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Abstract

Many machine learning solutions are framed as optimization problems which rely on good hyperpa-
rameters. Algorithms for tuning these hyperparameters usually assume access to exact solutions to
the underlying learning problem, which is typically not practical. Here, we apply a recent dynamic
accuracy derivative-free optimization method to hyperparameter tuning, which allows inexact eval-
uations of the learning problem while retaining convergence guarantees. We test the method on
the problem of learning elastic net weights for a logistic classifier, and demonstrate its robustness
and efficiency compared to a fixed accuracy approach. This demonstrates a promising approach for
hyperparameter tuning, with both convergence guarantees and practical performance.

1. Introduction

Tuning model hyperparameters is a common problem encountered in machine learning for estimat-
ing regularization parameters, learning rates, and many other important quantities. In many cases,
hyperparameter tuning can be viewed as a bilevel optimization problem for hyperparameters 6:

Iélgl F(0,w) subject to w € arg min ®(w, 0), (1)
) w

where the lower-level objective ® corresponds to a learning problem for weights w, and the upper-
level objective F' typically measures a test error. Hyperparameter tuning often uses global optimiza-
tion methods [13], but recent work has also considered local gradient-based [24, 28] and derivative-
free [15, 21] methods. The lower-level problem is usually solved with iterative methods, so only
inexact evaluations of feasible w are available. As a result, few algorithms have convergence theory;
exceptions include [23], [28] under specific assumptions and [15] (in light of [9]). Bilevel learning

is also used in inverse problems (e.g. [1, 20, 26, 29]), although other approaches exist [5, 12, 17].
Recently in [11], a model-based DFO method [2, 10] for bilevel learning (in an inverse prob-
lems context) was proposed, which has convergence guarantees while still allowing inexact lower-
level minimizers (but with a dynamic accuracy controlled by the algorithm). Here, we apply this
algorithm to bilevel optimization for hyperparameter tuning (1). Specifically, we apply the frame-
work of [11] to the case where the lower-level objective is nonsmooth (but strongly convex). Our
approach has similarities to Hyperband [23], which considers an inexact Bayesian optimization
method, whereas our approach is designed to exploit the bilevel structure to find a local minimum.
We can achieve the dynamic accuracy requirements for the upper-level algorithm, but delegate full
convergence theory to future work (noting that model-based DFO methods for nonsmooth problems

© M. J. Ehrhardt & L. Roberts.
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exist; e.g. [14, 16, 19]). We show results for tuning elastic net weights of a logistic classifier. Com-
pared to fixed-accuracy variants of the same DFO method, our approach has strong computational
performance and robustness, and avoids manually tuning the lower-level problem solution accuracy.

2. Lower-Level Problem

First, we consider a general formulation for solving nonsmooth but strongly convex learning prob-
lems. Suppose that we wish to learn weights w € R¢ by minimizing a loss function which depends
on parameters § € R™; that is, we wish to solve

w(#) := argmin ®(w, 0) := f(w,0) + g(w, ), (2)
weRd
where f(-,0) is u(@)-strongly convex and smooth with L(6)-Lipschitz continuous gradient, and
g(+,0) is convex and possibly nonsmooth. As a consequence, we note that ®(w, 6) is also p(6)-
strongly convex [3, Lemma 5.20]. This is a standard problem type, and in this work we solve (2)
using a variant of FISTA [4] designed for strongly convex objectives [8, Algorithm 5]:

s = [t J= a2 47] 120 s = [~ D0 = )] (=]

k+1

=k 4 B (Wb — wFY), wht! = prong(‘ﬂ)(zkH — TV f(2FTL,0)),

where w™! := w?, ¢ := 7u(0), and we choose 7 = 1/L(0) and ¢ty = 0. This algorithm achieves

linear convergence to «(6) with the a priori estimate (from [8, Theorem 4.10] and ®(w*, §) —
d(w(0),0) > (1/2)||wk — w(0)]|3 using strong convexity, and defining x(6) := L(0)/u(0)):

Jw* — (03 < (1- ,{(9)—1/2)’“ [5(0) (1 + 5(0) 72 [u® = @ (@)]3] . “)

Guaranteeing Sufficient Accuracy In the dynamic accuracy DFO framework [11], evaluations of
1 need to sufficiently accurate in that sense that we terminate the iteration (3) once ||w* —w(6)||3 <
€ is achieved, for some ¢ > 0 specified by the upper-level solver. A priori, we can determine the
required number of iterations using (4). However, since it is difficult to estimate ||w® — ()2 in
practice, we also consider the a posteriori termination criterion

lw® —@(9)II3 < lld(w®)|3/n(8)* <e, (5)
where d(w*) € O®(w*, #), which ensures the required accuracy from the j(6)-strong convexity of
®(-,0) [3, Theorem 5.24]. In FISTA, we calculate d(w*) as

1
d(wk) = wa(wkH, 0) — wa(zk+1, 0) + f(zk*'1 - wk+1) € 8®(wk+1, 0),
T

which follows from noting 2%+ — 7V, f(z¥*1,0) — w**! € d(7g(-,0)), which follows from the
properties of the proximal operator [3, Theorem 6.39].

