (EEG)-based sensing system for measuring 

human responses during the VR experience. Ergan et al. (2019) combined the system 

with galvanic skin response (GSR) data and utilized the system to quantify occupants’ 

stress and anxiety in different architectural designs. Similarly, Wang et al. (2019) 

connected the thermal condition of an indoor environment with occupants’ mental 

workload and task performance using EEG. Researchers also utilized EEG and 

electrocardiogram (ECG) signals for emotion recognition (Katsigiannis and Ramzan 

2018), eye-tracking data for facial expression recognition (Hickson et al. 2019), and 

business development (Meissner et al. 2019). These research projects demonstrate 

objective descriptions of participants’ biological status. However, mapping these 

conceptual data sets with user performance on specific tasks in the construction workflow 

is still challenging considering the myriad influential factors, such as users’ emotional 

responses and resting conditions (Piumsomboon et al. 2017). Although these projects 

shed light on the mechanism of HCI in VR, these proxies cannot be directly interpreted as 

user performance in the construction industry. 

2.2.4 Knowledge Gap 

This paper recognized the lack of HMD-based VR performance measurement that 

exclusively focused on the contribution of HMD as a major knowledge gap. 

Contemporary HMD-based VR experiences are typically composed of 3D models, game 
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engine-enabled functions, and one or more HMDs. Considering that most HMD-based 

VR contents can be displayed on a computer monitor while still maintaining fundamental 

functionalities, this paper posed the following research question, asking ‘What is the 

impact of the HMD on user performance in construction design review tasks when 

compared to desktop-based VR?’ In this paper, ‘desktop-based VR’ refers to the VR-

ready contents experienced via a computer monitor, keyboard, and mouse. Filling this 

gap in knowledge can strengthen the theoretical foundation of HMD-based VR capability 

in the construction research domain. In the meantime, it provides guidance to the 

industrial implementation of HMD-based VR applications. 

2.3 METHODOLOGY 

This research compared user performance between HMD-based VR and desktop-

based VR in a series of construction design review tasks. Figure 2-1 demonstrates the 

research approach of the comparison with three color-coded key components. 

Researchers developed four design review tasks as well as performance metrics. Related 

activities are shown in green in Figure 2-1. Then, two testbeds were created for HMD-

based VR and desktop-based VR experiments, see activities represented in blue in Figure 

2-1. The two testbeds satisfied all the required functions from the four tasks and 

maintained the equivalence of model and functionalities from a software standpoint. 

Finally, forty-eight participants performed the user test with one researcher observing and 

measuring their performance. Researchers conducted statistical analyses to identify 

correlations between user performance and the equipment they used or their industry 

experience, see activities represented in yellow in Figure 2-1. The following subsections 

introduce these steps in detail. 
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Figure 2-1: Research approach for user tests between HMD-based VR and desktop-based 
VR 
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2.3.1 Background Project of the User Test 

User tests were conducted using a model for an existing gasoline refinery facility. 

The testbed is composed of a crucial section of a processing unit, where the feed gasoline 

is heated to a high temperature to initiate the process of reducing chemical pollutants. 

Figure 2-2 shows the overall facility and the testbed model in a BIM environment. The 

facility mainly consists of concrete and steel structure, a large heat reactor, piping 

systems for gasoline circuits, and supporting equipment.  

 

 

Figure 2-2: The BIMs of (a) the whole facility and (b) the testbed area 

The actual construction team of the facility proposed four challenging activities in 

their workflow, namely detecting design errors, construction sequence planning, 

reviewing work package completeness, and recalling the scope of work packages. All 

tasks focused on the piping system in the testbed area because of its geometric 

complexity.  

Each challenging activity was converted into one task in the user test. User 

performance in all tasks was quantitatively measured by end results in order to maintain 

consistency between experiments and real-world industry practices. Researchers acquired 

project planning and executing files from the construction team, including: 
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• A federated model that contains all permanent objects in the facility; 

• Work packaging files of piping systems with construction sequence; and 

• Requests for Information (RFI) submitted by workers during construction.  

With this available data, the research team developed tasks that could replicate 

user behavior and performance in real-world scenarios. 

2.3.2 Experimental Design and Data Collection Methods 

2.3.2.1 Task 1: Detecting Design Errors 

In Task 1, participants were instructed to review the piping system via a virtual 

walkthrough and try to detect all remaining design errors in the model. In a federated 

BIM, most hard clashes can be detected by a geometry-based clash detection process. 

However, design errors that do not lead to physical clashes can elude the detection 

algorithm, and this situation poses a challenge to construction professionals.  

The authenticity of preset design errors determines the credibility of user 

performance data. Targets in this task were common design errors that cannot be detected 

by BIM-based clash detection. To this end, design or constructability issues discussed in 

RFIs were directly used as target errors. Moreover, researchers collected error samples 

with six Subject-Matter Experts (SMEs) from different construction companies in the oil 

and gas industry and replicated these errors in the user test model. These SMEs 

committed 10 hours per month for one year to the development of this research. They 

have 21.33 years of industry experience, on average, with a Standard Deviation (SD) of 

4.89. Eventually, three categories of errors were used for this task. 

• Design errors that do not cause physical clashes, such as the lack or redundancy 

of pipe support, see Figure 2-3 (a) and (b); 
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• Clashes caused by items that were not included in clash detection, such as a 

temporary lighting system, see Figure 2-3 (c); 

• Clashes caused by modifications performed after clash detection, for example, 

vendors may change equipment size after the design is complete, see Figure 2-3 

(d).  

 

 

Figure 2-3: Examples of target design errors in Task 1 - detecting design errors 

Researchers embedded eleven design errors that fall in these three categories in 

both VR testbeds. One investigator monitored the entire virtual walkthrough process for 

each participant and documented every participant-detected error in a checklist. Each hit 

counted as one point in the result. 
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2.3.2.2 Task 2: Installation Sequence Planning 

The second task required participants to plan for the installation sequence of the 

piping system. In practice, the construction team developed work packages for the piping 

system in order to streamline the planning and execution process. Each work package 

contains approximately 1,000 work hours so that one crew of workers can install the 

work package in one week. In Task 2, researchers retained the original work package 

settings and color-coded the nine work packages that participants should focus on, as 

shown in Figure 2-4. During the user test, researchers introduced how work packages can 

be used in the sequence planning process and answered all related questions from 

participants. Then, participants were required to identify relationships among the nine 

work packages and create (1) a general installation sequence when one crew of workers is 

available, and (2) a fast-track installation sequence if two crews of workers are available.  

This task measured user performance by the cumulative errors committed in 

participants’ replies because multiple sequences would function well in practice. 

Researchers explored the key decision-making principles for setting sequences with the 

same group of SMEs and the construction team of this project. The major considerations 

for the viability of a sequence included the object dimension, its connections with other 

work packages, and the elevation where the installation would occur. A thorough list of 

29 possible mistakes in the installation sequence was then compiled and validated. User 

performance in this task was measured by comparing users’ installation sequences with 

these mistakes. Each hit counted as one point in the result. 
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Figure 2-4: Work packages of piping system in the testbed model 

2.3.2.3 Task 3: Reviewing the Completeness of Work Packages 

The next work package-related task focused on identifying objects that were 

located in the testbed area but did not belong to any work packages. This task is critical 

since engineers and workers would plan and install the piping system based on work 

packages and therefore, overlook those objects. Unlike Task 1, this task measures users’ 

ability to review the information attached to objects as opposed to the geometric 
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characteristics of objects. The real-world project files contained two leftover objects, and 

each error was replicated once in similar situations. Participants were instructed to 

identify these objects. Each hit on the target objects counted as one point in the result. 

2.3.2.4 Task 4: Recalling Objects 

The last task measures the impact of HMD on users’ memory. Researchers 

selected ten objects located in the interface areas between the nine work packages and 

other systems (see Figure 2-5). Five of the selected objects were part of the nine work 

packages. All Task 4 test-takers received a follow-up questionnaire with screenshots of 

these objects ten days after their original user test. Only questionnaires that were replied 

to within two days were presented in this paper. Participants could answer “inside” or 

“outside” the scope of the nine work packages for recognized objects, or reply “not sure” 

for objects they found difficult to recall. According to the potential impact of their 

memory and confidence, correct, not sure, and incorrect answers earned participants 

three, one, and zero points, respectively. This paper assumed that the three answers 

reflected the user’s reaction when they receive an RFI. Answers with certainty should 

lead the user to a memory-based decision-making process. In cases where a “not sure” 

answer was provided, the user would review the model again for more information before 

making a decision. SMEs suggested this scoring system because it graded the potential 

impact of user’s memory on the project. 
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Figure 2-5: Memory test objects (a) inside and (b) outside the scope of work packages 

2.3.3 Testbeds Development 

The concept of a “fair” comparison for technology performance was the most 

innovative characteristic in the experimental design. Besides commonly discussed 

factors, such as demographics, this paper promoted the fairness of the comparison by two 

essential elements. First, all technologies should provide users with equivalent content 

and functionalities to the greatest extent possible. In this experiment, desktop-based VR 

users and HMD-based VR users reviewed identical models and interacted with the virtual 

environment with the same functions. Second, each involved technology should be 

implemented to the best of its current functionality (Joseph J. LaViola 2000). Therefore, 

the interaction equipment became the only testbed-related variable in the user tests. 

Building information models required various modifications before they could be 

experienced through the HMD-based VR. Han and Leite (2020) developed a model 

transformation framework and achieved a 47% enhancement of user performance in a 

best-case scenario. This paper derived their framework for developing both HMD-based 

VR and desktop-based VR testbeds, see Figure 2-6. Generally, a VR testbed development 

begins with one or several building information models. Developers applied Autodesk® 

Navisworks® to convert the 3D model of the target area from an NWD file to an FBX 



 41 

file, which connected 3D models with the VR environment. Then, Autodesk® 3ds Max® 

and Blender® were used for performing essential optimizations on 3D contents. Finally, 

both the HMD-based VR and the desktop-based VR testbeds were developed in 

Unity3D®. Appendix B presents more details in software settings. 

 

 

Figure 2-6: Model transformation procedures from BIM to VR 



 42 

2.3.4 User Test Procedures 

Researchers performed a between-subject experiment considering that users’ 

memory on experiment content can impact their performance (Niu, Pan, and Zhao 2016, 

Garcia et al. 2016, Sacks, Perlman, and Barak 2013, Du, Shi, et al. 2018). The human-

involved experiment presented in this paper was reviewed and approved by the 

University of Texas at Austin’s Institutional Review Board (IRB). 

Before the user test, qualified participants were randomly divided into two 

groups: those using HMD-based VR in the user test and the others using desktop-based 

VR (see Figure 2-7). In this paper, the HMD-based VR group was also referred to as “the 

treatment group”, while the desktop-based VR group was referred to as “the control 

group”.  

 

 

Figure 2-7: User tests in (a) HMD-based VR group and (b) desktop-based VR group 

Earlier research revealed that users’ field experience or established habits can 

significantly influence users’ performance in HMD-based VR applications (Aggarwal et 

al. 2006, Thomsen et al. 2017). Therefore, participants were further labeled as “expert” or 

“novice” based on their full-time working experience in the construction industry. SMEs 
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proposed that three years of industry experience can be a reasonable threshold for 

adequate amount of knowledge on construction projects and workflows.  

The user tests started with a brief introduction to the research background, 

procedure, tasks, and safety precautions. Participants would then perform all tasks via the 

hardware assigned to their group, one at a time with the order from one to four. One 

investigator monitored the entire test and answered any questions that were not related to 

what was being measured. All participants were instructed to cease the experiment 

whenever they experienced physical or emotional discomfort. Researchers did not 

encounter such cases in this experiment. Since the research mainly focused on 

effectiveness, the user tests did not have a limitation on the test duration. Participants 

performed all tasks in, on average, 20 minutes and 6 seconds with an SD of 5 minutes 

and 18 seconds. Table 2-1 shows the number of data samples collected in each task. 

Researchers ceased collecting data from Task 3 after acquiring correct answers from all 

24 participants. The noticeably lower number of data samples in task 4 was caused by the 

limited response rate to the follow-up questionnaire. The questionnaires used in this 

experiment are attached in Appendix C. 
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Group Error 
detection 

Sequencing 
planning 

Completeness 
review 

Recalling 
objects 

Experts - HMD-
based VR 

12 12 6 4 

Experts - desktop-
based VR 

12 12 6 4 

Novices - HMD-
based VR 

12 12 7 6 

Novices - 
desktop-based VR 

12 12 5 6 

Total 48 48 24 20 

Table 2-1: Data samples collected in each task 

2.3.5 Participants 

Participants included 24 construction engineering graduate students and 24 

construction industry professionals. All participants were assumed to possess sufficient 

background knowledge on all tasks. The research team recruited graduate students via 

email. CII helped recruit engineers and project managers in the oil and gas industry, via 

their Board of Advisors. All users volunteered their time to participate in this research.  

This paper collected the demographics of participants that may impact 

experimental results, see Table 2-2. The potential influence of participants’ former 

experience with VR was mitigated by a training program. Before performing any task, 

researchers demonstrated device operations to HMD-based VR users and provided an 

opportunity for these users to practice inside the HMD-based VR environment. 

Researchers did not limit the duration of the training program, and participants would 

perform the user tests only after they felt confident about the operations. On average, 

users practiced for five minutes. The age and gender of participants are not in the scope 
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of this research, and they did not show a statistically significant impact on user 

performance in existing research. Therefore, this paper made the assumption that 

potential differences in users’ age and gender in each group had no significant impact on 

user performance and accepted the fluctuations without creating more groups. This 

setting helped this paper focus its resources on the two major independent variables. 

 
Characteristics Number (%) 

Average age ± SD, years 35.23 ± 10.94 

Gender  

    Male 32 (66.67%) 

    Female 16 (33.33%) 

HMD-based VR Experience  

    Never used HMD 43 (89.58%) 

    Used HMD before 5 (10.42%) 

Table 2-2: The demographics of the experiment participants 

2.3.6 Equipment for Testing 

The HMD-based VR group conducted the user tests via an Oculus® Rift 

Commercial Version 1 (CV1) VR system, which comprises one HMD, two touch 

controllers, and two motion trackers. The tethered HMD was selected to take advantage 

of the computing power from the dedicated workstation for processing and rendering 
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complex, real-world models. In this experiment, the HMD displayed contents in 

1080×1200 resolution per eye at a 90 Hz refresh rate and a 110° Field of View (FoV).  

Participants in the desktop-based VR group reviewed the model through one 27-

inch 4K display and interacted with the virtual environment through one keyboard and 

one mouse. Figure 2-8 demonstrates the model visualization effects for the HMD-based 

VR group and the desktop-based VR group. 

 

 

Figure 2-8: Model visualization via (a) Oculus® Rift CV 1 HMD and (b) 4K monitor 

A Dell® Precision 3630 Tower Workstation was used to process and render tasks 

for both visualization media. The configuration of the workstation included one 6-core 

Intel® Core™ 8700K @ 3.70GHz, one Nvidia® GeForce® GTX 1080 graphics card, 

32GB DDR4 2666 MHz memory, and 1 TB PCIe solid-state drive. All hardware 

functioned as intended during the user tests.  

2.3.7 Statistical Analysis  

Our general hypothesis in this user test is that HMD-based VR users achieve 

higher scores in each design review task, compared to desktop-based VR users. Industry 

experience and visualization devices were the two categorical independent variables, 
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while the score in each task was considered as the discrete dependent variable. 

Considering the intrinsic different requirements on the four tasks, the performance scores 

in each task were analyzed separately. Therefore, four individual hypotheses were 

developed for testing, including: 

1. HMD-based VR users detect more design errors than desktop-based VR users in 

Task 1; 

2. HMD-based VR users commit less errors in their schedules than desktop-based 

VR users in Task 2; 

3. HMD-based VR users detect more unassigned objects for Work Packages than 

desktop-based VR users in Task 3; and 

4. HMD-based VR users get a higher score for their object recall performance than 

desktop-based VR users in Task 4. 

