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COMPONENTS OF AR-QUIVERS FOR STRING ALGEBRAS OF TYPE C̃ AND

A CONJECTURE BY GEISS-LECLERC-SCHRÖER

HUALIN HUANG, ZENGQIANG LIN∗ AND XIUPING SU

Abstract. We study modules of certain string algebras, which are referred to as of affine type

C̃. We introduce minimal string modules and apply them to explicitly describe components of the
Auslander-Reiten quivers of the string algebras and τ -locally free modules defined by Geiss-Lerclerc-
Schröer. In particular, we show that an indecomposable module is τ -locally free if and only if it
is preprojective, or preinjective or regular in a tube. As an application, we prove Geiss-Leclerc-

Schröer’s conjecture on the correspondence between positive roots of type C̃ and τ -locally free
modules of the corresponding string algebras. Furthermore, given a positive root α, we show that
if α is real, then there is a unique τ -locally free module M (up to isomorphism) with rankM = α;
otherwise there are families of τ -locally free modules with rankM = α.

1. Introduction

Given a symmetrizable Cartan matrix C with a symmetrizerD, Geiss-Leclerc-Schröer [7] construct
a quiver Q = Q(C,Ω) and define a quotient path algebra H = H(C,D,Ω) = KQ/I, where K is a
field and I is an ideal generated by some nilpotency relations and some commutative relations. In
particular, there is a loop at each vertex in Q and powers of the nilpotency relations in I encode
the symmetrizer D. They then develop a sequence of work based on the representation theory of
H [7, 8, 9, 10, 11], providing a uniform approach to studying connections between representation
theory of simply laced and non-simply laced (or valued) quivers, and Lie theory and cluster theory.
For instance, it includes a generalisation of two fundamental results in quiver representation theory,
Gabriel’s Theorem and Dlab-Ringel’s Theorem (to be made more precise later), a construction of
enveloping algebras and a generalisation of Caldero-Chapoton’s formula in cluster theory.

We are interested in the correspondence between τ -locally free H-modules and positive roots of

type C [7, 8], when C is a Cartan matrix of type C̃. Let ei be the idempotent in H corresponding
to the vertex i in Q and Hi = eiHei. A left H-module M is said to be locally free if Mi = eiM
is a free Hi-module for all i, and for such a module M , denote by rankM = (r1, · · · , rn) the rank
vector of M . That is, each ri is the rank of the free Hi-module Mi. An indecomposable H-module
M is τ-locally free if the AR-translations τk(M) for all k ∈ Z are locally free. Note that not all
indecomposable locally free modules are τ -locally free. Geiss-Leclerc-Schröer [7] prove that there are
only finitely many isomorphism classes of τ -locally free H-modules if and only if the Cartan matrix
C is of Dynkin type. Moreover, in this case, the assignment M 7→ rankM offers a bijection between
the isomorphism classes of τ -locally free H-modules and the positive roots of type C, i.e. the positive
roots of a complex Lie algebra defined by C. These results generalize Gabriel’s Theorem for Dynkin
quivers [5] and Dlab-Ringel’s Theorem for Dynkin (valued) quivers [4] (also known as modulated
graphs, see for instance [7]), in the sense that both theorems provide a one to one correspondence
between the isomorphism classes of indecomposable representations of a Dynkin (valued) quiver of
type C and the positive roots of type C via the map sending an indecomposable representation to
its dimension vector.

For non-Dynkin symmetrizable Cartan matrices, Geiss-Leclerc-Schröer propose the following con-
jecture [8, Conjecture 5.3].

Conjecture 1 [Geiss-Leclerc-Schröer] Let H = H(C,D,Ω). Then there is a bijection between the
positive roots of type C and the rank vectors of τ-locally free H-modules.
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2 HUALIN HUANG, ZENGQIANG LIN∗ AND XIUPING SU

Evidence supporting the conjecture includes the following. First, when C is symmetric and D is
the identity matrix, the conjecture is true by Kac’s Theorem [13, 14]. Second, Geiss-Leclerc-Schröer
[12] prove that there is a bijection between isomorphism classes of τ -locally free rigid H-modules and
real Schur roots of Q. Note also Chen-Wang [3] work on categorification of foldings of root lattices
and in the case of Dynkin type they recover Geiss-Leclerc-Schröer’s result on the correspondence
between τ -locally free H-modules and positive roots of type C.

In general, Conjecture 1 is still open. In this paper, we consider the affine case of type C̃n−1, that
is, the Cartan matrix C is the following n× n matrix

C =




2 −1
−2 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 2 −2

−1 2




and the symmetrizer D = diag(2, 1, 1, · · · , 1, 1, 2). Then the algebra H = H(C,D,Ω) = KQ/I,
where Q is a quiver of type An when the two loops at 1 and n are ignored,

1 2 · · · n− 1 n

ε1 εn

and I is the ideal generated by ε21 and ε2n. In particular, H is a string algebra and we say that H

is a string algebra of type C̃n−1. Note that, if C is of other affine type, then H = H(C,D,Ω) is
not a string algebra. We will study the representation category of H , in particular the Auslander-
Reiten theory of H , using techniques from string algebras, and minimal string modules that are
to be introduced later in this paper. The explicit construction of Auslander-Reiten sequences (also
written as AR-sequences) for string algebras in [4] by Butler-Ringel is particularly helpful in our
understanding of the Auslander-Reiten quiver (also written as AR-quiver) of H .

We define the index of an indecomposable H-module M to be (a, b), where a is the number of
irreducible maps to M and b is the number of irreducible maps from M in the AR-quiver ΓH of H
and we say that a string module M is minimal if in ΓH each irreducible map from M(w) is injective
and each irreducible map to M(w) is surjective. Using Butler-Ringel’s construction of AR-sequences,
we classify all the minimal string modules. This classification then leads to explicit description of
connected components of the AR-quiver of H . Consequently, we know precisely where τ -locally free

modules are in the AR-quiver and so prove Conjecture 1 for the case where C is of type C̃n−1 and
D is minimal. We have the following main results.

Theorem A (Theorem 3.14) Let H = H(C,D,Ω) be a string algebra of type C̃n−1. The AR-quiver
ΓH of H consists of the following, which are pairwise disjoint.

(1) One component TPI containing all the indecomposable preprojective modules and all the in-
decomposable preinjective modules (up to isomorphism).

(2) One tube of rank n− 1.
(3) Homogeneous tubes Hw,S, where w runs through all the representatives of bands in H and

S runs through the isomorphism classes of simple modules of the Laurent polynomial ring
K[T, T−1].

(4) Components Tλ of type ZA∞
∞, where λ runs through the isomorphism classes of minimal

string modules of type (2,2).

Theorem B (Theorem 3.19) Let H = H(C,D,Ω) be a string algebra of type C̃n−1 and let M be an
indecomposable H-module. Then M is τ-locally free if and only if one of the following is satisfied:

(1) M is preprojective.
(2) M is preinjective.
(3) M is a regular module occurring in any tube.

Theorem C (Theorem 4.9) Let H = H(C,D,Ω) be a string algebra of type C̃n−1. Then α is
a positive root of type C if and only if there is a τ-locally free module M such that rankM = α.
Moreover,
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(1) if α is a positive real root, then there is a unique τ-locally free H-module M (up to isomor-
phism) such that rankM = α;

(2) if α is a positive imaginary root, then there are families of τ-locally free H-modules M such
that rankM = α;

(3) the modules at the bottom of the tube of rank n− 1 are rigid.

Corollary D (Corollary 4.10) Let C be a Cartan matrix of type C̃n−1 and D = diag(2, 1, · · · , 1, 2).
Then Conjecture 1 is true.