In Figure 1, we compare the a priori (4) and a posteriori error (5) bounds on ||w* — (6)||3 on
the linear inverse problem

1 01
®(w,0) = gllAw = bll3 + 7 w3 + ba [l (©)
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Figure 1: Comparison of the a-priori linear convergence bound (4) against the a-posteriori subgra-
dient bound (5). Showing results over 500 iterations FISTA for the problem (6).

for § = [01,05]7, where we use a randomly generated A € R100%200 4,0 ¢ R290 apd p € R0,
and parameters § = [10, 10]7. For this problem, we have L(f) ~ 1.96e4 and x(6) = 10. Despite
the a priori bound using the correct value of [|w® — w(8)]|2, the a posteriori subgradient bound
gives a much tighter estimate of ||w* — 1 ()||3. Because of this and not being able to estimate
|w® — 1(6)||2 accurately in practice, in our numerical results we only use the subgradient bound to
ensure the required accuracy.

3. Upper-Level Problem

We now describe our algorithm for solving the upper-level problem of learning 6. Suppose we have
access to n lower-level problems which depend on the same parameters § € R, and that each
lower-level minimizer @;(0) € R% has an associated loss function ¢; : R% — R; in Section 4, this
will be a measure of test error. Then, our upper-level problem is

n
min F(0) := Y £;(i;(0)) + J(0), subjectto 1w;(0) := argmin®;(w,0),  (7)
ferR™ = weRd

where 7 () is an optional regularization term for ¢, and ®; is strongly convex in w (but possibly
nonsmooth) and smooth in #. Under these assumptions, there are various results showing that w;(6)
is locally Lipschitz in 6 for a variety of problems; e.g. [18, 27].

To solve (7) we follow [11] and use a model-based DFO method. Here, at every iteration k we
have a collection of points {y(()k), e ,yy;)} at which we have evaluated w; (for each j), to some
accuracy. We use this information to build a local quadratic model m(6) which approximates
F(0) near (k) by requiring that the model interpolate F' at each of y((]k), A yyf). Our upper-level
iteration can be summarized as:

1. Build the interpolating local quadratic model my(0) ~ F'(#) using (inexact) evaluations of
o (k W (k
(), -y (i)

2. Calculate a minimizer s®) of the model inside a trust region, namely solve (possibly inex-
actly) mins,<a, my(0*) + s), for a given trust-region radius Ay, > 0.

3. Ensure F(A*)) and F (%) + s(¥)) are evaluated to sufficiently high accuracy, and then if
sufficient decrease is achieved, set 8-t = 9(k) 4 (k) and increase Ay, otherwise set
0(k+1) = (k) and decrease Ay.
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Figure 2: Initial results using (©) = [1,1]7.

4. Replace one interpolation point with ok) 4 s(k),

This algorithm typically requires that our inexact lower-level evaluations w;(#) ~ w; () satisfy
|w; () —;(0)]2 < ¢ AZ for some ¢ > 0 (where we use ¢ = 100 in Section 4 below).

Full details of a suitable dynamic accuracy upper-level algorithm are given in [11]. There, it is
shown that, if 7, and each /; and ®; are sufficiently smooth, and each ®; is strongly convex in w,
then the model-based DFO algorithm finds a 6 with ||V F(6)|2 < € in at most O(e~2) upper-level
iterations, or at most O(e 2| log €|) lower-level iterations.

4. Numerical Results

Summary of Test Problem We test our approach by attempting to learn elastic net regularizer
[30] weights 6 € R for a logistic classifier of each digit 0-5 in MNIST [22] (i.e. each lower-level
problem corresponds to a classifier for a different digit and the upper-level problem measures a
test set error). Below, we validate the results of our approach by considering the remaining dig-
its. To test our approach, we follow [11] and use a version of DFO-LS [6, 7] which is modified
to handle dynamic accuracy evaluations as per Section 3. We use FISTA (3) for the lower-level
solver, and compare the dynamic accuracy approach with a combination of FISTA and DFO-LS,
but using a fixed number of FISTA iterations K for every lower-level solve. Full details are given
in Appendix A.

General Comparison Figure 2 compares the dynamic-accuracy variant against fixed-accuracy
variants with low (K = 20), medium (K = 200) and high accuracy (K = 2000), with upper-
level initialization #(0) = [1,1]7 in all cases. Overall, dynamic accuracy is comparable to medium
accuracy: it reaches the same 6 at a similar speed. By comparison, low accuracy gives a quite
different value of @ to the others, and high accuracy takes substantially more computational effort
to converge. A key point to note here, is that dynamic accuracy performs similar to the best fixed-
accuracy variant without requiring the necessary accuracy a priori.

