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Condensation page

Condensation:
We developed a machine learning-based predictive model of cesarean delivery
in class III obese women

Short Title:
Cesarean delivery prediction in nulliparous obese women

AJOG at a Glance:
• Delivery planning in obese women is an every-day clinical challenge, and

cesarean section during labor is at higher risk compared to planned ce-
sarean section and vaginal delivery. To date, there is no tool able to
stratify individual risk of cesarean section in this population.

• We developed a probability forest model, based on machine learning, able
to predict cesarean section risk during labor in nulliparous class III obese
pregnant women with singleton pregnancy, based on only two pre-labor
parameters: labor induction and initial weight.

• This model is effective for predicting unplanned cesarean section risk, easy
to use and can participate to the choice of trial of labor versus planned
cesarean section, enhance quality of patient information and provide per-
sonalized risk calculation.
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Abstract page
Abstract

Background : class III obese women, defined as a body mass index ≥
40 kg/m2, are at higher risk of cesarean section during labor and cesarean
section is responsible of increased maternal and neonatal morbidity in this
population. Despite the fact that planned cesarean section is at higher risk
compared to vaginal delivery, it is safer compared to unplanned cesarean
section during labor. However, there is no available method to quan-
tify the unplanned cesarean section during labor among class III obese
women. Objective: the objective was to develop a method able to quan-
tify cesarean section risk among a population of class III obese pregnant
women before labor. Study Design: this is a multicentric retrospective co-
hort study conducted on 410 nulliparous class III obese pregnant women
with attempt of vaginal delivery in 2 French University hospitals. Exclu-
sion criteria were multiple pregnancy, medical interruption of pregnancy
and stillbirth, and delivery < 22 weeks of gestation. The primary endpoint
was the risk of unplanned cesarean section. We developed two predictive
algorithms: a logistic regression model (classical approach) and a proba-
bility forest model (based on machine learning). We then assessed model
performances and compared them. Results: The logistic regression model
found that only the initial weight and labor induction were significant in
the prediction of unplanned cesarean section. In the probability forest
model the most important predictor was the labor induction followed by
the initial weight. The probability forest was able to predict a cesarean
section probability with only 2 pre-labor characteristics: initial weight
and labor induction. Its performances were calculated for a cut-point of
49.5% (prediction of cesarean section if the risk was higher than the cut-
point) and were (with 95% confidence intervals) : area under the curve
0.70 (0.62,0.78), accuracy 0.66 (0.58, 0.73), specificity 0.87 (0.77, 0.93) and
sensitivity 0.44 (0.32, 0.55). Probability forest performances were better
compared to the logistic model ones. Conclusions: this is an innovative
and effective approach for predicting unplanned CS risk in nulliparous
class III obese women undergoing trial of labor, and could improve ma-
ternal and neonatal outcomes due to unplanned cesarean section-related
morbidity in this population. This model could participate to the choice of
trial of labor versus planned cesarean section. Further studies are needed
within a prospective clinical trial.

Keywords: obesity, cesarean delivery, personalized medicine, random forests,
machine learning, predictive model, predictor selection.
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1 Introduction
Obesity, defined as a body mass index (BMI) ≥ 30 kg/m2, is a major public
health hazard. [1] It is the most common medical condition in women of child-
bearing age (with a prevalence of 39.7% in the United States [2]) and can have
consequences both on the mother and the child during pregnancy [3]. Moreover,
prevalence of obesity among pregnant women is increasing worldwide [4, 5]. In
2009, obesity rates for pregnant women were estimated between 6.2% and 9.9%
in France [6] and 16.1% in Canada [7]. In the United States, 34.9% of women are
obese, and it was estimated that in 2014 there were 1.1 million obese pregnant
women [4]. Thus, obesity in pregnancy will become more challenging with time.

It has been well established that, during pregnancy, obesity is associated
with increased maternal and fetal morbidity such as gestational hypertension,
gestational diabetes, and large-for-gestational-age fetuses [8, 9, 10, 11, 5]. More-
over, obesity has an impact on delivery as it is an independent risk factor of
cesarean section (CS). [12, 13, 14, 11, 15] Indeed, obese women are at higher risk
of CS delivery compared to non-obese women [11, 16]. In addition of higher CS
rates, scientific literature shows that CS in obese women is more likely to cause
maternal and neonatal morbidity. Indeed, obese women undergoing CS are at
greater risk of postoperative infection and thrombosis [17, 18, 11] compared to
non-obese women. Infants of obese women need more often intensive care and
have higher rates of fetal compromise and meconium-stained liquid [11].

