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Abstract
Many machine learning solutions are framed as optimization problems which rely on good hyperpa-
rameters. Algorithms for tuning these hyperparameters usually assume access to exact solutions to
the underlying learning problem, which is typically not practical. Here, we apply a recent dynamic
accuracy derivative-free optimization method to hyperparameter tuning, which allows inexact eval-
uations of the learning problem while retaining convergence guarantees. We test the method on
the problem of learning elastic net weights for a logistic classifier, and demonstrate its robustness
and efficiency compared to a fixed accuracy approach. This demonstrates a promising approach for
hyperparameter tuning, with both convergence guarantees and practical performance.

1. Introduction

Tuning model hyperparameters is a common problem encountered in machine learning for estimat-
ing regularization parameters, learning rates, and many other important quantities. In many cases,
hyperparameter tuning can be viewed as a bilevel optimization problem for hyperparameters θ:

min
θ,w

F (θ, w) subject to w ∈ arg min
w̃

Φ(w̃, θ), (1)

where the lower-level objective Φ corresponds to a learning problem for weights w, and the upper-
level objective F typically measures a test error. Hyperparameter tuning often uses global optimiza-
tion methods [13], but recent work has also considered local gradient-based [24, 28] and derivative-
free [15, 21] methods. The lower-level problem is usually solved with iterative methods, so only
inexact evaluations of feasiblew are available. As a result, few algorithms have convergence theory;
exceptions include [23], [28] under specific assumptions and [15] (in light of [9]). Bilevel learning
is also used in inverse problems (e.g. [1, 20, 26, 29]), although other approaches exist [5, 12, 17].

Recently in [11], a model-based DFO method [2, 10] for bilevel learning (in an inverse prob-
lems context) was proposed, which has convergence guarantees while still allowing inexact lower-
level minimizers (but with a dynamic accuracy controlled by the algorithm). Here, we apply this
algorithm to bilevel optimization for hyperparameter tuning (1). Specifically, we apply the frame-
work of [11] to the case where the lower-level objective is nonsmooth (but strongly convex). Our
approach has similarities to Hyperband [23], which considers an inexact Bayesian optimization
method, whereas our approach is designed to exploit the bilevel structure to find a local minimum.
We can achieve the dynamic accuracy requirements for the upper-level algorithm, but delegate full
convergence theory to future work (noting that model-based DFO methods for nonsmooth problems
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EFFICIENT HYPERPARAMETER TUNING WITH DFO

exist; e.g. [14, 16, 19]). We show results for tuning elastic net weights of a logistic classifier. Com-
pared to fixed-accuracy variants of the same DFO method, our approach has strong computational
performance and robustness, and avoids manually tuning the lower-level problem solution accuracy.

2. Lower-Level Problem

First, we consider a general formulation for solving nonsmooth but strongly convex learning prob-
lems. Suppose that we wish to learn weights w ∈ Rd by minimizing a loss function which depends
on parameters θ ∈ Rm; that is, we wish to solve

ŵ(θ) := arg min
w∈Rd

Φ(w, θ) := f(w, θ) + g(w, θ), (2)

where f(·, θ) is µ(θ)-strongly convex and smooth with L(θ)-Lipschitz continuous gradient, and
g(·, θ) is convex and possibly nonsmooth. As a consequence, we note that Φ(w, θ) is also µ(θ)-
strongly convex [3, Lemma 5.20]. This is a standard problem type, and in this work we solve (2)
using a variant of FISTA [4] designed for strongly convex objectives [8, Algorithm 5]:

tk+1 =

[
1− qt2k +

√
(1− qt2k)2 + 4t2k

]
/2, βk+1 = [(tk − 1)(1− tk+1q)] / [tk+1(1− q)] ,

zk+1 = wk + βk+1(wk − wk−1), wk+1 = proxτg(·,θ)(z
k+1 − τ∇wf(zk+1, θ)),

(3)

where w−1 := w0, q := τµ(θ), and we choose τ = 1/L(θ) and t0 = 0. This algorithm achieves
linear convergence to ŵ(θ) with the a priori estimate (from [8, Theorem 4.10] and Φ(wk, θ) −
Φ(ŵ(θ), θ) ≥ (µ/2)‖wk − ŵ(θ)‖22 using strong convexity, and defining κ(θ) := L(θ)/µ(θ)):