The hypotheses were tested using user performance data collected from Task 1 to 

Task 4. Researchers applied Analysis of Variance (ANOVA) to identify correlations 

between variables from collected user performance data. An independent t-test was 

performed to explore the correlations between scores and each independent factor, 

respectively. Then, a logistic regression-based ANOVA was conducted to determine 

whether there was statistical significance when considering the two independent variables 

at the same time. The significance level of the t-value and p-value was set to 0.05. 

2.4 RESULTS AND DISCUSSION 

This section presents the major findings from the user tests. The performance data 

in each task is exhibited by the mean values and SDs on a group basis. The following 

statistical analyses on Task 1 and Task 2 revealed the relationship between user 

performance and visualization equipment or industry experience. At the end of this 
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section, researchers discussed the benefits and limitations of HMD-based VR, its 

feasibility in construction, and appropriate use cases. 

2.4.1 Mean Scores and Standard Deviations 

Figure 2-9 depicts the participants’ scores of each group in Task 1 - detecting 

design errors. Among these groups, the experts in the HMD-based VR group earned the 

highest mean score of 6.42 with an SD of 2.31, followed by the novices in the HMD-

based VR group with a mean score of 4.50 and an SD of 2.47. Experts in the desktop-

based VR group performed similarly to the novice-HMD group, scoring 4.33 on average 

with a 1.16 SD, while novices in the desktop-based VR group received the lowest score 

of 2.83 with a 1.12 SD. On average, experts in the treatment group detected 48.27% more 

design errors than those in the control group, while novices in the treatment group 

detected 59.01% more errors than the control group. 
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Figure 2-9: Scores from different groups in Task 1 - detecting design errors 

User performance in Task 2 - installation sequence-planning is shown in Figure 2-

10. In this task, researchers tallied the number of committed errors to quantify user 

performance. Therefore, the lower the number, the better the measured performance. The 

means and SDs of user performance in each group are 3.88±2.23 for experts in the HMD-

based VR group, 5.25±1.16 for novices in the HMD-based VR group, 5.83 ±1.88 for 

experts in the desktop-based VR group, and 6.42±1.41 for novices in the desktop-based 

VR group. In this task, experts in the HMD-based VR group decreased errors committed 

in their installation sequence by 33.45%, comparing to experts in the desktop-based VR 

group. Novices in the HMD-based VR group also committed 18.22 % fewer mistakes in 

their sequences than novices in the desktop-based VR group. 
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Figure 2-10: Scores from different groups in Task 2 - installation sequence planning 

In Task 3 - reviewing the completeness of work packages, all participants, despite 

their differences in experience and visualization equipment, pinpointed every leftover 

object in the model. As a result, researchers did not perform any analysis on the third task 

result and only discussed the implications of this result in the next section. 

Figure 2-11 presents user performance in Task 4 - recalling objects. The means 

and SDs of the scores that participants earned for this task were 18.83±4.36 in the 

novices-desktop group, 17.00±3.16 in the experts-desktop group, 16.50±5.24 in the 

novices-HMD group, and 13.50±3.78 in the experts-HMD group. Unlike task 1 and task 

2, experts in the HMD-based VR group scored 20.59% lower in the memory test. 
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Novices in the HMD-based VR group also received 12.37% lower scores than the 

novices in the desktop-based VR group. 

 

 

Figure 2-11: Scores from different groups in Task 4 - recalling objects 

2.4.2 Analysis of Variance 

Researchers first applied independent sample t-tests to analyze the causality 

between scores and equipment deployed, see Table 2-3. The HMD-based VR users 

detected significantly more design errors than that of the desktop-based VR users. The 

HMD-based VR users also made fewer mistakes than desktop-based VR users (p=0.004) 

in the sequencing task due to the difference in equipment. User performance in Task 3 
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and Task 4 was not included in the statistical analysis considering the limited data 

samples. 

 
Factors and 

statistics 
Error detection 

- HMD 
Error detection 

- Desktop 
Sequence 
planning - 

HMD 

Sequence 
planning - 
Desktop 

Sample size 24 24 24 24 

Mean scores 5.46 3.58 4.56 6.13 

Standard 
deviations 

2.54 1.35 1.87 1.65 

Significance 
(p-value) 

0.003* 0.004* 

Note: Results that showed statistical significance are marked with an asterisk 

Table 2-3: Results from independent sample t-tests between use case and visualization 
equipment 

Researchers conducted the same independent sample t-test to analyze the impact 

of industry experiences on user performance. Table 2-4 shows industry experience had 

significant influences on users’ scores in Task 1 (p=0.006) but not in Task 2 (p=0.076).  
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Factors and 
statistics 

Error detection 
- Novices 

Error detection 
- Experts 

Sequence 
planning - 
Novices 

Sequence 
planning - 

Experts 
Sample size 24 24 24 24 

Mean scores 3.67 5.38 5.83 4.85 

Standard 
deviations 

2.06 2.08 1.40 2.25 

Significance 
(p-value) 

0.006* 0.076 

Table 2-4: Results from independent sample t-tests between use cases and users’ industry 
experience 

Subsequently, researchers applied a linear regression analysis to reveal the 

connections between users’ scores in each task and the two independent variables. The 

analysis demonstrated similar results to the t-test, see Table 2-5. The number of mistakes 

committed in the scheduling task was associated with visualization devices (p=0.003) but 

not with users’ industry experience (p=0.054). In the error detection task, the number of 

detected errors were significantly impacted by both users’ industry experience (p=0.003) 

and visualization devices (p=0.001). 

 
Factors and 

statistics 
Error detection 

- Devices 
Error detection 
- Experience 

Sequence 
planning - 
Devices 

Sequence 
planning - 
Experience 

Nominalized 
Coefficient β 

-0.426 0.389 0.412 -0.258 

t-statistic -3.502 3.191 3.163 -1.982 

p-value 0.001* 0.003* 0.003* 0.054 

Table 2-5: Linear regression of scores considering both variables 
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2.4.3 Discussion 

2.4.3.1 Task 1: Detecting Design Errors 

The experimental results from the error detection task indicate that the HMD can 

reinforce participants’ perceptions of details in the 3D model. The intuitive navigation 

approach and stereopsis are likely to be game changers. Researchers observed that 

participants were generally not capable of pinpointing design errors immediately when 

they appeared in users’ scenes. Instead, the trivial nature and overlapping layout of 

design errors require reviewers to observe conspicuous targets from various desirable 

perspectives before making a judgment. The vast majority of participants in all groups 

endeavored to gain preferable perspectives during the user test. Acquiring these 

perspectives can be challenging and time-consuming (Mehrbod et al. 2019b), and the 

intuitive navigation method reproduced by an HMD assisted users in acquiring these 

perspectives. 

User performance in Task 1 was also significantly influenced by participants’ 

industry experiences. On the one hand, this result reflects the knowledge disparity 

between novices and experts. Although the task was designed to avoid knowledge-based 

judgments, experts typically review more efficiently with target objects in mind. On the 

other hand, established reviewing patterns or habits may impair experts’ performance in 

this task. Design review in contemporary construction industry workflow is generally 

accomplished by collaborations among experts from different fields (Shen et al. 2010, 

Merschbrock and Munkvold 2015). Therefore, experts spontaneously paid more attention 

to their routine responsibilities rather than following instructions and reviewing the 

model comprehensively. As a result, better expert performance can be expected in real-
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world scenarios, where individuals with disciplinary-specific expertise collaborate in the 

review process. 

2.4.3.2 Task 2: Installation Sequence Planning 

The HMD significantly enhanced users’ performance in the installation sequence 

planning task. Task 2 examines participants’ perceptions of the spatial layout and 

interconnections among work packages. One explanation for the performance 

improvement is that the HMD provided users with a wider FoV so that they can access 

additional information in surrounding areas (Ragan et al. 2015). Moreover, the HMD 

displayed objects in a more realistic scale, which can facilitate mapping the virtual model 

with realistic project elements. This effect explained the fact that five experts and two 

novices in the HMD-based VR group prioritized the work package with the largest pipe 

spool, compared to one expert and no novice in the desktop-based VR group. 

Experts have similar opportunities to perform better in a real-world scenario. The 

user test adopted predetermined work packages so that performance could be measured 

objectively. However, in practice, work packaging strategies vary according to company 

conventions, and it is closely related to the installation sequence. Constrains on work 

packages were likely to compromise the creativity and thoroughness of experts’ answers. 

During the user test, nearly half of the experts mentioned that they would propose better 

solutions if they can tweak the work packages. Therefore, although the ANOVA result 

stated that industry experience did not have a significant impact, more promising results 

can be expected from experts. 
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2.4.3.3 Task 3: Reviewing the Completeness of Work Packages 

Tasks 3 and Task 4 demonstrated limitations of HMD-based VR. Although 

checking the completeness of work packages was recognized as a challenging task by the 

construction team, overlooked objects became apparent once researchers color-coded all 

work packages (see Figure 2-12). All participants identified every missing object, 

regardless of the equipment applied or industry experience. In this case, the color-coding 

effect should be acknowledged rather than the technologies per se. This result shows that 

hardware is not the bottleneck for Task 3. Creating appropriate visualization effects on 

desktop-based software systems can be a more reasonable approach to facilitate this task. 

Additionally, this is a typical case where comparison at an application level can 

overestimate the actual capability of HMD-based VR, as discussed in section 2.3. Task 3 

demonstrates how these effects can be mitigated by the experimental design. 

 

 

Figure 2-12: Visualizations of work packages in (a) a conventional BIM environment and 
(b) a color-coded VR environment 

2.4.3.4 Task 4: Recalling Objects 

In Task 4, the average scores of treatment groups were slightly lower than their 

corresponding control groups. This result seems to contradict earlier experimental 
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findings, where Krokos et al. (2019) found HMD-based VR users had a superior recall 

rate of images compared to desktop-based VR users. It is reasonable to argue that the 

intrinsic difference in experimental design caused the divergent results. The user tests in 

this paper primarily concentrated on the review workflow which mimicked construction 

industry routines, while the research conducted by Krokos et al.(2019) focused on 

creating a virtual environment that maximizes HMD-based learning and memory 

development. For most industrial applications, manipulating influential factors, such as 

visual complexity (Ragan et al. 2015) for technology is impractical and unreasonable. 

Therefore, although HMD has the potential to strengthen users’ memory, the actual effect 

needs to be substantiated by field-specific or scenario-specific research.  

2.4.3.5 HMD-based VR Implementation 

The experimental results indicate that HMD-based VR is a robust tool for specific 

applications. The construction industry should implement HMD-based VR intentionally 

in suitable scenarios so that full benefits can be reaped from the technology. This paper 

demonstrated that construction design review is an appropriate use case for HMD-based 

VR. It is reasonable to assume other visualization-intensive tasks can potentially share 

similar benefits, but validations for other applications are still needed before 

implementation.  

The noticeably larger performance fluctuation in the treatment groups implied 

opportunities for better results once these users became skilled in operating HMD and 

controllers. Researchers compared the four pairs of SDs between the treatment and the 

control groups in Task 1 and Task 2. The average SD of the treatment group was 2.04 

with a range from 1.16 to 2.47, while the average SD of the control group was 1.39 with a 

range from 1.12 to 1.88. Moreover, the highest and lowest scores in each task came from 
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the treatment group. Three out of four SDs from treatment groups were higher than the 

corresponding control groups. The higher SDs can be explained by the diverse 

proficiency in operating given equipment. Therefore, this paper recommends that HMD 

users undergo training in equipment operations before deploying VR applications in 

practice. 

2.5 CONCLUSIONS AND LIMITATIONS 

This paper measured the impact of an HMD on user performance in four 

construction design review tasks. Twenty-four novices and twenty-four experts 

participated in the user test. They were randomly assigned to treatment or control groups, 

performing a user test with HMD-based VR or desktop-based VR, respectively. In the 

design error detection task, experts and novices in the HMD-based VR group detected 

significantly more design errors (48.27% and 59.01%, respectively). Similarly, they 

committed 33.45% and 18.22% fewer errors than the desktop-based VR group in the 

installation sequence planning task. Statistical analysis also found that the HMD had a 

significant impact on user performance. All participants provided the correct answer in 

the task where they reviewed the completeness of work packages, and HMD-based VR 

users scored slightly lower than desktop-based VR users in the recalling objects task.  

Experimental results indicate that the construction industry can substantially 

benefit from HMD-based VR in specific use cases. Therefore, HMD-based VR should be 

intentionally applied for appropriate scenarios and tasks. This paper also validated that 

HMD-based VR applications can significantly enhance the effectiveness of design error 

detection and installation sequence planning. This paper contributes to the body of 

knowledge by measuring the impact of HMD in VR applications in construction design 

review tasks. Moreover, the methodology developed in this paper enhanced 
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contemporary methods of validating the practical impact of technologies by excluding 

extraneous variables. 

Besides the intellectual contributions, the limitations of this paper were also 

imposed by the experimental design. First, some human factors that were not fully 

controlled in this paper can pose a threat to the results. For example, the fluctuation of 

participants’ earlier experience with both VR and industry projects cannot be perfectly 

controlled, especially when industry experts were involved in the user test. Then, user test 

participants were not responsible for any possible outcome of their result. Therefore, the 

motivation and level of engagement of HMD-based VR groups and desktop-based VR 

groups can be different. Differences in these factors can cause variance in user 

performance. Next, the error detection task was established on the hypothesis of all 

design errors being visually accessible. However, design errors may exist in invisible 

places, such as missing supports for a pipe spool inside the insulation material. User 

performance on detecting those design errors was not measured in this paper. Last but not 

the least, all tasks in this experiment were designed to be general so that they did not 

require detailed background knowledge. The discrepancy between experts’ and novices’ 

performance was expected to be higher in a more complex, real-world scenario. 

This paper recommends two directions for future research in this field. First, the 

limitation of design error visibility can be addressed with further development of the 

model visualization methods. These methods can help users get a comprehensive review 

of all objects included in the project model. Second, the model transformation procedure 

from BIM to VR can potentially be fully- or semi-automated, as well as key design 

review functions. This automation can streamline the process of creating an HMD-based 

VR environment and, thereby, facilitate its industry-wide implementation. 
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Chapter 3: Semi-automatic Occlusion Detection 

This chapter has been published on Elsevier’s Advanced Engineering Informatics. 

DOI: https://doi.org/10.1016/j.aei.2021.101398 

As the first and corresponding author of the journal article, Bing Han designed, 

programmed, and tested the algorithm proposed in the journal article. Bing Han also 

drafted the journal article. 

As a co-author of the journal article, Jong Won Ma assisted Bing Han in 

algorithm development and reviewed the journal article manuscript. The co-authors of the 

journal article, Fernanda Leite and Daniel Oliveira, provided guidance and feedback on 

the study and manuscript, and revised the manuscript. 

3.1 INTRODUCTION 

Virtual Reality (VR) has shown its potential in facilitating communication and 

coordination at an early stage of a project in many industries (National Academy of 

Engineering 2017). It creates a unique environment where stakeholders can intuitively 

visualize and interact with 3D representations of a product before it is manufactured. 

