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Decentralized Funding of Public Goods in
Blockchain System: Leveraging Expert Advice

Jichen Li, Yukun Cheng∗, Wenhan Huang, Mengqian Zhang,
Jiarui Fan, Xiaotie Deng∗, Fellow, IEEE, Jan Xie and Jie Zhang

Abstract—Public goods projects, including open-source tech-
nology, client development, and blockchain knowledge education,
play a crucial role in the thriving blockchain ecosystem. Conse-
quently, the decision-making process for funding public goods
is a significant concern within blockchain ecosystem studies.
This work develops a human oracle protocol approach that
involves experts, funders, and public goods projects to address the
problem of investing in public goods on the blockchain. In our
human oracle approach, funders contribute their investments,
which are stored in a funding pool. Experts provide investment
advice based on their experience with public goods projects. The
decisions made by the human oracle regarding the amount of
support from the funding pool are based on the reputation of the
experts. The reputation of each expert is updated according to the
project’s implementation performance compared to their advice.
In other words, better investment performance leads to a higher
reputation. Besides being applied to static model, our human
oracle can also be extended to accommodate dynamic setting,
in which the experts might leave or join the decision- making
process. Therefore, we introduce a regret bound to measure
the effectiveness of our human oracle. Theoretically, we prove
an upper regret bound for both static and dynamic models
and demonstrate its tightness with an asymptotically equal
lower bound. Empirically, we provide evidence that our oracle’s
investment decisions closely align with optimal investments in
hindsight. This highlights the efficiency and effectiveness of our
human oracle approach in guiding funding decisions for public
goods projects in the blockchain ecosystem.

Index Terms—Class, IEEEtran, LATEX, paper, style, template,
typesetting.

I. INTRODUCTION

With the exponential growth of the blockchain ecosystem in
recent years, participants now have a greater demand for not
only efficient transaction capabilities but also a wide range
of functionalities from blockchain systems. In order to attract
more individuals to join the blockchain ecosystem, sponsors
with capital on the blockchain aspire to incentivize and support
the development of public goods projects. These projects
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encompass various aspects such as client development, open-
source technology, knowledge databases, and more, all aimed
at fostering the flourishing of the blockchain ecosystem. One
notable platform dedicated to fundraising for blockchain pub-
lic goods is Gitcoin Grants [1]. Supported by the Ethereum
Foundation and other blockchain systems, Gitcoin Grants
provides a dedicated space for raising funds specifically for
public goods in the blockchain realm. At present, there is
a remarkable lineup of nearly 3000 public goods projects
awaiting funding from this platform.

The Gitcoin Grants platform presently employs the
Quadratic Funding (QF) protocol [2] for matching project
funding. This protocol collects funds into an investment pool
and distributes them based on the number of donors and
the amount donated to each project. While the QF protocol
is efficient in allocating investments, it does have several
drawbacks.

Firstly, the QF protocol can be influenced by the biases of
the crowd, resulting in a skewed estimation of project utility
by donors. The QF protocol relies on the donors’ predictions
of the utility that they will receive from the project. However,
those predictions may not be accurate in practice. Even worse,
the whole community may have a prejudice toward projects,
leading to an unsuitable investment allocation [3]. Secondly,
the QF protocol lacks the ability to utilize hindsight, such as
feedback on previous project utilities, to inform investment
decisions for subsequent projects. This limitation prevents the
correction of investment mistakes made in previous projects.
Furthermore, the QF protocol is highly susceptible to Sybil
attacks [4]. These attacks exploit the ease and low cost of
creating new identities, allowing for the forging of fictitious
identities to manipulate the allocation of funds. In 2021, the
Gitcoin platform reported that they detected more than 1,377
times of attacks within a 3 months grants [5]. Although the
platform subsequently utilizes identity authentication tech-
nology to prevent sybil attacks as much as possible, this
phenomenon cannot be completely eliminated.

These deficiencies highlight the practical challenges faced
by the QF protocol in terms of accurate utility predictions, the
absence of feedback on project implementation, and vulnera-
bility to Sybil Attacks. Addressing these issues is crucial for
improving the effectiveness and integrity of project funding
allocation on the Gitcoin Grants platform.

To tackle the aforementioned challenges, we integrate the
“prediction with experts’ advice” framework [6]–[8] into
our human oracle for funding public goods projects in the
blockchain system. The design of this framework revolves
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around several key concepts: maintaining a group of experts
from the community, making investment decisions based on
the advice of highly reputable experts, and adjusting expert
reputations based on project performance in hindsight.

Incorporating expert opinions into the investment process
for public goods projects offers several advantages. Firstly, ex-
perts possess extensive investment experience, which can lead
to more accurate predictions regarding project performance.
Secondly, by updating expert reputations based on project
performance, the protocol can select appropriate experts with
higher reputations, resulting in more precise project invest-
ments. Finally, in our protocol, funders’ donations are stored
in the funding pool, eliminating any incentives for them to
engage in Sybil attacks.

However, experts, who are not involved in the Quadratic
Funding (QF) mechanism, may attempt to profit from Sybil
attacks. Therefore, our human oracle implements identity
verification for each expert during the registration phase,
effectively countering Sybil attacks by experts. Importantly,
funders or donors are not required to provide any identification
to the protocol, fostering a high willingness to donate. This
approach strikes a balance between ensuring the integrity of
the system and maintaining the privacy and convenience of
funders and donors.

When applying the existing expert advice framework to
public goods investment, we encounter the following problems
that need to be addressed.

1) Evaluation of Expert Advice: The existing prediction
protocols with expert advice typically calculate the loss
of each expert by comparing the actual performance of
a project with their prediction for that project. However,
in the case of public goods investment, the feedback
received only pertains to the performance of projects
under one expert’s investment advice. As a result, this
feedback cannot be directly utilized to evaluate the
advice provided by other experts.

2) Evaluation of Expert Advice: The existing prediction
protocols with expert advice typically calculate the loss
of each expert by comparing the actual performance of
a project with their prediction for that project. However,
in the case of public goods investment, the feedback
received only pertains to the performance of projects
under one expert’s investment advice. As a result, this
feedback cannot be directly utilized to evaluate the
advice provided by other experts.

The main contribution of this work is to design an invest-
ment protocol for a human oracle, consisting of three types
of participants: funders, projects, and experts, for the public
goods projects investment problem in blockchain system.
Funders continuously contribute their investments to a funding
pool. Each project proposes a request for investment for its
development. Experts submit their investment advice for those
projects. With continuous investment flow, we assume that the
pool usually has sufficient funds for a project.