‖wk − ŵ(θ)‖22 ≤
(

1− κ(θ)−1/2
)k [

κ(θ)
(

1 + κ(θ)−1/2
)
‖w0 − ŵ(θ)‖22

]
, (4)

Guaranteeing Sufficient Accuracy In the dynamic accuracy DFO framework [11], evaluations of
ŵ need to sufficiently accurate in that sense that we terminate the iteration (3) once ‖wk−ŵ(θ)‖22 ≤
ε is achieved, for some ε > 0 specified by the upper-level solver. A priori, we can determine the
required number of iterations using (4). However, since it is difficult to estimate ‖w0 − ŵ(θ)‖2 in
practice, we also consider the a posteriori termination criterion

‖wk − ŵ(θ)‖22 ≤ ‖d(wk)‖22/µ(θ)2 ≤ ε, (5)

where d(wk) ∈ ∂Φ(wk, θ), which ensures the required accuracy from the µ(θ)-strong convexity of
Φ(·, θ) [3, Theorem 5.24]. In FISTA, we calculate d(wk) as

d(wk) = ∇wf(wk+1, θ)−∇wf(zk+1, θ) +
1

τ
(zk+1 − wk+1) ∈ ∂Φ(wk+1, θ),

which follows from noting zk+1 − τ∇wf(zk+1, θ) − wk+1 ∈ ∂(τg(·, θ)), which follows from the
properties of the proximal operator [3, Theorem 6.39].

In Figure 1, we compare the a priori (4) and a posteriori error (5) bounds on ‖wk − ŵ(θ)‖22 on
the linear inverse problem

Φ(w, θ) =
1

2
‖Aw − b‖22 +

θ1

2
‖w‖22 + θ2‖w‖1, (6)

2
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Figure 1: Comparison of the a-priori linear convergence bound (4) against the a-posteriori subgra-
dient bound (5). Showing results over 500 iterations FISTA for the problem (6).

for θ = [θ1, θ2]T , where we use a randomly generated A ∈ R100×200, w0 ∈ R200 and b ∈ R100,
and parameters θ = [10, 10]T . For this problem, we have L(θ) ≈ 1.96e4 and µ(θ) = 10. Despite
the a priori bound using the correct value of ‖w0 − ŵ(θ)‖2, the a posteriori subgradient bound
gives a much tighter estimate of ‖wk − ŵ(θ)‖22. Because of this and not being able to estimate
‖w0− ŵ(θ)‖2 accurately in practice, in our numerical results we only use the subgradient bound to
ensure the required accuracy.

3. Upper-Level Problem

We now describe our algorithm for solving the upper-level problem of learning θ. Suppose we have
access to n lower-level problems which depend on the same parameters θ ∈ Rm, and that each
lower-level minimizer ŵj(θ) ∈ Rdj has an associated loss function `j : Rdj → R; in Section 4, this
will be a measure of test error. Then, our upper-level problem is

min
θ∈Rm

F (θ) :=
n∑

j=1

`j(ŵj(θ)) + J (θ), subject to ŵj(θ) := arg min
w∈Rd

Φj(w, θ), (7)

where J (θ) is an optional regularization term for θ, and Φj is strongly convex in w (but possibly
nonsmooth) and smooth in θ. Under these assumptions, there are various results showing that ŵj(θ)
is locally Lipschitz in θ for a variety of problems; e.g. [18, 27].

To solve (7) we follow [11] and use a model-based DFO method. Here, at every iteration k we
have a collection of points {y(k)

0 , . . . , y
(k)
m } at which we have evaluated ŵj (for each j), to some

accuracy. We use this information to build a local quadratic model mk(θ) which approximates
F (θ) near θ(k) by requiring that the model interpolate F at each of y(k)

0 , . . . , y
(k)
m . Our upper-level

iteration can be summarized as:

1. Build the interpolating local quadratic model mk(θ) ≈ F (θ) using (inexact) evaluations of
ŵj(y

(k)
0 ), . . . , ŵj(y

(k)
m ).

2. Calculate a minimizer s(k) of the model inside a trust region, namely solve (possibly inex-
actly) min‖s‖2≤∆k

mk(θ
(k) + s), for a given trust-region radius ∆k > 0.

3. Ensure F (θ(k)) and F (θ(k) + s(k)) are evaluated to sufficiently high accuracy, and then if
sufficient decrease is achieved, set θ(k+1) = θ(k) + s(k) and increase ∆k, otherwise set
θ(k+1) = θ(k) and decrease ∆k.