These features and objectives align with the design review and coordination process in 

the construction industry. Consequently, the construction research domain has also 

expressed interest in VR applications, particularly for design review and coordination 

tasks (Davila Delgado et al. 2020, Mehrbod, Staub-French, and Tory 2019, Institute 

2019, Han and Leite 2020). Researchers developed VR-based design review applications 

and observed that VR can enhance user performance in many use cases, such as 

identifying design errors and constructability issues (Boton 2018, Alizadehsalehi, Hadavi, 

and Huang 2020, Du, Shi, et al. 2018, Han and Leite 2021b). However, some design 

intent can lead to occluded objects in 3D models (Liu et al. 2016, Han, Cline, and 



 61 

Golparvar-Fard 2015, Yu, Zhou, et al. 2020). For example, mechanical, electrical, 

plumbing, and fire protection (MEPF) systems are commonly occluded by ceiling tiles 

for aesthetics purposes, and heat insulation can occlude pipe spools and their connections 

in industry facilities. Visualizing such occluded objects in 3D models is a challenge in 

VR-based design review applications (Johansson, Roupe, and Bosch-Sijtsema 2015, Son, 

Bosche, and Kim 2015).   

The objective of a design review or virtual walkthrough is to comprehensively 

inspect all relevant objects instead of just the inherently visible ones (Neuville, Pouliot, 

and Billen 2019). However, occluded 3D objects remain hidden in current VR-based 

design review applications unless revealed manually by those conducting the review, 

which is an error-prone and time-consuming process (Yu, Liang, et al. 2020, Elmqvist 

and Tsigas 2007). Occluded objects are often represented as dashed lines or on different 

drawings in 2D, but these approaches do not pertain to 3D models or VR. Therefore, 

developing an automatic occlusion detection and visualization method is critical to 

realize greater benefits from VR-facilitated construction design review. 

This paper aims to establish a framework that semi-automatically identifies 

occluded objects in 3D construction models and processes them so that VR developers 

can easily implement visualization effects, such as highlighting. The framework classifies 

each object as “visible” or “occluded” by converting model objects into point clouds and 

comparing them to a virtual laser scanning result of the model. Most of the processing 

and scanning activities were automated via Python scripts. The authors validated the 

framework with building information models of two construction projects: an industrial 

facility and an academic building. Recall and precision rates and overall computation 

time were measured and discussed as key performance metrics of the framework and 

algorithms. This paper contributes to the body of knowledge by enabling the occlusion 
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detection process in 3D models and automating a large proportion of the process for VR 

applications in the construction industry. It enhances the comprehensiveness of current 

VR-based design review applications and strengthens their feasibility to current industry 

practices. Furthermore, other VR applications that recognized occluded objects as a 

limitation can potentially extend their scope of work by implementing the framework. 

3.2 LITERATURE REVIEW 

3.2.1 Fully Occluded Objects in Construction 

Fully occluded objects in a construction site limited the scope of many existing 

research projects in the construction research domain. For example, capturing and 

modeling occluded objects in an existing building when reconstructing as-built models is 

an extensively researched topic (Barazzetti 2018). Dai et al. (2018) developed a 

convolutional neural network to automatically complete partial input from laser scanning. 

Son, Kim, and Kim (2015) developed a rule-based 3D model reconstruction algorithm for 

incomplete laser scanning data using prior knowledge. Han and Golparvar-Fard (2015) 

discussed that one limitation of their research on construction site photo-logging was that 

it did not apply to occluded objects. Researchers also tried to capture occluded objects via 

real-time data collection approaches (Franz, Irmler, and Rüppel 2018, Chen et al. 2020). 

Although these use cases were not directly related to model-based design review, they 

demonstrated the importance of involving occluded objects in decision-making processes 

in construction projects (Livingston et al. 2003). 

Occluded virtual objects in 3D models challenged the design review and 

coordination process in a similar way. Mehrbod et al. (2019b) found that navigational 

interactions constituted over 60% of all participants’ interactions in building design 

coordination meetings, and two out of the 13 recognized navigational interactions aimed 
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to reveal occluded objects. Ivson et al. (2018a) adjusted object transparency to visualize 

occluded objects in their Building Information Modeling (BIM)-based 4D virtual 

construction planning application. Neuville, Pouliot, and Billen (2019) found that the lack 

of visualization tools for occluded objects is a major limitation for BIM-enabled visual 

tasks. These findings demonstrate that visualizing occluded objects is an indispensable 

function for design review applications. 

3.2.2 Occluded Objects in VR 

Researchers have leveraged available building information models and developed 

VR applications as an extension for specific use cases in the construction industry (Leite 

2019). Some of these applications replicated a real-world scenario where only visible 

objects matter to the users in that particular task. Lin et al. (2018) developed a VR-based 

design review application where medical staff and patients can experience the design and 

provide feedback prior to the construction of a healthcare facility. Motamedi et al. (2017) 

used VR to optimize the location of signage in a building. Other visual-only applications 

include behavioral simulation (Feng, González, Amor, et al. 2020, Lin et al. 2020, 

Ozcelik and Becerik-Gerber 2018), training (Feng, González, Mutch, et al. 2020, 

Goulding et al. 2012), and engineering education (Bashabsheh, Alzoubi, and Ali 2019).  

In these cases, the VR environment should only simulate and represent visible objects to 

provide users with an experience that resembles the real world. 

Many other VR applications, especially those developed for construction design 

review, are meant to help users visualize all objects in a model. However, researchers 

limited their scope to visible objects in these applications because they lacked a practical 

approach to identify and reveal fully occluded objects. For example, researchers 

conducted experiments to measure the effectiveness of VR-based design review and 
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observed that VR could enhance user performance in various design review tasks (Du, 

Shi, et al. 2018, Wolfartsberger 2019, Han and Leite 2021b). However, all experiments in 

these projects were performed using visible objects, and excluding fully occluded objects 

was discussed as a limitation of these experiments. Khalili (2021) developed an 

extensible markup language (XML)-based data exchange approach from BIM to VR and 

reached a 99.1% visibility rate. However, commonly occluded objects, such as MEPF 

systems, were not included in their case study model. Du, Zou, et al. (2018) developed a 

similar real-time BIM to VR synchronization system. It facilitated a simultaneous 

feedback loop for design, but only works for intrinsically visible objects. Zhang, Hou, et 

al. (2020) ignored all occluded objects on their BIM/GIS integration platform (BGIP). 

The scope and benefits of these research projects can potentially be broadened by 

leveraging an automatic occlusion detection algorithm. 

3.2.3 State-of-the-art Solutions 

VR developers can create real-time revealing or highlighting functions for all 

objects in a 3D model (Feiner and Seligmann 1992, Elmqvist and Tsigas 2007). These 

functions can automatically identify and reveal occluded objects, but the computational 

cost increases with the number of objects in the VR model. Currently, a building 

information model with a level of development (LOD) of 300 or higher can contain 

thousands or tens of thousands of objects (Meza, Turk, and Dolenc 2014), and many 

research projects proved the required computational power exceeded what commercially 

available desktop computers can provide. Yu, Liang, et al. (2020) designed the 

3DWedge+ visualization technique that facilitated users’ awareness of off-screen and 

occluded objects in VR. However, their experiments did not show if the technique can 

support 3D models with thousands of objects. Lin et al. (2018) experienced a similar 



 65 

challenge when attaching an interactive function to all objects in one floor of a hospital 

model. The real-time computational cost impaired the frame rate and thereby, the 

performance of their VR-based communication application. These research projects shed 

light on how occluded objects can be visualized in real-time in VR, but they are neither 

practical nor efficient for complex models in the construction industry.  

The visibility of an object in a construction model is not likely to change during 

construction design review. Therefore, researchers can pre-classify occluded objects 

instead of analyzing the visibility status of all objects per frame (Yu, Liang, et al. 2020). 

Although a classification algorithm specifically for occluded objects has not been 

developed, this paper takes several related works as a point of departure. Hu, Castro-

Lacouture, and Eastman (2019) programmed a projection-based algorithm to filter 

relevant clashes by overlapping projections of objects with clashes. Their algorithm 

cannot be directly used for occlusion detection, but the idea of using geometric 

information to determine spatial relationship aligns with the logic of this paper. 

Abualdenien and Borrmann (2019) developed a meta-model approach to classify the 

vagueness of information associated with 3D objects in building information models. 

Based on the classification, they then adjusted the color and transparency of these objects 

to visualize the level of vagueness (Abualdenien and Borrmann 2020). Their work 

demonstrates that applying visualization effects to a predefined set of objects in VR is a 

viable solution for complex construction models. Therefore, classifying occluded objects 

and putting them into a compatible format with VR is key to visualizing occluded objects 

in VR-based construction design review.  

It is worth mentioning that the occlusion challenges discussed in Augmented 

Reality (AR) research are fundamentally different from the topic of this paper. Concerns 

for occlusion in AR research focuses more on the overlapping relationship between 
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virtual objects (Du et al. 2016, Hamasaki and Itoh 2019, Frikha, Ejbali, and Zaied 2016, 

Dong, Feng, and Kamat 2013) instead of visualizing fully occluded objects. Therefore, 

this paper did not leverage existing methods on handling occlusion from past AR 

research.   

3.2.4 Knowledge Gap 

The literature review reveals a knowledge gap in visualizing occluded objects in 

VR-based construction design reviews. Adding a highlight effect to occluded objects in 

VR development is a mature process already. However, identifying fully occluded 

objects remains an unsolved challenge. Therefore, this paper proposes a point cloud-

based semi-automatic occlusion detection framework that identifies occluded objects and 

outputs the results in a format that is compatible with VR development software. Filling 

this knowledge gap can extend the scope of many existing construction VR research 

projects and applications from only visible objects to all objects. It also enhances the 

comprehensiveness of current VR-based design review and coordination meetings for the 

construction industry. 

3.3 METHODOLOGY 

The objective of this paper is to develop a framework that semi-automatically 

identifies fully occluded objects in 3D construction models for VR applications. Based on 

findings from the literature, this paper proposed four requirements for the framework. 

First, identifying occluded objects is the fundamental function of the framework. To 

measure this objective, the authors prioritized reaching a high recall rate in the algorithm. 

However, because this is the first classification algorithm for occlusion that the authors 

are aware of, this paper did not draw comparative conclusions on recall performance. 
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Secondly, the majority of the occlusion identification process should be automated in 

order to save development time for VR applications and mitigate human errors. Thirdly, 

the inputs and outputs of the framework should be consistent and compatible with current 

industry practices, including data formatting, reasonable computing time, and adaptability 

to model iterations. Finally, the output from this framework should streamline the process 

of applying visualization effects for occluded objects in VR development software. 

3.3.1 General Workflow 

The framework is introduced using a pipe spool covered by heat insulation as an 

example, shown in Figure 3-1. The workflow started with a building information model 

of a construction project. The model was converted to a Filmbox (FBX) file and pre-

processed to exclude irrelevant information. In step 3 (a), every object in the pre-

processed model was converted into a point cloud file.  In a parallel process, the authors 

used virtual laser scanners to scan the pre-processed model. The scanning results were 

then combined into a scanned point cloud file, see Step 3 (b). As a result, the converted 

point cloud files contained location information for all objects in the pre-processed 

model, while the scanned point cloud file only contained visible objects. Step 4 compared 

the coordinates of all points in each converted point cloud to the scanned point cloud. 

Converted points were tagged as "visible" or "occluded" based on the comparison, and 

the visibility status of converted points determined their corresponding model object. 

Finally, all objects in the pre-processed model were transformed into two models based 

on their visibility tag: either the "visible" model or the "occluded" model. Every step is 

expanded in the following subsections in detail. 
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Figure 3-1:  The general workflow of the semi-automatic occlusion identification 
framework 

3.3.1.1 Step 1 & 2: Model Pre-processing 

The raw contents of a building information model can be overwhelming and 

uninterpretable for the point cloud generation algorithm. In this framework, 3D objects 

were exported in FBX format from building information models using Autodesk® 

Navisworks® Manage 2020 . The authors then applied three essential modifications to 

the exported model using Autodesk® 3ds Max® 2020 . First, all 2D references were 

deleted, including 2D engineering drawings, reference points for 3D objects, and empty 

objects. Then, the authors moved the pivot of each object from the center of the original 

building information model to the center of each object. This helped the authors better 

navigate the model and select the locations for virtual laser scanners in the following 

steps. Finally, the hierarchy of objects was streamlined by deleting empty and 

unnecessary levels. The output model remained as one file in the FBX format and is 

referred to as the “pre-processing model” throughout this paper. 
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3.3.1.2 Step 3 (a): Converted Point Clouds 

Each 3D object in the pre-processed model was converted to a point cloud file and 

an FBX file in this step. The authors automated the conversion using Feature 

Manipulation Engine (FME)® Desktop and processed the output data using Python. 

Figure 3-2 demonstrates the detailed workflow in FME®. After loading the model with a 

built-in FBX file reader, the UUIDGenerator function assigned a Universally Unique 

IDentifier (UUID) to each object. Then, the PointCloudCombiner function converted 

every object to a point cloud file to record the geometry and location of the object. 

Theoretically, finer granularity in converted point clouds can facilitate accurate occlusion 

classification with the cost of additional computational power. The authors conducted 

several preliminary tests on case study models and found that the classification results 

remained the same with a point interval set at 10 millimeters (mm) or lower. Therefore, 

the point interval was set to 10 mm to achieve the best classification performance while 

reducing the overall computation time. Under this setting, the least represented object in 

the two case study models was converted to 14 points. An XYZ file writer exported the 

converted point cloud files to XYZ files with a matching UUID. Similarly, the 

AttributeManager function and the following FBX writer separated objects in the pre-

processed model and created an FBX file for each object. Thereby, each object in the pre-

processed model possessed a point cloud file and an FBX file with a matching UUID, and 

both files were accessible in Python. 
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Figure 3-2: The workflow of converting objects into point cloud files in FME® 

The converted point cloud data was then processed before comparison. In some 

commonly used modeling software systems in the construction industry, 3D objects can 

be represented by one or a combination of 3D surfaces instead of a solid entity, such as 

the pipe spool shown in Figure 3-1. The PointCloudCombiner function in FME® scanned 

both sides of these surfaces and thus, created recurring points in the converted point 

cloud file. The authors programmed a Python-based repeat point detector that ran 

automatically after all converted point clouds were created. The algorithm removed 

repetitive points for all converted point clouds and saved the remaining points in a 

comma separated values (CSV) file with the same UUID.  

In addition, the authors noticed that the size of objects in construction models 

varied significantly, especially for industrial projects. Converting all objects to low-

density point clouds left some small objects underrepresented or unrepresented, but large 

objects with high point density significantly increased the computation time. The authors 

designed a sampling algorithm and appended it after the repeat point detector to mitigate 

this problem. The sampling algorithm randomly selected 5,000 sample points to 

substitute for the original point cloud file, if it still included more points after deleting 

repeated points. Thereby, FME® can convert all objects to point cloud files with high 

point density. Small objects were represented in detail, and large objects did not 

significantly extend the computation time.  
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This paper used a Python script to automate the point cloud converting process. 

After the model was prepared, the script called a batch file that automatically ran the 

point cloud conversion and file creation workflows in FME®. The repeat point detector 

was then called to clean up the converted point clouds, followed by the sampling 

algorithm. With these processing steps completed, the script saved all output files to 

target folders in preselected file formats. As a result, the output data became accessible 

for subsequent algorithms, and the process was fully automated. For the purpose of this 

paper, the output point cloud files are referred to as the “converted point cloud” files. 

3.3.1.3 Step 3(b): Scanned Point Cloud 

The pre-processed model was also virtually scanned to a point cloud file that was 

exclusively composed of visible objects. This paper used BlenSor (Marion et al. 2012) in 

this step for model interoperability and automation. BlenSor simulates the functions of 

real-world laser scanners and generates virtual scanning results for digital models 

(Gschwandtner et al. 2011). The simulated Velodyne HDL-64E2 laser scanner was used 

to scan the model because it was easy to manipulate for rotation. Other virtual equipment, 

such as a Time-of-flight (TOF) camera, can also work for this task but requires more 

specific coding for its rotation. Table 3-1 shows the settings of major parameters for 

virtual scanning using BlenSor. Users can also manually set different parameters for 

specific scans in unique situations. Theoretically, an object is fully occluded when it 

cannot be seen from all accessible locations in a VR-based virtual walkthrough 

experience. In this paper, if an object can be seen from a given location was determined 

by if part of the object can be scanned by virtual laser scanners from that location. 