After the paper was completed, we were informed that partial results of Theorem A were con-
sidered by C. Ricke in her thesis [15], where, relevantly, the AR-sequences connecting projective
modules and injective modules and tubes are constructed, and indecomposable rigid modules are
classified. Here we would like to emphasise the new ingredient in our method (i.e. minimal string
modules) and a complete description of all the AR-components. In particular, we show that there are
rays (corays) dividing the component containing preprojective and preinjective modules into regions.
As a consequence we show that the only τ -locally free modules in the component are preprojective
or preinjective. Moreover, the regular components other than tubes are of the form ZA

∞
∞, which are

classified by minimal string modules of type (2, 2) and none of which contains τ -locally free modules.
The remaining part of this paper is organized as follows. In Section 2, we recall some basic

definitions on string algebras and Butler-Ringel’s construction of AR-sequences. In Section 3, we
develop the theory of minimal string modules to prove Theorem A and Theorem B. In Section 4, we
first recall basic definitions and facts on root systems and Weyl groups, and then prove Theorem C
and Corollary D.

2. Basic notions and facts on string algebras

In this section, we recall the definition of string algebras and basic properties of their module
categories [2]. Let K be a field and A be a finite dimensional K-algebra. Throughout this paper, all
modules are finitely generated left A-modules. We denote by S1, S2, · · · , Sn a complete list of simple
A-modules, and by P1, P2, · · · , Pn (resp. I1, I2, · · · , In) a complete list of indecomposable projective
(resp. injective) A-modules (up to isomorphism).

2.1. String algebras. Let Q = (Q0, Q1) be a quiver, where Q0 denotes the set of vertices and Q1

denotes the set of arrows in Q. Given an arrow α ∈ Q1, its starting and ending vertices are denoted
by s(α) and t(α), respectively.

Definition 2.1. A finite dimensional K-algebra A = KQ/I is called a string algebra if the following
conditions are satisfied:

(1) for any vertex i ∈ Q0, there are at most two incoming and at most two outgoing arrows;
(2) for any arrow α ∈ Q1, there is at most one arrow β and at most one arrow γ such that βα /∈ I

and αγ /∈ I;
(3) the ideal I is generated by a set of zero relations.
In particular, a string algebra A = KQ/I is called gentle if I is generated by paths of length 2.

Example 2.2. Let A = KQ/I, where

Q : 1 2 3
α1 α2

ε1 ε3

and I =< ε21, ε
2
3 >. Then A is a string algebra.

2.2. Strings and bands. Let A = KQ/I be a string algebra. Given an arrow α ∈ Q1, we denote
by α−1 the formal inverse of α, with s(α−1) = t(α) and t(α−1) = s(α), and write (α−1)−1 = α. A
word w = c1c2 · · · cm of length m ≥ 1 is a sequence of arrows and their formal inverses such that
s(ci) = t(ci+1) for 1 ≤ i < m. We define w−1 = (c1c2 · · · cm)−1 = c−1

m · · · c−1
2 c−1

1 , s(w) = s(cm) and
t(w) = t(c1). A word w = c1c2 · · · cm of length m ≥ 1 is called a string if ci+1 6= c−1

i , and no subword
nor its inverse belongs to I. In addition, we associate two trivial strings 1(u,1) and 1(u,−1) of length

zero for any vertex u ∈ Q0, where s(1(u,i)) = t(1(u,i)) = u and (1(u,i))
−1 = 1(u,−i) for i = 1,−1. A

string w = c1c2 · · · cm is said to be direct if all the ci are arrows, and inverse if all the ci are inverses
of arrows. By definition, a trivial string is both direct and inverse. We denote by St(A) the set of
all strings in A.



4 HUALIN HUANG, ZENGQIANG LIN∗ AND XIUPING SU

A nontrivial string w is called a band if s(w) = t(w) and each power wr is a string, but w itself is
not a power of a string of smaller length. We denote by Ba(A) the set of all bands in A.

On St(A), let ρ be the equivalence relation that identifies every string w with its inverse w−1.
On Ba(A), let ρ′ be the equivalence relation that identifies every string w = c1c2 · · · cm with any
cyclically permuted strings w(i) = cici+1 · · · cmc1 · · · ci−1 and their inverses w−1

(i) , 1 ≤ i ≤ m. We

choose a complete set St(A) of representatives of St(A) relative to ρ, and a complete set Ba(A) of
representatives of Ba(A) relative to ρ′.

We write u ∼ w if two strings (resp. bands) u and w are equivalent, and u 6∼ w otherwise.
Represent a string w = αǫ1

1 αǫ2
2 · · ·αǫm

m , where αi ∈ Q1 and ǫi ∈ {1,−1} for all i, as a walk

x1
α1

x2
α2

· · ·
αm

xm+1,

where x1, x2, · · · , xm+1 are the vertices of Q visited by w, αi is an arrow from xi+1 to xi if ǫi = 1,
or an arrow from xi to xi+1 if ǫi = −1. This equivalence relation induces an equivalence relation on
the walks. That is, the walk

w : x1
α1

x2
α2

· · ·
αm

xm+1

is equivalent to the walk

w−1 : xm+1
αm

xm

αm−1

· · ·
α1

x1.

Similarly, walks of bands are equivalent if the corresponding bands are equivalent with respect to ρ′.

2.3. String modules and band modules. Let w = αǫ1
1 αǫ2

2 · · ·αǫm
m be a string with the corre-

sponding walk

x1
α1

x2
α2

· · ·
αm−1

xn
αm

xm+1 .

The string module defined by w is the representation M(w) = ((Vi)i∈Q0
, (ϕα)α∈Q1

), where the vector
spaces

Vi =

{
⊕xj=iKxj if i = xj for some j ∈ {1, 2, · · · ,m+ 1},
0 otherwise,

and the linear maps ϕα are given by

ϕα(xi) =

{
xj if α = αi : xi → xj for some 1 ≤ i ≤ m,
0 otherwise.

Here by abuse of notation, we use xi to denote the basis of the 1-dimensional space Kxi. The module
M(w) can be unfolded as a representation U(w) as follows,

Ux1

Uα1

Ux2

Uα2

· · ·
Uαm−1

Uxm

Uαm

Uxm+1

where Uxi
= K and Uαj

= idK for all i and j.
By construction,

dimKVi = |{j ∈ {1, 2, · · · ,m+ 1}|xj = i}|

for any i ∈ Q0, and M(w) ∼= M(w−1) as A-modules for any string w, and M(1(u,t)) is the simple
representation corresponding to the vertex u.

Next we explain the construction of a band module. Let X be a module of the Laurent polynomial
ring K[T, T−1]. Then X is determined by s = dimX and an automorphism ϕ of X = Ks. So we
also write X = (Ks, ϕ). Let U(w, s, ϕ) be the representation associated to the module X and the
band w = αǫ1

1 αǫ2
2 · · ·αǫm

m as follows,

Ux1

Uα1

Uαm

GG
GG

GG
GG

GG
GG

GG
GG

GG
G

Ux2

Uα2

· · ·
Uαm−3

Uxm−2

Uαm−2

Uxm−1

Uαm−1

ss
ss
ss
ss
ss
ss
ss
ss
ss
ss

Uxm
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where Uxi
= Ks for all i = 1, 2, · · · ,m and

Uαi
=





ϕ if i = 1 and ǫ1 = 1,
ϕ−1 if i = 1 and ǫ1 = −1,
idKs if 2 ≤ i ≤ m.

Now the band module M(w, s, ϕ) = ((Vi)i∈Q0
, (ϕα)α∈Q1

) is defined by

Vi =

{
⊕xj=iUxj

if i = xj for some j ∈ {1, 2, · · · ,m},
0 otherwise,

and

ϕα =

{
⊕αi=αUαi

if α = αi for some i ∈ {1, 2, · · · ,m},
0 otherwise.

From the definition, one can check that M(w, s, ϕ) ∼= M(w−1, s, ϕ−1) and M(w, s, ϕ) ∼= M(w′, s, ϕ),
where w′ is equivalent to w with respect to ρ′.

Example 2.3. Let A be a string algebra as in Example 2.2.
(1) For the string w1 = α−1

1 α−1
2 ε3α2α1, the string module M(w1) is as follows.

K2 K2 K2id id

0 ( 0 0
1 0 )

(2) For the band w2 = ε1α
−1
1 α−1

2 ε3α2α1, the band module M(w2, 1, λ) is as follows, where λ 6= 0.

K2 K2 K2id id

( 0 λ
0 0 ) ( 0 0

1 0 )

Denote by M a complete set of representatives of indecomposable K[T, T−1]-modules.