Moreover, obesity is defined in 3 classes according to the World Health Or-
ganization: class I as a BMI between 30.0 and 34.9 kg/m2; class II between 35.0
and 39.9 kg/m2; and class III as a BMI ≥ 40 kg/m2 [19]. Studies suggest that
obesity-related risks during pregnancy increase with BMI, and complications
are higher among class III obese women. Indeed, it has been shown [15] that
CS risk increases proportionally to BMI (between 2 and 5% for each 1 kg/m2

of BMI) and rates are >50% in laboring women with BMI ≥ 40 kg/m2, and CS
odds increases 3.5 fold for an increase of 10 kg/m2 BMI [20].

Finally, CS-related complications seem to be higher in case of an emergency
or unplanned CS rather than elective or planned CS [21, 22]. These data in-
dicates that unplanned CS-related complications rates could be lowered if a
planned CS is performed. Some studies investigated risk factors of unplanned
CS among class III obese pregnant women besides BMI, and that some char-
acteristics are independent risk factors of CS such as maternal age, parity, and
cervical dilation [20]. Despite the fact that risk factors are well-known, there
is insufficient evidence in the scientific literature to allow clinicians to stratify
the unplanned CS-risk for obese women during labor, and consequently to in-
dividualize those at high risk which could be counseled for a planned CS before
labor. Our objective was therefore to develop a method able to quantify CS risk
among a population of class III obese pregnant women before labor.
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2 Methods

2.1 Study Design
This is a multicentric retrospective cohort study conducted on 410 women in
2 French University hospitals (Strasbourg and Lille). It has been conducted
following the Strengthening the Reporting of Observational Studies in Epidemi-
ology (STROBE) guidelines [23] and the Developmental and Exploratory Clin-
ical Investigations of DEcision support systems driven by Artificial Intelligence
(DECIDE-AI) [24].

2.1.1 Eligibility Criteria

Eligibility criteria were as follows: 1) nulliparous women with a body mass index
≥ 40 kg/m2 at the beginning of the pregnancy; 2) singleton pregnancies; 3)
delivery in Strasbourg or Lille University Hospitals after 22 weeks of gestation;
and 4) with attempt of vaginal delivery. Non eligibility criteria were 1) stillbirth
and medically interruption of pregnancy: and 2) planned cesarean sections and
unplanned cesarean sections before labor

2.1.2 Data collection

In this retrospective study, data from two cohorts were used to evaluate the
cesarean risk on obese nulliparous women. The first cohort includes nS = 247
women who delivered at Strasbourg University Hospitals between the 1st Jan-
uary 2009 and the 31st December 2019. The second data set contains nL = 163
women who gave birth at Lille University Hospitals between the 1st January
1997 and the 31st December 2014 (published in a previous study [16]). For each
patient, maternal characteristics (age, height, initial and final weight, gesta-
tional weight gain, smoking, diabetes mellitus/gestational, high blood pressure)
and delivery characteristics (labor onset, gestational age at delivery, epidural
analgesia, mode of delivery) were recorded. Epidural analgesia and height were
subsequently excluded from analysis because they were not pertinent for the
purpose of the model or redundant with other information (BMI).

2.1.3 Study endpoints

The primary endpoint was the quantification of unplanned CS risk. The sec-
ondary endpoints were the performances of the developed predictive algorithm:
sensitivity, specificity, positive and negative predictive values.

2.1.4 Ethics

This work was conducted according to the ethical standards of the French
Government Agency "Commission Nationale de l’Informatique et des Libertés
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(CNIL)" and registered at the Strasbourg University Hospitals ethics commit-
tee (21-025). It was also authorized for Lille University Hospitals by the Na-
tional Society of Obstetrics and Gynecology "Collège National des Gynécologues
Obstétriciens Français (CNGOF)" Research Ethics Committee (CEROG OBS
2014-04-04).

2.2 Statistical analysis and model development
The Strasbourg cohort was used as the training set to elaborate the predictive
models while the Lille cohort was used to assess the performance of the predictive
models. Two predictive models were built. The first model was constructed by
using classical logistic regression and the second one was built by using the
probability forest algorithm [25]. All the statistical analyses were performed in
R statistical software (version 4.1.3). All the steps of the statistical analysis are
described below.

2.2.1 Step 1 - data pre-processing and descriptive analysis of the
data

A descriptive statistical analysis was conducted on both cohorts. Observations
with missing values were removed from both cohorts for the next steps of the
statistical analysis.

2.2.2 Step 2 - Development of a classical logistic regression model

Logistic regression is one of the classical methods used to estimate risk probabil-
ities in clinical research. The logistic model was built on the train set (i.e. the
complete cases in the Strasbourg cohort) by using the p = 10 recorded variables
(age, initial and final weight, gestational weight gain, smoking, diabetes mel-
litus/gestational, high blood pressure, labor onset, gestational age at delivery,
mode of delivery). A stepwise variable selection procedure based on the Akaike
Information Criterion was used to determine the best subset of predictors for
the logistic regression model.