However, qualified scanning locations were unlimited for a construction model, and 

adding scanning locations can increase overall computational requirements. Therefore, 
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the authors manually selected scanning locations, aiming to incorporate all visible objects 

with minimum scanning locations. The coordinates of these locations were saved in a 

CSV file for the following automatic scanning operations. 

 
Key parameters Values 

Scanner type and model Velodyne HDL-64E2 

Scan resolution 5 mm 

Noise 0 

Coordinates World coordinates 

Start and end angles 0 and 360 

Table 3-1: Key parameters for virtual laser scanners 

The virtual scanning process was automated by a batch file that ran BlenSor and a 

Python script that controlled virtual scanners and outputs. The Python script read 

scanning locations and parameters as a list, ran BlenSor by a batch file, and automatically 

scanned the model at each user-specified location with corresponding parameters. Every 

virtual scan generated a Numpy file, and the Python script combined all these files into a 

point cloud file. This file is referred to as the “Scanned Point Cloud” in this paper. 

3.3.1.4 Step 4 & 5: Classification and Output 

The visibility status of an object is determined by the visibility of its converted 

points. Objects with one or more visible points were classified as visible objects, and 

objects without visible points were classified as occluded objects. This paper determined 



 73 

the visibility of converted points by comparing their coordinates to all the scanned points. 

This paper used a Python script to automate the comparison, classification, and output 

processes. To begin with, the algorithm calculated the maximum and minimum value of 

x, y, and z coordinates in the converted point cloud for a given object. Then, a potential 

point cloud composed of scanned points that all x, y, and z coordinates fell within the 

coordinates range of the converted point cloud was created for that object. Subsequently, 

all converted points were paired and compared with all potential points, as shown in 

Figure 3-3. A converted point was classified as visible if there was a potential point 

located within 5 mm. Otherwise, the converted point was classified as occluded. The 

classification process repeated itself automatically for all objects in the pre-processed 

model. Finally, the individual FBX files generated in step 3 (a) were merged into the 

“Visible” model or the “Occluded” model in FME® based on their classification results. 

 

 

Figure 3-3: Determining the visibility of converted points for a given object (a) the 
algorithm logic and (b) an illustration of the classification process 
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3.3.1.5 Update for Iterations 

Design coordination is an iterative process during construction (Abualdenien and 

Borrmann 2020). It is a common practice that contractors from different disciplines detail 

their systems separately and append their various models for design coordination. Thus, 

federated building information models also experience constant changes. To keep pace 

with this rapidly iterative process, the authors designed an automatic update function that 

can revise the classification results without running the workflow from scratch. The 

update function works under the assumption that updated objects neither change the 

visibility status of existing objects nor require changes in the locations or specifications 

of virtual scanners. The assumption matches many design coordination scenarios during 

the construction stage. However, the automatic update function does not support drastic 

design changes and early-stage design development of a project. 

The update function was also automated by a Python script and shared similar 

steps to the original occlusion detection process, except that it only analyzes updated 

objects. After pre-processing, each object in the model was converted into a point cloud. 

Then, the algorithm calculated and compared the maximum and minimum coordinates of 

the updated converted point clouds to the original ones. Object pairs with the same 

extreme values of coordinates and more than 1% matching points were classified as 

unchanged objects. The visibility of the unchanged object was determined by the original 

object. For those objects without a pair, objects in the updated model were classified as 

new objects, and objects in the original model were classified as deleted objects. The 

algorithm ran the virtual scanning in the updated model again and performed the 

comparison and classification process described in section 3.3.1.4 only for the updated 

objects. Eventually, the visible and occluded models were automatically revised. Deleted 
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objects were removed from both models, and new objects were merged into the "visible" 

model or the "occluded" model, based on classification results. 

3.3.2 Validation Cases 

The occlusion detection framework was validated with two case studies: a 

gasoline refinery facility project and an academic building project. The construction 

teams of the two projects provided the building information models used for construction 

design review. The authors ran the framework and algorithms on the two models. Both 

projects used Autodesk® Navisworks® for model integration and design coordination. 

Therefore, the two models were exported to FBX files from Autodesk® Navisworks® 

Manage 2020 and optimized in Autodesk® 3ds Max® 2020. The authors manually 

selected scanning locations in each model. Thereafter, all other activities in the 

framework ran automatically, including converting point clouds, scanning models, 

comparing point cloud files, classifying objects, and generating final output models. 

3.3.3 Performance Measurements 

Recall and precision rates are two crucial metrics for the classification tasks. In 

order to calculate these metrics, the authors manually labeled all objects in the two 

models as “Occluded” or “Visible” based on their actual visibility in a virtual 

walkthrough. The manual labeling process took around twelve to sixteen hours for a 

Ph.D. student to complete, although the duration can significantly vary with different 

modeling experiences and industry knowledge of labelers. With these labels attached, 

four groups of results are expected: true positive, false positive, true negative, and false 

negative. An object detected as “occluded” is a positive result, and a “visible” 

classification is a negative result. If the classification result is consistent with the actual 
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visibility status of the object, it is a “true” classification; otherwise, it is a “false” 

classification. Precision is the fraction of true positives among all positive results, and 

recall is the fraction of true positives among all actually occluded objects. In this study, 

the objective is to maximize recall rate, in order to detect all possible occluded objects. 

On the other hand, a high precision rate avoids applying inaccurate highlight effects for 

visible objects. Although desirable for the final result, high precision is not as critical as a 

high recall rate. 

Another critical factor for the performance is the overall computation time (Han 

and Golparvar-Fard 2015). The framework was designed to support construction design 

and coordination in the field. Therefore, a commercially available desktop computer 

should be able to run every step, and a short computation time facilitates the process of 

integrating the algorithm into the existing design coordination workflow.  This paper 

recorded the computation time for each major step in both projects using a desktop 

computer with an AMD® Ryzen® 3900x 12-core central processing unit (CPU), an 

NVIDIA® GeForce® RTX 2060 graphics processing unit (GPU), and 32 GB RAM. 

Therefore, the result not only confirmed feasibility of the framework, but also revealed 

potential for optimization and directions for framework improvement. 

3.4 CASE STUDIES 

3.4.1 Project Backgrounds 

This paper conducted two case studies to measure the performance of the 

proposed framework and algorithms. The proposed framework was first implemented on 

the building information model of a gasoline refinery facility. The model was developed 

to the LOD of 350 and used during design coordination meetings. The construction team 

recommended using a section of the facility for this case study because it matches the 
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scope of their routine design review. The complete model and the selected unit model are 

shown in Figure 3-4. The selected section contains a processing unit that heats gasoline to 

a certain temperature so that chemical pollutants can be extracted in the following units.  

This section is comprised of foundation, upper structure, piping systems, heating 

equipment, fire protection systems, and other supporting systems. The model contains 

5,387 objects in total, and 1,196 of them are fully occluded. 

 

   

         (a)                                    (b) 

Figure 3-4: The building information models for (a) the gasoline refinery facility and (b) 
the selected section 

The second case study was conducted on the building information model of an 

academic building. This paper intentionally selected a different type of project to validate 

the comprehensiveness and flexibility of the framework. Similarly, the model was 

developed to LOD 350, and the authors selected a section comprised of three laboratories 

and the corridor that connects them. The case study model covers all systems related to 

the selected section, including architectural and structural elements, as well as MEPF 

systems, as shown in Figure 3-5. The model includes 1,571 objects in total, and 1,286 of 

them are not visible in a virtual walkthrough. 
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Figure 3-5: The building information models for the selected section in the academic 
building 

3.4.2 Case Study Results 

Table 3-2 summarizes the key results from the two case studies. Since the 

proposed algorithm is the first algorithm that identifies occluded objects in 3D models, 

the key results were compared with the random guessing algorithm result and the zero 

rule algorithm result as baselines. The four possible classification results were presented 

in Table 3-3 as a confusion matrix. Precision is the proportion of true positives in all 

positive results, and recall is the proportion of true positives in all actually occluded 

objects. The algorithm achieved a 90.30% recall rate and a 75.05% precision rate for all 

objects in the gasoline refinery facility model. It took approximately three hours overall, 

and 10.7% of the time was spent on manual input. The algorithm automatically generated 

models consisting of objects classified as “visible” and composed of objects classified as 

“occluded” as shown in Figure 3-6. In the academic building model, the algorithms 

reached a higher recall rate of 98.06% and a 97.53% precision rate in approximately one 

hour of processing. Additionally, 23.8% of the overall duration was spent on manual 
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input. Figure 3-7 demonstrates the two output models for the academic building after 

classification. It is worth mentioning that the authors only virtually scanned three 

laboratories and the corridor that connects them from the accessible perspectives of a 

virtual walkthrough. Therefore, the algorithm classified the MEPF system above the 

ceiling and the light switches on the opposite side of the corridor wall as “Occluded”. 

 
Parameters Gasoline refinery 

facility 
Academic building 

Recall rate (proposed algorithm / random 
guessing / zero rule) 

90.30% / 48.88% / 
0% 

98.06% / 51.28% / 
100% 

Precision rate (proposed algorithm / random 
guessing / zero rule) 

75.05% / 27.00% / 
0% 

97.53% / 83.19% / 
82.30% 

Pre-processing time About 10 mins About 10 mins 

Converting point cloud time 10 mins 3 mins 

Selecting scanning location time About 10 mins About 5 mins 

Virtual scanning time 15 mins 12 mins 

Classifying time 141 mins 33 mins 

Output model time  1 min < 1 min 

Manual input time About 20 mins About 15 mins 

Automatic computing time 187 mins 63 mins 

Overall computing time About 207 mins About 78 mins 

Table 3-2: Key results measured from the two case studies 
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Actual 
Status 

Classification 

 
Occluded Visible 

Occluded Ture Positive: 1080 in case study 
one and 1261 in case study two 

False Negative: 116 in case study 
one and 25 in case study two 

Visible False Positive: 359 in case study one 
and 32 in case study two 

True Negative: 3832 in case study 
one and 253 in case study two 

Table 3-3: Classification results from the two case studies 

 

   

         (a)                                    (b) 

Figure 3-6: Outputs for the gasoline refinery facility model: (a) the “visible” model and 
(b) the “occluded” model 
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         (a)                                    (b) 

Figure 3-7: Outputs for the academic building model: (a) the “visible” model and (b) the 
“occluded” model 

3.4.3 False Positive and Negative Classifications 

3.4.3.1 False Positive Results 

A false positive result refers to an object that is “visible” in the model but 

classified as “occluded” by the algorithm. Trivial objects in the detailed MEPF systems 

caused 63.88% and 43.75% false positive results in the gasoline refinery model and the 

academic building model, respectively. As an example of the type of object causing large 

false positives is a component of the MEPF system that has complex geometry which was 

modeled by a large number of regularly shaped objects in the two LOD 350 models, 

instead of as a single object. Figure 3-8 demonstrates this, graphically, by showing a 

valve modeled as 12 independent objects in the building information model of the 

gasoline refinery facility. Scanning all these objects is arguably unpractical due to their 

sizes. 
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         (a)                               (b) 

Figure 3-8: Modeling (a) a complex geometry using (b) 12 independent objects in a LOD 
350 model 

The size of the object was not the only reason for false negatives results. Some 

objects in the model can only be scanned from specific locations with a narrow 

perspective, such as the short support between beams and pipe spools shown in Figure 3-

9. These objects can be invisible from nearly all scanning locations and thus incorrectly 

classified as “occluded”. This issue resulted in 37.12% false positive results from the first 

case study and 9.38% false positive results from the second case study. 

Another problem leading to false positives was that the virtual scanner missed 

some 3D objects that were undersized in two dimensions. 46.88% of the false positive 

results in the academic building model were caused by aluminum window frames with 

significantly smaller magnitudes of width and depth compared to their height. The 

gasoline refinery model did not have any false positive cases caused by this issue because 

it does not contain objects with a similar profile. 
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Figure 3-9: An example pipe support that can only be scanned from specific locations 

3.4.3.2 False Negative Results 

A false negative result means that an object was classified as “visible” while it is 

actually “occluded” in the model. Overlapping surfaces caused all false negative results 

in both case studies. This problem occurs where multiple objects’ surfaces are modeled in 

the same location in space. Figure 3-10 typifies the issue using an air duct from the 

academic building model as an example. The bottom surface of the air duct was designed 

at the exact height of the ceiling. The solid ceiling object fully occluded the air duct in the 

3D model except for the attaching surface. Unfortunately, the scanning result did not 

differentiate which object generated these points. It only showed that there were points 

scanned at the overlapping surface location, and this was then misinterpreted by the 

algorithm as “all objects that have these scanned points on their surface were scanned” 

and thus, were classified as “visible”. 
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Figure 3-10: An example of false negative result caused by an overlapping surface 

3.5 DISCUSSION 

3.5.1 Performance of the Framework 

Results from the two case studies show that the point cloud-based framework and 

algorithms achieved the research objectives of this paper. First, the recall rate is a 

determining criterion for the quality of results, and both case studies reached an over 90% 

recall rate for occluded objects. The over 75% precision rate for both cases is also 

acceptable, although comparative conclusions cannot be drawn because research has not 

been found with similarly functioning algorithms. The framework meets the study’s 

objectives by being highly automated, especially for time intensive activities. Although 

manual inputs are required at the beginning of the framework, they account for less than 

one-fourth of the overall computation time. Additionally, the overall process is practical 

for industry implementation. The framework is applicable for buildings and industrial 

facility models using a commercially available desktop computer. Furthermore, the 
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framework provides development ready models to VR development software. Although 

the integration of VR visualization effects is not in the scope of work for this paper, 

supporting the straightforward employment of these effects is a fundamental requirement 

for the output models. 

3.5.2 Tradeoff and Optimization 

The trade-off between computation time and the precision and recall rates was a 

major challenge for optimizing the algorithms. For objects in the same location, the 

probability of being scanned is positively correlated to its visible surface area. 

Unfortunately, the size of object surface areas varies significantly in the same model. For 

example, the size of the equipment for heating gasoline is 36.89 times larger than a valve 

in the same gasoline refinery facility model. This is a specific characteristic for 

construction models and drives the need for trade-off.  

The scanning density was the key parameter to balance the trade-off. Virtual laser 

scanners can capture more details of the model with denser point distributions. However, 

this greater density results in a larger number of scanned points and consequently, longer 

computation time. On the other hand, wider point intervals can shorten the computation 

time, but can miss small objects and lower the recall rate. The authors performed 

exploratory experiments for scanning resolution by varying the distance between points. 

The result showed that a denser scanning setting can increase the number of scanned 

objects if the interval between points is larger than 5 mm. After the point interval falls 

below the 5 mm threshold, all visible objects at the scanning location were scanned. The 

combination of the Velodyne HDL virtual laser scanner and a 5 mm scanning resolution 

was selected as the balanced option for this paper.  The test did not consider the trivial 

objects caused by the detailed MEPF model, as discussed in Section 3.4.3.1. Therefore, 
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this paper recommends the scanner and resolution combination, but other combinations 

or modifications may best fit different model environments. 

3.5.3 Selecting Scanning Locations 

Selecting scanning locations is the only manual input to the framework. Scanning 

locations play a determining role in acquiring high quality scanned point cloud data. 

Virtual scanners can reach objects without distance limits, so the major bottleneck for 

scanning more visible objects is overlapping objects in a certain scanning location. To 

overcome this limitation, scanning from many different locations is more effective than 

increasing scanning resolution.  