Theorem 2.4. [2, Theorem 3.1] Let A be a string algebra. Then the string modules M(w) with
w ∈ St(A) and the band modules M(w, s, ϕ) with w ∈ Ba(A) and (Ks, ϕ) ∈ M are up to isomorphism
all the indecomposable A-modules.

2.4. Auslaner-Reiten sequences for string algebras. For each arrow α ∈ Q1, let

α− = β−1
1 β−1

2 · · ·β−1
r

be the inverse string of maximal length such that α · α− is a string, and let

−α = γ−1
s · · · γ−1

2 γ−1
1

be the inverse string of maximal length such that −α · α is a string. Similarly, let

+(α
−1) = βr · · ·β2β1 (resp. (α−1)+ = γ1γ2 · · · γs)

be the direct string of maximal length such that +(α
−1) · α−1 (resp. α−1 · (α−1)+) is a string.

Proposition 2.5. [2] The only AR-sequences that consist of string modules and that have the middle
term indecomposable are

0 → M(−α) → M(−α · α · α−) → M(α−) → 0,

where α ∈ Q1.

Next we describe the AR-sequences with the middle term decomposable. We will see shortly that
in this case, the middle term in such a short exact sequence is a direct sum of two indecomposable
modules.

Definition 2.6. (1) A string w is right directly extendable (RDE) if there is an arrow α such that
wα is a string.

(2) A string w is right inversely extendable (RIE) if there is an arrow β such that wβ−1 is a string.
(3) A string w is left directly extendable (LDE) if there is an arrow α such that αw is a string.
(4) A string w is left inversely extendable (LIE) if there is an arrow β such that β−1w is a string.
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Remark 2.7. Comparing with the terminology in [2], we have the following.
(1) A string w is not RDE if and only if w starts on a peak.
(2) A string w is not RIE if and only if w starts in a deep.
(3) A string w is not LDE if and only if w ends in a deep.
(4) A string w is not LIE if and only if w ends on a peak.

If w is RDE, then there exists an arrow α such that wα is a string. Let

•
α

{{www
w

(α−)−1

""E
EE

EE
EE

EE

wh := w · α · α− = •
w ____ •

•

We say wh is obtained from w by adding a hook from the right. There is a canonical embedding
i : M(w) → M(wh).

If w = u · β−1 · (β−1)+ for some string u and some arrow β,

•

(β−1)+
~~||
||
||
||
||

w = u · β−1 · (β−1)+ = •
u ____ •

β ""E
EE

E

•

then we say u is obtained from w by deleting a cohook from the right. In this case, u is RIE and there
is a canonical projection p : M(w) → M(u). The string w can be understood as being obtained from
u by adding a cohook from the right and so we also write w = uc.

If w is LIE, then there exists an arrow α such that α−1w is a string. Let

•

+(α−1)

~~||
||
||
||
|| α

""E
EE

E

hw := +(α
−1) · α−1 · w = •

w ____ •

•

We say hw is obtained from w by adding a hook from the left. There is a canonical embedding
i : M(w) → M(hw).

If w = −β · β · u for some string u and some arrow β,

•

(−β)−1

!!C
CC

CC
CC

CC
C

w = −β · β · u = •

β||xx
xx

u ____ •

•

then we say u is obtained from w by deleting a cohook from the left. In this case, u is LDE and there
is a canonical projection p : M(w) → M(u). Similar to uc above, the string w can be understood as
being obtained from u by adding a cohook from the left and so we also write w = cu.

Proposition 2.8. [2] Let w be a string such that M(w) is not injective and w 6∼ −α for any α ∈ Q1.

(1) If w is RDE and LIE, then the following

0 → M(w)
( i i )
−−−→ M(hw)⊕M(wh)

(
i
−i

)

−−−−→ M(hwh) → 0

is an AR-sequence where hwh = h(wh) = (hw)h.
(2) If w is RDE but not LIE, then w = cu for some string u and the following

0 → M(w)
( p i )
−−−→ M(u)⊕M(wh)

(
i

−p

)

−−−−→ M(uh) → 0

is an AR-sequence.
(3) If w is LIE but not RDE, then w = uc for some string u and the following

0 → M(w)
( i p )
−−−→ M(hw)⊕M(u)

(
p
−i

)

−−−−→ M(hu) → 0

is an AR-sequence.
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(4) If w is neither RDE nor LIE, then w = cuc = c(uc) = (cu)c for some string u and the
following

0 → M(w)
( p p )
−−−→ M(uc)⊕M(cu)

( p
−p

)

−−−−→ M(u) → 0

is an AR-sequence.

Theorem 2.9. [2] Let A be a string algebra. The Auslaner-Reiten sequences in A-mod are those
described in Propositions 2.5 and 2.8, together with those of the form

0 → M(w, s, ϕ) → M(w, 2s, ϕ′) → M(w, s, ϕ) → 0

where w ∈ Ba(A), (Ks, ϕ) ∈ M and ϕ′ is determined by the following AR-sequence in K[T, T−1]-mod,

0 → (Ks, ϕ) → (K2s, ϕ′) → (Ks, ϕ) → 0.

3. The Auslaner-Reiten quivers and τ-locally free modules of string algebras of

type C̃

In this section, we introduce the notion of minimal string modules to study the AR-quivers of

string algebras H of type C̃n−1. We will explicitly describe all the connected components of the
AR-quiver and τ -locally free H-modules.

3.1. Minimal string modules. In this subsection, A can be any string algebra.

Definition 3.1. A string A-module M(w) is called minimal if in the AR-quiver ΓA of A, each
irreducible map M(w) → M(u) is injective and each irreducible map M(v) → M(w) is surjective.

We will see that minimal string modules play an important role in determining the connected
components of the AR-quiver ΓA.

Proposition 3.2. There exists at least one minimal string module for each connected component of
ΓA containing string modules.

Proof. Assume that T is a connected component containing a string module M(w). Theorem 2.9
implies that all modules in T are string modules, as band modules are contained in homogeneous
tubes and any module in a homogeneous tube is a band module. If M(w) is not minimal, then
by definition there exists an irreducible surjection f1 : M(w) → M(w1) or an irreducible injection
g1 : M(w1) → M(w) for some string w1. In either case dimM(w1) < dimM(w). If M(w1) is not
minimal, then repeat the same procedure to find a string module with smaller dimension. This
procedure will terminate eventually. Then we obtain a minimal string module in the component. �

For a string x, denote by [x] the equivalence class of x. Recall that for indecomposable left
A-modules M and N the quotient

Irr(M,N) = radA(M,N)/rad2A(M,N)

is the space of irreducible morphisms.

Definition 3.3. Let w be a string.
(1) The dimension Il(w) = Σ[u]dimkIrr(M(u),M(w)) is called the left index of w.
(2) The dimension Ir(w) = Σ[u]dimkIrr(M(w),M(u)) is called the right index of w.
(3) The pair I(w) = (Il(w), Ir(w)) is called the index of w. We say w is of type (a, b) if Il(w) = a

and Ir(w) = b. In this case, we also say that the string module M(w) is of type (a, b).

Recall that we write u ∼ w if the two strings u and w are equivalent and u 6∼ w otherwise.

Lemma 3.4. Let w be a string. Then

(1) I(w) ∈ {(0, 1), (1, 0), (1, 1), (0, 2), (2, 0), (1, 2), (2, 1), (2, 2)}.
(2) Il(w) = 0 if and only if M(w) is a simple projective module. Dually, Ir(w) = 0 if and only if

M(w) is a simple injective module.
(3) Il(w) = 1 if and only if M(w) is either a projective module such that radM(w) is indecom-

posable or w ∼ α− for some arrow α ∈ Q1. Dually, Ir(w) = 1 if and only if M(w) is either
an injective module such that M(w)/socM(w) is indecomposable or w ∼ −β for some arrow
β ∈ Q1.