2.2.3 Step 3 - Development of a predictive model based on the prob-
ability forest algorithm

As a parametric regression method, the logistic regression is known to per-
form well only conditionally upon several assumptions [26] that can be difficult
to satisfy in practice. Machine learning such as random forest algorithms are
non-parametric methods that do not need the assumptions required with model-
based approaches. That is why, since the last decade, machine learning have
been increasingly used instead of more classical model-based approaches such as
logistic regression. Here, we decided to use machine learning to build another
predictive model. This predictive model is based on a Random Forest (RF)
algorithm. These algorithms originally introduced by Breiman [27] have been
successfully applied in many fields including medicine [28] and bio-informatics
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[29]. RF are still nowadays part of the most successful machine learning meth-
ods [30]. A random forest algorithm consists in building a large number ntree of
independent decision trees. The forest construction involves two random pro-
cesses. At first, each tree is built using a bootstrap sample that is obtained
by randomly drawing (with or without replacement) m ≤ nS patients from the
training set. The second random process occurs during the tree construction.
A tree is built by means of a recursive and binary partitioning of the data into
the bootstrap sample. For each tree node, a subset of q ≤ p features are ran-
domly selected among the p features and the split using only this subset and an
impurity criterion. After construction, the random forest provides a prediction
that is the average of the predictions over all the single trees. Random forest
methods have been described elsewhere [27, 31]. In our study, as we are inter-
ested in predicting the cesarean risk, we used the RF algorithm introduced by
[25] that elaborates probability forests. A probability forest is a RF model for
which predictions are probabilities. In our case, these probabilities correspond
to estimates of the cesarean risk. Before building our probability forest, we first
applied the RF-based algorithm VSURF [32] to keep only the most discrim-
inant subset of features in our forest and thus obtain more stable individual
probability estimates. Moreover, to correct for class imbalance in the training
set (34% women with cesarean section vs. 66% with no cesarean section), up-
sampling with probabilities 65% for cesarean women and 35% for non-cesarean
women was used when generating the bootstrap samples. Next, to construct the
probability forest, we applied the standard bootstrap strategy that consists in
drawing with replacement m = nS patients from the training set. The number
of trees ntree was selected by building 50 random forests made of 200,000 trees
and looking at the out-of-the-bag error rate (a method of measuring prediction
error for models utilizing bootstrap, which is the mean prediction error of a sub-
sample with replacement from the training cohort). Then, we selected a number
of trees n⋆

tree for which the out-of-the-bag error was stabilized. Next, to tune
the two other important hyper-parameters of the probability forest, namely the
minimum size of a node minnode and the size q of the subset of features used
to split, we used 3-fold cross validation repeated 100 times on the train set (the
Strasbourg data). We then chose the couple (min⋆node, q

⋆) that maximizes 1)
the specificity and 2) the sensitivity based on the 1-SE rule. After that, we
checked another time that the adjusted number of trees n⋆

tree is still sufficiently
large to get the out-of-the-bag error stable when we used the adjusted couples
(min⋆node, q

⋆).
Finally, the final probability forest was built using the most discriminant subset
of features and the tuned values (n⋆

tree,min⋆node, q
⋆) of the hyper-parameters.

The final forest provides individual estimates of the cesarean risk with their
associated standard errors. To interpret the probability forest and so to explain
the cesarean risk according the predictors, we computed feature permutation
importance indices [27]. The permutation importance indices are numerical
scores that enable to order predictors according to their discriminatory power.
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2.2.4 Step 4 - Model assessment and comparison

For each model, a risk threshold also called the cut-point c was determined.
Clinically, this cut-point c represents the CS risk value from which a CS risk
value is considered as high and so CS delivery should be planned. Here, the
optimal cut-point is determined on the train set and it refers to as the value
which maximizes the sensitivity with at least 80% of specificity. Performances of
both the probability forest and the logistic model were assessed and compared
by using the following 4 criteria computed on the test set: the area under
the curve, the sensitivity, the specificity and the accuracy. Exact binomial
confidence limits were calculated for sensitivity, specificity and accuracy (see
[33] for details). Confidence interval for AUC was computed according to the
non-parametric approach proposed by DeLong et al. [34].
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3 Results

3.1 Cohort description
In total, 410 obese women were included in both centers. The study population
is described in Table 1. Among all women, 164 had unplanned CS (40%) while
246 had vaginal delivery (60%). Mean BMI was 43.6 kg/m2 (range 40.0 – 59.6
kg/m2). In univariate analysis, higher maternal height (p-value = 0.001) and
labor induction (p-value < 0.001) were associated with unplanned CS delivery.