The authors recommended selecting scanning locations based on the geometrical 

distribution of objects in the model. For example, a single scanner was deployed at the 

center of each laboratory in the academic building model. However, many scanners were 

deployed at a shorter distance to cover narrow spaces, such as corridors. Figure 3-11 

shows the scanning result for the corridor in the academic building model. Scanned 

points showed a concentrated distribution near the scanner, but the density decreases 

rapidly with distance. 
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         (a)                                    (b) 

Figure 3-11: A comparison between (a) scan result in open spaces and (b) scan result in 
narrow spaces 

3.5.4 Limitations 

One limitation of the framework is that it only detects fully occluded objects. 

Currently, the proposed algorithm would classify an object as "occluded" only if no 

converted point from the object was scanned. As a result, any object with a visible 

proportion was classified as a visible object, no matter how small that proportion was. 

Figure 3-12 shows a piece of pipe that was classified as a “Visible” object. However, 

most of the pipe is occluded by the equipment except for the narrow connecting surface. 

Although not fully occluded, these objects would also benefit from a highlight effect in 

design review scenarios. 
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Figure 3-12: An example of a partially occluded object that would benefit from a 
highlight effect 

The biases included in the performance measurement of the framework is another 

limitation of this paper. As discussed in section 3.4.3.1, the geometry-based 

representation of the MEPF systems in LOD 350 generated a large number of MEPF 

objects in both models. As a result, the recall and precision rates for MEPF objects 

exerted an extended influence on the overall recall and precision rates. Modeling or 

grouping MEPF objects by function or installation segments can mitigate this bias, and 

both precision and recall rates of the framework should improve under that circumstance. 

Moreover, the converted point clouds can contain a large proportion of redundant 

points if the object is modeled as solid. The PointCloudCombiner function in Step 2 

creates points inside a solid object with the same point density as the surfaces. Therefore, 

the algorithm would convert a solid cube with a 10 centimeter (cm) x 10 cm x 10 cm 

dimension into 1 million points. Only the 52,000 points on the six surfaces are 

meaningful for occlusion detection, but all 1 million points will go through the comparing 
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process. This limitation does not impact the result of the algorithm, but it elongates the 

overall computation time. 

3.6 CONCLUSIONS AND FUTURE WORK 

This paper recognized a knowledge gap for visualizing occluded objects in VR-

based construction design review and coordination. This paper established a framework 

that semi-automatically identified fully occluded objects in 3D models and creates 

interoperable outputs for VR development software. The framework converts each object 

into a point cloud and compares it with virtual scanning results to classify the visibility 

status of each object. The authors validated the framework on two case studies, a gasoline 

refinery facility model and an academic building model. The algorithms achieved over 

90% recall rate and 75% precision rate in both case studies, and the manual inputs 

accounted for less than one quarter of the overall computation time. Results show that the 

point cloud-based framework can effectively identify occluded objects in 3D models, and 

a commercially available desktop computer can provide adequate computation power for 

executing the framework.  

This paper contributes to the body of knowledge by creating a framework that 

semi-automatically identifies fully occluded objects in 3D construction models. Case 

studies validated that point cloud-based algorithms can achieve higher than 90% recall 

rates and higher than 75% precision rates. Existing research on VR applications that 

limited their work to visible objects can expand their research scope by combining this 

framework to their model processing approaches. Meanwhile, the results set a baseline 

for occlusion identification algorithms and shed light on future research directions. 

The proposed framework can also facilitate the implementation of VR-based 

design review in the construction industry. It enabled visualization of over 90% of 
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occluded objects in virtual models and therefore, extended the potential benefits of 

reviewing these elements during design. In addition, the framework is consistent with the 

current development workflow of VR environments. The output models can be loaded 

and manipulated directly in VR development platforms. Therefore, VR developers can 

also easily combine the framework with current applications. 

The authors recommend the following topics for future research projects that aim 

to improve point cloud-based occlusion detection algorithms or workflows. First, this 

paper did not streamline the scanned point cloud by sampling due to the uneven 

distribution of scanned points. Manual input for scanner locations was consequently 

required for scanning and computation efficiency. In this case, an intelligent sampling 

strategy that accounts for surrounding point density and the parent objects of the point 

has the potential to fully automate the scanning process and shorten the computation time 

at the same time. Next, the algorithms developed in this paper only utilized one CPU 

core. The authors assumed that multi-core optimization for these algorithms could further 

shorten the overall computation time and allow the framework to handle models with 

more objects when needed, but this requires further study. Lastly, the current geometry-

based definition of an object resulted in large numbers of MEPF objects in building 

information models with LOD 350. It challenged the algorithm with trivial objects and 

biased the performance measurement of precision and recall rates. Therefore, the 

framework and measurement methods can benefit from a function-based definition of an 

object in building information models. In addition to optimizing the algorithm, surveys or 

interviews with industry experts are needed to evaluate the results presented in this paper, 

such as the recall and precision rates. These expert opinions can shed light on the major 

future algorithm optimization requirements for industry implementation of the occlusion 

detection framework.  
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Chapter 4: A Generic Extended Model for AEC Applications 

4.1 INTRODUCTION 

Extended Reality (XR) represents reality technologies that merge the virtual 

world with reality to provide intuitive, immersive, and interactive user experiences (Diao 

and Shih 2019). It is primarily composed of Virtual Reality (VR), Augmented Reality 

(AR), and Mixed Reality (MR) in the Architecture, Engineering, and Construction (AEC) 

research domain (Alizadehsalehi, Hadavi, and Huang 2020, Osorto Carrasco and Chen 

2021). These technologies have contributed to various visualization-related challenges 

the industry faces throughout the project lifecycle (Guo, Yu, and Skitmore 2017, Davila 

Delgado et al. 2020). Researchers observed promising results from XR applications in 

terms of enhanced end-product quality (Boton 2018, Han and Leite 2021b, Heydarian et 

al. 2015), increased time efficiency (Baek, Ha, and Kim 2019, de Klerk et al. 2019), and 

improved communication (Du, Shi, et al. 2018, Bouchlaghem et al. 2005, Du, Zou, et al. 

2018). The theoretical benefits of XR applications have also received growing 

recognition in the AEC industry. Although XR implementation is still at an early stage 

(Zhang, Liu, et al. 2020), implementation guidance that combines XR into the current 

industry workflow has been developed (Institute 2019), and case studies of promising 

applications have been performed in construction projects (Getuli et al. 2020).  

Implementing multiple XR applications in the same project can be a financially 

demanding decision for AEC companies, despite the potential benefits (Cheng, Chen, and 

Chen 2020, Zhang, Liu, et al. 2020). The Construction Industry Institute (CII) reported 

that developers' salary constituted 62% of overall VR investment in initial 

implementation projects (Institute 2019). The traditional XR development process needs 

to transfer a Building Information Modeling (BIM) to an XR-ready model when new XR 
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applications are developed or when the BIM gets updated during the operation period of 

an application (Davila Delgado et al. 2020). The AEC industry encounters these 

situations frequently. For example, design coordination meetings are commonly held 

weekly or bi-weekly during construction, and the BIM used in these meetings 

experiences constant updating. Transferring the complete, up-to-date BIM to XR is 

typically a time-consuming process. Repetitive activities and overall model transfer time 

accumulate with the number of 3D objects in the BIM, resulting in inefficient workflow 

and high XR development costs. 

This paper identified the lack of knowledge on a generic XR model and a standard 

BIM-to-XR model transfer workflow for AEC applications. Collecting all XR-related 

BIM information in an interoperable format is indispensable for a generic XR model that 

supports all XR development. Meanwhile, automatic BIM update detection and XR 

model merging could decrease the BIM-to-XR transfer duration, considering that BIMs 

experience gradual but constant updates through a project's lifecycle. Currently, 

developers lack knowledge and techniques to avoid these repetitive tasks, despite the fact 

that a large proportion of XR applications retrieved 3D geometry and semantic 

information from the same BIM (Li et al. 2018, Zhang, Liu, et al. 2020, Leite 2019).  

This paper aims to decrease the implementation cost of BIM-enabled XR 

applications by streamlining the BIM-to-XR model preparation process. The authors 

reviewed existing AEC XR literature and summarized XR information requirements from 

BIM. Then, a generic XR (GenXR) model is proposed to support diverse BIM-based XR 

development in a project lifecycle. The model enables automatic change identification 

between the GenXR model and an up-to-date BIM. Therefore, only new and updated 

objects experienced the BIM-to-XR model preparation process, saving development time 

and revealing new XR use cases. This paper developed VR, AR, and MR prototypes in 
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two case studies for validation purposes. Typical XR functions were developed to test the 

applicability of the GenXR model, while development durations with and without the 

GenXR model were measured to investigate its efficiency. 

The paper contributes to the body of knowledge by three key results. First, the 

authors summarized all XR-related model requirements from BIM, including the 

information type and format, for all existing XR applications in the AEC research 

domain. Second, by leveraging the summarization, the GenXR model and prototypes 

demonstrated the applicability of developing all XR applications using a generic XR 

model for the first time. Next, this paper quantified development time savings using the 

GenXR model. Practically, the model and workflow can significantly decrease XR 

development time. Therefore, XR implementation requires less investment, and the 

technology could be applied to support new challenging tasks in the AEC industry. 

4.2 LITERATURE REVIEW 

4.2.1 BIM-enabled XR Applications 

The AEC industry has experienced an increasing BIM usage with measurable 

benefits (Troncoso-Pastoriza et al. 2019, Hartmann, Gao, and Fischer 2008, Mostafa and 

Leite 2018). BIM has enabled project data management to address a variety of 

engineering challenges, such as design coordination, scheduling, and various simulations 

(Ding, Zhou, and Akinci 2014, Mehrbod et al. 2019a, Moon et al. 2015, Rock et al. 

2018). In addition to BIM’s native applications, the comprehensive and well-organized 

information has aided the implementation of other emerging technologies (Leite 2019).  

Many XR applications have leveraged BIM in model generation and realized 

advanced visualization, communication, and human-model interaction for industry 

professionals (Li et al. 2017, Yan, Culp, and Graf 2011). Each XR technology has its 
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unique features, which determine appropriate use cases for the technology. CII defined 

VR by two fundamental characteristics, the computer-generated simulation and the 

visually immersive experience enabled by a Head-Mounted Display (HMD) (Institute 

2019). On the other hand, both AR and MR technologies overlay virtual environments 

with the real world (Xiang, Wang, and Feng 2021). AR applications perform the overlay 

without an intellectual understanding of the content, while MR applications comprehend 

the reality in real-time and allow interactions between the virtual environment and reality 

(Milgram and Colquhoun 1999, Li et al. 2018, Osorto Carrasco and Chen 2021).  

Considering that VR is independent of real-world objects, many VR applications 

focus on tasks before construction. Motamedi et al. (2017) designed a VR-based signal 

visibility analysis application for pathfinding and information provision in public spaces. 

Kang et al. (2010) extended VR applications to the design phase, creating visual design 

and simulation analysis functions for road design. Similarly, de Klerk et al. (2019) 

investigated the usability of VR on architectural modeling in an early stage of a project. 

VR applications were also used for safety training (Shi et al. 2019, Teizer, Cheng, and 

Fang 2013, Manca, Brambilla, and Colombo 2013), behavioral simulation (Feng, 

González, Amor, et al. 2020, Lin et al. 2020, Lin et al. 2018), and lighting analysis 

(Keshavarzi, Caldas, and Santos 2021) in the AEC industry. 

The requirement in a real-world environment determined that AR and MR 

applications were more commonly utilized in the construction and operation stages 

(Cheng, Chen, and Chen 2020). Hou et al. (2013) found AR guidance improved users’ 

learning, productivity, and cognition, compared to a paper-based manual system. Zhou, 

Luo, and Yang (2017) implemented AR-based Quality Control (QC) in a tunnel 

construction project, empowering real-time displacement inspection on tunnel segments. 

Kwiatek et al. (2019) enhanced workers’ spatial cognition and productivity in complex 
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pipe spool installation via a hand-held AR device. Lee and Akin (2011) also observed 

increasing in fieldwork efficiency when operations and maintenance instructions were 

delivered to workers by an AR application. Sangiorgio et al. (2021) integrated the 

Analytic Hierarchy Process in AR to support façade material decision-making.  

MR applications take advantage of the intellectual reality recognition function in 

problem-solving. For example, in a renovation project, Osorto Carrasco and Chen (2021) 

overlapped architectural design with the original building to perform design review and 

feedback collection. El Ammari and Hammad (2019) designed an MR application that 

delivers maintenance information as well as sensor data to workers onsite via a tablet. 

Chalhoub and Ayer (2018) found that using an MR application to deliver assembly 

information could enhance worker productivity as compared to using 2D drawings. XR 

has also been used for construction progress tracking (Kopsida and Brilakis 2020).  

The scope of existing XR applications has included various visualization and 

communication use cases in the lifecycle of a construction project. The review shows that 

each application has contributed to a specific scenario or engineering challenge. 

Consequently, reaping the full benefit of XR technology requires multiple XR 

applications at different stages of the same project.  

4.2.2 Functions and Model Requirements 

Presenting the correct information to end-users in an interoperable format was a 

grand challenge identified in visualization and information modeling in the construction 

industry (Leite et al. 2016). It is especially true for contemporary XR research and 

development. Alsafouri and Ayer (2018) reviewed 119 journal articles in Information and 

Communications Technology (ICT) in the AEC industry and found that most of them 

utilized a unidirectional information flow that works for specific use cases or functions of 
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an application. Li et al. (2018) and Zhang, Liu, et al. (2020) both pointed out that VR and 

AR applications were developed in an ad-hoc approach in their review articles.  

Han and Leite (Accepted) proposed standardizing BIM-related information 

requirements and workflow to streamline the BIM-to-XR process. This review of 

literature extended the work by comprehensively reviewing XR applications in the AEC 

industry, mapping applications with model-related XR functions, and tracking 

information requirements for each function in terms of content and format. According to 

the literature review section, common AEC XR functions from an application 

development perspective include: 

1. Visualize a BIM in real-scale. 

2. Overlap a BIM with reality. 

3. Select an object/object group in a hierarchy. 

4. Operate objects based on semantic information and user input. 

5. Create realistic texture and lighting effects. 

6. Display semantic information of an object. 

To support these developments, the following information should be retrieved and 

processed from BIM before importing to XR development software systems, including 

Interactable geometry, object coordinates, construction schedule, object material, light 

location and intensity, model hierarchy, object identifier (ID), and attached notes. 

4.2.3 BIM-to-XR Workflows 

Various BIM-to-XR workflows were established in existing XR research. 

Although geometry transfer between BIM and XR development software systems is a 

mature process already, attaching semantic information to 3D geometry is still 

challenging. Han and Leite (2021a) extracted geometric data from BIM in the Autodesk® 
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Filmbox (FBX) format and used Feature Manipulation Engine® to obtain geometric 

features of BIM objects. Boton (2018) attached XML Timeline files to the FBX model 

files to integrate construction schedule and 4D simulation information into VR. Khalili 

(2021) extracted semantic data from BIM in an Extensible Markup Language (XML) file 

and created an XML parser to encode the XML file in XR development software 

systems, so as Tavares et al. (2019). El Ammari and Hammad (2019) transferred BIM 

data to XR in an Industry Foundation Classes Extensible Markup Language (ifcXML) 

format. Lin et al. (2018) exported object parameters, such as device name and type, with 

object ID using Autodesk® Revit Application Programming Interface (API). Chen, Lai, 

and Lin (2020) used the Autodesk® COBie Extension to extract inspection and 

maintenance for of fire safety equipment in COBie standard format. Although these 

methods supported the specific XR application, none created an XR model that satisfied 

development requirements for other AEC XR applications. 