To settle the first problem, we require the investment
protocol to gather the advice from experts twice for each
project. At first, the experts shall submit their investment
advice separately. After receiving all advice, the protocol goes

to select one expert based on the reputations of experts. Once
one expert’s advice is adopted, all experts are required to
submit their predictions for the performance of project under
the selected advice. Then our protocol computes the loss of
each expert by comparing the actual project’s performance and
her prediction for performance under this selected investment
advice. To sum up, the first advice of all experts is used to
select an appropriate expert, and the second one is used to
compute the loss of each expert.

We first study the static setting, in which no experts are
offline and all experts remain in the expert set. To settle the
above second problem, we extend our protocol to a more
general dynamic setting, where some experts may leave and
some new ones may join in the expert set. For both of two
settings, we provide the lower bounds of the worst cases on the
ranking regret and show that the upper bounds of our protocol
asymptotically matches these lower bounds.

The rest of this paper is organized as follows. Section II
introduces the background and the related work on the public
goods investment problem. In Section III, we propose the
structure and components of our investment protocol. In
Section IV, we theoretically analyze the lower bounds of the
worst cases on the ranking regret and prove that the upper
bounds of our protocol matches these lower bounds within a
constant factor. Last section conducts a series of experiments
to demonstrate the effectiveness of our protocol.

II. BACKGROUND AND RELATED WORK

A. Quadratic Funding

The quadratic funding (QF) protocol, proposed by Bu-
terin et al. [2], presents a mechanism for funding public
goods within a blockchain system. This protocol assumes
that funders have quasi-linear utility functions and aim to
achieve socially optimal outcomes when there is complete
information. However, directly applying the QF protocol to
settings with non-quasi-linear utility functions may not be
appropriate. Pasquini et al. [3] highlighted this limitation when
considering a funding pool with limited funds, such as Gitcoin
Grants [1]. They pointed out that the social efficiency of the
QF protocol relies on the ratio between the actual subsidy and
the ideal subsidy. Furthermore, when dealing with incomplete
information, the efficiency property of the QF protocol is only
satisfied under highly restricted conditions [9]. Although some
work has attempted to study the Quadratic Mechanism with
imperfect information, they have only discussed it in simple
voting settings [10]. Therefore, extending the application of
quadratic funding beyond complete information remains a
crucial problem that needs to be addressed.

B. Prediction with Experts Advice

The prediction with expert advice problem is a well-known
learning problem that was first introduced as a framework
for online learning in 1994 [6]. In this problem, a learner
is faced with an online optimization task, where they must
make a decision at each round regarding which of the n
experts’ advice to follow. Simultaneously, the learner has
access to the gains obtained in all previous rounds, except
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for the current round t, and chooses one expert based on
the historical performances. At each round t, an adversary
sets the gains for all experts. If the adversary has access
to the learner’s choices from all previous rounds and sets
the gains accordingly in round t, we refer to it as a ”fully
adversary”. This decision-making process is repeated for a
total of T rounds, and the learner’s objective is to optimize
her cumulative gain throughout the process.

To analyze the performance of a decision algorithm in this
online optimization problem, the classical regret is introduced:

R(T ) =

T∑
t=1

wtlt − min
j∈[n]

T∑
t=1

lt,j , (1)

where wt is the vector of experts’ chosen probability and lt
is the vector of losses in round t.

The most famous classical algorithm in the prediction with
expert advice framework is Hedge Algorithm [11]. The Hedge
algorithm sets the weights of all experts as one initially. Then
in each round t, the learner makes a decision based on experts’
weights. After the decision, the learner will receive an optimal
decision gt and update each expert’s weight according to
the distance between her advice and gt. This design enables
that the master algorithm makes not many more mistakes
than the best expert, even without any prior knowledge about
their expertise level. The classical regret of Hedge algorithm
is O(

√
T lnn) and further works [12], [13] improve the

efficiency of the algorithm in applications.
However, although the Hedge algorithm is effective, it does

not work when the expert set changes in the process, that is,
the sleeping experts setting [11], [14]. As the computational
hardness of the sleeping experts setting is well-proved by [15]–
[17], several previous works research on the sleeping experts
setting under some restrictions. For example, [18] discussed
the case that the expert set only grows up, while in [19],
the experts set only shrinks. However, there is no study on
the situation of the substitution of experts. In the substitution
setting, the number of available experts is constant, while
some of them may be substituted by new comers. Formally,
for the set of experts E = {e1, · · · , eN}, at each round
t ∈ {1, 2, ..., T}, the adversary chooses a set of experts Et to
be available such that |Et| = n. In other words, the adversary
sets some experts to sleep forever. Meanwhile, it brings an
equal number of new experts. As [15], [17], [20], we adopt
the ranking regret as our notion of regret. Let us denote π
and Π as an ordering over the set of all experts E and the set
of all permutations, respectively. The first available expert of
permutation π in round t is σπ(t). The cumulative loss of π
with respect to experts Et is the sum of the loss of σπ(t) at
each round. Then the ranking regret is defined as:

RΠ(T ) =

T∑
t=1

wtlt −min
π∈Π

T∑
i=1

lt,σπ(t), (2)

where wt is the vector of weights for available experts and lt
is the vector of experts’ losses in round t.

C. Human Oracle

The human oracle is a mechanism that incorporates data
obtained from human responses to specific problems into the
blockchain system. Individuals with blockchain accounts can
input blockchain data by answering formal or informal in-
quiries and signing transactions. Human oracles are commonly
utilized for voting and assessing answers to problems. Chain-
link [21] employs a K-out-of-M multi-signature approach to
achieve consensus among M different oracles, some of which
can be humans. If the same answer is reported by at least
K oracles, it is deemed acceptable. Chainlink oracles are
primarily utilized by DeFi projects and applications to provide
market prices. Gnosis and Augur [22] employ human oracles
for voting, allowing individuals with blockchain accounts to
dispute reported results by staking their tokens if they disagree
with the current answer.

Human oracles can also provide answers for problems with
arbitrary formats. Reality.eth is an on-chain smart contract
oracle system that relies on crowd-sourcing, where individuals
can post and answer questions. Participants can answer with
a bond or correct an incorrect answer by providing a bond at
least twice the value of the previous answer’s bond. If their
answer becomes the final answer, they can retrieve their bonds;
otherwise, their bonds are awarded to those who supply the
correct answer.

However, human oracles are highly based on ‘the wisdom of
crowds’. The outcome of a human oracle is a ‘belief’ of current
crowds in blockchain systems so that attackers can manipulate
it. Human oracles usually introduce verification periods [23]
or forks [22] to protect the benefits of honest agents. The fork
is to divide people into several groups, each of which has a
similar opinion and belongs to a corresponding universe [22].
The verification periods employ several people [23] or experts
[24] to redress the prejudice of the crowds.

