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Highlights

Transformed-FNV: wave forces on a vertical cylinder – a free-
surface formulation

P. H. Taylor, T. Tang, T. A. A. Adcock, J. Zang

• We propose a novel transformation of the well-known FNV theory that
expresses the total force on a vertical cylinder solely in terms of the
fully nonlinear wave kinematics at the free surface.

• We further propose a fully approximated version of T-FNV that uses
only the nonlinear free-surface elevation time history at the position of
the column.

• The new T-FNV formulations also show the increased role of higher
harmonics in force time histories compared to the harmonics in the
free-surface displacements.
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Abstract

Existing force models for a vertical surface-piercing cylinder require water
depth integration from the seabed to the free surface to determine the total
inline force. However, acquiring the full wave kinematics profiles beneath the
water surface presents a significant computational task. We revisit the finite
water depth version of the well-known FNV theory (Kristiansen & Faltinsen,
2017, Journal of Fluid Mechanics, 833, 773–805) and propose a transformed
version that expresses the total force solely in terms of the fully nonlinear
wave properties at the free surface. This novel Transformed-FNV (T-FNV)
formulation treats the Morison inertia term exactly and approximates the re-
maining two convective-derivative type terms with an assumption of slowly
varying kinetic energy type terms. We evaluate the accuracy of this trans-
formation against the original formulation, using wave kinematics obtained
from fully nonlinear numerical simulations. Two T-FNV formulations are
proposed with different input properties required. The first formulation uses
the fully nonlinear wave kinematic properties at the free surface, whereas
a fully approximated T-FNV formulation requires only the nonlinear free-
surface elevation time history measured or calculated at the position of the
column but in its absence. Both T-FNV formulations demonstrate good ac-
curacy for wave forces for both deep and shallow-water cases against the
original FNV model. The new T-FNV formulations also show the increased
role of higher harmonics in the predicted force time histories when compared
to those in the free-surface displacement, and the importance of using accu-
rate higher order harmonic wave profiles in nonlinear force calculations.

Keywords: Ocean Engineering, Wave-structure interaction, Wave force,

Preprint submitted to Coastal Engineering June 4, 2024



FNV, Monopile wave load

1. Introduction

The classical fluid mechanics problem of wave loading on a vertical cylin-
der is of considerable practical interest at present due to the widespread use
of monopiles as the supports for offshore wind turbines. In many locations,
wave loading is critical for the design of such structures, see International
Electrotechnical Commission (2009) Section 7.3.5. A concern associated with
wave loading is the higher harmonic forces originating from the nonlinear in-
teractions between waves and the structure. The periods of these higher
frequency forces typically coincide with the natural period of the structure,
which is typically engineered to be two or three times the incident wave pe-
riod. This means these higher harmonics of the wave loading in storms can
potentially excite structural resonance given the low damping characteristics
of common offshore wind turbine constructions, see (Malenica et al., 1995;
Rainey, 1995). Thus, these nonlinear wave loads contribute both to struc-
tural fatigue (Schløer et al., 2016) and also to the ultimate limit state loads.
Both of these loading regimes are critical factors for the structural safety and
lifespan (Wang et al., 2021).

Numerous theoretical methods have been developed to model the non-
linear interaction between waves and vertical cylinders. Standard diffraction
theory based on traditional perturbation expansions to the second order of
wave steepness has been established by numerous authors, including Molin
(1979), Eatock Taylor and Hung (1987), and Newman (1996). Beyond the
second-order diffraction theory, a model commonly referred to as ‘FNV’,
named after its authors, was developed to calculate the third-order wave
force on a slender cylinder in deep water, assuming the incident wave am-
plitude is similar to the cylinder’s radius (Faltinsen, Newman and Vinje,
1995). The FNV model was extended to finite water depth by Kristiansen
and Faltinsen (2017), and for compact cylinders (i.e. the size of the cylinder
being small when compared to the characteristic wavelength of the wave so
that there is no substantial scattering of the body (Chen et al., 2018; Rainey,
1995; Faltinsen et al., 1995)), the predictions agree with experimental results
(Huseby and Grue, 2000; Chen et al., 2018).

However, the standard FNV model requires knowledge of the complete
wave kinematics below the water free-surface and employs depth integrals
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from the sea-bed up to the moving water surface to calculate the total inline
forces. The internal kinematics information required by the model is awkward
to obtain, particularly for long runs of random waves. In practical applica-
tions this typically leads to further approximations for the kinematics, such
as Wheeler stretching (Wheeler, 1970) as recommended in Nesteg̊ard et al.
(2006). In this study, we propose a new transformed version of the FNV the-
ory (Kristiansen and Faltinsen, 2017) for unidirectional waves on finite water
depth. Our goal in developing this new formulation is to avoid the extra
computations of wave kinematics within the fluid while maintaining accept-
able accuracy for engineering applications. With measured fully non-linear
free-surface elevations as input, the proposed method requires separation of
higher order harmonics of the free-surface elevation, which can be obtained
from four repeats with different wave phases (see Fitzgerald et al. (2014);
Feng et al. (2020)). However, with further approximations, we show how the
necessity of four-phase information can be removed. Our approximation also
provides new insights into the underlying fluid mechanics.