Table 1: Total cohort description according to the delivery mode

Variable Cesarean section
(N=164)

Vaginal delivery
(N=246)

Total
(N=410) P-Value

Age (years)
Mean (SD) 28.8 (5.1) 27.8 (5.1) 28.2 (5.1)
Range 18 – 42 18 – 43 18 – 43 0.063

Height (cm)
Mean (SD) 163.6 (5.9) 165.7 (7.0) 164.9 (6.6)
Range 148 – 186 148 – 183 148 – 186 0.001

Initial Weight (kg)
Mean (SD) 118.0 (13.9) 119.1 (12.9) 118.7 (13.3)
Range 89 – 160 90 – 162 89 – 162 0.432

Body Mass Index (kg/m2)
Mean (SD) 44.1 (4.2) 43.3 (3.4) 43.6 (3.8)
Range 40.0 – 59.6 40.0 – 56.3 40.0 – 59.6 0.0501

Gestational Weight Gain (kg)
Mean (SD) 6.4 (8.3) 5.6 (9.0) 5.9 (8.7)
Range -19 – 30 -36 – 29 -36 – 30
Unknown 5 11 16

0.389

Smoking
No 132 (80.5%) 198 (80.8%) 330 (80.7%)
Yes 32 (19.5%) 47 (19.2%) 79 (19.3%)
Unknown 0 1 1

0.934

Diabetes mellitus
No 131 (79.9%) 196 (79.7%) 327 (79.8%)
Yes 33 (20.1%) 50 (20.3%) 83 (20.2%) 0.960

High Blood Pressure
No 137 (83.5%) 203 (82.5%) 340 (82.9%)
Yes 27 (16.5%) 43 (17.5%) 70 (17.1%) 0.789

Labor induction
No 48 (29.3%) 126 (51.2%) 174 (42.4%)
Yes 116 (70.7%) 120 (48.8%) 236 (57.6%) <0.001

Gestational age at delivery (weeks days)
Mean (SD) 39w 6d (1w 5d) 39w 4d (2w 4d) 39w 5d (2w 2d)
Range 31w 3d – 42w 1d 22w 0d – 42w 2d 22w 0d – 42w 2d 0.257

Before building the predictive models, we investigated whether there were
differences between both centers (see Table 2) and found out that maternal age
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and diabetes prevalence were greater in Strasbourg (respectively p-value = 0.004
and < 0.001). Conversely, initial weight, BMI, high blood pressure prevalence
were greater in Lille (respectively p-value = 0.003, < 0.001 and 0.036). Delivery
mode was also different: we observed a higher rate of unplanned CS in Lille
compared to Strasbourg (49.1% versus 34.0%, p-value = 0.002).

Table 2: Total cohort description according to the center

Variable Lille
(N=163)

Strasbourg
(N=247)

Total
(N=410) P-value

Age (years)
Mean (SD) 27.3 (5.2) 28.8 (5.1) 28.2 (5.1)
Range 18 – 40 19 – 43 18 – 43 0.004

Height (cm)
Mean (SD) 165.1 (6.6) 164.8 (6.7) 164.9 (6.6)
Range 148 – 183 148 – 186 148 – 186 0.659

Initial Weight (kg)
Mean (SD) 121.0 (13.9) 117.1 (12.7) 118.7 (13.3)
Range 90 - 162 89 - 156 89 - 162 0.003

BMI (kg/m2)
Mean (SD) 44.4 (4.4) 43.1 (3.2) 43.6 (3.8)
Range 40.0 - 59.6 40.0 – 54.0 40.0 - 59.6 <0.001

Gestational Weight Gain (kg)
N-Miss 3 13 16
Mean (SD) 5.8 (8.7) 6.0 (8.7) 5.9 (8.7)
Range -18 – 27 -36 – 30 -36 – 30

0.790

Smoking
No 125 (76.7%) 205 (83.3%) 330 (80.7%)
Yes 38 (23.3%) 41 (16.7%) 79 (19.3%)
Unknown 0 1 1

0.096

Diabetes
No 108 (66.3%) 219 (88.7%) 327 (79.8%)
Yes 55 (33.7%) 28 (11.3%) 83 (20.2%) <0.001

High Blood Pressure
No 143 (87.7%) 197 (79.8%) 340 (82.9%)
Yes 20 (12.3%) 50 (20.2%) 70 (17.1%) 0.036

Delivery
Cesarean 80 (49.1%) 84 (34.0%) 164 (40.0%)
Vaginal 83 (50.9%) 163 (66.0%) 246 (60.0%) 0.002

Labor induction
No 75 (46.0%) 99 (40.1%) 174 (42.4%)
Yes 88 (54.0%) 148 (59.9%) 236 (57.6%) 0.234

Gestational age at delivery (weeks days)
Mean (SD) 39w 6d (2w 0d) 39w 4d (2w 3d) 39w 5d (2w 2d)
Range 22w 0d – 42w 1d 22w 5d – 42w 2d 22w 0d – 42w 2d 0.277
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Predictive model training and testing was performed on n = 393 women as
the following statistical analyses were conducted only on complete cases (incom-
plete cases were: 16 missing values of gestational weight gain and 1 for smoking
status). Complete cases cohort is described in Tables S1 and S2 and there were
no significant differences with the total cohort. The training phase was per-
formed by using the complete cases in the Strasbourg cohort (n = 233) while
the performance of the predictive model was assessed on the complete cases in
the Lille cohort (n = 160). For convenience, in the following, the Strasbourg
and Lille cohorts will always be used to refer to the complete cases in both
cohorts, respectively.