D. Project Evaluation

Directly evaluating a project can be challenging and nu-
anced due to the inherent differences in project nature and
the subjective and incomplete nature of people’s information.
However, using indicators to assess projects across various
domains can offer a viable alternative to address these ex-
isting challenges. The indicator approach, as exemplified by
Takim [25] in the assessment of construction projects and
generalized by Koelmans [26] in measuring project success,
has been chosen. In our discussion, we have compiled relevant
indicators for public goods and reorganized them to provide a
more comprehensive means of project evaluation.

We are interested in the post-project indicators. Post-project
indicators are crucial to measuring the success of a project and
evaluating its value. At this level, many useful indicators stem
directly from the design and implementation of the project,
assessing success on the basis of process and execution. Koel-
mans [26] mentioned fundamental indicators such as progress
schedule and cost, in terms of time and finance respectively. As
Sohn and Joo [27] found out, process factors can also involve
adjustment of strategy, periodic conquest of technological
gap, and improvement of a manufacturing environment, etc.
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These indicators are not only the manifestations of project
performance but also partially deterministic of the future
success of the project.

III. MODEL

In this paper, we study the problem of public goods invest-
ment in a blockchain society, wherein a series of potential pub-
lic goods projects P = {p1, ..., pT } are proposed continuously
in rounds T . In this context, the society can be considered as
a community or group of participants, aiming to fund these
public goods. Let V t(ft) represent the utility of the public
good project pt, which is a value function associated with the
funding level ft. Similar to the Quadratic Funding protocol [9]
and other established economic models [28], [29], we assume
that V t is concave, smooth, and increasing.

Our objective is to develop a funding investment protocol
within the blockchain system that incorporates expert advice.
When a public good pt is proposed, our investment protocol
should determine the appropriate funding level ft. The goal
of the protocol is to maximize the overall net social welfare
of all projects, which can be expressed as follows:

SW =

T∑
t=1

(V t(ft)− ft). (3)

A. Protocol Outline

Our investment protocol operates through multiple rounds,
indicated by t ∈ {1, 2, ..., T}. Each round commences when
a new project pt is proposed. In each round t, a group of n
experts, denoted as Et = {et,1, · · · , et,n}, provides investment
advice for the project and operates as follows. We need to
mention that the identity of experts may vary from one round
to another.

At the beginning of round t, each expert et,i possesses a
reputation value of rt,i, which is carried over from the previous
round. The oracle maintains the list of expert reputations
Rt = {rt,1, · · · , rt,n}, satisfying rt,i ∈ R+. When round
t begins, every expert i initially recommends an investment

level ct,i and provides an estimation V t
i (ct,i) for the project

pt’s social welfare under the recommended investment level.
Subsequently, the investment protocol randomly selects an ex-
pert with a selection probability proportional to their reputation
value, which can be expressed as:

wt,i =
rt,i∑n

k=1 rt,k
. (4)

Here the selection probability wt,i can also be interpreted as
the weight assigned to expert et,i. The vector of weight in
round t is denoted as wt = (wt,1, · · · , wt,n). Once an expert
et,i is selected, their investment advice is implemented, and
project pt is funded at the designated funding level ft = ct,i.
After receiving information about the funding level ft, all
experts must submit their estimations V̂ t

i (ft). Concurrently,
project pt begins to be implemented, and the oracle receives an
evaluation of the project’s social welfare, V t(ft), after a fixed
period of time. It is important to note that V̂ t

i (ft) represents
the subjective estimation from expert i, while V t(ft) signifies
the objective performance measured from various dimensions
(further details on project evaluation will be discussed in
Section III-F).

Based on the evaluation V t(ft), the protocol calculates the
loss for each expert i, and utilizes it to update their reputation.
At the conclusion of round t, project pt is invested at funding
level ft, and all n experts have their reputations updated. A
high-level overview of the investment protocol’s functioning
is illustrated in Figure 1 and the primary notations utilized in
this article are presented in Table I.

B. Protocol Initialization

Our oracle differs from Gitcoin Grants in that it allows all
funders to continuously contribute to the funding pool. In the
event that there are existing public goods projects awaiting
funding in the oracle, these projects will be randomly arranged,
and all funders will collectively agree on the resulting project
list denoted as P . 1 The investment protocol then proceeds to
invest in each project sequentially, following the order speci-
fied in P . As soon as the investment protocol is initiated, any
new public goods projects will be automatically incorporated
into this list. In addition, at the start of the first round, the
initial reputation of each expert is initialized by

r1,1 = r1,2 = . · · · = r1,n = 1.

C. Project Prediction

According to the investment protocol framework, when
project pt is decided for funding under level ft, all experts,
except for the one whose advice is adopted, are required
to submit their estimations denoted as V̂ t

i (ft). Similar to
the assumption made for V p, we also force that all value
functions V̂ p

i should be concave and increasing. Additionally,
we have the condition V t(0) = 0, since a project cannot be
implemented without any investment. Therefore, the value of
V̂ t
i (ft) is bounded by the following lemma.

1For infrastructure projects or projects of utmost importance, we recom-
mend funders to consider ad-hoc investments instead of utilizing our protocol.
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TABLE I
MAIN NOTATIONS

T The number of the total rounds;

m The number of the substitute rounds in
the total T rounds;

N The total number of experts in the sys-
tem;

n The number of involved experts in each
round;

P = {p1, p2, · · · , pT } The set of project ; |P | = T and pt is
the project in round t;

Et = {et,1, · · · , et,n} The set of involved experts in the round
t; |Et| = n;

Rt = {rt,1, · · · , rt,n} The set of expert reputations in the round
t; |Rt| = n and rt,i is the reputation of
expert et,i in the round t;

Ct = {ct,1, · · · , ct,n} The set of experts’ advice for project pt
in the round t; |Ct| = n and ct,i is the
advise of expert et,i in the round t;

wt = (wt,1, · · · , wt,n) The weight vector of experts in round t,
where wt,i is proportional to the reputa-
tion of expert et,i;

lt = (lt,1, · · · , lt,n) The loss vector of experts in round t,
where lt,i is the loss of expert et,i;

F = {f1, · · · , fT } The set of investment decision in the
protocol;

Lt = {lt,1, · · · , lt,n)} The set of experts’ losses in round t,
|Lt| = n and lt,i is the loss of expert
et,i in round t.

Lemma 1. If expert et,i is hnoest, her prediction V̂ t
i (ft) must

satisfy the following conditions:
(1) If ft ≤ ct,i, then

ft
ct,i

V̂ t
i (ct,i) ≤ V̂ t

i (ft) ≤ V̂ t
i (ct,i)− ct,i + ft.

(2) If ft > ct,i, then

V̂ t
i (ct,i) < V̂ t

i (ft) < min{ ft
ct,i

V̂ t
i (ct,i), V̂

t
i (ct,i)− ct,i + ft}.