Proof. (1) follows from Theorem 2.9, (2) and (3) follow from the general Auslander-Reiten theory
[1] and Proposition 2.5. �
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1 j1 j2 · · · jk

. . . · · · . . . · · · . . . · · · . . .

i1 i2 i3 · · · ik n

Fig 1. Q is of type (3-1)

Lemma 3.5. An indecomposable projective A-module P is minimal if and only if P is simple.
Dually, an indecomposable injective A-module I is minimal if and only if I is simple.

Proof. We only prove the first assertion, the second one follows by duality. If P is simple, then P
is minimal by definition. Next assume that P is not simple. Then radP 6= 0 and the embedding
radP → P is a right almost split map. So the restriction of the embedding to any indecomposable
summand is irreducible. This implies that P is not minimal. Therefore if P is minimal, then it is
simple. �

Lemma 3.6. Let w be a string.

(1) The string module M(w) is minimal of type (1, 1) if and only if w ∼ α− for some α ∈ Q1

and w ∼ −β for some β ∈ Q1.
(2) The string module M(w) is minimal of type (1, 2) if and only if w ∼ α− for some α ∈ Q1

but w 6∼ −β for any β ∈ Q1, and w is RDE and LIE.
(3) The string module M(w) is minimal of type (2, 1) if and only if w ∼ −α for some α ∈ Q1

but w 6∼ β− for any β ∈ Q1, and w is RIE and LDE.
(4) The string module M(w) is minimal of type (2, 2) if and only if w 6∼ −α and w 6∼ α− for

any α ∈ Q1, and w is RDE, RIE, LDE and LIE.

Proof. (1) follows from Lemma 3.4 and Lemma 3.5.
Now we prove (2). If M(w) is minimal of type (1, 2), then M(w) is neither projective nor injective

by Lemma 3.5 and Lemma 3.4 (2). Since Il(w) = 1 and Ir(w) = 2, we have w ∼ α− for some arrow
α ∈ Q1 but w 6∼ −β for any β ∈ Q1 by Lemma 3.4 (3). Note that w is minimal, w is RDE and
LIE by Proposition 2.8. For the converse, first note that M(w) is not injective since w is RDE. By
the assumption that w 6∼ −β for any β ∈ Q1, we can apply Theorem 2.9 to deduce that Ir(w) = 2.
Furthermore, w is minimal. That is M(w) is minimal of type (2,1), as claimed.

(3) and (4) can be similarly proved, we skip the details. �

3.2. String algebras of type C̃. For the remaining part of this paper we assume that H =

H(C,Ω, D) with C the Cartan matrix of type C̃n−1 and D the minimal symmetrizer diag(2, 1, . . . , 1, 2),
unless otherwise stated. That is, H is the quotient path algebra KQ/I, where Q is a quiver of type
An when the loops at 1 and n are removed,

1 2 · · · n− 1 n

ε1 εn

and I =< ε21, ε
2
n >. Then H is a string algebra. Moreover it is a gentle algebra. We say H is a

string algebra of type C̃n−1. In this subsection, we will first describe minimal string H-modules in a
more concrete way, using Lemma 3.6 and Proposition 2.8, and then construct explicitly connected
components of the AR-quiver of H .

Let Q0 be the quiver obtained from Q by deleting the two loops ε1 and εn. Then Q0 is a quiver
of type An. We will describe connected components of the AR-quiver of H . The orientations of
the arrows in Q0 incident at 1 and n are particularly relevant to the description of the component
containing the indecomposable projective A-modules and the proof. There are four possibilities,
(Fig. 1), (Fig. 2) and their opposite quivers. By duality, we only need to consider the two cases,
(Fig. 1) and (Fig. 2), where the difference is that both 1 and n are sources in Q0 in (Fig. 2), but
only 1 is a source in (Fig. 1).

By the definition of Q, there is at most one arrow between two vertices i, j and we denote the
arrow by αji if there is one from i to j. As the way the vertices are labelled, |i − j| = 1 if there is
an arrow between two distinct vertices i and j. Recall that a vertex i is admissible if it is a sink or
a source.
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1 j1 j2 · · · jk−1 n

. . . · · · . . . · · · . . . . . .
· · ·

i1 i2 i3 · · · ik

Fig 2. Q is of type (3-2)

Proposition 3.7. The following are the minimal string modules of H up to isomorphism.

(1) Type (0,2): Si with i a sink in Q.
(2) Type (2,0): Si with i a source in Q.
(3) Type (1,1): M(α−), where α is an arrow in Q0.
(4) Type (1,2): M((ε1)−) and M((εn)−).
(5) Type (2,1): M(−(ε1)) and M(−(εn)).
(6) Type (2,2): M(w), where w = c1 . . . cm is a string with {s(w), t(w)} ⊆ {1, n} and neither c1

nor cm is a loop or the formal inverse of a loop.

Proof. Observe that the only simple projective or injective modules are those corresponding to sinks
or sources in Q, which can only occur in the middle of the quiver. So (1) and (2) are true. (6) follows
from Lemma 3.6 (4). To prove (3), (4) and (5), we compute M(α−) and M(−α) for all α ∈ Q1.

Case I: Q is of type (3-1) as in (Fig. 1). Set j0 = 1 and ik+1 = n. Then we have the following:

(a) M((αp+1,p)−) = M(−(αp,p−1)) = Sp for jr < p < ir+1 and 0 ≤ r ≤ k.
(b) M((αq−1,q)−) = M(−(αq,q+1)) = Sq for ir < q < jr and 1 ≤ r ≤ k.
(c) M((α21)−) = M(−(αi1,i1+1)).
(d) M((αjr+1,jr )−) = M(−(αir ,ir−1)) for 1 ≤ r ≤ k.
(e) M((αjr−1,jr)−) = M(−(αir+1,ir+1+1)) for 1 ≤ r ≤ k − 1.
(f) M((αjk−1,jk)−) = M(−(αn,n−1)).

(g) M(−(ε1)) = S1 and M((ε1)−) =






M(α−1
21 · · ·α−1

i1,i1−1) if i1 6= n,

M(α−1
21 · · ·α−1

i1,i1−1ε
−1
n ) if i1 = n.

(h) M((εn)−) = Sn and M(−(εn)) =





M(α−1
jk+1,jk

· · ·α−1
n,n−1) if jk 6= 1,

M(ε−1
1 α−1

jk+1,jk
· · ·α−1

n,n−1) if jk = 1.

By Lemma 3.6 (1), cases (a)-(f) provide all the possible minimal string modules of type (1, 1). So
(3) holds.

By (a)-(h), (ε1)− and (εn)− are both RDE and LIE, but not of the form −α for any α ∈ Q1.
Since M((ε1)−) and M((εn)−) = Sn are not injective, they are minimal string modules of type (1, 2)
by Lemma 3.6 (2). Moreover from the computation list, they are the only two such modules. So (4)
is true. Similarly, M(−(ε1)) = S1 and M(−(εn)) are the only two minimal string modules of type
(2, 1). So (5) is true.

Case II: Q is of type (3-2) as in (Fig. 2). Set j0 = 1 and jk = n. The difference between the
two types of Q is that n is a sink in Q of type (3-1), while it is a source in Q of type (3-2). Similar
computation shows that (3), (4) and (5) hold. This completes the proof. �

Denote the Auslander-Reiten translation for H by τ . The following result gives an explicit de-
scription of the τ -orbit at the bottom of the rank n−1 tube (see [15, Lemma 4.5.10] for an alternative
account).

Proposition 3.8. There are n − 1 minimal string modules of type (1,1) (up to isomorphism) and
they form the τ-orbit at the bottom of a tube of rank n− 1. In particular, for an arrow α : i → j in
Q0, we have the following, depending on the properties of i and j in Q0.

(1) Both vertices i and j are non-admissible. Then

τSi = Sj .

(2) The vertex i is non-admissible and j is a sink. Then

τSi = M(w1),
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where w1 is the direct path of maximal length terminating at j and satisfying that w−1
1 α is a

string. Note that by the definition of Q, such a path w uniquely exists.
(3) The vertex i is a source and j is non-admissible. Then

τ−1Sj = M(w2),

where w2 is the direct path of maximal length starting from i and satisfying that αw−1
2 is a

string. Again, such a path w uniquely exists.
(4) The vertex i is a source and j is a sink. Then

τ(M(w2)) = M(w1),

where w1 and w2 are paths satisfying the conditions on w1 in (2) and the conditions on w2

in (3), respectively.