2. Transformed-FNV

In this study, we first introduce the derivation of the transformed FNV
approximation for each term in the original FNV formulation in Section 2.2
and 2.3, and provide the T-FNV formulation with fully nonlinear velocity
profiles at free surface in Section 2.4. We further approximate these nonlinear
velocity profiles and the FNV term in Section 2.5-2.7 and derive the T-FNV
formulation with only the free-surface elevation η measured at the centre
position of the cylinder with the absence of the cylinder (empty tank or no
cylinder test) in Section 2.8.

2.1. Original FNV formulation

We start with the classic finite depth version of the FNV formulation:

F =

∫ η(t)

−d
F ′(z, t)dz + Fψ, (1)

where η(t) is the free-surface elevation, d is the water depth and the dis-
tributed load components per unit length on the vertical column F ′(z, t) are
calculated with:

F ′(z, t) = ρπR2

(
2
∂u

∂t
+ u

∂u

∂x
+ 2w

∂u

∂z

)
, (2)
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Figure 1: Schematic diagram showing the flux through a vertical line at (x = 0) is con-
nected to the motion of the free-surface for (x > 0) based on the continuity condition

where (u,w) are the horizontal and vertical velocity components, R is the
cylinder radius, and ρ is the fluid density. The FNV-term Fψ is a point load
due to the scattered potential and is applied at z = 0:

Fψ = ρπR2 4

g
u2
1

∂u1

∂t
, (3)

where u1 is the linearly approximated horizontal velocity at mean water level,
and g is the gravitational acceleration. Here, we calculate u1 based on the
linear contribution to u extracted from the four phase decomposition further
detailed in Section 3, but we then note that this term can also be estimated
from the free-surface motion directly.

2.2. ∂u/∂t term

In two-dimensional incompressible free-surface flow, the continuity con-
dition connects the flux through a vertical line at (x = 0) to the motion of
the free surface for (x > 0), as shown in Figure 1. Thus, we can equate the
integral of horizontal velocity over the water depth to a spatial integral of the
vertical velocity of the free-surface displacement downwave of the column:∫ η

−d
u(x = 0, z, t)dz =

∂

∂t

∫ ∞

0

η(x, t)dx =

∫ ∞

0

ηtdx, (4)

where ηt is the time derivative of free-surface elevation η. The latter horizon-
tal integral can be evaluated directly if only part of an isolated compact wave
group extends to the right of the point x = 0. By taking the time derivative
of the components in equation (4) inside the first depth integration term,
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we can rewrite the depth integral of
∫ η
−d

∂u
∂t
dz for inertia types of loading as

a simple spatial integral along the fully nonlinear free surface with a local
free-surface term at x = 0:

∂

∂t

∫ η

−d
udz =

∫ η

−d

∂u

∂t
dz + usηt =

∫ ∞

0

ηttdx, (5)

where us = u(x, z = (η(t))) is the velocity in the horizontal direction at the
free surface. The assumed local relationship between ∂u/∂t and the Morison
inertia contribution to F ′(z, t) is linear but we stress that u, us the horizontal
velocity at the free surface, and all other wave quantities are fully nonlinear
here. Hence this form produces contributions to all the higher harmonics of
the applied force.

For the free-surface elevation, we take the approach of a Stokes type of
expansion with a narrow-banded approximation and expand the nonlinear
elevation with higher order harmonics as:

η = η1 + η2 + η3 + · · · (6)

where ηn is the nth order harmonics. We neglect the 2nd order difference
sub-harmonic term as this is typically negligible, although the analysis could
be straightforwardly extended to include this (see for instance Calvert et al.
(2019)). The higher order terms can then be found as water depth dependent
functions of the linear terms. Thus

η2 = S22 kp(η
2
1 − η21H), (7)

where subscript H denotes the Hilbert transform (Birkhoff and Kreyszig,
1984), which phase shifts all the Fourier components of a signal by 90◦. Note
the Hilbert transform is commonly used in signal processing, see https://

en.wikipedia.org/wiki/Hilbert_transform. Additionally, kp is the peak
wavenumber corresponding to the spectral peak frequency of the free-surface
elevation using the linear wave dispersion relation for finite water depth, and
S22 is the usual Stokes second order coefficient (see Fenton (1990)) which
converges to 1/2 for deep water. Similarly, the third order harmonic is given
by:

η3 = S33 k2
p(η

3
1 − 3η1η

2
1H), (8)

and the third order coefficient S33 converges to 3/8 for deep water. The
detailed formulations for the approximated higher order harmonics can be
found in Walker et al. (2004).

5



We further express the spatial integral as an equivalent of a Fourier expan-
sion ×1/ık (i.e.

∫
· · · dx = × 1

ık
), where k is the appropriate wavenumber,

ı =
√
−1, and 1/ı is effectively a Hilbert transform for sinusoidal signals.