Many commercial software systems and plug-in applications tried to automate the 

BIM-to-XR process for the AEC industry. For example, IrisVR, Enscape, and InsiteVR 

can automatically acquire 3D models from different BIM software systems and create VR 

applications. Twinmotion and Unity Reflect, on the other hand, automated the model 

transferring process from BIM to XR development software systems. These efforts 

provided the industry with off-the-shelf solutions. However, they also compromised the 

development flexibility and extendibility of XR applications. Firstly, these workflows 

lack key model optimization processes. 3D geometry directly exported from BIM 

contains redundant objects, such as 2D drawings and reference points. To minimize the 

computing workload of XR applications and allow the application to handle more 3D 

objects, the aforementioned research projects cleaned up their models in computer 

graphics software systems. Next, these software systems lack connections to essential 
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model preparation algorithms, such as occlusion detection (Han, Ma, and Leite 2021). 

Additionally, commercial model transferring software systems commonly enable 

connections between specific software systems. Their workflows cannot support project 

stakeholders' use of different modeling software systems. Therefore, existing commercial 

model transfer software systems are not practical for industry implementation, and their 

limitations demonstrate the need for a flexible and generic BIM-to-XR workflow. 

4.2.4 Knowledge Gap 

This paper identified the lack of knowledge on a standard XR model that can 

leverage existing XR models in future developments. It resulted in repetitive activities in 

XR development when building a new application or when a BIM got an update. This 

section summarized existing BIM-related information requirements and information 

transfer methods from the standpoint of XR developers. The knowledge is meant to help 

explore a standard XR model with an efficient and collaborative BIM-to-XR model 

preparation process when multiple XR applications are utilized in the same project. This 

literature review imparts the opportunity of standardizing the existing XR model 

development process because information requirements from these applications have 

considerable overlap. The opportunity could reduce XR development durations in various 

AEC use cases and enable project engineers to implement more appropriate visualization 

technologies with less technical and financial constraints.  

4.3 METHODOLOGY 

Based on the knowledge gap and opportunities identified in the literature, we 

propose a GenXR model for developing XR applications in the AEC industry. The 

GenXR model aims to streamline the BIM-to-XR process when multiple XR applications 
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are implemented in the same project. Therefore, the model should satisfy three essential 

requirements. First, the model should provide geometric and semantic information in a 

format consistent with current industry practice. Then, considering the dynamic nature of 

a construction project, synchronizing with an up-to-date BIM becomes a prerequisite for 

the XR model. In addition to the applicability, the practical contribution of the XR model 

is primarily determined by productivity enhancement. As a result, the workload of 

implementing the XR model should be lighter than traditional approaches. It is worth 

noting that the BIM-to-XR process is a generic workflow. Software systems used in each 

step are presented with the intent of assisting peers in replicating this work. Other 

software systems with similar functions should also be able to follow the workflow and 

achieve similar functions. 

4.3.1 Workflow 

Many existing BIM-based XR applications in the AEC industry share a linear 

development workflow, as shown in Figure 4-1. XR developers initiate the workflow 

with a BIM of a target project. After federating models from different disciplines, model 

geometry is exported from BIM and modified in computer graphics programs for XR 

development. Semantic information for the specific XR application can be retrieved from 

BIM with geometry or as a separate component. Next, geometric and semantic 

information is imported into XR development software systems. Finally, XR developers 

leverage a game engine to create effects, functions, and human-computer interactions. 

This linear BIM-to-XR process only contains the required information of one XR 

application at the time when the application was built. The lack of extensibility and 

information adaptability determined that developers needed to repeat the process for new 

XR applications or when a BIM is updated or modified. 
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Figure 4-1: The traditional XR development process in the AEC industry 

Developers' productivity can be enhanced by decreasing the number of objects 

that experience the repetitive and time-consuming BIM-to-XR process. Figure 4-2 

introduces the GenXR model-facilitated information flow when the BIM-to-XR process 

is needed multiple times in the same project. In the initial cycle of the BIM-to-XR 

iteration, the transfer of model geometry from BIM to XR is identical to the linear 

method. However, all XR-related semantic information is retrieved from BIM and 

preserved in a compatible format with XR development software systems. In the 

following BIM-to-XR iterations, model updates are automatically detected by comparing 

geometric and semantic information between the original XR model and the updated 

BIM. XR developers only need to perform model transfer and optimization activities to 

new and updated objects. These objects were imported to XR development software 

systems as an update package, while deleted and updated objects from the original XR 

model were deactivated and kept only for version control-related functions. 
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Figure 4-2: The GenXR model-facilitated BIM-to-XR process 

4.3.2 Assumptions 

The methodology was built on two major assumptions. First, the authors assume 

that an up-to-date BIM is available in the construction project for which XR applications 

are to be applied. As indicated in the literature review section, BIM serves as the 

information source for many existing XR applications, and having a "living BIM" that is 

maintained up to date throughout the construction project aligns with current research 

trends. Second, this paper made the assumption that in some construction projects, the 

BIM-to-XR process would be performed multiple times. This assumption is valid when 

multiple XR applications are implemented in the same project, such as using VR for 

design review before construction and using AR for Quality Control (QC) during 

construction. Another circumstance that justifies the assumption is when model iterations 
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happen during the operation period of an XR application. For example, if VR is used to 

support design coordination meetings during construction, the VR model is likely to be 

updated with BIM weekly or bi-weekly. 

4.3.3 Model Development 

The GenXR model was composed of model geometry and semantic information. 

The two components were kept separately and connected by the object identifier (Object 

ID). As shown in Figure 4-2, BIMs (created by Autodesk® Revit®) from different 

disciplines were federated in Autodesk® Navisworks® Manage when they were 

separately modeled. The authors exported the geometry of all BIM objects in the FBX 

format. Then, geometry in the FBX file was imported into Autodesk® 3ds Max® to 

adjust for XR development (Han and Leite 2020). First, pivots of all objects were moved 

from the center of the BIM to the center of each 3D object, and thereby, physical 

movements of these objects can be achieved by editing their transforms in XR 

development software systems. Then, 2D drawings, reference points, and empty objects 

were deleted to simplify the model. Meanwhile, empty and redundant hierarchies were 

also deleted to simplify object selection functions in XR. The detailed model 

optimization process is described in Han and Leite (2021b). The optimized 3D model was 

exported as an FBX file and finally imported into Unity3D, an XR development software 

system commonly used in the AEC industry.  

Semantic information was retrieved from Autodesk® Revit® using Dynamo, see 

Figure 4-3. All XR-related BIM information summarized in the literature review section 

was exported from BIM into a Comma-Separated Values (CSV) file, including Object 

Name, Object ID, Categories, Unique ID, Coordinates of Object Transform, Coordinates 

of Object Bounding Box, and Object Material. The authors wrote a Python script to 
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automatically formalize the exported data into semantic information lists that were 

comprehensible by Unity3D. Eventually, the pre-processed semantic data was maintained 

in a CSV file and directly imported into Unity3D with model geometry. 

 

 

Figure 4-3: Exporting semantic information from BIM using Dynamo 

In Unity3D, the authors programmed a function that automatically connected the 

geometry and semantic information of an object using C#. Figure 4-4 used pseudocode to 

demonstrate the information integration process. To begin with, BIMObject is created as 

a new reference type. It specifies the properties and corresponding variable types for each 

instance. The properties of a BIMObject include semantic data exported from BIM and 

the name of its corresponding geometry. For example, a BIMObject has an "Object ID" 

property in the integer type and a "Category" property in the string type. With the 

reference type defined, a C# script reads the pre-processed semantic information, 

instantiates each row as a new BIMObject instance, and documents all property values.  
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Figure 4-4: Pseudocode for information integration and examples for function 
development in Unity3D 

Instances are connected to geometries with a matching Object ID when an XR 

application is deployed. It ensures that data and filtering requests from XR functions can 

be processed promptly without decreasing the frame rate of the application. As a result, 

developers can design XR functions for objects with specific characteristics. For 

example, VR users in a design review application can modify the transparency of 

structural elements to get a better view of the Mechanical, Electrical, and Plumbing 

(MEP) systems. In this case, XR developers extract the Object IDs of all BIMObjects that 

have a "structural" value in their category property. The geometry of these objects can be 

found using object IDs, and transparent material can be applied to these objects. The 
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process can also be reversed. For example, in an AR-based maintenance application, 

users can select a target object in view. Developers can obtain its object ID, activate the 

highlight function attached to its geometry, and display selected properties of the object 

on a text canvas. 

Realistic lighting effects on building components play an indispensable role in 

aesthetic-related and simulation tasks, such as AR-based facade material comparison 

(Sangiorgio et al. 2021) and VR-based behavioral simulation for emergency evacuation 

(Ruppel and Schatz 2011, Zhang et al. 2021). Although an FBX file can contain light 

sources and simulations created by BIM, they are not fully interoperable with the 

illumination settings in Unity3D. As a result, light sources in BIM were not exported in 

FBX with model geometry. Instead, coordinates of light sources were extracted from 

semantic information. Developers manually added and adjusted these light sources to 

replicate the designed lighting conditions.  

XR illumination can be achieved in three approaches, real-time lighting, baked 

lightmaps, and a mixed mode. A lightmap is a pre-calculated texture that displays the 

brightness of object surfaces under the preset illumination situation. For static models and 

light sources, building lightmaps before running the application is an effective approach 

for XR applications to handle large models and complex interactions without 

compromising frames per second (FPS). On the other hand, rendering lighting in real-

time generally demands more computational power and enhances realism for dynamic 

light sources and objects. This paper selected the mixed mode for illuminating the 

GenXR model. In order to decrease the overall computational demand, all static light 

sources in the XR model were set on the "baked" mode. Dynamic light sources, such as 

emergency lights, were rendered in real-time. For specific XR applications that focus on 

lighting design and effects, developers can build multiple pre-calculated lightmaps, 
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displaying various illumination designs using the same process (Keshavarzi, Caldas, and 

Santos 2021). 

4.3.4 Automatic Update with BIM 

The ability to rapidly and accurately update with BIM is a central function of the 

GenXR model. Figure 4-5 illustrates the workflow of the automatic update algorithm. 

The input for the algorithm comprised a dated GenXR model developed in earlier XR 

applications and an updated BIM. The semantic information in the updated BIM is 

extracted and processed into the same format as the GenXR model. A Python script then 

automatically pairs objects from the two semantic information files with the same Object 

ID and checks if the semantic information is identical. Objects from the GenXR model 

without a pair are recognized as “deleted objects”, while objects from the updated BIM 

without a pair are classified as “new objects”. The classification result is kept in the 

format of Object ID lists. Geometric features, such as objects’ bounding boxes and 

coordinates, are also compared for the difference in this step. Next, paired objects with 

identical semantic information are converted into point clouds to compare geometric 

similarity (see Han, Ma, and Leite (2021) for more detail on the point cloud-based 

algorithm). Figure 4-6 used pseudocode to demonstrate automatic model update 

procedures. The semantic information comparison step presented in this paper effectively 

decreases the computing demand on object comparison. Finally, the python script exports 

Object IDs into five categories in a text format, see Table 4-1.  
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Figure 4-5: The workflow of automatically updating the GenXR model with BIM  

 
Object 
origin 

Not paired Paired with the same semantic 
and geometric information 

Paired with different semantic 
or geometric information 

GenXR 
model 

Deleted 
objects 

Same objects Original objects 

Updated 
BIM 

New 
objects 

Same objects Updated objects 

Table 4-1: Classification results from the automatic model comparison 

After the initial XR development, the automatic update function was applied in 

the following XR development process. Only new and updated objects experienced the 

BIM-to-XR process, and they were separately imported to XR development software 

systems, as described in section 4.3.2. On the other hand, deleted objects and original 

objects were deactivated and separately grouped based on Object IDs. As a result, the 

process realizes three key features of the GenXR model as follows. 

• The GenXR model was automatically updated with a BIM; 

• Identical BIM objects bypassed the traditionally time-consuming BIM-to-XR 

process; and 

• The new XR model support version control of the project model. 
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Figure 4-6: Pseudocode for the automatic model update procedures 

4.3.5 Model Validation 

This paper validated the applicability of the GenXR model via two case studies. 

The authors leveraged two BIMs, creating one VR, AR, and MR prototype for each case. 

In order to test the compatibility of the GenXR model with different types of BIM, the 

two BIMs involved in the case studies were developed by different companies for 

different project types. Only BIM-related operations and functions were performed in the 

case studies. For example, the function of overlapping a virtual model with reality was 

created to demonstrate that the GenXR model supported AR development. However, a 

localization function was not developed because it is an AR-specific function that does 

not relate to BIM. Table 4-2 summarizes XR functions developed in each prototype. 
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Case studies VR 
applications 

AR applications MR 
applications 

Academic 
building 

Design review Maintenance for the MEP 
system 

Pipe routing 

Infrastructure Design review Planning for schedule  Site planning 

Table 4-2: XR functions realized in prototypes 

4.4 CASE STUDIES 

4.4.1 Project backgrounds 

The first case study in this paper leveraged the BIM of a nine-story academic 

building composed of two towers and an auditorium. Architectural, Structure, 

Mechanical, Electrical, Plumbing, and Fire Protection systems of the building were 

modeled into six separate files by Autodesk® Revit®. The building was completed and 

in operation in Fall 2017. The authors utilized one floor in the south tower of the model 

to develop XR prototypes, see Figure 4-7. It is composed of 15 laboratories, three 

elevators, and a connecting bridge to the north tower. The selected area contains 5,278 

objects. 
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Figure 4-7: The BIM of an academic building used in case study one 

The second case study used the BIM of a dam retrofit project developed by a 

different company, see Figure 4-8. In addition to structural elements and MEP systems, it 

also contains special equipment models and topography models created by drone-

facilitated photogrammetry. The dam was modeled in Autodesk® Revit® with 1836 

objects. However, unlike the academic building, the general contractor and 

subcontractors collaborated on a central model, and therefore, all objects were modeled in 

the same file. The dam project was under construction when the authors developed XR 

prototypes. 
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Figure 4-8: The BIM of a dam used in case study two 

4.4.2 Prototype Development 

VR, AR, and MR prototypes developed in this paper aim to validate the 

applicability of the GenXR model. Therefore, only model-related functions, such as 

overlapping virtual models with the real world and modifying 3D objects based on 

semantic information, were developed to an application level. Other technology-specific 

developments, such as indoor localization for AR and MR, are out of scope for this 

research. 

VR-based design review applications were developed in both case studies to 

validate the applicability of the GenXR model. The application had two essential 

functions. First, an avatar was added to connect the VR user with the virtual environment. 

The avatar was built based on SteamVR's player prefab. It realized the fundamental 

movement, controller-based input, and visualization functions in VR. Other player 

prefabs, such as the OVRPlayer prefab developed by Oculus, can also realize these 

functions. Next, specific functions for construction design review were created. Users 

gained control of 3D objects by accessing their semantic information. For example, they 
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can activate only MEP systems in the academic building, as shown in Figure 4-9 (a), and 

mark the existing structure in a different material in the dam project, as shown in Figure 

4-9 (b). In addition, users can take screenshots, teleport to pre-set locations and views, 

and access object semantic information in the prototype, as described by Han and Leite 

(2021b).  

 

   

         (a)                                    (b) 

Figure 4-9: VR functions realized by the GenXR model in case studies 

AR and MR prototypes share the same function of overlapping the virtual model 

with reality. Therefore, AR and MR functions were developed in the same prototype. In 

the academic building, users can visualize the MEP systems occluded by the ceiling via 

an iPad, see Figure 4-10 (a). Similar to the VR application, XR effects on virtual objects 

can be modified by users according to their semantic information. For example, users can 

assign different colors or textures to the mechanical, electrical, and plumbing systems, 

respectively. In addition to AR functions, the authors realized interaction between the 

virtual model and the real world with the help of Unity3D's AR Foundation and ARKit 

packages. ARRaycastManager in the AR Foundation package was used to realize real-

time surface recognition in the real world. Subsequently, the authors developed a function 
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that allowed users to perform pipe routing work using an iPad onsite, see Figure 4-10 (b). 