Proof. Given that expert et,i is assumed to be honest, her
advice regarding ct,i should aim to maximize the net social
welfare based on her prediction function V̂ t

i . Therefore,

V̂ t
i (ft)− ft ≤ V̂ t

i (ct,i)− ct,i. (5)

Under the assumption that V t
i is concave and ft ≤ ct,i, it is

straightforward to conclude that

V̂ t
i (ft)

ft
≥ V̂ t

i (ct,i)− V̂ t
i (0)

ct,i − 0
. (6)

By combining the inequalities (5) and (6), we obtain

ft
ct,i

V̂ t
i (ct,i) ≤ V̂ t

i (ft) ≤ V̂ t
i (ct,i)− ct,i + ft.

On the other hand, when ft > ct,i, there should be

V̂ t
i (ft) > V̂ t

i (ct,i), (7)

Algorithm 1 Investment Protocol for Static Setting
Input: A list of project P = {p1, · · · , pT }.
Output: A list of investment value F = {f1, · · · , fT }.

1: for i = 1, · · · , n do
2: r1,i = 1 ▷ Initialize the reputation
3: for t = 1, 2, · · · , T do
4: Each expert i submits its ct,i and V t

i (ct,i)
5: for i = 1, · · · , n do
6: wt,i =

rt,i∑n
k=1 rt,k

7: Select an expert et,i with the probability of wt,i

8: Fund the project pt with the value ft = ct,i
9: Each expert et,i re-submits its estimation V̂ t

i (ft)
10: Observe the actual performance V t(ft)
11: for i = 1, · · · , n do
12: lt,i = |V t(ft)− V̂ t

i (ft)|
13: rt+1,i = rt,ie

−ηlt,i

under the assumption that V̂ t
i is increasing. Also, the concavity

of V̂ t
i guarantees

V̂ t
i (ft)− V̂ t

i (0)

ft − 0
<

V̂ t
i (ct,i)

ct,i
. (8)

By combining in-equations (5), (7) and (8), we obtain

V̂ t
i (ct,i) < V̂ t

i (ft) < min

{
ft
ct,i

V̂ t
i (ct,i), V̂

t
i (ct,i)− ct,i + ft

}
.

This lemma holds.

Lemma 1 demonstrates that the estimate V̂ t
i (ft) of an honest

expert cannot assume arbitrary value; rather, it is bounded
within a reasonable interval. This finding proves instrumental
in assessing the efficiency of our investment protocol.

D. Evaluation and Reputation update

In the evaluation phases of the protocol, it is essential to uti-
lize a set of quantifiable indicators to measure the performance
of public goods projects. This evaluation process allows for
the updating of expert reputations. An expert’s reputation is a
reflection of the accuracy of their predictions regarding project
investments. Consequently, experts with higher reputations are
more likely to have their advice adopted by the protocol.
Moreover, an expert’s reputation should be updated based on
their predictions concerning the performance of the current
project, once the project has received funding. Specifically,
following the funding of project pt at level ft, each expert must
submit their prediction V̂ t

i (ft), and the actual performance
V t(ft) of project pt can be observed after a specified time
period has elapsed. As a result, the prediction loss of expert
et,i is defined as

lt,i = |V t(ft)− V̂ t
i (ft)|. (9)

Let lt = (lt,1, · · · , lt,n) represent the vector of losses in round
t. Once all losses {lt,i} have been obtained, the protocol
proceeds to update the reputation of expert et,i at the end
of round t by

rt+1,i = rt,ie
−ηlt,i , (10)
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Algorithm 2 Investment Protocol for Dynamic Setting
Input: A list of project P = {p1, · · · , pT }.
Output: A list of investment value F = {f1, · · · , fT }.

1: for t = 1, 2, · · · , T do
2: if t = 1 then
3: Select n experts uniformly to form E1

4: for i = 1, · · · , n do
5: r1,i = 1 ▷ Initialize the reputation
6: else
7: Et = Et−1

8: Diet ← unavailable experts in Et

9: dt ← |Diet|
10: Remove Diet from Et and uniformly select dt
11: experts from N −

⋃t−1
k=1 Ek

12: if dt == 0 then
13: rt,i = rt−1,i · e−ηlt−1,i

14: else
15: for all et,i ∈ Et − Et−1 do
16: rt,i = (1− α) · 1n ·

∑n
k=1 rt−1,k · e−ηlt−1,k

17: for all et,i ∈ Et ∩ Et−1 do
18: rt,i = (1− α) · 1n ·

∑n
k=1 rt−1,k · e−ηlt−1,k

19: +α · rt−1,i · e−ηlt−1,i

20: +α · 1
n−dt

·
∑

k∈Diet
rt−1,k · e−ηlt−1,k

21: Each expert i submits its ct,i and V t
i (ct,i)

22: for i = 1, · · · , n do
23: wt,i =

rt,i∑n
k=1 rt,k

24: Select an expert et,i with the probability of wt,i

25: Fund the project pt with the value ft = ct,i
26: Each expert i re-submits its estimation V̂ t

i (ft)
27: Observe the actual performance V t(ft)
28: for i = 1, · · · , n do
29: lt,i = |V t(ft)− V̂ t

i (ft)|

where η > 0 is a predetermined parameter.

E. Static Setting and Dynamic Setting

In each round t, a group of n experts Et = et,1, · · · , et,n
provide their advice. If E1 = · · · = ET , indicating that the
expert set remains the same throughout the entire process, this
configuration is referred to as the Static Setting. The invest-
ment protocol for the static setting is outlined in Algorithm
1. However, due to various reasons, such as experts being
offline or their reputations falling below a preset threshold
θ, the expert set may change in the subsequent round. In the
Investment Protocol, it is necessary to maintain a constant size
of the expert set in each round. Therefore, when some experts
expire, new experts need to be added to the expert set. This
gives rise to a Dynamic Setting, as illustrated in Algorithm 2.

Suppose that there are N experts in the oracle, with n
experts selected to provide recommendations in each round.
Initially, the expert set E1 is created by uniformly selecting
each expert with a probability of n

N . In subsequent rounds
t (≥ 2), the expert set Et may be updated by eliminating some
experts and introducing new ones. Let Diet denote the set
of experts who are removed from Et−1, specifically, Diet =

Et−1 − Et. The size of Diet is denoted by |Diet| = dt. To
ensure that there are still n participating experts in round t,
dt experts are uniformly selected from the waiting expert set
N −

⋃t−1
k=1 Ek and included in this round. Thus, we have

Et = (Et ∩ Et−1) ∪ (Et − Et−1) ,

where each expert in Et ∩Et−1 is considered a senior expert,
while all new experts are in Et−Et−1. Additionally, if dt > 0,
round t is referred to as a substitute round; otherwise, it is
called a normal round. Suppose there are m substitute rounds
out of the total T rounds.