3.2 Classical predictive model for Delivery Prediction
We first built a predictive model by following a classical approach based on a lo-
gistic regression with a stepwise variable selection procedure. The logistic model
that we finally obtained consisted of four predictors including three maternal
characteristics (initial weight, diabetes and age) and one delivery characteristic
(labor induction). The fitted model is described in Table 3. Note that in the
logistic model, only the initial weight and labor induction seem to statistically
significantly influence the unplanned CS risk. According to this model, the un-
planned CS risk decreased when the initial weight increased (OR[initial weight]
= 0.97; 95%CI = 0.95 - 1.0; p-value = 0.031) whereas it increased greatly in case
of labor induction (OR[labor induction]=3.06; 95%CI = 1.66 - 5.84; p-value =
<0.001). Conversely, maternal age and diabetes did not seem to impact delivery.

Table 3: Final logistic model built on Strasbourg cohort

Variable Estimate (Std Error) Odds ratio (95%CI) P-value
Initial weight -0.03 (0.01) 0.97(0.95;1.00) 0.031
Labor induction 1.12 (0.32) 3.06(1.66;5.84) <0.001
Age 4.84E-2 (0.03) 1.05(0.99;1.11) 0.095
Diabetes -7.11E-1 (0.48) 0.49(0.18;1.22) 0.142

3.3 Probability Forest Model for Accurate Delivery Pre-
diction

The probability forest obtained is based on only two predictors: one maternal
characteristic, the initial weight, and one delivery characteristic, the labor in-
duction. These two predictors represent the best subset of predictors selected
by using VSURF [32] and that they are two significant predictors included in
the logistic model. Our probability forest is built using the following tuned
hyper-parameters: 100,000 trees, a minimum size of a node of 23 and a size
of the subset of features used to split equals to 1. Note that the probability
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forest error stays stable starting from 20,000 trees. Nonetheless, as we were not
limited by the time because the construction of the probability forest model
with the selected subset of predictors and the tuned hyper-parameters was not
time-consuming (execution time:<5s), we chose to use more trees so that the
convergence of the probability forest error was guarantee. In this model, the
most important predictor is the labor induction followed by the initial weight.
According to this model, for any given value of the initial weight, the risk of un-
planned CS delivery seems greater in case of labor induction (see Figure 1). The
predicted CS risk does not seem to be linearly correlated with the labor induc-
tion and the initial weight. For women with an initial weight inferior to 113kg
or superior to 130kg, the predicted CS risk seems to increase when the initial
weight increases and this augmentation seems more important if there is labor
induction. On the contrary, for women with an initial weight between 113kg and
130kg, the CS risk seems to decrease when the initial weight increases, whatever
the labor induction status. Note that the regression curve showing the predicted
CS risk for women with no labor induction must be interpreted with many cau-
tion for women with an initial weight superior to 130kg because the estimated
local polynomial regression curve depends only on a single observation.

3.4 Predictive-model comparison
Table 4 and Figure 2 outline the performance of both the logistic model and
the probability random forest model. The two predictive models were built to
estimate and to stratify individual unplanned CS risk among class III-obese
pregnant women in order to counsel them during a delivery planning consul-
tation. Each model was developed to predict a probability of unplanned CS,
ranging from 0 to 1. Then, the cut-point which represents the threshold risk
from which the CS risk is considered as high (and so the model predicts a CS
delivery) was determined using the Strasbourg cohort. The cut-point of each
model was selected in order to maximize the sensitivity (i.e., the probability of
correctly predicting CS delivery among obese pregnant women who underwent
CS delivery) with a specificity of at least 80% (i.e., the probability of wrongly
predicting CS delivery among women who had vaginal delivery is less than 20%).
Thus, the optimal cut-point in the probability forest was calculated at 0.495.
With this cut-point, in the probability forest, the specificity evaluated on the
Lille cohort was 87% which means that false-positive rate was 13% (i.e., the
risk of wrongly predicting CS delivery for women who had vaginal delivery).
Conversely, the sensitivity evaluated on the Lille cohort was 44%. The optimal
cut-point in the logistic model was 0.452. Based on this cut-point, the specificity
of the logistic model was quite similar to the one observed with the probabilistic
forest model whereas the sensitivity evaluated on the Lille cohort was in com-
parison significantly lower (0.18). Overall, the probability forest outperformed
the logistic model in terms of predictive performances (Accuracy = 0.66 versus
0,55 ; AUC = 0.70 i.e. 0.60). The roc curves drawn on the train set are in
appendix (see Figure S1).
Legend: AUC = area under the curve; 95% confidence interval were written in
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Figure 1: Predicted CS risk in the Strasbourg cohort for the probability forest
model according to the labor induction status and the initial weight.Note: the
lines represents the estimated local polynomial regression curves with their 95%
confidence interval.
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Table 4: Model performances evaluated on the test cohort.