The recognized real-world spot was illustrated on the iPad, and the users can simply click 

the start and end points to substantiate a pipe. 

 

   

         (a)                                    (b) 

Figure 4-10: AR and MR functions realized by the GenXR model in case study one 

Considering that the dam project was under construction, its AR prototype was 

designed to help visualize the project design and plan for the construction schedule. 

Figure 4-11 demonstrates the effect when overlapping the dam model with its 

construction site. The activation status of objects, materials, and other visual effects can 

also be modified by the user based on semantic information. For example, users can 

activate objects step-by-step according to the pre-set construction schedule, replicating 
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the planned construction process. The prototype shared the same surface recognition 

function as the academic building prototype in terms of XR functions. It allows users to 

create virtual models of construction equipment, such as mobile cranes, on appropriate 

locations selected in the real world. 

 

 

Figure 4-11: AR functions realized by the GenXR model in case study two 
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4.4.3 Performance Measurement 

4.4.3.1 Measurement Criteria 

The performance of the GenXR model was measured by comparing the 

development durations for the six XR prototypes with and without the GenXR model. 

Considering that the GenXR model only streamlines the BIM-to-XR process, this paper 

only measured the development time for BIM-related activities. These activities include 

model transfer time from one software system to another, model modification time, as 

summarized in the literature review, and model-related development time, such as 

creating light effects. Application design, coding, and debugging are time-consuming 

activities in XR development. However, they were not considered at a project level 

because codes and effects for an XR application were likely to be developed at a 

company level and shared with multiple projects.  

Manual input durations and automatic processing durations were separately 

measured to maintain rigor in results. The authors performed manual input activities three 

times in each application. The average duration was accepted if the differences were less 

than 5%. It is worth noting that the development process has been practiced several times 

before the measurement to mitigate the learning curve for the development. The 

automatic processing durations results were more objective and easier to replicate. 

Similar to the manual input practice, the authors executed each processing activity three 

times and presented the average duration when less than 5% deviation was observed. This 

paper validated the automatic update function by adding artificial changes to 10% of 

objects in the case study models. These changes included adding new objects, deleting 

existing objects, modifying the location and size of existing objects, and modifying 

semantic information. The performance of this algorithm was measured by identification 
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accuracy. The manual input and computing time for the automatic update was included in 

the model performance measurements. 

The desktop used to develop VR prototypes has an AMD® Ryzen® 3900x 12-

core central processing unit (CPU), an NVIDIA® GeForce® RTX 2060 graphics 

processing unit (GPU), and 32 GB DDR4 random access memory. AR and MR 

prototypes were developed using a MacBook Pro that has an Apple M1 Chip with an 

Eight‑Core CPU, an Eight‑Core GPU, and 8GB unified memory. All XR prototypes were 

developed in Unity3D version 2021.1.10f1. 

4.4.3.2 Measurement Results 

Figure 4-12 shows XR prototype development durations in the academic building 

case study. Developing BIM-related activities in the VR, AR, and MR prototypes without 

the GenXR model took 7.75 hours, 7.49 hours, and 7.49 hours, respectively. In the initial 

cycle of XR development using the GenXR model, the prototype development took 7.92 

hours overall, spending more manual operation time on the comprehensive information 

retrieval from BIM. However, on the following iterations, the overall development 

duration was reduced to an average of 2.53 hours when the model had around 10% 

updated objects. Overall, 66.7% of model-related development time was saved compared 

to independent XR development, including 75.1% manual operation time and 63.9% 

automatic computing time. Model transfer activities, from BIM to computer graphics 

programs and eventually to XR development platforms, benefited the most from the 

GenXR model. On the other hand, the automatic light-baking process was not shortened. 

In addition, all artificial modifications on the model were successfully detected by the 

automatic update function. 
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Figure 4-12: Prototype development durations with and without the GenXR model in 
case study one 

The prototype development durations for the dam project are displayed in Figure 

4-13. The automatic update function detected all model changes in the dam project as 

well. The overall development time was shorter than the academic building project 

because the dam model contains fewer objects. Similarly, using the GenXR model in the 

initial cycle took, on average, 12 minutes longer than developing VR, AR, and MR 

prototypes in the traditional method. The following iterations using the GenXR model 

were 63.8% faster than independent XR developments on average. In case study two, 

manual operation time was reduced by 71.9%, and automatic processing time was 

reduced by 63.6%. 
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Figure 4-13: Prototype development durations with and without the GenXR model in 
case study two 

4.5 DISCUSSION 

4.5.1 Applicability 

The two VR prototypes demonstrated that the GenXR model could support 

diverse VR functions and applications in the AEC industry. First, design review 

applications could take full advantage of the ability to access semantic information and 

modify visualization effects accordingly. Beyond the changing material function 

demonstrated in prototypes, other review needs, such as construction schedule, 

sustainability design (Ayer, Messner, and Anumba 2016), and waste management 

(Guerra, Leite, and Faust 2020), can be achieved using the same programming logic. 

Second, the GenXR model realized functions of realistic illumination. This function 

supported a variety of AEC applications, including visibility analysis (Motamedi et al. 

2017), emergency simulation (Lin et al. 2020, Lovreglio et al. 2018), and material 

selection (Sangiorgio et al. 2021). 
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The AR prototypes validated the applicability of the GenXR model in AR 

development for AEC use cases. As a fundamental function for AR, overlapping a virtual 

model with reality enabled diverse applications in a project's lifecycle, such as onsite 

Quality Assurance and Quality Control (QAQC). Meanwhile, the connection between 

geometry and semantic information supported advanced AR use cases. For example, 

construction progress can be visualized with the project's schedule, and maintenance 

information can be displayed directly to onsite workers with instructions on maintenance 

work (Chen, Lai, and Lin 2020). Although the prototype still needed AR-specific 

development, such as a localization function, before it could be applied in industry, these 

functions were independent of the model and have been developed in many research 

projects (Baek, Ha, and Kim 2019).  

Although the virtual-real interaction enabled by MR was not widely implemented 

as VR and AR applications, the MR prototypes demonstrate many potential AEC use 

cases. The surface recognition function brought reference points in the real world to MR 

applications. Users can leverage these reference points, measuring distance or area in 

existing structures, placing construction equipment onsite for site management, and 

performing onsite pipe routing by placing pipes' start and end points. Currently, these MR 

functions, especially for reality recognition, heavily rely on advances in computer vision 

and artificial intelligence. However, the MR prototypes showed that the GenXR model 

realized model-related requirements and supported the deployment of these functions. 

4.5.2 Performance 

Measurements from the case studies showed that with the help of the GenXR 

model, the development time for XR applications slightly increased in the initial cycle 

and significantly decreased in the following iterations. The GenXR model only processed 
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new and updated 3D objects in BIM after the first development, and both manual 

operations and automatic processing steps benefited from the model with fewer objects. It 

is worth mentioning that the automatic processing durations were more objective, while 

the manual operation durations may experience more variety due to differences in 

developers’ skill levels. Considering that the developers’ salary composed two-thirds of 

the XR investment, the result shows that the GenXR model could decrease the overall 

XR implementation cost when multiple XR applications are applied in the same project 

or when the XR model needs frequent updates. 

In both case studies, the largest reduction in development time was observed in 

the automatic model transfer duration, followed by the manual development duration. 

The two activities are sensitive to the number of total or relevant objects in the model. On 

the contrary, the authors observed limited effectiveness in activities that are not 

influenced by the object number. For example, although semantic information for fewer 

objects was extracted from BIM in iterative XR developments, developers still underwent 

all manual operations for selection and exporting. Another activity that did not benefit 

from the GenXR model was creating Lightmaps. Updated 3D objects can affect the 

Lightmap for existing objects. Therefore, the Lightmap needs to be re-calculated for all 

objects after model updates. 

Model features and modeling methods also caused different results in the same 

activities in the two case studies. First, XR iterations in case study two took a longer 

model transfer time (the solid blue bar in Figure 4-13) because the BIM was a central 

model used for collaboration among different stakeholders. Developers had to detach the 

model from the software’s server and then process the model using the same workflow in 

case study one. The additional detaching process was necessary for each iteration. 

Second, model complexity can significantly impact the overall BIM-to-XR duration. 
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Although the dam project in the second case study has approximately one-third of objects 

compared to the academic building, it contains geographic objects with complex shapes. 

Therefore, the computing durations of model transfer and Lightmap creation per object 

were longer in case study two. 

The reduction in overall development time not only realized the objective of 

reducing development cost. It also enabled new XR use cases. The AEC industry has 

already benefited from VR-based design review applications. However, VR currently 

cannot help design coordination use cases during construction, although the scenario is 

arguably similar to design review. In the current industry workflow in the US, design 

coordination meetings are held weekly or bi-weekly (Mehrbod et al. 2019b). A BIM 

coordinator would receive the BIM from different disciplines one day before the 

coordination meeting. The traditionally time-consuming VR development process 

prohibited creating a coordination environment in VR within the timeline. However, the 

GenXR model enabled the BIM coordinator or a specialized developer to fit the VR 

development process into the tight schedule of design coordination in construction. 

Therefore, all design coordination meetings could be held in VR, and the industry could 

expect a benefit similar to VR-based design review applications. 

4.5.3 Limitations 

The dependence on software systems is a major limitation of the proposed GenXR 

model. This paper only validated the BIM-to-XR information flow from Autodesk® 

Revit® to Unity3D. The GenXR model and workflow should prevail when other BIM, 

computer graphics, and XR development software systems are utilized. However, the 

information retrieval and processing methods might need tweaks to keep consistency 
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with different software systems. As a result, the overall development time could vary 

from this paper's results.  

Another limitation of this research can be found in the automatic update function. 

Decreasing the number of objects processed in the BIM-to-XR process is a central 

enabler for the shorter development time. Therefore, the effectiveness of the GenXR 

model could be decreased when the BIM experiences drastic changes. For example, if a 

general contractor decides to discard the designer's BIM and re-model the project, all 

objects in the construction BIM will be classified as new objects. The GenXR model 

cannot streamline the XR development in the designer-contractor interface. In this case, 

the GenXR model needs to experience the initial cycle for more than one time throughout 

the project lifecycle. The overall development time is supposed to increase accordingly.  

Meanwhile, this paper only discussed a one-direction BIM-to-XR workflow using 

the GenXR model. However, after completing XR tasks, connecting XR results back to 

BIM is also essential in real-world practice. Theoretically, the GenXR model has the 

potential to complete the XR-to-BIM information flow. However, specific algorithms and 

tests are still lacking. 

Finally, the manual input durations measured in each XR development activity 

can fluctuate with the developer's experience. The developer in this paper was proficient 

in development techniques for independent XR and the GenXR-enabled XR. Therefore, 

the result was observed in an ideal situation where no development errors or debugging 

time were included. Considering that the GenXR model utilizes an innovative and more 

complex workflow than the traditional method, industry professionals may spend more 

time coping with the learning curve. This process can also reduce the efficiency of the 

GenXR model. 
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4.6 CONCLUSIONS AND FUTURE WORK 

This paper identified the knowledge gap between XR applications in the AEC 

industry. The authors summarized information requirements from existing XR 

applications and developed a GenXR model accordingly. Geometry and sematic 

information are the two key components of the GenXR model. They were separately 

retrieved from BIM and connected via the Object ID. The BIM-to-XR workflow was also 

developed and automated in this paper. Specifically, the authors created an algorithm that 

automatically updated an existing XR model with an updated BIM. Consequently, only 

new and updated objects participated in the time-consuming BIM-to-XR process. The 

paper validated the GenXR model using six XR prototypes in two case studies. The result 

showed that the GenXR model supported the development of existing XR applications. 

Although XR development using the GenXR model in the initial cycle took 12 to 20 

minutes longer than the traditional approaches, it saved from 63.8% to 66.7% BIM-to-XR 

model transfer time in the following iterations.  

This paper contributed to the body of knowledge by proposing a GenXR model 

that connected BIM with XR development in the AEC industry. The knowledge helped 

standardize model-related information and, subsequently, formalized an efficient BIM-to-

XR workflow that only processed new and updated objects in a BIM. Two major 

practical contributions can be expected from this paper. First, the reduced development 

time enabled more XR use cases in the AEC industry, especially during construction 

when XR applications were utilized with constant BIM updates. Second, the result 

showed that the GenXR model could significantly reduce XR development time when 

multiple XR applications were applied in the same project. From a business perspective, 

the reduction meant that XR implementation required less investment from construction 

companies, which could facilitate XR implementation in the AEC industry. 
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The authors would like to recommend three directions for future research in the 

area of BIM-to-XR workflow. First, exploring how different software systems and 

modeling logic impact the BIM-to-XR workflow could enhance the applicability of this 

work. It is not uncommon in the current AEC industry that designers, general contractors, 

and subcontractors use different modeling software systems in the same project. In this 

case, information retrieval and pre-processing for the GenXR model from different 

software systems become the key to the BIM-to-XR workflow. Second, case studies 

using the GenXR model would be the next step of performance measurement. The 

current result was observed in a lab environment with highly proficient developers. 

Before wide industry implementation, the GenXR model needs performance data 

observed in industry practice. A case study will provide the data and shed light on 

necessary modifications for industry uses. Last but not least, cloud-based XR model 

transferring, managing, and sharing can enable collaborations between developers and 

enhance application accessibility for remote users. More research efforts should be spent 

on replicating the current desktop-based GenXR model and the BIM-to-XR process on a 

server. 
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Chapter 5: Conclusions 

5.1 RESEARCH PROJECT CONCLUSIONS 

This dissertation recognized and addressed three major engineering challenges in 

VR implementation in the AEC industry, especially for construction design review and 

coordination. Each challenge was encapsulated into one research question and addressed 

by a corresponding research project.  

First, the actual performance of HMD-based VR was vague compared to 3D game 

engine-based alternatives. The dissertation answered the research question, " What is the 

impact of the Head-Mounted Display (HMD) on user performance in construction design 

review tasks when compared to desktop-based Virtual Reality (VR)?". A comparison 

framework that controlled more external variables was developed for users' performance 

measurement. Forty-eight industry experts and novices participated in a design review 

experiment. Statistical analysis revealed that VR significantly enhanced users' ability to 

detect design errors and plan for installation sequence, and the enhancement varied from 

18% to 59%. However, such performance improvements were not applicable in the other 

two use cases, namely reviewing work package completeness and recalling the scope of 

work. Therefore, the benefit of VR applications only exists in specific use cases, and its 

industry implementation should be intentional. For construction tasks without existing 

experiment results, a construction company should follow the framework developed in 

research question 1 in this dissertation, evaluating VR effectiveness before 

implementation. 

Next, occluded 3D objects are common components in BIMs. The lack of tools to 

visualize them in VR-based design review applications limited VR applicability and 

impeded its industry implementation. To answer the research question of " How can 
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occluded building elements be automatically identified in 3D Models for VR-based 

construction design review applications?", this dissertation proposed a semi-automatic 

point cloud-based occlusion detection algorithm. The algorithm compared (a) point 

clouds converted from BIMs with (b) a point cloud generated by virtual scans of the BIM 

to determine the visibility status of 3D objects. This dissertation tested the algorithm 

using BIMs of an academic building and a gasoline refinery facility. In both case studies, 

the algorithm achieved over 90% recall rata for occluded objects. Therefore, the proposed 

point cloud-based algorism was applicable in occlusion detection tasks for BIMs, and the 

proposed scanning strategy, including a five-millimeter point interval and additional 

scanning density in narrow spaces, should be applied in relevant applications. 

Last but not least, current XR development processes lack interoperability. Even 

though many XR applications retrieve information from the same BIM, the BIM-to-XR 

process needs to be repeated whenever the project BIM gets an update or a new XR 

application is needed. The third research question in this dissertation asked " How can a 

generic 3D model for BIM-based XR applications throughout the lifecycle of a 

construction project be developed?", aiming to streamline the BIM-to-XR process. 