Proof. First, the claims in (1)-(4) are true, since the two modules in each case are M(α−) and
M(−α), respectively, for the arrow α in Q0. By Proposition 3.7, there are exactly n − 1 minimal
string modules of type (1, 1), one for each arrow in Q0. Next we prove that the n− 1 minimal string
modules form a τ -orbit.

We connect two copies of Q0 by ε1 and εn, where ε1 goes from vertex 1 in the first copy to the 1
in the second copy and εn goes from vertex n in the second copy to the n in the first copy. Denote
the new quiver by Q̃ (see Example 3.9 for an illustration). Observe that each arrow in Q0 appears

twice in Q̃, but in opposite directions, one goes anti-clockwise and the other one goes clockwise. So
there are exactly n − 1 anti-clockwise arrows in Q̃\{ε1, εn} and each arrow in Q0 appears exactly
once among the n− 1 anti-clockwise arrows.

The computation (a) - (f) in the proof of Proposition 3.7 can be interpreted as follows. For any

anti-clockwise arrow γ in Q̃\{ε1, εn},

M(−γ) = M(β−),

where β is the next anti-clockwise arrow in Q̃\{ε1, εn} after γ when one walks along Q̃ anti-clockwise.
So

τ(M(γ−)) = M(−γ) = M(β−).

Continuing in this fashion, the τ -orbit reaches all the n − 1 minimal string modules of type (1, 1)
and stays within these modules. Therefore the n − 1 minimal string modules of type (1, 1) form a
τ -orbit, and the τ -orbit is at the bottom of the tube, because these string modules are all of type
(1, 1). This completes the proof. �

An easy consequence of Proposition 3.8 is that the modules at the bottom of the rank n− 1 tube
are rigid. The rigidity of these modules is stated in [15, Proposition 4.5.18].

Example 3.9. (1) Let Q be the quiver:

1 2 3 4.
α21 α32 α43

ε1 ε4

The quiver Q̃ constructed in the proof of Proposition 3.8 is as follows, where the first copy of Q is
at the bottom,

1
α21 // 2

α32 // 3
α43 // 4

ε4

��
1

α21 //

ε1

OO

2
α32 // 3

α43 // 4

and the modules at the bottom of the tube of rank 3 are

M(ε4α43α32α21ε1) S3 S2 M(ε4α43α32α21ε1).

In the same order, these modules are

M((α21)−) M((α43)−) M((α32)−) M((α21)−).

(2) Let Q be the quiver:

1 2 3 4 5.
α21 α32 α34 α54

ε1 ε5
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Then the quiver Q̃ is

1
α21 // 2

α32 // 3 4
α34oo α54 // 5

ε5

��
1

α21 //

ε1

OO

2
α32 // 3 4

α34oo α54 // 5

and the modules at the bottom of the tube of rank 4 are:

M(α32α21ε1) M(ε5α54) M(α34) S2 M(α32α21ε1).

In the same order, these modules are

M((α21)−) M((α34)−) M((α54)−) M((α32)−) M((α21)−).

Each arrow in Q0 appears exactly once.

Note that in each case, a module is the τ -translation of the module on its immediate right.

Lemma 3.10. Let w be a string.

(1) If w is RDE, then so is wh. Thus there exists the following infinite ray:

M(w → wh•) : M(w) → M(wh) → M(wh2) → · · ·

where whi = (whi−1 )h for i ≥ 2.
(2) If w is LIE, then so is hw. Thus there exists the following infinite ray:

M(w → h•w) : M(w) → M(hw) → M(h2w) → · · ·

where hiw = h(hi−1w) for i ≥ 2.
(3) If w is RIE, then so is wc. Thus there exists the following infinite coray:

M(wc• → w) : · · · → M(wc2) → M(wc) → M(w)

where wci = (wci−1)c for i ≥ 2.
(4) If w is LDE, then so is cw. Thus there exists the following infinite coray:

M(c•w → w) : · · · → M(c2w) → M(cw) → M(w)

where ciw = c(ci−1w) for i ≥ 2.

Moreover, the map at each step in the rays and corays is irreducible.

Proof. First by the construction of the AR-sequences in Propositions 2.5 and 2.8, the map at each
step in the rays and corays is part of an AR-sequence and so it is irreducible.

(1) Suppose that w is RDE. Then there exists α ∈ Q1 such that wα is a string. We have

wh =






wα if s(α) is non-admissible in Q0,

wαw′ if s(α) is a source in Q0

where wαw′ is a string, w′ is an inverse string of maximal length. In particular, s(w′) is a sink in
Q0. In either case, wh is again RDE. This proves (1). Similarly, (2) is true.

(3) Suppose that w is RIE. Then there exists α ∈ Q1 such that wα−1 is a string. Similar to (1),
we have

wc =






wα−1 if t(α) is non-admissible in Q0,

wα−1w′ if t(α) is a sink in Q0

where wα−1w′ is a string, w′ is a direct string of maximal length. In particular, s(w′) is a source in
Q0. In either case, wc is again RIE. This proves (3). Similarly, (4) is true. �

Remark 3.11. Lemma 3.10 is not true in general. For instance, the linear quiver of type An is a
string algebra, but there is no infinite ray or coray.

Proposition 3.12. There is a bijection between isomorphism classes of minimal string modules of
type (2,2) and connected components of ΓH of type ZA∞

∞.
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Proof. Assume that T is a connected component of ΓH of type ZA∞
∞. By Proposition 3.2, there is

a minimal string module M(w) occurring in T and so M(w) is of type (2,2).
Conversely, assume that M(w) is a minimal string module of type (2,2). Then the AR sequences

containing M(w) are as follows.

M(hwc)
−p

''NN
NNN

M(wc)

i 88ppppp

p

&&NN
NNN

M(hw)
−i

''NN
NNN

M(cwc)

p 88ppppp

−p

&&NN
NNN

M(w)

i 77ppppp

i
''NN

NNN
M(hwh)

M(cw)

p 88ppppp

−i

&&NN
NNN

M(wh)

i 77ppppp

M(cwh)

p 77ppppp

The connected component Tw containing M(w) is divided into four regions as follows by the two
rays M(w → wh•),M(w → h•w) and the two corays M(wc• → w),M(c•w → w).

. . .
p

##H
HH

HH

...

M(wc2)
p

&&NN
NNN

(III) M(h2w)

i
;;vvvvvv

M(wc)
p

&&LL
LL

M(hw)

i 77ppppp

(IV ) M(w)

i 88rrrr

i
&&LL

LL
(I)

M(cw)

p 88rrrr
M(wh)

i
''NN

NNN

M(c2w)

p 88ppppp
(II) M(wh2)

i

##H
HH

HH

...

p ;;vvvvvv . . .

By induction, we see that the AR-sequences in region (I), (II), (III) and (IV) are those in Proposition
2.8 (1), (2), (3) and (4), respectively. In particular, dimM(w) < dimM for any M ∈ Tw\{M(w)}
and so minimal string modules of type (2, 2) (up to isomorphism) are in one to one correspondence
with components of type ZA∞

∞. �

Remark 3.13. Geiss [6] describes modules of minimal dimension in a component of type ZA∞
∞. Our

minimal string modules are defined differently (see Definition 3.1) and are defined for any component.
The proof of Proposition 3.12 shows that for any minimal string w of type (2, 2), dimM(w) < dimM
for any M ∈ Tw\{M(w)}. Therefore the minimal string modules M(w) of type (2, 2) coincide with
those described in [6, Proposition 3].

Denote by S a complete set of representatives of simple K[T, T−1]-modules.

Theorem 3.14. The AR-quiver ΓH of H consists of the following.

(1) One component TPI containing all the indecomposable preprojective modules and all the in-
decomposable preinjective modules (up to isomorphism).

(2) One tube of rank n−1, where the sum of the dimension vectors of the indecomposable modules
at the bottom of the tube is d = (di) with di = 2 for all i.(Note: we will see later if we take the
sum of the rank vectors instead, then the sum is exactly δ, the minimal positive imaginary
root of type C).