In the dynamic setting, a crucial concern arises when
establishing the reputation of new experts if dt > 0. In order
to address this matter, our investment protocol initializes the
reputation of new expert et,i ∈ Et − Et−1 as

rt,i = (1− α)

∑n
k=1 rt−1,k · e−ηlt−1,k

n
, (11)

where α ∈ [0, 1] represents a predetermined parameter. The
initial reputation of a new expert, as shown in (11), is derived
from a discounted average of the reputations of all participat-
ing experts in round t−1. For senior experts et,i ∈ Et∩Et−1,
their reputation is set to

rt,i = (1− α)

∑n
k=1 rt−1,k · e−ηlt−1,k

n
(12)

+ αrt−1,i · e−ηlt−1,i + α

∑
k∈Diet

rt−1,k · e−ηlt−1,k

n− dt
.

Referring to equation (12), it is evident that the reputation
rt,i of senior expert et,i is a combination of their previous
round’s reputation, a partial of the total reputations, and a
share of expired experts’ reputations from round t − 1. This
is accomplished through a technique where each senior expert
continues to use their index from the previous round, while
the new expert inherits the index of one removed expert.

F. Implementation Instance

In the concluding section, we delve into the practical
implementation of the protocol by presenting several instances
of its application. It is important to emphasize that the im-
plementation of our investment protocol requires an existing
blockchain platform that has already established infrastructure
projects. The effectiveness of our investment protocol relies
on the guidance provided by experts who possess exceptional
reputations. Consequently, the protocol encounters a signifi-
cant challenge known as the cold-start problem. To address this
issue, the initial rounds of the protocol are recommended to be
executed concurrently with other investment protocols. During
these rounds, experts are solely required to make predictions,
following which the protocol updates their reputations by
evaluating the accuracy of their predictions against the actual
project outcomes. As a result of overcoming the cold-start
phase, the protocol’s performance gains enhanced reliability.

Secondly, if there is an abundance of projects requiring
investment within a limited timeframe, we can introduce
the ”run in batch” approach, where experts provide advice
for multiple projects in a single round. Subsequently, the
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protocol will update the expert’s reputation by considering the
cumulative predicted loss. Implementing this method enhances
the efficiency of the process while maintaining the regret
bound of our protocol unaffected.

Thirdly, given the decentralized nature of blockchain, our
focus lies primarily on the implementation details of how
experts submit their opinions within the system. At the start
of each new round t, in addition to the investment project pj ,
the experts are assigned a deadline to submit their investment
advice within. This so-called time point, can be determined
by the block height in the blockchain. To ensure impartial
decision-making, we mandate that experts initially provide
the digest of their advice, specifically denoted as h(ct,i) and
h(V̂ t

i (ct,i)), where h(·) is a hash function. 2 Subsequently,
the selected expert et,i discloses her advice ct,i as the final
decision ft. Following this, the remaining experts in the
same round t are required to submit the hash value of their
estimation for the social welfare of project pt at the funding
level ft, denoted as h(V̂ t

i (ft)). This submission must also be
finalized within the specified timeframe. After that, all experts
disclose their estimations V̂ t

i (ct,i) and V̂ t
i (ft), allowing the

smart contract to update their individual reputations. This
hashing-first and subsequent revealing design also serves as
a deterrent against strategic experts who may attempt to
plagiarize others’ ideas.

Finally, we are also concerned with the evaluation of
projects during the implementation phase. Due to the inher-
ent partiality and subjectivity of people’s information about
projects, direct evaluation can be challenging and nuanced.
Thus, utilizing indicators to assess projects can serve as a
viable alternative approach. We compiled a set of indicators
pertaining to public goods and reorganized them to offer a
more comprehensive approach to project evaluation, which is
presented in Table II.

TABLE II
POST-PROJECT INDICATORS

Category and dimension Indicator
Related to outcome and deliverables Scope

Quality
Profitability
Meets technical specification

Related to process and execution Decision
Cost
Schedule
Cost deviation

Objective measure Construction time
Speed
Time Variation
Unit Cost
Net present value
Accident rate

Subjective measure Design team’s satisfaction
Functionality
Community satisfaction
Social obligation

2It is important to note that both ct,i and V̂ t
i (ct,i) are continuous variables

in our paper. In the discrete case, cryptographic techniques such as digital
signature and commitment scheme can be employed to safeguard against
potential pre-computed dictionary attacks.

IV. THEORETICAL ANALYSIS

This section provides a comprehensive analysis of the
effectiveness of the investment protocol in both static and
dynamic settings. For the sake of notation simplicity in proofs,
we assume that the estimated values provided by each expert
fall within the range of [0, H]. Consequently, by dividing
the constant H , we can scale the losses of experts to the
interval [0, 1]. We demonstrate that our investment protocol
has a tight lower bound on classical regret or ranking regret,
with a constant factor, in both the static and dynamic settings.

A. Analysis for static setting

In the static scenario, experts are not removed from the
expert set Et during each round. We utilize the concept of
minimax regret [8], which is defined as follows:

inf
W

supl1,...,lT

{
T∑

t=1

wtlt − min
j∈[n]

T∑
t=1

lt,j

}
,

for evaluating the performance of the investment protocol.
Here, W represents the set of all possible weight combinations
for experts across T rounds. Subsequently, we demonstrate
that our protocol’s regret nearly matches the minimax lower
bound in the static scenario.

Theorem 1. Let L be a universal constant. In the static
setting, when T tends to infinity, the investment protocol has
a lower bound on its minimax regret:

lim
T→+∞

inf
W

supl1,...,lT

{
T∑

t=1

wtlt − min
j∈[n]

T∑
t=1

lt,j

}
≥ 1

L

(√
T/2 lnn

)
. (13)

Proof. As the infimum is taken over all forecasting weighting
strategies W , we introducing i.i.d. symmetric Bernoulli ran-
dom variables lt,1, ..., lt,n (i.e., Pr[lt,i = 0] = Pr[lt,i = 1] =
1
2 ) for all t ∈ [T ], we clearly has:

inf
W

supl1,...,lT

{
T∑

t=1

wtlt − min
j∈[n]

T∑
t=1

lt,j

}

≥ inf
W

E

[
T∑

t=1

wtlt − min
j∈[n]

T∑
t=1

lt,j

]
.

Since all the variable lt,i is completely random, for all fore-
casting strategies one obviously has E[

∑T
t=1 wtlt] = T/2.