Hence the double time derivative of free-surface elevation can be written as:

∂2(η)

∂t2
= −ω2

pη1 − (2ωp)
2η2 − (3ωp)

2η3 + · · · , (9)

where ωp is the spectral peak frequency of the free-surface elevation if we
follow a slowly varying wave envelope approximation. We return to the
choice of a characteristic frequency later. The spatial integral is now

∫ ∞

0

ηttdx =

{
−
ω2
p

kp
η1 −

(2ωp)
2

(2kp)
η2 −

(3ωp)
2

(3kp)
η3 − · · ·

}
H

= −
ω2
p

kp
{η1 + 2η2 + 3η3 + · · · }H . (10)

Using the linear dispersion relation for finite water depth, the first water
depth integral term can be expressed in known free-surface quantities at the
position of the column as:∫ η

−d

∂

∂t
udz =

∫ ∞

0

ηttdx−usηt = −g tanh(kpd) {η1 + 2η2 + 3η3 + · · · }H−usηt,

(11)
where kp is the wavenumber responding to the spectral peak of the free-
surface spectrum. Then equation (11) captures considerable nonlinearity to
all orders and replaces the vertical integral with an effective Stokes-like free-
surface term comparable to the wave slope in the narrowband limit. This
also shows that the higher order contributions to the force are relatively
more important than those to the free surface η, which is consistent with the
literature.

2.3. u∂u/∂x and w∂u/∂z terms

To treat the convective derivative type contributions to the distributed
force, we start with the incompressible and irrotational assumptions:

∂u

∂x
+

∂w

∂z
= 0 &

∂u

∂z
− ∂w

∂x
= 0. (12)
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The second depth integral term can be written as:

u
∂u

∂x
= −u

∂w

∂z
= − ∂

∂z
(uw) + w

∂u

∂z
= − ∂

∂z
(uw) + w

∂w

∂x

= − ∂

∂z
(uw) +

1

2

∂

∂x
(w2)

(13)

adding 1
2
∂
∂x

tanh(kpd)
2 · u2 to both sides gives:

u
∂u

∂x
+

1

2

∂

∂x
tanh(kpd)

2 · u2 = − ∂

∂z
(uw) +

1

2

∂

∂x

(
tanh(kpd)

2 · u2 + w2
)
,

(14)
For a linear wavefield and close to the free-surface where the velocity is
largest, we have

u ∼ coth kd cosϕ
w ∼ 1 sinϕ

}
, (15)

where ϕ is the phase. This implies that the term ((tanh(kpd)
2 · u2 + w2))

is relatively slowly varying in space, consequently it will not generate any
significant 2nd sum harmonic terms. This simplification gives:

1

2

∂

∂x
u2 = u

∂u

∂x
≈ − 1

tanh(kpd)2 + 1

∂

∂z
(uw). (16)

As such, the second depth integral term can be obtained as:∫ η

−d

(
u
∂u

∂x

)
dz ≈ − 1

tanh(kpd)2 + 1

∫ η

−d

∂

∂z
(uw)dz = −

(
1

tanh(kpd)2 + 1

)
usws,

(17)
where ws = w(x, z = η(t)) is vertical velocity component at the free surface.
This approximation shows that if we treat the wavefield as narrow-banded,
one can replace the depth integrals with an effective (tanh(kpd)) term based
on the peak period. We examine the accuracy of this approximation for
various water depths in Section 4.2.

Finally, we investigate the last part of the water depth integral:

2w
∂u

∂z
= 2

∂

∂z
(uw) + 2u

∂u

∂x
≈ 2

∂

∂z
(uw)− 2

tanh(kpd)2 + 1

∂

∂z
(uw) =

2 tanh(kpd)
2

tanh(kpd)2 + 1

∂

∂z
(uw). (18)
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Therefore the last water depth integral can be expressed as:∫ η

−d

(
2w

∂u

∂z

)
dz ≈ 2 tanh(kpd)

2

tanh(kpd)2 + 1
(usws). (19)

2.4. T-FNV formulation with fully nonlinear velocity profiles at free surface

The transformed FNV expression for the total inline force on a verti-
cal cylinder with fully nonlinear velocities at the free surface is written as
FT−FNV,u as:

FT-FNV,u =

∫ η(t)

−d
F ′
T-FNV,u(z, t)dz + Fψ

T-FNV,u, (20)

where the transformed FNV expression for distributed loads can be ex-
pressed without any numerical integration up the column as:∫ η(t)

−d
F ′
T-FNV,u(z, t)dz =

∫ η(t)

−d
ρπR2

(
2
∂u

∂t
+ u

∂u

∂x
+ 2w

∂u

∂z

)
dz

≈ ρπR2 ( − 2g tanh(kpd) {η1 + 2η2 + 3η3 + · · · }H +

2 tanh(kpd)
2 − 1

tanh(kpd)2 + 1
usws − 2usηt ) . (21)

This gives a reasonable representation of the distributed force terms to at
least 2nd order accuracy and also provides a good estimate of the higher
nonlinear loading from the Morison inertia term

∫
∂u
∂t
dz to orders that match

the given higher order free-surface elevation results. This expression also
shows the higher importance of higher-order forcing as there is an additional
increasing n−coefficient in the front of each harmonic term in the free-surface
elevation, this term looking like the time derivative of the free-surface eleva-
tion at the column.