Model Prob forest Logistic model
Cut-point 0.495 0.452
AUC 0.70 (0.62, 0.78) 0.66 (0.58, 0.75)
Specificity 0.87 (0.77, 0.93) 0.90 (0.82, 0.96)
Sensitivity 0.44 (0.32, 0.55) 0.18 (0.10, 0.28)
Accuracy 0.66 (0.58, 0.73) 0.55 (0.47, 0.63)

bracket for AUC, sensitivity, specificity and accuracy and results were rounded
to the nearest hundredth.
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Figure 2: Receiver Operating Characteristic curve of the models on the test set

Legend: the ROC curve of the probability forest model (solid line) and of the
logistic model (dotted line) drawn on the test set. The black cross on each curve
indicates the selected cut-point and its coordinates are the values of 1-specificity
and the sensitivity measured in the test set.
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4 Discussion
In this study, we wanted to identify a population of obese women at high-risk
of unplanned CS during labor, this risk being high enough to eventually suggest
a planned CS instead of a trial of labor. Classical statistical analysis failed
to identify specific maternal or pregnancy characteristics important enough to
determine obstetrical management of these women and to accurately predict
unplanned CS. Consequently, we developed a machine learning-based algorithm
to stratify the risk of unplanned CS and tested it for both internal and external
validation. This innovative methodology allowed us not only to stratify and
predict individual unplanned CS risk for obese women during labor, but also to
gain insights on understanding of this risk. This model is easy to use in clinical
practice as it need only two parameters: initial weight and labor induction.

In this study, we found that labor induction significantly increased the risk
of cesarean section in the nulliparous patient with a BMI ≥ 40 kg/m2, which
is consistent with previously reported data [35, 13, 36, 37]. Interestingly, the
predictive models (both logistic and random forest) found that initial weight
was inversely proportional to the CS risk, and this can be explained by the
fact that we excluded women which had planned or unplanned CS before trial
of labor. Furthermore, the predictive model also allowed us to individually
quantify unplanned CS risk with only pre-labor data, which to our knowledge
had never been published. Nonetheless, the parameter which could limit clinical
applications of such model are false positive, i.e., women with predicted high-
risk of unplanned CS which would have had a vaginal delivery. This parameter
is represented by the specificity: high specificity means a low false positive rate.
Indeed, false negative women would undergo labor trial as standard clinical care,
but false positive women could undergo unnecessary planned CS which could
be iatrogenic.

Based on actual scientific literature, class III obese women are at higher
risk of CS [37]. In a large retrospective cohort of 64,272 infants born of obese
pregnant women published in 2012, the authors showed that for nulliparous
class III obese women primary scheduled CS accounted for 21.9% of deliveries,
and emergency CS for 24.6% [38]. Moreover, planned and unplanned CS rates
increased with BMI (p < 0.0001) [38]. In the perspective of reducing the rate of
unplanned CS during labor without however increasing the overall CS rate in a
significant way, we opted for a specificity threshold of 80%, which is proportional
to the rate of planned CS in this population. Based on this parameter, we
wanted to maximize sensitivity with the goal of screening as many women as
possible who will have an unplanned CS during labor to reduce morbidity related
to emergency CS.

It has been shown that CS has more morbidity than vaginal delivery in
obese women [17, 18]. Conversely, without specification of maternal obesity, a
recent meta-analysis showed that planned CS has significantly lower maternal
and neonatal morbidity compared to unplanned CS, such as infection (relative
risk [RR] = 0.44), postoperative fever (RR = 0.29), urinary tract infection (RR
= 0.31), wound dehiscence (RR = 0.67), disseminated intravascular coagulation
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(RR = 0.34), reoperation (RR = 0.44), and infant mortality (RR = 0.16) [22].
Another study found similar outcomes in terms of post-operative wound infec-
tion, post-partum hemorrhage and necessity of blood transfusion, urinary tract
infection, fever and maternal intensive care unit admission. Neonatal outcomes
such as birth asphyxia, meconium-stained liquid and need for neonatal intensive
care unit admission were also significantly higher when an unplanned CS was
performed compared to a planned CS [21]. From these data, we can extrapolate
that similar maternal complications trends could be observed in obese women,
and even worse infant outcomes as the decision-incision time could be increased
because of more problematic transfer and the incision-birth time could also be
lengthened because of surgical difficulties [39].