(3) Homogeneous tubes Hw,S, where w ∈ Ba(H) and S ∈ S is a simple module of the Laurent
polynomial ring K[T, T−1].

(4) Components Tλ of type ZA∞
∞, where λ runs through all the isomorphism classes of minimal

string modules of type (2,2).

Proof. Recall that for any indecomposable projective module P and any indecomposable injective
module I, the natural embedding radP → P and the natural projection I → I/socI are almost split
maps, see [1] for more details. We compute radicals of the indecomposable projective modules and
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quotients by socles of the indecomposable injective modules. By duality, we may assume that Q is
of type (3-1) or (3-2) as in (Fig. 1) or (Fig. 2).

(1) radP1 = P2 ⊕M((ε1)−).

(2) For 1 < i < n: radPi =

{
Pj if i is not a source and i → j,
Pi−1 ⊕ Pi+1 if i is a source.

(3) radPn =

{
Sn = M((εn)−) if Q is of type (3-1),
Pn−1 ⊕M((εn)−) if Q is of type (3-2).

(4) I1/ soc I1 = S1 = M(−(ε1)).

(5) For 1 < i < n: Ii/ soc Ii =

{
Ij if i is not a sink and j → i,
Ii−1 ⊕ Ii+1 if i is a sink.

(6) In/ soc In =

{
In−1 ⊕M(−(εn)) if Q is of type (3-1),
Sn = M(−(εn)) if Q is of type (3-2).

So in the AR-quiver, the indecomposable projective modules are in one slice, connected by irreducible
maps and the same for the indecomposable injective modules. Note that the orientation of the arrow
between vertices n − 1 and n are different in the two quivers (Fig. 1) and (Fig. 2) and so strings
(εn)− and −(εn) are different for the two quivers. However, in either case, the AR-sequences

0 → M(−(ε1)) → M(−(ε1)ε1(ε1)−) → M((ε1)−) → 0

and
0 → M(−(εn)) → M(−(εn)εn(εn)−) → M((εn)−) → 0

connect the slice of injective modules and the slice of projective modules in the AR-quiver. In partic-
ular, the indecomposable projective and the indecomposable injective modules are in one component,
denoted by TPI , and this component contains all the minimal string modules of type (0,2), (2,0), (1,2)
and (2,1). See (Fig. 3) for the case Q of type (3-1), where M1 = M((ε1)−), N1 = M(−(ε1)ε1(ε1)−),
Mn = M(−(εn)) and Nn = M(−(εn)εn(εn)−).

By Proposition 3.8, all minimal string modules of type (1,1) form the τ -orbit at the bottom of the
tube of rank n− 1. By construction, each vertex appears exactly twice in the walks corresponding
to the minimal strings. So the sum of the dimension vectors of the minimal string modules has 2 at
all entries.

By Proposition 3.12, the isomorphism classes of minimal string modules of type (2,2) are in one-
to-one correspondence with connected components of type ZA

∞
∞ . There are no other connected

components containing string modules, following Proposition 3.2.
Finally, by Theorem 2.4, it remains to consider components consisting of band modules. We know

from Theorem 2.9 that an indecomposable module is a band module if and only if it is contained in a
homogeneous tube. Each homogenous tube is uniquely determined by a band module M(w,m,ϕ) for
w ∈ Ba(H) and S = (Km, ϕ) ∈ S is a simple module over K[T, T−1]. So the connected components
of the AR-quiver of H are as described in the theorem. �

3.3. τ-locally free modules. Let e1, e2, · · · , en be the idempotents in H corresponding to the
vertices of Q and let Hi = eiHei for 1 ≤ i ≤ n. Then

Hi
∼=

{
K[εi]/(ε

2
i ) if i = 1, n,

K if 2 ≤ i ≤ n− 1.

Definition 3.15. A left H-module M is called locally free if Mi = eiM is a free Hi-module for each
i ∈ Q0. An indecomposable locally free H-module M is called τ-locally free, if τk(M) is locally free
for all k ∈ Z.

Lemma 3.16. The following are true.

(1) If M(w) is a minimal string module of type (1,2), then the modules M(whi) are not locally
free, where i ≥ 0.

(2) If M(w) is a minimal string module of type (2,1), then the modules M(ciw) are not locally
free, where i ≥ 0.

(3) If M(w) is a minimal string module of type (2,2), then M(w) is not locally free. Moreover,
none of the modules M(whi), M(hiw) M(wci) and M(ciw) is locally free, where i ≥ 1.

Proof. (1) If M(w) is a minimal string module of type (1,2), then w = (ε1)− or w = (εn)−, by
Proposition 3.7. Without loss of generality, we assume that w = (εn)−. If n is a sink in Q0, then
w = 1(n,t) and all the other wh• have the form:

n n− 1oo • · · ·
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Fig 3. The connected component TPI for Q of type (3-1)

that is, it ends with the arrow αn,n−1. Therefore none of M(wh•) is locally free. Similarly, when n
is a source in Q0, wh• have the form:

n // n− 1 • · · ·

and so none of M(wh•) is locally free either.
Similarly, (2) holds.
(3) If M(w) is a minimal string module of type (2,2), then by Proposition 3.7, the string w is one

of the following form
1 2 · · · n− 1 n ,
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1 2 · · · 2 1 ,

n n− 1 · · · n− 1 n .

So by similar arguments as in (1), M(w) is not locally free and none of the modules M(whi), M(hiw)
(resp. M(wci), M(ciw)) obtained by repeatedly adding hooks (resp. cohooks) from either the right
or the left (but not both) is locally free. This completes the proof. �

Let w0 be the shortest walk with s(w0) = 1 and t(w0) = n, consisting of all the arrows in Q0.
We also denote the corresponding string starting from 1 and terminating at n by w0. Following the
definition of a band, we have following.

Lemma 3.17. Any band w is equivalent to a band of the standard form

w−1
0 ε±nw0ε

±
1 ... w

−1
0 ε±nw0ε

±
1 ,

whose starting vertex and terminating vertex are both 1. In particular, each time the walk of w
reaches vertices 1 and n in the middle of the walk (i.e. different from s(w) and t(w)), it goes via the
loops at these vertices.

Example 3.18. The following are all bands of the standard form:

w−1
0 εnw0ε1, w−1

0 εnw0ε
−1
1 , w−1

0 εnw0ε
−1
1 w−1

0 εnw0ε1,

where the last band is a composition of the first two.

Theorem 3.19. Let M be an indecomposable H-module. Then M is τ-locally free if and only if one
of the following is satisfied.

(1) M is preprojective.
(2) M is preinjective.
(3) M is a regular module occurring in any tube.

Proof. Any preprojective module τ iPj and any preinjective module τsIt are rigid, and so they are
τ -locally free by [7, Proposition 11.6].

Observe that the modules at the bottom of the tube of rank n−1 (see Proposition 3.8) are locally
free and the other modules in the tube have a filtration by these modules and so are locally free as
well. Therefore they are all τ -locally free.

By Lemma 3.17, an indecomposable band module is locally free and thus τ -locally free, as such a
module is in a homogeneous tube, i.e. a tube of rank 1. Consequently, any indecomposable module
in a homogeneous tube is τ -locally free. Therefore the modules described in (1) - (3) are all τ -locally
free.

Next we show that there is no other τ -locally free modules. First consider modules in any compo-
nent Tw of type ZA∞

∞, where w is the minimal string of type (2, 2) that determines the component.
By Lemma 3.16, modules in the rays and corays that divides Tw into 4 regions in the proof of Propo-
sition 3.12 are not locally free. Therefore any τ -orbit in Tw contains modules that are not locally
free and so there is no τ -locally free module in Tw.