Thus,

inf
W

E

[
T∑

t=1

wtlt − min
j∈[n]

T∑
t=1

lt,j

]
= E

[
T

2
− min

j∈[n]

T∑
t=1

lt,j

]

=
1

2
E

[
max
j∈[n]

T∑
t=1

(1− 2lt,j)

]

=
1

2
E

[
max
j∈[n]

T∑
t=1

δt,j

]
,
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where {δt,j} are i.i.d. Rademacher random variables (i.e.,
Pr[δt,j = 1] = Pr[δt,j = −1] = 1

2 ). By Lemma 2 ( [8]
Lemma A.11 and A.12), as shown below, we can achieve

lim
T→+∞

inf
W

E

[
T∑

t=1

wtlt − min
j∈[n]

T∑
t=1

lt,j

]
≥ 1

L

(√
T/2 lnn

)
.

Then, this result holds.

Lemma 2 ( [8]). Let Zt,i for all i ∈ [n] and t ∈ T
be the Rademacher random variables, and G1, · · · , Gn are
independent standard normal random variables. Then,

lim
T→∞

E

[
max
i∈[n]

T∑
t=1

Zt,i

]
=
√
T · E

[
max
i∈[n]

Gi

]
lim
n→∞

E

[
max
i∈[n]

Gi

]
=
√
2 lnn.

In addition to the lower bound of minimax regret obtained
in Theorem 1, we also investigate the upper bound of the
classical regret, defined in (1), by using the method presented
in the proof of Multiplicative Weights Update [30].

Theorem 2. Consider the investment protocol runs for T
rounds with n experts. Define R(T ) in (1) as the classical
regret, then for a given constant η ∈ (0,+∞]:

R(T ) ≤ lnn

η
+

ηT

2
. (14)

Proof. We establish the upper bound of classical regret using
the potential method, where the potential function is defined
as Φ(t) = 1

η ln
∑n

i=1 rt,i. Therefore,

Φ(t+ 1)− Φ(t) =
1

η
ln

n∑
i=1

rt+1,i −
1

η
ln

n∑
i=1

rt+1,i

=
1

η
ln

∑n
i=1 rt+1,i∑n
i=1 rt,i

=
1

η
ln

∑n
i=1 rt,ie

−ηlt,i∑n
i=1 rt,i

=
1

η
ln

n∑
i=1

wt,ie
−ηlt,i (15)

≤1

η
ln

n∑
i=1

wt,i

(
1− ηlt,i +

(ηlt,i)
2

2

)
(16)

=
1

η
ln

(
1 +

n∑
i=1

wt,i

(
−ηlt,i +

η2l2t,i
2

))

≤ 1

η

n∑
i=1

wt,i

(
−ηlt,i +

η2l2t,i
2

)
(17)

= −
n∑

i=1

wt,ilt,i +
η
∑n

i=1 wt,il
2
t,i

2

= − lt +
η
∑n

i=1 wt,il
2
t,i

2
.

Here, lt =
∑n

i=1 wt,ilt,i represents the expected verification
loss in round t; (16) is correct because −ηlt,i ≤ 0 and ex ≤
1+ x+ x2

2 , for any x ≤ 0; (17) holds because ln(1+ x) ≤ x,
given that x ≥ −1.

Due to the fact that for all t rounds, |lt,i| ≤ 1 and∑n
i=1 wt,i = 1, we have

Φ(t+ 1)− Φ(t) = −lt +
η
∑n

i=1 wt,il
2
t,i

2
≤ −lt +

η

2
. (18)

Summing (18) from t = 1 to T , we obtain

Φ(T + 1)− Φ(1) = Φ(T + 1)− lnn

η
≤ −

T∑
t=1

lt +
ηT

2
,

which can be rewritten as:
T∑

t=1

lt +Φ(T + 1) ≤ lnn

η
+

ηT

2
. (19)

Finally, let i∗ denote the index of the expert with the minimum
accumulated loss. According to the definition of Φ(T ), we
have

Φ(T + 1) =
1

η
ln

n∑
i=1

rT+1,i ≥
1

η
ln rT+1,i∗

=
1

η
ln e−η

∑T
t=1 lt,i∗ = −

T∑
t=1

lt,i∗ = −min
i∈n

T∑
t=1

lt,i. (20)

Combining (19) and (20), it is not hard to deduce that

R(T ) =

T∑
t=1

lt −min
i∈n

T∑
t=1

lt,i ≤
lnn

η
+

ηT

2
.

This result holds.

Moreover, by setting the constant η =
√
lnn/T , we can

establish that the upper bound of the classical regret converges
to O(

√
T lnn).

Corollary 1. The classical regret of the investment protocol
in the static setting is upper bounded by O(

√
T lnn).

Remarks for choosing expert. The investment protocol
can improve its robustness by utilizing a weighted average of
expert advice to make investment decisions. It is important to
highlight that even in the case of delayed feedback, the proof
of Corollary 1 can be adapted following a similar approach as
presented in [13].

B. Analysis for dynamic setting

In the dynamic setting, the performance of a prediction
protocol is evaluated using the ranking regret, as defined in
(2). In this subsection, we initially examine the lower bound
of the ranking regret under fully adversarial conditions. Sub-
sequently, we establish that this lowerbound is asymptotically
tight for our investment protocol, with a constant factor.

Theorem 3. In the dynamic setting under fully adversarial
conditions, the minimax ranking regret is lower bounded
by Ω(

√
(m+ 1)T lnn), where m represents the number of

substituted rounds in a total of T rounds and n denotes the
number of involved experts in each round.

Proof. We use π∗ to denote the optimal permutation with
the minimum ranking regret. For any permutation π, the first
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expert participating in round t is denoted σπ(t), and their
corresponding loss is lt,σπ(t).

The m numbder of substituted rounds, is represented by
t1, t2, ..., tm, respectively. Define τi as the set of time-step
indices for rounds occurring between ti−1 and ti, i.e., τi =
{t|ti−1 < t ≤ ti}. Specifically, we define t0 = 0 and tm+1 =
T . Consequently, the T rounds can be divided into m+1 time
periods denoted by {τ1, · · · , τm+1}.

We divide each time period τi into two equal parts, denoted
by τ1i and τ2i , respectively. Let lτ1

i ,j
and lτ2

i ,j
as the sequences

of losses for expert ej during the first and second half of
the period τi. In the first part, the adversary subjects each
expert to losses drawn independently and identically from a
Bernoulli distribution with p = 1

2 . At the end of the first part
τ1i , the adversary evaluates the accumulated losses of n experts
during this time period and selects the expert with the lowest
cumulative loss up to the point, denoted as ei∗ . Subsequently,
in the second part of this time period, the loss for expert ei∗
is zero. For all other experts, the adversary imposes losses on
them according to the loss sequence lτ1

i ,j
. In particular, for

ej ̸= ei∗ , the loss sequence lτ2
i ,j

in the second part of time
period τi is obtained by element-wise subtraction of 1 from
lτ1

i ,j
, denoted as lτ2

i ,j
= 1− lτ1

i ,j
. Once the time period τi is

completed, the adversary replaces ei∗ with a new expert.
Let us now analyze the ranking regret over T rounds under

the given construction. According to the definition in Equation
(2), the ranking regret over T rounds can be expressed as:

RΠ(T ) =

T∑
t=1

wtlt −min
π∈Π

T∑
i=1

lt,σπ(t)

=

T∑
t=1

wtlt −
m+1∑
i=1

∑
t∈τi

lt,σπ∗ (t)

=

m+1∑
i=1

(∑
t∈τi

wtlt −
∑
t∈τi

lt,σπ∗ (t)

)
.