It must be noted that this model was developed on pre-labor characteristics
as we wanted to discuss the unplanned CS risk before labor, and eventually sug-
gest a planned CS. It was therefore not possible to obtain a very high accuracy
for this predictive model because several parameters will only intervene at the
time of labor and are not predictable: for example, an abnormality of the fetal
heart rate or a mechanical dystocia. The use of pre-labor data makes model
performance lower, but is more relevant in case of choice between a trial of labor
and a planned CS.

Moreover, the model was established only for nulliparous patients with class
III obesity (BMI ≥ 40 kg/m2). Therefore, it cannot be used for patients with a
BMI between 30 and 40 kg/m2 nor for patients with a history of cesarean section
although they are also among the patients most at risk of cesarean section during
labor. It must also be noted that unlike Anglo-Saxon populations, the number
of women with extreme BMIs (> 50 kg/m2) is lower in France. Finally, results
of this model should be interpreted with caution for women with initial weight
> 130 kg and no labor induction, as the estimated regression curve depends
only on a single observation.

Based on the algorithm’s performance, the use of this model in routine prac-
tice could decrease the rate of unplanned CS at the cost of a modest increase in
the overall CS rate. Yet, according to scientific evidence, it seems that in obese
patients, benefits of avoiding one unplanned CS out of two outweigh the cost
of performing one unnecessary planned CS out of five women, both on mater-
nal and neonatal outcomes. Nonetheless, it should be taken into account when
discussing obstetrical management in any individual situation. This model has
two important advantages in clinical practice. First, it is simple to use as it
needs only two parameters: initial weight and labor induction. Therefore, when
discussing the route of delivery with a pregnant woman with class III obesity,
an estimate of risk can be quickly obtained during the consultation. In addition,
when there is an indication to perform a labor induction at a specific time, for
example for overdue delivery, the risk can be estimated in each situation (in case
of spontaneous labor before the planned induction date or in case of planned
induction). This could allow better advice to be given to women at the end of
their pregnancy by proposing personalized management according to the term
and the mode of onset of labor. For instance, a pregnant woman with a high risk
of cesarean section for induction of labor but a low risk of cesarean section for
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spontaneous labor could be advised to perform a trial of labor if she goes into
spontaneous labor, and if she arrives at the expected induction date without
going into spontaneous labor, opt for a scheduled cesarean section instead.

Recently, different predictive models have been published in obstetrics, which
allow delivery planning and enhance information quality for discussion during
the consultation. Those models can predict delivery outcomes based on ma-
chine learning algorithms, and they also employed random forest algorithms
but with different clinical objectives [40, 41, 42]. Performances of this kind of
model are remarkable and some of them can already be used in clinical prac-
tice. Nonetheless, this innovative approach must also meet several quality cri-
teria, some of them being applicable to all clinical studies, but others specific
to artificial intelligence-based models. For these reasons, this retrospective,
population-based, observational study was conducted according to a rigorous
methodology following the STROBE checklist, but also to the CONSORT-AI
guidelines [43] published in September 2020, which specify the quality criteria
to be applied to machine learning models developed within the framework of
randomized trials: in particular, the performance of a test on a different cohort,
allowing the internal validation to be completed by an external validation. To
date, no specific guidelines are available on machine learning models developed
from retrospective cohort studies.

In order to meet important quality criteria, we included women from two
different centers and found that both cohorts were different in some points, such
as age, initial weight, BMI, diabetes and high blood pressure prevalence, but
also on clinical practices as unplanned CS rates were different. These differences
can be explained by a center effect with different populations: Lille’s cohort had
higher BMI and diabetes; while Strasbourg’s cohort had more women with high
blood pressure and higher maternal age. Moreover, the center effect can also
explain differences in clinical practices, as unplanned CS indications may differ
not only because of a different population but also because of different internal
protocols and obstetrical practices. Finally, these differences can also be ex-
plained by a time effect due to the difference in years between the Strasbourg
and Lille recruitment. Within the context of this study, heterogeneity between
training and testing cohorts reinforces the value of the model in external val-
idation, and makes it more applicable to other centers. On the contrary, the
fact that the 2 cohorts came from 2 different centers and time-periods limited
the model because the pre-labor characteristics of the women in the Lille cohort
were not all available for the analysis, and we therefore had to restrict the train-
ing variables of the algorithm because we had only a small number of common
variables between the two cohorts. Some criteria of the Strasbourg patients that
could be involved in the risk of cesarean section could therefore not be tested,
thus reducing the power of the model (for example, uterine height, Bishop score
at admission, and ultrasound estimation of fetal weight).
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4.1 Conclusion
Delivery planning in obese women is an every-day clinical challenge in obstetrics,
and each choice has its specifics advantages and risks. With its innovative
approach, this model is effective for predicting unplanned CS risk in nulliparous
class III obese women undergoing trial of labor, and could improve maternal and
neonatal outcomes due to unplanned CS-related morbidity in this population.
Still, at the end of this study, it is not reliable enough to become the sole element
of obstetrical decision, but it could be an additional argument for explaining
unplanned CS risk and to participate to the choice of trial of labor versus planned
CS. Further investigations are needed within a prospective clinical trial, as this
model could meet a demand of patient information and risk calculation in a
personalized care fashion.
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Figure S1: ROC curve of the probability forest model (solid line) and of the
logistic model (dotted line) drawn on the train set. The black cross on each
curve indicates the selected cut-point and its coordinates are the values of 1-
specificity and the sensitivity measured in the train set.
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Table S1: Complete case cohort description according to the delivery mode