The transformed FNV expression for FNV-term Fψ can be calculated as
suggested in

Fψ
T-FNV,u = ρπR2 4

g
u2
1

∂u1

∂t
, (22)

where the u1 is the horizontal velocity at the mean water level, which can be
calculated using four phase decomposition method Feng et al. (2020) of the
horizontal velocity profile at free-surface elevation us.
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This version of the T-FNV is suitable for numerical simulations where
the velocity profiles at the free surface are available. For experiments, where
only the free-surface elevation time histories are measured, we recommend
using the version of the T-FNV formulation given in Section 2.8.

2.5. Stokes expansion for the horizontal velocity at the free surface us
The fully nonlinear profile of horizontal velocity at the free surface is

difficult to obtain during experiments. Hence, we further approximate us in
terms of a 3rd order Stokes expansion re-written in terms of the free-surface
linear elevation η1:

us,Stokes = ωpη1 coth(kpd) + ωpkpm2 +
1

64
ωpη1k

2
p

coth(kpd)

sinh6(kpd)
m3, (23)

where ωp is the peak angular frequency based on the underlying spectrum
and the two expansion terms m2 and m3 can be further expressed as:

m2 = η21 +
3

4

(
η21 − η21H

) cosh(2kpd)
sinh4(kpd)

, (24)

and

m3 = 8η21 + 14η21H −
(
11η21 + 104η21H

)
cosh(2kpd)+

2
(
η21 − 8η21H

)
cosh(4kpd) +

(
η21 − 2η21H

)
cosh(6kpd). (25)

This Stokes-type expression for us is mathematically equivalent to the stan-
dard Stokes wave theory (Stokes, 1847) , but presented in a format following
linear, second order and third order terms with terms evaluated at the ver-
tical position of the free surface. This Stokes-type expression should provide
an accurate approximation up to third order in wave steepness under nar-
rowband assumptions. We investigate the accuracy of this approximation in
Section 4.3. Of course, it could be extended to 5th order if required using
the form reported by Fenton (1990).

2.6. Narrowband approximation for the vertical velocity at free surface ws
The fully nonlinear profile of vertical velocity ws on the free surface (x =

0, z = η) is also used in the T-FNV formulation, and this is equally difficult to
obtain during experiments. To approximate ws, we start with the kinematic
boundary condition at the free surface:

ηt = ws − usηx, (26)
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where ηx is the spatial derivative of the free-surface elevation. Unfortunately,
obtaining the spatial information of free surface requires at least two wave
gauges close together, rather the single one we assume elsewhere. Hence, we
further approximate ηx with similar steps to those used between equation 6
and equation 11 as:

ηx = −ηt(kp/ωp). (27)

We note that the expression for ηx is also useful for the Rainey point load
at the free surface (Rainey, 1995). Hence, the fully approximated vertical
velocity at free surface ws can be expressed in terms of the free-surface el-
evation and the horizontal free-surface velocity, which is also approximated
in terms of ηt using equation (23), as:

ws = ηt(1− kpus,Stokes/ωp), (28)

and the convective derivative type contributions can be now expressed with
the free surface approximation as:∫ η(t)

−d
ρπR2

(
u
∂u

∂x
+ 2w

∂u

∂z

)
dz ≈ 2 tanh(kpd)

2 − 1

tanh(kpd)2 + 1
usws

≈ 2 tanh(kpd)
2 − 1

tanh(kpd)2 + 1
us,Stokesηt(1− kpus,Stokes/ωp) (29)

We investigate the accuracy of this approximation in Section 4.4.

2.7. Further approximations on the FNV term Fψ

The other velocity term in the original FNV formulation that requires
approximation is the horizontal velocity at the mean water level (u1) in the
FNV point load previously shown in equation (2). This is due to there being
no wave kinematics available at z = 0 when η < 0 at the structure. We
approximate the FNV third order order point load as:

Fψ
T-FNV,η ≈

4

g
ω4
p η21 η1H

1

tanh3(kpd)
ρπR2. (30)

Another way of approximating the linear horizontal velocity u1 is through
the four phase decomposition of us,stokes in equation (23), and we present a
comparison of the approximations for the FNV term in Section 4.5
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2.8. T-FNV formulation with free-surface elevation only

Finally, we present the complete version of the T-FNV formulation writ-
ten in terms of only the free-surface elevation at the centre position of the
cylinder with the absence of the cylinder (empty tank or no cylinder test):

FT-FNV,η =

∫ η(t)

−d
F ′
T-FNV,η(z, t)dz + Fψ

T-FNV,η

≈ 2ρπR2 (−g tanh(kpd) {η1 + 2η2 + 3η3 + · · · }H − us,Stokesηt)

+ ρπR22 tanh(kpd)
2 − 1

tanh(kpd)2 + 1
us,Stokesηt(1− kpus,Stokes/ωp) + Fψ

T-FNV,η, (31)

where the us,Stokes is given in equation (23) based on the linear free-surface
elevation, and ηt can be obtained through direct numerical differentiation
with respect to time of the fully nonlinear free-surface elevation (η) at the
position of the cylinder, and the FNV term Fψ

T-FNV,η can be approximated:

Fψ
T-FNV,η = ρπR2 4

g
u2
1

∂u1

∂t
, (32)

where u1 is given in equation (30) based on the linear free-surface elevation
and ∂u1

∂t
can be obtained through direct numerical differentiation of u1 in

time. We also note that the 3rd harmonic Rainey point load at the free
surface, Rainey (1995), can be approximated in a comparable way.