3
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Figure 2: Initial results using θ(0) = [1, 1]T .

4. Replace one interpolation point with θ(k) + s(k).

This algorithm typically requires that our inexact lower-level evaluations wj(θ) ≈ ŵj(θ) satisfy
‖wj(θ)− ŵj(θ)‖2 ≤ c∆2

k for some c > 0 (where we use c = 100 in Section 4 below).
Full details of a suitable dynamic accuracy upper-level algorithm are given in [11]. There, it is

shown that, if J , and each `j and Φj are sufficiently smooth, and each Φj is strongly convex in w,
then the model-based DFO algorithm finds a θ with ‖∇F (θ)‖2 ≤ ε in at most O(ε−2) upper-level
iterations, or at most O(ε−2| log ε|) lower-level iterations.

4. Numerical Results

Summary of Test Problem We test our approach by attempting to learn elastic net regularizer
[30] weights θ ∈ R2 for a logistic classifier of each digit 0–5 in MNIST [22] (i.e. each lower-level
problem corresponds to a classifier for a different digit and the upper-level problem measures a
test set error). Below, we validate the results of our approach by considering the remaining dig-
its. To test our approach, we follow [11] and use a version of DFO-LS [6, 7] which is modified
to handle dynamic accuracy evaluations as per Section 3. We use FISTA (3) for the lower-level
solver, and compare the dynamic accuracy approach with a combination of FISTA and DFO-LS,
but using a fixed number of FISTA iterations K for every lower-level solve. Full details are given
in Appendix A.

General Comparison Figure 2 compares the dynamic-accuracy variant against fixed-accuracy
variants with low (K = 20), medium (K = 200) and high accuracy (K = 2000), with upper-
level initialization θ(0) = [1, 1]T in all cases. Overall, dynamic accuracy is comparable to medium
accuracy: it reaches the same θ at a similar speed. By comparison, low accuracy gives a quite
different value of θ to the others, and high accuracy takes substantially more computational effort
to converge. A key point to note here, is that dynamic accuracy performs similar to the best fixed-
accuracy variant without requiring the necessary accuracy a priori.

Robustness It was observed in [11] that dynamic accuracy is more robust to initialization and
a good initialization can accelerate its initial objective decease. To test these features here, we
perform the same tests as above, but vary the initial `2 penalty by choosing θ(0)

2 ∈ {−3,−2, . . . , 3}.
Figure 3 shows that only high accuracy and dynamic accuracy give stable results, whereas the low
and medium accuracy converge to different θ depending on the starting point. Figure 4 shows that
as θ(0)

2 increases, the relative performance of dynamic accuracy improves. Thus, since dynamic

4
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Figure 3: Final values of θ1 (left) and θ2 (right) reached for different starting points θ(0)
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Figure 4: Comparison of objective reduction for different choices of starting point θ(0)
2 .

accuracy is stable with respect to initialization, selecting θ(0) to give well-conditioned lower-level
problems is appropriate and the associated reduction in computational work can be achieved.

Validation Finally, we measure the generalizability of the upper-level minimizers. Here, the
learned values of θ from each accuracy variant and each initialization θ(0) are used to train logistic
classifiers for MNIST (using a new set of 5000 training images), and measure their test error (on
another new set of 1000 test images). Despite the upper-level problem only considering digits 0–5,
here we look at the performance of each θ in training classifiers for all digits. We measure the test
error by looking at the proportion of test images classified correctly (using the predictor ŷ(j)

i = 1 if
p

(j)
i (ŵj(θ)) ≥ 0.5; see Appendix A). Figure 5 shows the validation for each digit j ∈ {0, . . . , 9}

and initialization θ(0)
2 . The overall accuracy is generally lower for digits 6–9 than the digits used

in the upper-level objective (0–5). However, we see consistently that dynamic and high accuracy
achieve better prediction accuracy than low and medium accuracy.
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Figure 5: Comparison of validation results for different choices of starting point θ(0)
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5. Conclusions and Further Work