Considering the construction, we observe that in each period
τi, expert ei∗ experiences the lowest loss and is subsequently
replaced in the following period τi+1. Therefore, it becomes
evident that π∗ = (e1∗ , e2∗ , · · · , e(m+1)∗ , · · · ). So, let us
simplify the expression:

m+1∑
i=1

(∑
t∈τi

wtlt −
∑
t∈τi

lt,σπ∗ (t)

)
=

m+1∑
i=1

(∑
t∈τi

wtlt −
∑
t∈τi

lt,i∗

)

=

m+1∑
i=1

R(τi), (21)

where i∗ represents the index of the expert with the minimum
cumulative loss. By combining the lower bound of minimax
regret (13) for the static setting and equation (21), we obtain:

RΠ(T ) =

m+1∑
i=1

R(τi) ≥
1

L

m+1∑
i=1

√
(τi)/2 lnn

≥ 1

L

√
(m+ 1)(T/2) lnn (22)

= Ω(
√

(m+ 1)T lnn.

The inequality (22) holds due to the fact that
∑m+1

i=1 τi = T
and the application of the Cauchy-Schwarz inequality.

In the following, we aim to demonstrate that the lower
bound of Ω(

√
(m+ 1)T lnn) can be achieved by our invest-

ment protocol, thereby establishing its superior performance.
Before presenting the proof, it is necessary to introduce the
following preliminary result.

Theorem 4. Consider a scenario where there are m substi-
tuted rounds within a total of T rounds. Let RΠ(T ) denote the
ranking regret of the investment protocol in a dynamic setting.
Then for η ∈ (0,+∞] and α ∈ [0, 1), we have

RΠ(T ) ≤ (m+1)
η ln n

(1−α) +
ηT
2 . (23)

Proof. Similar to the proof in Theorem 2, we employ the
potential method to establish the upper bound (23). For
this purpose, we introduce the potential function Φ(t) =
1
η ln

∑n
i=1 rt,i. Subsequently, we consider two cases depend-

ing on whether round t+1 is a substitution round or a regular
round.
Case 1. If round t+ 1 is a regular round, then the reputation
updating process follows the same protocol as in the static
setting. Applying equation (15), we can express the change in
potential function as

Φ(t+ 1)− Φ(t) =
1

η
ln

n∑
i=1

wt,ie
−ηlt,i .

Case 2. If round t+1 is a substituted round, then the reputation
updating process becomes more complex. However, we can
observe that∑

et+1,i∈newt

rt+1,i = d(1− α)

∑n
k=1 rt,ke

−ηlt,k

n
;

∑
et+1,i /∈newt

rt+1,i = (n− d)(1− α)

∑n
k=1 rt,ke

−ηlt,k

n

+ α

n∑
k=1

rt,ke
−ηlt,k ;

n∑
i=1

rt+1,i =
∑

et+1,i∈newt

rt+1,i +
∑

et+1,j /∈newt

rt,j+1

=

n∑
i=1

rt,ie
−ηlt,i ,

where d represents the number of substituted experts.
Therefore, for the substituted round, we also have

Φ(t+ 1)− Φ(t) =
1

η
ln

n∑
i=1

rt,ie
−ηlt,i − 1

η
ln

n∑
i=1

rt+1,i

=
1

η
ln

n∑
i=1

wt,ie
−ηlt,i .

Finally, it is necessary to scale Φ(T + 1). It should be
noted that if round t+ 1 is a substituted round, the following
inequality holds for all i and j: rt+1,i ≥ 1−α

n rt,j .
Recall that in the optimal permutation π∗ ∈ Π that min-

imizes the ranking regret, the first expert involved in round
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t, denoted by σπ∗
(t), has a loss of lσπ∗ (t),t. Let t1, t2, ..., tm

represent the m substituted rounds. Taking these into account,
we have

Φ(T + 1) =
1

η
ln

n∑
i=1

rt+1,i

≥ 1

η
ln

(1− α)

n
rσπ∗ (tm),tme

−η
∑

t≥tm
l
σπ∗

(t),t

≥ 1

η
ln

(1− α)2

n2
rσπ∗ (tm−1),tm−1

e
−η

∑
t≥tm−1

l
σπ∗

(t),t

...

≥ 1

η
ln

(1− α)m

nm
e
−η

∑T
t=1 l

σπ∗
(t),t

= −
T∑

t=1

lσπ∗ (t),t −
m

η
lnn+

m

η
ln(1− α). (24)

Therefore,

RΠ(T ) =

T∑
t=1

lt −
T∑

t=1

lσπ∗ (t),t

≤ (m+ 1)

η
lnn+

ηT

2
− m

η
ln(1− α)

≤ (m+ 1)

η
ln

n

(1− α)
+

ηT

2
.

The proof is completed.

By setting η =
√
2(m+ 1) lnn/T and α = 0, we can

establish the following upper bound of the investment protocol.
Notably, this upper bound matches the lower bound stated in
Theorem 3, albeit within a constant factor.

Corollary 2. The ranking regret of then investment protocol
is upper-bounded by O(

√
(m+ 1)T lnn).

V. PERFORMANCE EVALUATION

In the previous section, we have theoretically demonstrated
the efficiency of our investment protocol. In this section,
we further conduct simulations to evaluate the protocol’s
performance in a real-task scenario.

A. Environment Setup

In the simulation, we consider a community consisting of
K individuals. We assume the utility functions of projects
to be concave, smooth, increasing, and zero-intercept. To
simulate the value functions for each individual k, we employ
the following utility function: V p

k (x) = akx
bp , where ak

is drawn from an exponential distribution Exp(λ), and bp
can take any value within the interval (0, 1). Therefore, the
social welfare function is denoted by W p(x) = Apx

bp − x,
where Ap =

∑K
k=1 ak. However, due to potential inaccuracies

in people’s predictions, we introduce the utility prediction
function V̂ p

k = âkx
bp for each individual k, wherein âk ∼

N(ak + β, σ). Here, the parameter β represents the bias
resulting from crowd prejudice.