This formulation of the FNV is suitable for experiments where the veloc-
ity field at the free surface is not measured. Higher order harmonics of the
free-surface elevation are still required for the T-FNV calculations, which can
be obtained through the four-phase decomposition approach, so the experi-
mental or numerical time history of free-surface elevation should be obtained
from four repeats with different wave phases (see Fitzgerald et al. (2014);
Feng et al. (2020)). Although this formulation could also be used for non-
linear force predictions starting from linear free-surface elevation η1 only, as
the higher order harmonics (η2, η3, · · · ) can be also expressed in linear free-
surface elevation in Walker et al. (2004), a further paper will be presented
on this to fully justify the necessary approximations required for engineering
type calculations in Monte Carlo random wave simulations.
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3. Numerical model

To compare the new T-FNV model predictions with the original finite wa-
ter depth FNV model, we performed numerical simulations with the Ocean-
Wave3D code to obtain the wave kinematics. OceanWave3D solves the stan-
dard potential-flow water-wave equations using sigma-transformed equations
and high order finite differencing, see Engsig-Karup et al. (2009).

We consider unidirectional wave groups in this study. We generate lin-
early dispersed wave groups by specifying initial conditions (i.e. spatial pro-
files of free-surface elevation and velocity potential) at the time t = −20Tp
before wave group linear focus, with Tp being the spectral peak period. We
specify initial conditions using the second-order theory of Sharma and Dean
(1981), and also include an approximate third order correction following Bar-
ratt et al. (2020). The NewWave groups are based on an underlying JON-
SWAP spectrum with γ = 3.3 and the detailed parameters are shown in the
figure captions. Wave kinematics are extracted at the position where the
crest of the wave group reaches its maximum.

In this study, we give numerical results for three water depths, corre-
sponding to deep through to shallow water (kpd = 3.39, 1.19 and 0.88, for
compactness results for this shallowest case are given in the Appendix). This
wide range of water depths covers both the ringing of deep-water concrete
platforms, which motivated the original FNV work Faltinsen et al. (1995),
and the monopiles used in shallower water as fixed offshore wind turbine
foundations.

Neglecting drag, the wave load on a vertical column can be treated as
a function of three arguments: the non-dimensional water depth (kpd), the
wave steepness (kpA) and the column radius expressed as kpR or R/d. We
present results for a wide range of water depths. The effect of wave steepness
is captured through the Stokes expansions for each order of wave steepness
and each harmonic in frequency. Froude scaling then allows us to cover the
full range of waves in the practical application of the FNV theory. The final
length-scale, the cylinder radius R, is simply included as R2 as a multiplier on
the predicted forces in dimensional form. This is valid so long as the cylinder
is slender, in the sense of slender body theory, so there is no significant wave
diffraction and scattering. Amongst many other authors, Chen et al. (2018)
show in their Fig. 19a that the simple Morison inertia loading term (our
model at first order) matches linear diffraction theory for kpR < 0.4. For
practical wind turbine applications of any version of the FNV model, we
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anticipate kpR values well below this.
The numerical resolutions used here are based on the detailed examination

of the numerical behaviour and convergence of this code given in Barratt
et al. (2020). For both cases reported here, we use a spatial resolution of
4.34 m (approximately 80 nodes per peak wavelength for both cases). Twenty
clustered nodes are used vertically in the water column. The total simulation
time is 604 s with time steps of 0.22 s (61 per peak period for both cases).

To separate the higher order force, wave and free-surface kinematics con-
tributions, we follow the four-phase separation method of Fitzgerald et al.
(2014), building on the two-phase approach of Baldock et al. (1996), to ex-
tract the higher frequency nonlinear components of wave loading. The four-
phase decomposition method assumes the form of a generalised Stokes ex-
pansion. Then, we can cleanly isolate the sum-harmonics of forces as these
are important for engineering applications, see Feng et al. (2020); Mj et al.
(2023). The four-phase separation method is also applied to horizontal ve-
locity at free surface us to obtain the linearised horizontal velocity at mean
water level u1 for equation (22).

4. Results

4.1. Exact transformation and Stokes expansion on ∂u/∂t term

We first examine the accuracy of transforming vertical integral through
the water depth into a horizontal spatial integral along the fully nonlinear
free surface shown in equation (5), and also the accuracy of a Stokes expan-
sion with the narrow-banded assumption. In Figure 2 (a, b), we show the
original depth-integrated FNV inertial term and the theoretically identical
free-surface integral of the vertical acceleration ηtt on the free-surface. The
differences between these two as shown in Figure 2 (c, d) arise from inaccu-
racies in the numerical evaluations of the depth and free-surface integrals.
The remaining harmonic components are small but have minor effects on the
higher-order loading, which is important for ringing-type response calcula-
tions. The differences between the free-surface integral and the assumed
Stokes form shown in Figure 2 (e, f) are also relatively small.