By Theorem 3.14, it remains to show that modules other than the preprojective and preinjective
modules in the component TPI are not τ -locally free. Observe that the orbits of the other modules
meet either the rays or the corays containing S1 and Sn, respectively. As S1 and Sn are not locally
free modules, modules in those rays/corays are not locally free by Lemma 3.16. Therefore the
modules in TPI that are neither preprojective nor preinjective are not τ -locally free. This completes
the proof. �

4. An application to the conjecture by Geiss-Lercler-Schröer

In this section, we apply Theorem 3.19 to prove Conjecture 1 in the case where the Cartan matrix

C is of type C̃n−1 and the symmetrizer D = diag(2, 1, 1, · · · , 1, 1, 2).

4.1. Roots and Coxeter transformations. In this subsection C can be any symmetrizable Cartan
n×nmatrix of affine type and D can be any symmetrizer of C. Let α1, α2, · · · , αn be a list of positive
simple roots of type C. For 1 ≤ i, j ≤ n, define

si(αj) = αj − cijαi.

This yields a reflection si : Z
n → Zn on the root lattice Zn =

∑n

i=1 Zαi, where αi is identified with
the ith standard basis vector of Zn. The Weyl group W is the subgroup of Aut(Zn) generated by
s1, s2, · · · , sn. Denote by

∆re = ∪n
i=1W (αi)
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the set of real roots, and by
∆im = Zδ

the set of imaginary roots, where δ is the unique minimal positive imaginary root determined by the

Cartan matrix C. For instance, in the case of type C̃n−1,

δ = α1 + 2Σn−1
i=2 αi + αn = (1, 2, · · · , 2, 1).

The set of roots determined by C is
∆ = ∆re ∪∆im

and with the set of positive roots

∆+ = ∆ ∩ N
n = ∆+

re ∪∆+
im,

where ∆+
re = ∆re ∩N

n and ∆+
im = ∆im ∩ N

n.
An orientation of C is a subset Ω ⊂ {1, 2, · · · , n} × {1, 2, · · · , n} such that the following hold:
(1) {(i, j), (j, i)} ∩ Ω 6= ∅ if and only if cij < 0;
(2) For each sequence ((i1, i2), (i2, i3), · · · , (it, it+1)) with t ≥ 1 and (is, is+1) ∈ Ω for all 1 ≤ s ≤ t,

we have i1 6= it+1.
Let Q = Q(C,Ω) be the quiver with vertices Q0 = {1, . . . , n} and arrows

Q1 = {αg
ji : i → j | (j, i) ∈ Ω and 1 ≤ g ≤ gcd{|cij |, |cji|}} ∪ {εi : i → i | i ∈ Q0}.

Let Q0 = Q0(C,Ω) be the quiver obtained from Q with the loops εi removed.
For an orientation Ω of C and an admissible vertex i in Q0(C,Ω), let

si(Ω) = {(r, s) ∈ Ω | i /∈ {r, s}} ∪ {(s, r) | i ∈ {r, s}, (r, s) ∈ Ω}.

Then si(Ω) is again an orientation of C. A sequence i = (i1, i2, · · · , in) is called a +-admissible
sequence for (C,Ω) if {i1, i2, · · · , in} = {1, 2, · · · , n}, i1 is a sink in Q0(C,Ω) and ik is a sink in
Q0(C, sik−1

· · · si1(Ω)) for 2 ≤ k ≤ n. For such a sequence i, define

βi,k =

{
αi1 if k = 1,
si1si2 · · · sik−1

(αik) if 2 ≤ k ≤ n.

Similarly, define

γi,k =

{
αin if k = n,
sin · · · sik+1

(αik) if 1 ≤ k ≤ n− 1.

Let ci = sinsin−1
· · · si1 : Zn → Zn. Then c−1

i
= si1si2 · · · sin : Zn → Zn. These are two Coxeter

transformations associated to i.
For a +-admissible sequence i = (i1, i2, · · · , in) for (C, Ω), the rotated sequence

i′ = (i2, i3 · · · , in, i1)

is also a +-admissible sequence for (C, si1 (Ω)), and ci′ = si1sin · · · si3si2 and c−1
i′

= si2si3 · · · sinsi1
are the Coxeter transformations associated to i′.

Similarly, a −-admissible sequence can be defined using sources. In fact, the sequence i =
(i1, i2, · · · , in) is +-admissible if and only if its reverse sequence i−1 = (in, in−1, · · · , i1) is −-
admissible. We have, c−1

i
= ci−1 . Similar to +-admissible sequences, a rotated sequence of a −-

admissible sequence is also −-admissible. We call both a +-admissible sequence and a −-admissible
sequence an admissible sequence.

For a −-admissible sequence i = (i1, i2, . . . , in), define

γi,k =

{
αi1 if k = 1,
si1si2 · · · sik−1

(αik) if 2 ≤ k ≤ n,

and

βi,k =

{
αin if k = n,
sin · · · sik+1

(αik) if 1 ≤ k ≤ n− 1.

Lemma 4.1. Let i = (i1, i2, . . . , in) be an admissible sequence and i′ = (i2, i3, . . . , in, i1). Then the
reflection si1 induces a bijection between {c−r

i
(βi,k)|r ∈ Z≥0, 1 ≤ k ≤ n} ∪ {cs

i
(γi,k)|s ∈ Z≥0, 1 ≤ k ≤

n} \ {αi1} and {c−r
i′

(βi′,k)|r ∈ Z≥0, 1 ≤ k ≤ n} ∪ {cs
i′
(γi′,k)|s ∈ Z≥0, 1 ≤ k ≤ n} \ {αi1}.
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Proof. First consider the case when i is +-admissible. Note that si1ci′ = cisi1 , si1c
−1
i

= c−1
i′

si1 and
βi,1 = γi′,n = αi1 by definition. The lemma follows from the following calculation

si1(c
−r
i

(βi,k)) =

{
c−r
i′

(βi′,k−1) if 2 ≤ k ≤ n, r ≥ 0,
c−r+1
i′

(βi′,n) if k = 1, r > 0

and

si1(c
s
i
(γi,k)) =

{
cs
i′
(γi′,k−1) if 2 ≤ k ≤ n,

cs+1
i′

(γi′,n) if k = 1

for each s ≥ 0.
When i is −-admissible, the proof can be similarly done. We skip the details. �

4.2. Geiss-Leclerc-Schröer’s Conjecture. In this subsection, we will prove Conjecture 1 for the

case where C is of type C̃n−1 and the symmetrizer D is minimal, that is, D = diag(2, 1, . . . , 2, 1).
For a locally free H-module M , denote by ri the rank of the free Hi-module Mi, where i ∈ Q0.

We call
rankM := (r1, · · · , rn)

the rank vector of M .
Below we recall a few results from [7], which are important to prove the main result Theorem 4.9

in this section.

Lemma 4.2. [7, Proposition 11.5] Let c = ci for some +-admissible sequence i = (i1, i2, . . . , in) and
M be a τ-locally free H-module. If τk(M) 6= 0, then

rankτk(M) = ck(rankM).

Lemma 4.3. [7, Lemmas 2.1, 3.2 and 3.3] Let C be a symmetrizable Cartan matrix that is not of
Dynkin type and let i = (i1, i2, · · · , in) be an admissible sequence. Then

rankτ−r(Pik) = c−r
i

(βi,k)

and
rankτs(Iik) = cs

i
(γi,k),

where r, s ≥ 0 and 1 ≤ k ≤ n. Moreover these rank vectors are pairwise distinct positive real roots.

Note that a representation of Q = Q(C,Ω) can be naturally viewed as a representation of a
modulated graph M(C,D) and vice versa. The representation categories of Q and M(C,D) are
equivalent. For a sink (resp. a source) in the modulated graph, one can define a reflection functor
F+
i (resp. F−

i ) on the representations of the modulated graph, in a similar way as reflection functors
defined for (simply-laced) quivers. When i is admissible, we write the reflection functor by Fi which
should be interpreted as F+

i when i is a sink and F−
i otherwise.

Lemma 4.4. [7, Proposition 9.4] Let H = H(C,D,Ω) and H ′ = H(C,D, siΩ), where i is admissible
in Q0(C,Ω). If M is an indecomposable locally free H-module and is not isomorphic to Si, then
Fi(M) is indecomposable and

rankFi(M) = si(rankM).