In our investment algorithm, we incorporate N experts. For
each expert i ∈ [N ], we assume its prediction of the social

Fig. 2. The average investment loss and social welfare of the Quadratic Fund-
ing algorithm, the static algorithm, and the dynamic algorithm, proportional
with the theoretical best.

Fig. 3. The average social welfare of the Quadratic Funding algorithm, the
static algorithm, and the dynamic algorithm in the first and last 1000 episodes.

welfare function of project p is Ŵ p
i (x) = Âix

bp − x, where
Âi follows a normal distribution N(Ap, κi). The parameter
κi is selected from the range [κmin, κmax] and represents the
prediction ability of expert i. In this section, we realize the
following algorithm:

• Quadratic Funding Algorithm ( [2])
• Static Expert Algorithm (Alg.1)
• Dynamic Expert Algorithm (Alg.2)

The environment parameters used in our simulation are shown
in Table III.

TABLE III
SIMULATION PARAMETERS

K = 1000 Number of people

T = 10000 Number of episodes

λ = 2, bp ∈ [0, 1] The parameter represents the aver-
age utility of individuals

β = 1, σ = 1 The parameter of the bias distribu-
tion

κmin = 500, κa
max = 1500 The ranging about expert’s ability

B. Performance Comparison

We first show the efficiency of our investment protocol
in both static and dynamic settings. In the experiment, we
suppose our investment protocol maintains n = 20 experts in
all T = 10000 rounds. The learning rate of the static algorithm
is η = 0.05. During the fact that the expert will be offline in
the system, we substitute a random expert in every 500 rounds,
and the hyperparameter of the dynamic algorithm is α = 0.2

Fig. 2 illustrates the average investment loss and average
social welfare of the Quadratic Funding, Static, and Dynamic



JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 11

Fig. 4. The average investment loss and social welfare of the dynamic
algorithm under different learning rates. The substituted rate of the algorithm
is set to α = 0.2 on the left and α = 0.8 on the right.

algorithms in each round. To normalize the results, we divide
them by the theoretical maximum outcome. It is evident
that both the static and dynamic algorithms outperform the
Quadratic Funding algorithm. Specifically, in the simulated
environment, the Quadratic Funding algorithm incurs a loss
of over 62% of the investment on projects, while the Static
and Dynamic algorithms experience losses of only 24% and
33%, respectively. Moreover, in terms of social welfare, the
Quadratic Funding algorithm achieves approximately 74% of
the maximum social welfare compared to the theoretical max-
imum, while the static algorithm and the dynamic algorithm
can reach 95% and 78%.

In Figure 3, we utilize box plots to present the distribution
of social welfare in the first and last 1000 episodes for each
algorithm. From the graph, it is evident that although the
Quadratic Funding algorithm exhibits the highest stability in
terms of social welfare, our algorithm consistently achieves
higher social welfare values than the Quadratic Funding algo-
rithm. This is true even during the initial 1000 rounds before
our algorithm reaches total convergence. Moreover, despite
operating in a dynamic environment with changing experts,
our dynamic algorithm demonstrates a relatively strong con-
vergence to a favorable decision-making level in the first
1000 rounds. The median social welfare closely resembles
that of the static algorithm, while in the majority of cases,
our algorithm surpasses the social welfare obtained by the
Quadratic Funding algorithm. These findings indicate that even
in the presence of environmental disturbances our algorithm
still exhibits a superior performance.

C. Learning Rate Influence

In this section, we conduct a performance comparison of the
dynamic algorithm under learning rate. To examine the impact
of different parameter values on the algorithm’s effectiveness,
we test the algorithm while keeping either the α parameters
fixed. The experiments are conducted in a controlled simula-

Fig. 5. The average investment loss and social welfare of the dynamic
algorithm under different substituted rates. The learning rate of the algorithm
is set to η = 0.05 on the left and η = 0.1 on the right.

tion environment under parameters shown in Table III, lasting
for 10000 episodes. In every 500 episodes, a random expert is
replaced by a new one. We test the learning rate η on 0.01, 0.5
and 0.1.

The average loss and social welfare results are presented in
Figure 4. Based on the figure, it can be concluded that although
algorithms with lower learning rates initially exhibit better
performance, algorithms with higher learning rates converge
faster over episodes and outperform in terms of both average
loss and social welfare metrics.

D. Substituted Rate Influence

Similar to the approach in the previous section, we con-
ducted comparative experiments to assess the impact of the
parameter α, referred to as the substituted rate, on algorithm
performance. This parameter is a more sensitive hyperpa-
rameter, which determines the level of trust the algorithm
places on newly introduced experts. We tested the results for
α = 0.2, 0.5, and 0.8.

Figure 5 presents the convergence of the dynamic algorithm
on investment loss and the average value of social welfare
for different α values. It can be observed that a higher
substituted rate yields better results in the experiment. This is
because, with higher alpha values, newly introduced experts
gain reputation faster, leading to the selection of their valuable
advice more quickly. However, at the same time, a higher
substituted rate also results in increased fluctuations in the
algorithm after expert changes.

E. Performance in Extreme Situation

In this section, we evaluated the performance of the dynamic
algorithm in extreme scenarios. We designed a scenario where
experts frequently change, with m = 5 or 10 random experts
leaving every 250/500 rounds. Furthermore, our dynamic
algorithm continued to maintain only 20 experts for decision-
making in each round.
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Fig. 6. The social welfare of the dynamic algorithm when m = 1, 5, 10
experts change in each 250 / 500 episodes

The results are depicted in Figure 6. Although the frequency
of expert changes may lead to a slight decrease in social
welfare, the median of overall social welfare still remains
above 90% of the maximum social welfare. Moreover, the
frequent expert changes do not significantly alter the lower
quartile point, providing evidence of the stability of the
dynamic algorithm.

VI. CONCLUSION

In this academic paper, we propose an investment protocol
to address the funding problems of public good projects in
blockchain systems. The protocol operates by maintaining a
group of experts who provide advice and recommendations,
and their reputation is continuously updated based on project
feedback. This reputation-based system forms the basis for
decision-making within the protocol. Moreover, our protocol
is designed to be flexible and adaptable to dynamic environ-
ments. It can accommodate scenarios where experts can join or
leave the decision-making process at any given time. To assess
the effectiveness of our decision algorithm, we introduce a
ranking regret bound as a benchmark. Theoretically, we estab-
lish an upper regret bound for both static and dynamic models.
Additionally, we demonstrate the tightness of this upper bound
by establishing an asymptotically equal lower bound. Further-
more, we conduct simulations to provide empirical evidence
supporting our oracle’s investment decisions, which closely
align with optimal investments in hindsight. This empirical
evidence underscores the efficiency and effectiveness of our
human oracle approach in guiding funding decisions for public
goods projects within the blockchain ecosystem.
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