4.2. Slow varying assumption on u∂u/∂x and w∂u/∂z terms

We further examine the accuracy of treating the ((tanh(kpd)
2 · u2 + w2))

as a slowly varying term and the use of wave kinematics at the free surface to
approximate the depth integral. In Figure 2 (g − l), we present the original
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Figure 2: Comparison between all the water depth integral terms in FNV and the equiv-
alent T-FNV formulations for (a− d): the exact water depth transformation in equation
(5), the thin black line shows the free-surface elevation at (x = 0), (e − f): Stokes Type
approximation in equation (11), (g−h): the first slow varying assumption in equation (17),
(i− j): the second slow varying assumption in equation (19) and the sum of the last two
water depth integral terms in (k− l). Panel (a, c, e, g, i, k) shows the case with kpd = 1.19
(kpA = 0.17) and panel (b, d, f, h, j, l) shows case with kpd = 3.39 (kpA = 0.17).
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FNV results calculated from the depth integral (i.e. the left-hand side of
the equation (17) and (19)) and the T-FNV equivalent approximation based
on the kinematics at the water free surface (i.e. the right-hand side of the
equation (17) and (19)). The assumption that the ((tanh(kpd)

2 · u2 + w2))
term varies slowly works better for deep water cases, but the current results
also show that the approximated terms also agree reasonably well with the
original FNV formulation at intermediate water depths.

From Figure 2 (g − j), we also find that the last two depth integral

terms
∫ η(t)
−d u∂u

∂x
dz and

∫ η(t)
−d 2w ∂u

∂z
dz exhibit similar force profiles but with

opposite signs. This interesting behaviour leads to the total contribution
of these two terms being partially cancelled out and resulting much smaller
contribution than either of these two terms individually. Indeed, the T-
FNV formulation suggests the total contribution vanishes at kpd ≈ 0.88,
which is relevant to some cases for engineering applications. As such, a
crude approximation taking the depth integral part of the total inline force
−2ρπR2 (g tanh(kpd) {η1 + 2η2 + 3η3 + · · · }H − usηt) can be adopted with
reasonable accuracy for engineering applications.

4.3. Stokes expansion on usηt term

We now examine the accuracy of expanding the us term following Stokes-
type expansion to the third order and the accuracy of approximating the
usηt term. From Figure 3 (a − d), the approximation for the us term and
the resulting usηt term agree well with the OW3D numerical results for both
deep and intermediate cases, which indicates the Stokes-type expansion to
third order should provide sufficient accuracy for the T-FNV formulation.

4.4. Narrowband approximation on u∂u/∂x and w∂u/∂z terms

We now examine the accuracy of approximating velocity components at
the free surface in both horizontal us and vertical direction ws using only the
free-surface elevation history for the convective derivative type contributions
shown in equation (29). From Figure 3 (i, j), the narrowband approximation
for ws is accurate for both cases and we also observed a similar agreement
for the approximated convective derivative type contributions shown in panel
(k, l) for both intermediate and deep water cases.

4.5. Further approximations on the FNV term Fψ

We now examine the accuracy of approximation for the horizontal velocity
u1 evaluated at the mean water level and also the FNV term approximation
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Figure 3: Comparison between velocities profiles required and the equivalent T-FNV fur-
ther approximations based on free-surface elevation for (a − b): the horizontal velocity
profiles at the free surface required by the equation (11), (c− d): the corresponding force
term usetat in the equation (11), (e − f): the horizontal velocity at mean water level
required by the FNV term Fψ, (g−h): the FNV term comparison between using u1 from
four phase decomposition, using full convolution from linear free-surface elevation η1 and
using narrowband approximation in equation (30). (i− j): the vertical velocity profiles at
the free surface approximated with equation (28), (k−l): approximation for the convective
derivative terms with full velocity profile at the free surface and narrowband approxima-
tion in equation (29). Panel (a, c, e, g) shows the case with kpd = 1.19 (kpA = 0.17) and
panel (b, d, f, h) shows case with kpd = 3.39 (kpA = 0.17).
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Fψ proposed in Section 2.7. From Figure 3 (e−f), the full calculation on the
linear free-surface elevation provides an accurate prediction of the u1, which
also yields the most accurate approximation of the FNV term, as shown in
Figure 3 (g − h) with only very minor harmonic structure remaining. The
narrowband approximation in the equation (30) also performs well, and this
version can be adapted for fast predictions as the full convolution requires
use of the Fourier transform.

4.6. Comparison with FNV

We now present a comparison between the total forces for the proposed
T-FNV approximation and the original finite water depth FNV formulation,
as shown in Figure 4 and 5. For two cases with different relative water
depths, the proposed T-FNV approximation aligns closely with the original
finite water depth FNV formulation. We calculate u1 based on the linear
contribution of u extracted from the four phase decomposition herein.

In the deeper relative water depth case, the T-FNV model generates an
excellent match with the original FNV up to the fourth order, with only
slight deviations observed at the fifth order. For the case associated with a
shallower water depth, the T-FNV model tends to slightly over-predict the
forces of the higher harmonics. This suggests the T-FNV model is more
conservative when predicting these higher-order harmonics, which are im-
portant for the excitation of ringing-type responses. However, this mismatch
between the original FNV and T-FNV for higher order harmonics can be mit-
igated through a single shallow water correction as a function of kpd on the
characteristic wave period Tp. We further discuss this ‘correction’ for shallow
water cases in the Appendix. The overall trends displayed in the force time
histories show consistent results with the force spectral comparison.