Proposition 4.5. [7, Proposition 9.6] Let M be a rigid τ-locally free H-module and let i be admissible
in Q0. Then Fi(M) is also rigid and τ-locally free.

Proposition 4.6. [4, Proposition 1.9] Let i = (i1, i2, . . . , in) be a +-admissible sequence with respect
to the orientation Ω. The set of positive roots determined by the Cartan matrix C is the disjoint
union of the following.

(1) {c−r
i

(βi,k) | r ∈ Z≥0, 1 ≤ k ≤ n}.

(2) {cs
i
(γi,k) | s ∈ Z≥0, 1 ≤ k ≤ n}.

(3) {x+rδ | x = 0 or a positive root that is < δ and can be deduced from a certain list of roots;
r ∈ Z≥0 and r 6= 0 when x = 0}.

Remark 4.7. (1) By Proposition 3.8, we know the indecomposable modules at the bottom of the
tube of rank n− 1. Their rank vectors are pairwise distinct and are exactly those in the list of roots
in Proposition 4.6 (3) when the orientation Ω is linear, i.e. Ω = {(2, 1), (3, 2), . . . , (n, n− 1)}. These
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rank vectors are (∗): the simple roots αi for 1 < i < n and
∑n

i=1 αi. In this case the roots x in
Proposition 4.6 (3) are sums of the form

∑

i≤t≤i+j

ct
i
α2

for some i, j with 0 ≤ i < n − 1 and 0 ≤ j < n − 2 (see the discussion between Lemma 1.8 and
Proposition 1.9 in [4]), where i = (n, n− 1, . . . , 2, 1). In fact in the sum, α2 can be replaced by any
root in the list (∗).

(2) Our main result of this section below, Theorem 4.9, largely follows from Theorem 3.19 and
Proposition 4.6 when Ω is linear. However, when it is not linear, Dlab-Ringel do not explain further
how to deduce x from list (∗) of roots in the paper [4]. In our proof to Theorem 4.9, we will deal
with the quiver Q with nonlinear orientation separately, using reflection functors.

By Lemma 3.17, any band w is equivalent to a band of the form

w−1
0 ε±nw0ε

±
1 ... w

−1
0 ε±nw0ε

±
1 (∗∗).

We define the delta-length of w by the number m of w0 appearing in the band (∗∗), denoted by
dl(w) = m. For instance,

dl(w−1
0 εnw0ε1) = 1

and
dl(w−1

0 εnw0ε
−1
1 w−1

0 εnw0ε1) = 2.

If dl(w) = r, S = (Ks, ϕ) is a simple representation of K[T, T−1], then the band module M(w, s, ϕ)
has rank vector srδ.

Note that when C is of type C̃n−1 and D is minimal, the quiver Q = Q(C,Ω) constructed in [7]
is exactly the quiver we have in Section 3.2,

1 2 · · · n− 1 n

ε1 εn

and the algebra H = H(C,D,Ω) = KQ/I, where I is generated by ε2i for i = 1, n. We restate
Conjecture 1 for this case as follows.

Conjecture 4.8. Let C be a Cartan matrix of type C̃n−1 and let D be a minimal symmetrizer
of C. Then There is a bijection between positive roots of type C and rank vectors of τ-locally free
H-modules.

Theorem 4.9. Let H = H(C,D,Ω) be a string algebra of type C̃n−1. Then α is a positive root if
and only if there is a τ-locally free module M such that rankM = α. Moreover,

(1) if α is a positive real root, then there is a unique τ-locally free H-module M (up to isomor-
phism) such that rankM = α.

(2) if α = mδ is a positive imaginary root, then all the following modules have rank vector α.
(a) The modules in level m(n− 1) in the tube of rank n− 1.
(b) The modules in level r of the homogeneous tubes Hw,S, where w ∈ Ba(H) with dl(w) = t,

S = (Ks, ϕ) ∈ S is a simple K[T, T−1]-module such that r = m
st
. In particular, r = m

when dl(w) = 1 and s = 1.
(3) the modules at the bottom of the tube of rank n− 1 are rigid.

Proof. Case I: the orientation Ω is linear. We first explain that (3) is true. By Proposition 3.8, the
modules at the bottom of the tube of rank n − 1 are the simples Si (1 < i < n) and M((α21)−).
The simples are rigid since there is no loops at vertices 2, . . . , n− 1, and M((α21)−) is rigid, by the
homological interpretation of the Ringel Form defined for Q in [7, Proposition 4.1].

Next by Lemma 4.3 and Remark 4.7, the roots in Proposition 4.6 (1) are the rank vectors of
indecomposable preprojective modules; the roots in Proposition 4.6 (2) are the rank vectors of
indecomposable preinjective modules; the roots in Proposition 4.6 (3) are the rank vectors of inde-
composable modules in tubes. Therefore the theorem follows from Theorem 3.19 and the descriptions
of tubes in Theorem 3.14.

Observation (†): for a τ -locally free module M , rankM is an imaginary root if and only if M is
in a homogeneous tube or in levels r(n − 1) (r ∈ N) in the tube of rank n− 1.

Case II: the general case. First note that any quiver L′ of type An can be obtained by applying a
sequence of admissible reflections si1 , . . . , sim on the linear quiver L of type An, where i1 is admissible
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in L, it is admissible in sit−1
. . . si1(L) for t > 1 and L′ = sim . . . si1(L). Assume that the theorem

holds for an orientation Ω. Let i be an admissible vertex in Q0(C,Ω). By induction, we only need
to show that the theorem holds for the orientation si(Ω).

Let M be an H-module at the bottom of the tube of rank n− 1. By the induction hypothesis, M
is rigid and τ -locally free. As M is in a tube, M is not a simple module associated to an admissible
vertex and so Fi(M) 6= 0. Furthermore, it is indecomposable by Lemma 4.4 and it is a rigid τ -
locally free H ′-module by Proposition 4.5, where H ′ = H(C,D, si(Ω)). Without loss of generality,
we assume that i is a sink. We choose a +-admissible sequence i = (i1, i2, . . . , in) with i1 = i. By
Lemma 4.4, rankF+

i (M) = si(rankM), which is not a root as those listed in Lemma 4.1. Note also

Σn−2
j=0 c

j
i
(rankF+

i (M)) = δ,

which is obtained by applying si to Σn−2
j=0 c

j
i
((rankM) = δ. Therefore, F+

i (M) is an H ′-module at the

bottom of the tube of rank n − 1. Consequently, (3) holds and the reflection si induces a bijection
between the rank vectors of the τ -locally free H-module in the tube of rank n − 1 and the rank
vectors of the τ -locally free H ′-module in the tube of rank n− 1. Therefore, together with Lemma
4.1,

{rankM | M is a τ -locally free H ′-module}
= {si(rankM) | M is a τ -locally free H-module such that rankM 6= αi} ∪ {αi}.

The latter is exactly the set of positive roots by the induction hypothesis and the fact that si
permutes ∆+ \ {αi}. Therefore α is a positive root if and only if α = rankM for some τ -locally free
H ′-module M . The remaining parts of the theorem, (1) and (2), follow from Theorems 3.14, 3.19
and the observation (†). Therefore, the theorem holds for si(Ω). This completes the proof. �

Corollary 4.10. Conjecture 4.8 is true.

Following Theorem 4.9, we can now enhance Proposition 4.6 as follows.

Corollary 4.11. (cf. [4, Proposition 1.9]) Let C be the Cartan matrix of type C̃n−1, D the minimal
symmetrizer and let i = (i1, i2, · · · , in) be a +-admissible sequence for (C,Ω). Then

∆+(C) = {c−r
i

(βi,k) | r ∈ Z≥0, 1 ≤ k ≤ n} ∪ {csi (γi,k) | s ∈ Z≥0, 1 ≤ k ≤ n}∪

{(
∑

p≤j≤p+q

cj
i
(α)) +mδ | 0 ≤ p < n− 1, 0 ≤ q < n− 2 and m ∈ Z≥0} ∪ Z>0δ,

where α = α1 +α2 (or any other αi +αi+1) if Q0 is alternating, i.e. each vertex is admissible, and
otherwise α can be any simple root αl that is associated to a non-admissible vertex l.
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