Variable Cesarean section
(N=159)

Vaginal delivery
(N=234)

Total
(N=393) P-Value

Age (years)
Mean (SD) 28.7 (5.1) 27.7 (5.0) 28.1 (5.1)
Range 18 – 42 18 – 42 18 – 42 0.060

Height (cm)
Mean (SD) 163.5 (5.9) 165.9 (7.0) 164.9 (6.7)
Range 148 – 186 148 – 183 148 – 186 < 0.001

Initial Weight (kg)
Mean (SD) 117.7 (13.8) 119.4 (12.8) 118.7 (13.2)
Range 89 – 160 90 – 162 89 – 162 0.229

Body Mass Index (kg/m2)
Mean (SD) 44.0 (4.2) 43.3 (3.4) 43.6 (3.8)
Range 40.0 – 59.6 40.0 – 56.3 40.0 – 59.6 0.078

Gestational Weight Gain (kg)
Mean (SD) 6.4 (8.3) 5.6 (9.0) 5.9 (8.7)
Range -19 – 30 -36 – 29 -36 – 30 0.423

Smoking
No 128 (80.5%) 189 (80.8%) 317 (80.7%)
Yes 31 (19.5%) 45 (19.2%) 76 (19.3%) 0.948

Diabetes
No 129 (81.1%) 185 (79.1%) 185 (79.1%)
Yes 30 (18.9%) 49 (20.9%) 79 (20.1%) 0.615

High Blood Pressure
No 135 (84.9%) 196 (83.8%) 331 (84.2%)
Yes 24 (15.1%) 38 (16.2%) 62 (15.8%) 0.760

Labor induction
No 46 (28.9%) 120 (51.3%) 166 (42.2%)
Yes 113 (71.1%) 114 (48.7%) 227 (57.8%) < 0.001

Gestational age (weeks days)
Mean (SD) 39w 6d (1w 5d) 39w 5d (2w 5d) 39w 4d (2w 1d)
Range 31w 3d – 42w 1d 22w 0d – 42w 2d 22w 0d – 42w 2d 0.393
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Table S2: Complete case cohort description according to the center

Variable Lille
(N=160)

Strasbourg
(N=233)

Total
(N=393) P-value

Age (years)
Mean (SD) 27.2 (5.1) 28.7 (5.0) 28.1 (5.1)
Range 18 – 40 19 – 42 18 – 42 0.004

Height (cm)
Mean (SD) 165.0 (6.6) 164.9 (6.7) 164.9 (6.6)
Range 148 – 183 148 – 186 148 – 186 0.861

Initial Weight (kg)
Mean (SD) 121.0 (13.9) 117.1 (12.5) 118.7 (13.2)
Range 90 - 162 89 - 156 89 - 162 0.004

BMI (kg/m2)
Mean (SD) 44.4 (4.5) 43.0 (3.1) 43.6 (3.8)
Range 40.0 - 59.6 40.0 – 54.0 40.0 - 59.6 < 0.001

Gestational Weight Gain (kg)
Mean (SD) 5.8 (8.7) 6.0 (8.7) 5.9 (8.7)
Range -18 – 27 -36 – 30 -36 – 30 0.790

Smoking
No 122 (76.2%) 195 (83.7%) 317 (80.7%)
Yes 38 (23.8%) 38 (16.3%) 76 (19.3%) 0.067

Diabetes
No 107 (66.9%) 207 (88.8%) 314 (79.9%)
Yes 53 (33.1%) 26 (11.2%) 79 (20.1%) < 0.001

High Blood Pressure
No 142 (88.8%) 189 (81.1%) 331 (84.2%)
Yes 18 (11.2%) 44 (18.9%) 62 (15.8%) 0.041

Delivery
Cesarean 78 (48.8%) 81 (34.8%) 159 (40.5%)
Vaginal 82 (51.2%) 152 (65.2%) 234 (59.5%) 0.006

Labor induction
No 74 (46.2%) 92 (39.5%) 166 (42.2%)
Yes 86 (53.8%) 141 (60.5%) 227 (57.8%) 0.182

Gestational age (weeks days)
Mean (SD) 39w 6d (2w 0d) 39w 5d (2w 1d) 39w 6d (2w 1d)
Range 22w 0d – 42w 1d 22w 5d – 42w 2d 22w 0d – 42w 2d 0.516
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