We also present the fully approximated T-FNV based only on the free-
surface elevation in time in Figure 6, where the fully approximated T-FNV
model agrees well with the original formulation of FNV but is now based only
on the undisturbed free-surface elevation at the cylinder. The additional
black line indicates the time when the linear force reaches the maximum,
which also agrees well with the expected phase shifts between linear and
higher-order force harmonics described in the original 1995 FNV formulation
for regular wave trains on deep water, where the maximum point of linear
force should correspond to an up-zero crossing point in the second-order force
and a trough in the third order force. The time histories here are based on
those in Figure 2-4, 6 but with the phase of the shallow water group altered
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Figure 4: Comparison between the finite water depth FNV theory and the T-FNV approx-
imations with full free-surface velocities for kpd = 3.39 (kpA = 0.17): total inline force,
(b): force spectrum and (c): four-phase separated higher order harmonics.

such that the linear component of force achieves its maximum at net zero
phase. Then, the total second harmonic is up-crossing through zero and the
3rd harmonic is at its minimum, so 180 degrees out of phase. Both for this
shallow water case and for the numerical deeper water one (not shown), this
relative phasing matches exactly that for the harmonics in the original FNV
paper.
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Figure 5: Comparison between the finite water depth FNV theory and the T-FNV ap-
proximations with full free-surface velocities for kpd = 1.19 (kpA = 0.17) (a): total inline
force, (b): force spectrum and (c): four-phase separated higher order harmonics.
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Figure 6: Comparison between the finite water depth FNV theory and the T-FNV approx-
imations with only free-surface elevation as input for kpd = 1.19 (kpA = 0.17) (a): total
inline force, (b): force spectrum and (c): four-phase separated higher order harmonics.
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5. Discussions and conclusions

We present a transformed version of the FNV model that solely incorpo-
rates free-surface quantities. Numerical tests show satisfactory accuracy of
this new formulation for wave groups on both deep water and finite water
depth when compared to the original FNV formulation.

This novel approximation shows that much of the nonlinearity in the
higher-order force harmonics is associated with nonlinear contributions to
the horizontal velocity over water depth at the column, so resides within
the first depth integral term

∫ η
−d

∂
∂t
udz. The progressive coefficient in front

of each order (i.e., 1η1 + 2η2 + 3η3...n ηn) shows the growing importance of
higher harmonics in force calculations. This also shows that the dominant
force contribution can be approximated through terms with a similar form
to the local wave slope in time, which would allow potential application to
any wave free surface without discontinuities in value – even the Stokes 120◦

limiting crest shape which would produce a jump in force as the sharp crest
passes.

Additionally, the new T-FNV formulation also suggests the total contri-

bution of the last two terms
∫ η(t)
−d u∂u

∂x
dz +

∫ η(t)
−d 2w ∂u

∂z
dz is relatively small,

and comes close to vanishing for kpd ≈ 0.88, indicating the formulation

F = 2ρπR2 (−g tanh(kpd) {η1 + 2η2 + 3η3 + · · · }H − usηt) + Fψ
FNV (33)

would still provide satisfactory total inline force predictions.
We would also like to point out one limitation of the fully nonlinear form

of the current T-FNV model, where for experimental measurements, the
proposed method requires the separation of higher-order harmonics from the
fully nonlinear free-surface elevation records. Four repeats of the experiments
or numerical simulations are usually required with different wave phases to
separate these higher-order harmonics (see Fitzgerald et al. (2014); Feng et al.
(2020)). With additional approximations, this requirement can be dropped:
The FNV 3rd order point load term ∼ u2∂u/∂t can be adequately modelled
using ∼ η21∂η1/∂t, and at frequencies around the 3rd harmonic η1 and the
fully nonlinear η can be used interchangeably.

In summary, we show how the entire FNV force time history on a uniform
and vertical compact cylinder can be accurately approximated based only on
the fully nonlinear free-surface elevation time history, measured or calculated
at the position of the column but in its absence.
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Appendix A. Shallow water correction for T-FNV on character-
istic wave period

We report an improved level of agreement between the proposed T-FNV
and the original FNV formulation for the 2nd to 4th harmonics through an
empirical shallow water correction on the characteristic wave period. Pre-
viously we assumed that Tp, the peak of the spectral energy density was
suitable. For the relatively shallow water cases, we find that a single cor-
rection as a function of kpd on the characteristic wave period Tp can further
improve the agreement on higher-order force harmonics. The coefficients are
shown in Table A.1. We still use the finite depth linear dispersion equation to
relate corrected characteristic wave period to frequency and then wavenum-
ber (so both characteristic frequency and the characteristic wavenumber are
corrected accordingly). And we note that the phasing of the every individual
harmonic component of the entire force structure is unaltered by this change.

Table A.1: Shallow water correction as a function of kpd on the characteristic wave period
Tp for fully approximated T-FNV.