We have extended the approach in [11] to the case of nonsmooth lower-level problems—we can
guarantee solutions to the lower-level problem are sufficiently accurate for the upper-level algo-
rithm. When applied to learning elastic net regularizer weights for MNIST, we find that the dy-
namic accuracy DFO approach gives a robust method for hyperparameter tuning. Compared to the
fixed-accuracy variants, which have strong dependency on the selected number of iterations (both in
computational speed and quality of minimizer), the dynamic-accuracy version can achieve both fast
progress and high-quality minimizers, without needing to be manually tuned. We delegate to future
work a full study of the convergence of the upper-level algorithm in this setting, and comparisons
between the dynamic accuracy DFO approach and other methods for hyperparameter tuning.
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Appendix A. Details of Numerical Test Model

General Problem Formulation In this work, we focus on a specific choice of problem, namely
selecting regularizer weights for logistic regression [25, Chapter 8]. Specifically, for upper-level
problem j ∈ {1, . . . , n}, suppose we have training pairs {(x(j)

i , y
(j)
i )}Nj

i=1 with features x(j)
i ∈ Rdj

and binary labels y(j)
i ∈ {−1, 1}. Minimizing the negative log-likelihood of the corresponding

logistic classifier, with an elastic net regularizer [30], corresponds to the lower-level problem

ŵj(θ) := arg min
w∈Rdj

Φj(w, θ) :=
1

Nj

Nj∑

i=1

log(1 + exp(−y(j)
i wTx

(j)
i )) +

10θ1

2
‖w‖22 + 10θ2‖w‖1,

(8)

for (undetermined) regularizer log-weights θ1, θ2 ∈ R. That is, we form Φj(w, θ) (2) by taking

fj(w, θ) :=
1

Nj

Nj∑

i=1

log(1 + exp(−y(j)
i wTx

(j)
i )) +

10θ1

2
‖w‖22, and gj(w, θ) := 10θ2‖w‖1,

and so fj(·, θ) is µj(θ)-strongly convex and Lj(θ)-smooth with

µj(θ) := 10θ1 , and Lj(θ) :=
1

4Nj
‖X(j)‖22 + 10θ1 ,

where X(j) ∈ RNj×dj has columns x(j)
i .

As our upper-level objective, suppose for each lower-level problem j we have learned weights
wj(θ) ∈ Rdj (in practice wj(θ) is our approximation to ŵj(θ) from solving (8) to some finite

accuracy). We then suppose we have a test set {(x̃(j)
i , ỹ

(j)
i )}Ñj

i=1, and we calculate the estimated
probabilities p(j)

i (ŵj(θ)) = sigm(ŵj(θ)
T x̃

(j)
i ) is the probability that ỹ(j)

i = 1 as determined by the

8
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classifier. We then take our loss for the lower-level problem j to be a smoothed approximation of
the test accuracy:

`j(ŵj(θ)) :=

Ñj∑

i=1

[
p

(j)
i (ŵj(θ))− p̃(j)

i

]2
, where p̃

(j)
i =

{
1, ỹ

(j)
i = 1,

0, otherwise.

That is, `j(θ) is the squared Euclidean distance from the vector [p
(j)
1 , . . . , p

(j)

Ñj
]T to the ‘perfect’

classifier’s probabilities [p̃
(j)
1 , . . . , p̃

(j)

Ñj
]T .

Example Problem We take our training data from MNIST [22], where we attempt to learn a
classifier for each digit separately (i.e. for digit j ∈ {0, . . . , 9}, learn a classifier for whether image
i is of digit j or not). In this case, we have the same features for all lower-level problems, and we
choose Nj = 5000 and Ñj = 1000 images for the training and test sets respectively. To test the
generalizability of our approach, we only solve the upper-level problem for digits 0–5 (i.e. n = 6).
We validate the final learned θ on the same problem for the remaining digits 6–9.

We augment our upper-level problem with a regularizer which encourages well-conditioned
lower-level problems and a large value of θ2 (which should yield sparse weights wj):

J (θ) := α1

(
L(θ)

µ(θ)

)2

+ α210−θ2 ,

for weights α1 = 10−8 and α2 = 1.
To test our approach, we follow [11] and use a version of DFO-LS [6, 7] which is modified

to handle dynamic accuracy evaluations as per Section 3. We use FISTA (3) for the lower-level
solver, and compare the dynamic accuracy approach with a combination of FISTA and DFO-LS,
but using a fixed number of FISTA iterations K for every lower-level solve. We impose bounds
θ ∈ [10−8, 108]2, and terminate after 80 upper-level evaluations or the trust-region radius in DFO-
LS reaches 10−5.
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