Research question 3 summarized model-related functions in all existing XR development 

in the AEC research domain. The functions were then mapped into a list of model 

requirements. Next, the dissertation proposed a GenXR model that automatically updates. 

The applicability of the GenXR model was validated with six XR prototypes using BIMs 

of an academic building and a dam retrofitting project. Results show that the GenXR 

model supports model-related VR, AR, and MR development, and using the GenXR 

model saved over 65% of application development time. 
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5.2 INTELLECTUAL AND PRACTICAL CONTRIBUTIONS 

The first research question contributed to the body of knowledge by (a) proposing 

a technology performance comparison framework that controls more external variables 

and (b) quantifying the impact of HMD on user performance in construction design 

review tasks. From an industry perspective, the knowledge created in this project 

provides quantitative references for decision-making on VR implementation. 

The intellectual contribution from the second research question focuses on the 

proposed semi-automatic occlusion detection algorithm. This is the first algorithm in the 

AEC research domain that enables occlusion detection. Practically, the algorithm 

expanded the scope of VR-enabled construction design review from visible objects to all 

objects. A comprehensive design review opportunity enhanced the applicability of VR in 

related tasks. Meanwhile, the proposed algorithm has potential use cases in two broader 

research fields. Many other AEC VR applications that currently only focus on visible 

objects could benefit from this algorithm, such as VR-enabled training programs and 

behavioral simulations. In addition, general model comparison, such as a comparison 

between as-built and as-designed models, can be achieved by simple modifications to the 

proposed algorithms.  

The third research question contributed to the body of knowledge in terms of (a) 

summarizing model requirements for AEC XR applications, (b) developing a GenXR 

model that supports all AEC XR development, and (c) quantifying the saved XR 

development durations using the GenXR model. In industry practices, the saved XR 

development duration can be interpolated into savings in XR investment. Therefore, the 

work facilitates implementing multiple XR applications in the same construction project. 

Meanwhile, the short overall development durations revealed new use cases for XR 
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applications. For example, weekly design coordination meetings can be held in VR using 

the GenXR model. 

5.3 LIMITATIONS  

Two major limitations were identified in this dissertation work. First, all solutions 

proposed in three research questions relied on an available and up-to-date BIM. Although 

BIM implementation in the current United States AEC industry has already been 

widespread, high-quality BIMs are not always accessible for many reasons. For example, 

the current legal document for construction projects is still 2D drawings. As a result, 

issues with model-drawing consistency and certain subcontractors refusing to use BIM 

are not uncommon, and these issues could impair the effectiveness of VR-based design 

reviews. Next, the proposed models, methods, and applications were only tested with 

models that have at most 5,000 3D objects. The current mainstream desktop computers 

may not be able to support BIMs of complex buildings and infrastructure facilities. This 

limitation was addressed by creating sections in BIM and reviewing the project in VR 

section-by-section. In other words, reviewing the complete model of complex buildings 

and infrastructure facilities in VR is still challenging. 

In addition, each research question has its own limitations. The VR performance 

measurement framework still includes non-technical variables, such as participants' 

industry experience, age, and VR experience. Recruiting more participants to the 

experiment could address this issue, but recruiting a large number of industry experts can 

be challenging. In addition, the performance-oriented scoring system provided strong 

support for industry decision-making. However, it could not explain the variety of user 

performance in different tasks or provide guidance for VR use case selection. In research 

question 2, the algorithm is semi-automatic because it still needs manual input on virtual 
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scan locations. Selecting these locations relies heavily on the practitioner's experience. 

The lack of standardized criteria may cause variations in scanning quality when 

implementing the algorithm in the AEC industry. At the same time, the work detected a 

tradeoff between the recall rate of the algorithm and the computing duration. An 

algorithm that can intelligently distribute or sample the scanned and converted point 

clouds based on the size of an object is still lacking. Finally, the GenXR model only 

realized the BIM-to-XR model and information transfer. However, in practice, exporting 

results from XR back to BIM is also essential to realize the full benefits of XR 

applications. In addition, research question 3 only tested the GenXR model using one set 

of software systems. However, contractors from different disciplines may use different 

modeling software systems in a real-world construction project, and there are also many 

commercial XR software systems for AEC development. The GenXR model may need 

minor adjustments for additional software systems. 
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Chapter 6: Future Work 

This dissertation research revealed several future research directions for XR 

technology and implementation in the AEC industry. First, the author recommends 

exploring the workflow of using reality capture technologies to create XR models. The 

starting point of the dissertation work is BIM. However, many existing buildings, 

structures, and infrastructure systems do not have an available BIM or general 3D model. 

Re-creating a BIM can be a labor-intensive process. Reality capture technologies, such as 

Unmanned Aircraft Systems (UAS), laser scanning, and Light Detection and Ranging 

(LiDAR), are under fast development, together with data processing algorithms, such as 

Structure from Motion (SfM). Combining these technologies has the potential to perform 

fast and realistic modeling for XR applications. Potential use cases for reality capture-

enabled XR include but are not limited to the preservation and adaptive reuse of heritage 

buildings (Lee et al. 2019), skill and safety training for labors (Pedro, Le, and Park 2016), 

and behavioral simulations (Cao, Lin, and Li 2019). Currently, these VR applications can 

only model the building environment in BIM and then transfer the model into XR. 

Then, the exploration of key contributing features of XR technologies to 

construction scenarios could benefit both technology developers and industry 

professionals. The first research question in this dissertation demonstrated a systematic 

approach to comparing technology performance in certain use cases. Such experiments 

can also be implemented at the technological feature level. For example, using VR 

headsets with different fields of view in an RQ1 environment could reveal the impact of 

the field of view on user performance. Such experiments are recommended to be 

performed repetitively on various AEC use cases. A meta-analysis of the performance 

data could provide scientific proof of correlations between technological features and the 
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observed performance improvement. With the rapid advances in information and 

communication technologies, AEC practitioners would be able to use the knowledge and 

select appropriate technologies for a given task with a scientific basis. On the other hand, 

technology developers could be more intentional in hardware and software development. 

Another future research direction is to explore model optimization algorithms 

specifically for AEC models. As discussed in the limitation section, it is still challenging 

to handle complex BIMs using current mainstream desktop computers. Considering that 

most AEC elements have regular shapes, such as boxes and tubes, specific model 

optimization algorithms should be able to decrease the number of polygons used to 

represent a building element. Optimizing 3D meshes could significantly decrease the 

required computing power, allowing XR applications to handle larger models. In 

addition, mesh optimization could significantly benefit standalone devices, such as 

untethered VR HMD and MR headsets. These types of equipment provide better 

portability but have limited computing power, especially in graphic processing. Creating 

XR models that represent construction objects with fewer polygons could facilitate the 

implementation of standalone XR devices and, thereby, supports more on-site 

construction use cases. 

Finally, creating XR-specific requirements for building information models could 

help the AEC industry reap more benefits from XR technologies. This dissertation, along 

with many existing research projects on XR implementation in the AEC industry, utilized 

building information models in the same way as desktop-based applications. As discussed 

in Chapter 3, the MEP systems were modeled in the LOD of 400, and the trivial objects 

complicated the occlusion classification process. Similar challenges could be solved with 

less effort during BIM development comparing to addressing them in XR development 

software systems. Therefore, summarizing XR-specific requirements for BIM and 
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implement them during the modeling phases could be a complementary approach to 

saving XR development time in construction projects. 
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Appendices 

APPENDIX A – ABBREVIATIONS LIST 

Appendix A contains a list of abbreviations used throughout this dissertation: 

 

AEC – Architectural, Engineering, and Construction 

ANOVA – Analysis of Variance 

API – Application Programming Interface 

AR – Augmented Reality 

BIM – Building Information Modeling 

CPU – Central Processing Unit  

CSV – Comma Separated Values 

FBX – Filmbox 

FME – Feature Manipulation Engine 

FOV –Field of View 

FPS – Frames Per Second  

GenXR – Generic Extended Reality 

GIS – Geographic Information System 

GPU – Graphics Processing Unit 

HCI – Human-computer Interaction 

HMD – Head-Mounted Display 

ICT – Information and Communication Technology 

ifcXML – Industry Foundation Classes Extensible Markup Language 

IRB – Institutional Review Board  

IVR – Immersive Virtual Reality 
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LiDAR – Light Detection and Ranging 

LOD – Level of Development 

MEP – Mechanical, Electrical, and Plumbing 

MEPF – Mechanical, Electrical, Plumbing, and Fire Protection 

MR – Mixed Reality 

QA – Quality Assurance 

QC – Quality Control 

RAM – Random Access Memory 

RFI – Requests for Information  

SD – Standard Deviation 

SfM – Structure from Motion 

SME – Subject-Matter Expert 

TOF – Time-of-flight 

UAS – Unmanned Aircraft Systems 

UUID – Universally Unique Identifier 

VR – Virtual Reality 

XML – Extensible Markup Language 

XR – Extended Reality 
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APPENDIX B – BIM-TO-VR WORKFLOW 

Appendix B displays step-by-step model transfer procedures and settings for the 

VR-based design review application presented in Chapter 2. 

B.1 Model Export from BIM 

The BIM used in Chapter 2 research was a federated model created by Autodesk® 

Navisworks® Manage 2020. The model was exported into an FBX file using the build-in 

exporter in Navisworks Manage with settings shown in Figure B-1. Key parameters and 

reasons for the export setting are as follows. 

• Textures should be “embedded” in the FBX model to avoid losing texture 

information or losing connections between textures and objects in the following 

activities. 

• The author does not recommend including lights and cameras in the FBX model. 

It can be easier for the developer to directly use lights and cameras provided by 

XR development software systems.  

• Polygon limiting is not recommended because it may cause unexpected deletion 

of 3D objects in the model. 

• Many different units and FBX versions work for this purpose. However, it is 

important to keep consistency during model transfer and VR development.  
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Figure B-1: FBX output settings 

B.2 Optimize the FBX in Computer Graphics Software Systems 

The exported FBX file was then optimized for VR development in computer 

graphics software systems before importing to VR development software systems. 

Autodesk® 3ds Max® 2020 was used for this purpose. The FBX model was imported to 

3ds Max using the settings shown in Figure B-2.  
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Figure B-2: FBX input settings for 3ds Max 

The optimization was composed of three major activities. First, irrelevant objects, 

including empty objects, reference points, and 2D drawings, should be deleted. The 

hierarchy of objects and systems could be complex after directly importing the FBX into 

3ds Max, see Figure B-3. Therefore, the hierarchy of objects could be streamlined while 

cleaning up irrelevant objects. Last but not least, for all objects in the FBX model, their 

pivots were located at the center of the whole model. In order to achieve coordinate-drive 

object movement in VR, object pivots were reset to the center of each object using the 

“Adjust Pivot” function in 3ds Max, see Figure B-4. 
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Figure B-3: An example of model with irrelevant objects and a complex hierarchy 
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Figure B-4: Change all objects’ centers of pivots from the center of the model to the 
center of the object.  

Eventually, the optimized model was exported to a FBX file again using the built-

in exported in 3ds Max. Figure B-5 demonstrates the export settings. As mentioned 

before, cameras and lights are not included in the FBX file. Millimeters is recommended 

but not required for the scene unit because it enables better maneuverability in VR 

development. 
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Figure B-5: Export settings from 3ds Max.  
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B.3 VR Development  

All VR functions were developed using Unity3D 2018.4.12f1. The optimized 

FBX model was imported into Unity3D using the function “Import New Asset”. The 

model has the type of a “Prefab” in Unity3D and was unpacked completely for operations 

at an object level.  

The author imported “Oculus Integration” and used “OVRPlayerController” to 

create an Avatar in the virtual environment. The “360 screenshot capture” package was 

added to the VR development to enable the user make screenshots. Figure B-6 uses 

pseudocode to demonstrate the process of visualizing work packages and installation 

sequences. 

All human-computer interactions, including virtual moving, work package 

visualization, and taking 360 screenshots, were connected to buttons on VR controllers as 

well as keyboard keys. 
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Figure B-6: Pseudocode for the automatic model update procedures 
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APPENDIX C – VR PERFORMANCE DATA COLLECTION 

C.1 Questionnaire after User Test 

The IWPs have been adjusted to adequate amount of work, as shown in Figure C-

1.  

a. Please provide applicable sequence for these IWPs.  

b. If there are 2 crew available in this project, please provide a fast track IWP 

sequence, assuming each IWPs will use exactly 1 week to install. 

 
 

   

         (a)                                    (b) 

 

   

         (c)                                    (d) 
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         (e)                                    (f) 

 

   

         (g)                                    (h) 

 

 

         (i) 

Figure C-1: Work packages shown to experiment participants 
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C.2 Questionnaire for Recall Test 

This is a follow-up questionnaire to test memory retention of Virtual Reality. 

Please follow the instructions of each question based on your memory and send back in 

the same day you received this questionnaire. If you have any questions or comments, 

please contact hannbingg16@gmail.com. Please note that this is not a competition to get 

high score, all of your feedback and data are valuable for this research project. Really 

appreciate your time and efforts.  

1. Please identify if the components and errors shown in Figure C-2 are inside the 

work packages of your company. The components are shown in blue, and two images are 

used for each question to provide large context and detailed components. Please provide 

you answers by putting “√” in Table C-1. Correct answers will get 2 points, not sure 

answer will get 1 point and wrong answer will get 0 point. 
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 Yes, they are part of my 
packages. 

No, they are not part of my 
packages. 

I am not sure about this 
question. 

Q1    

Q2    

Q3    

Q4    

Q5    

Q6    

Q7    

Q8    

Q9    

Q10    

Table C-1: Response table to the memory retention test. 
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Q1: 

 

 

Q2: 

 

 

Q3: 
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Q4: 

 

 

Q5: 

 

 

Q6: 
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Q7: 

 

 

Q8: 

 

 

Q9: 
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Q10: 

 

 

Figure C-2: Memory retention tests questions 

 

2. Please identify possible improvements for your user test experience. (e.g., 

navigation methods, functions, model quality)  

 

 

 

 

 

3. Please identify functions that are (or you think might be) helpful to your 

performance. 
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4. (For VR users only) Please identify features of VR which have influence 

(positively and negatively) on your performance in these tasks and shortly explain the 

reasons. 

 

 

 

 

5. Do you have any other feedback, concerns, suggestions or opinions on this user 

test you want to share? 

 

 

 

 

 

6. What background knowledge and experiences do you have concerning this user 

test? 

Year(s) of industrial experiences (including internships for students):  

Year(s) of industrial project experiences (including internships for students):  

Gaming experiences (Yes/No): 

VR experiences (Yes/No): 
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APPENDIX D – SEMI-AUTOMATIC OCCLUSION DETECTION ALGORITHM 

D.1 Virtual Scan in BlenSor Settings 

In research question 2, Blensor was used to perform a virtual scan to Building 

Information Models. Figure D-1 presents key scanner settings for this task. Each scan 

result was converted into a NumPy file. The author used Python 3.8 together with its 

NumPy library to automatically combine the data into one CSV file.  
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Figure D-1: Key scanner settings for virtual scans of BIM 
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D.2 Creating Potential Point Clouds 

As described in Chapter 3, creating potential point clouds for all converted point 

clouds played an important role in decreasing the computing demand. Figure D-2 uses 

pseudocode to demonstrate the process of creating these potential point clouds. This 

activity was achieve using Python 3.8, Python’s NumPy library, and Python’s Pandas 

library. 

 

 

Figure D-2: Pseudocode for creating potential point clouds 

D.3 Automatic Comparison between Scanned and Converted Point Clouds 

The comparison between scanned and converted point clouds also used Python 

3.8, Python’s NumPy library, and Python’s Pandas library. Figure D-3 presents the logic 

of the algorithm using pseudocode. 
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Figure D-3: Pseudocode for visibility analysis 
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