Relative Water Depth (kpd) kpd = 0.88 kpd = 1.19 kpd = 3.39
Correction on Tp 1.14Tp 1.09Tp 1.01Tp

In Figure A.7, A.8 and A.9, we present the comparison between finite
water depth FNV theory and the shallow water corrected T-FNV approxi-
mation. The modified T-FNV model now shows much improved agreement
with the finite water depth FNV theory. Further studies are required to in-
vestigate this correction to determine the full expression form to see if there
is any theory to support it or if it remains a useful empirical correction, and
to assess the overall merit of using it when T-FNV is applied to random
waves using Monte Carlo techniques. This will be reported in a follow-on
paper.
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Figure A.7: Comparison between the finite water depth FNV theory and full T-FNV
approximations with shallow water corrected characteristic wave period(see Table A.1) for
the case with kpd = 0.88 (kpA = 0.17): total inline force, (b): force spectrum and (c):
four-phase separated higher order harmonics.
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Figure A.8: Comparison between the finite water depth FNV theory and full T-FNV
approximations with shallow water corrected characteristic wave period(see Table A.1) for
the case with kpd = 1.19 (kpA = 0.17): total inline force, (b): force spectrum and (c):
four-phase separated higher order harmonics.
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Figure A.9: Comparison between the finite water depth FNV theory and full T-FNV
approximations with shallow water corrected characteristic wave period(see Table A.1) for
the case with kpd = 3.39 (kpA = 0.17): total inline force, (b): force spectrum and (c):
four-phase separated higher order harmonics.

25



Acknowledgement

TT is funded by an Eric and Wendy Schmidt AI in Science Postdoc-
toral Fellowship. TT would also like to acknowledge the Robert and Maude
Gledden Short Stay Visiting Fellowship, funded by the University of Western
Australia, and the TIDE Project (the ARC ITRH for Transforming energy In-
frastructure through Digital Engineering (TIDE, http://TIDE.edu.au) Grant
No. IH200100009) for funding his visit to UWA. This research was funded in
whole or in part by EPSRC grant number EP/V050079/1. For the purpose
of Open Access, the author has applied a CC BY public copyright licence to
any Author Accepted Manuscript (AAM) version arising from this submis-
sion. We thank Profs. John Grue (University of Oslo) and Trygve Kristiansen
(Norwegian University of Science and Technology) for their technical advice.

References

Baldock, T.E., Swan, C., Taylor, P.H., 1996. A laboratory study of nonlinear
surface waves on water. Philos. Trans. Royal Soc. A Math. Phys. Eng. Sci.
354, 649–676.

Barratt, D., Bingham, H.B., Adcock, T.A.A., 2020. Nonlinear evolution of a
steep, focusing wave group in deep water simulated with OceanWave3D.
J. Offshore Mech. Arct. Eng. 142, 021201.

Birkhoff, G., Kreyszig, E., 1984. The establishment of functional analysis.
Historia Mathematica 11, 258–321.

Calvert, R., Whittaker, C., Raby, A., Taylor, P.H., Borthwick, A., Van
Den Bremer, T., 2019. Laboratory study of the wave-induced mean flow
and set-down in unidirectional surface gravity wave packets on finite water
depth. Phys. Rev. Fluids. 4, 114801.

Chen, L.F., Zang, J., Taylor, P.H., Sun, L., Morgan, G.C.J., Grice, J., Orsza-
ghova, J., Ruiz, M.T., 2018. An experimental decomposition of nonlinear
forces on a surface-piercing column: Stokes-type expansions of the force
harmonics. J. Fluid Mech. 848, 42–77.

Eatock Taylor, R., Hung, S.M., 1987. Second order diffraction forces on a
vertical cylinder in regular waves. Appl. Ocean Res. 9, 19–30.

26



Engsig-Karup, A.P., Bingham, H.B., Lindberg, O., 2009. An efficient flexible-
order model for 3D nonlinear water waves. J. Comput. Phys. 228, 2100–
2118.

Faltinsen, O.M., Newman, J.N., Vinje, T., 1995. Nonlinear wave loads on a
slender vertical cylinder. J. Fluid Mech. 289, 179–198.

Feng, X., Taylor, P.H., Dai, S., Day, A.H., Willden, R.H.J., Adcock, T.A.A.,
2020. Experimental investigation of higher harmonic wave loads and mo-
ments on a vertical cylinder by a phase-manipulation method. Coast. Eng.
160, 103747.

Fenton, J.D., 1990. Nonlinear wave theories, in The Sea, Vol.9: Ocean Engi-
neering Science. volume 9. Wiley, New York.

Fitzgerald, C.J., Taylor, P.H., Eatock Taylor, R., Grice, J., Zang, J., 2014.
Phase manipulation and the harmonic components of ringing forces on a
surface-piercing column. Proc. R. Soc. A: Math. Eng. Sci 470, 20130847.

Huseby, M., Grue, J., 2000. An experimental investigation of higher-harmonic
wave forces on a vertical cylinder. J. Fluid Mech. 414, 75–103.

International Electrotechnical Commission, 2009. 61400-3, Wind turbines-
part 3: Design requirements for offshore wind turbines. IEC, Geneva .

Kristiansen, T., Faltinsen, O.M., 2017. Higher harmonic wave loads on a
vertical cylinder in finite water depth. J. Fluid Mech. 833, 773–805.
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