Robustness It was observed in [11] that dynamic accuracy is more robust to initialization and
a good initialization can accelerate its initial objective decease. To test these features here, we
perform the same tests as above, but vary the initial /5 penalty by choosing 950) €{-3,-2,...,3}.
Figure 3 shows that only high accuracy and dynamic accuracy give stable results, whereas the low
and medium accuracy converge to different § depending on the starting point. Figure 4 shows that

0) . . . . . .
as 05 ) increases, the relative performance of dynamic accuracy improves. Thus, since dynamic
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Figure 4: Comparison of objective reduction for different choices of starting point 9%0).

accuracy is stable with respect to initialization, selecting 0 to give well-conditioned lower-level
problems is appropriate and the associated reduction in computational work can be achieved.

Validation Finally, we measure the generalizability of the upper-level minimizers. Here, the
learned values of 6 from each accuracy variant and each initialization 09 are used to train logistic
classifiers for MNIST (using a new set of 5000 training images), and measure their test error (on
another new set of 1000 test images). Despite the upper-level problem only considering digits 0-5,

here we look at the performance of each 6 in training classifiers for all digits. We measure the test
error by looking at the proportion of test images classified correctly (using the predictor g)Ej )= 1if
pz(.j )(wj(a)) > 0.5; see Appendix A). Figure 5 shows the validation for each digit j € {0,...,9}
and initialization 0&0). The overall accuracy is generally lower for digits 6-9 than the digits used
in the upper-level objective (0-5). However, we see consistently that dynamic and high accuracy
achieve better prediction accuracy than low and medium accuracy.

Initial £> penalty = 0.001 Initial £> penalty = 0.1 Initial £2 penalty = 10 Initial £ penalty = 1000

Digit

Dynamic FISTA 6 f———— ———— ]
FISTA (K = 20) 7 7 7
FISTA (K =200) | § 4 s 8

FISTA (K =2000) | ¢ e 94

T T T T T T T T T T T T T T T T
0.90 0.92 0.94 0.96 0.98 1.00 0.90 0.92 0.94 0.96 0.98 1.00 0.90 0.92 0.94 0.96 0.98 1.00 0.90 0.92 0.94 0.96 0.98 1.00
Prediction accuracy Prediction accuracy Prediction accuracy Prediction accuracy

Figure 5: Comparison of validation results for different choices of starting point 950).
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5. Conclusions and Further Work

We have extended the approach in [11] to the case of nonsmooth lower-level problems—we can
guarantee solutions to the lower-level problem are sufficiently accurate for the upper-level algo-
rithm. When applied to learning elastic net regularizer weights for MNIST, we find that the dy-
namic accuracy DFO approach gives a robust method for hyperparameter tuning. Compared to the
fixed-accuracy variants, which have strong dependency on the selected number of iterations (both in
computational speed and quality of minimizer), the dynamic-accuracy version can achieve both fast
progress and high-quality minimizers, without needing to be manually tuned. We delegate to future
work a full study of the convergence of the upper-level algorithm in this setting, and comparisons
between the dynamic accuracy DFO approach and other methods for hyperparameter tuning.
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Appendix A. Details of Numerical Test Model

General Problem Formulation In this work, we focus on a specific choice of problem, namely
selecting regularizer weights for logistic regression [25, Chapter 8]. Speciﬁcally, for upper-level
problem j € {1,...,n}, suppose we have training pairs {(z; ), yZ(J Y ;| with features x(] ) ¢ R%

and binary labels yi(j ) e {—1,1}. Minimizing the negative log-likelihood of the corresponding
logistic classifier, with an elastic net regularizer [30], corresponds to the lower-level problem

N.
1 1091
W (6) = argn;m@ (w,0) § :log (1 + exp(—y P wTz)) + —5 w3+ 10% wlly,
weR™ =

(®)

for (undetermined) regularizer log-weights 01, 62 € R. That is, we form ®;(w, 6) (2) by taking

: 10%
fitw Zlog +exp(—y 7w’ a?) + -l and  g;(w, ) == 107wy,

and so f;(-,0) is p1;(0)-strongly convex and L;(6)-smooth with

pi(0) =10, and L;(f):= HX |12 + 10%,

where X ) € RNi*4; has columns 95? ),
As our upper-level objective, suppose for each lower-level problem j we have learned weights
w;(0) € R% (in practice w;(6) is our approximation to W, (9) from solving (8) to some finite

accuracy). We then suppose we have a test set {( : ,g}fj )) i—1» and we calculate the estimated

probabilities pg )( w;(0)) = sigm(w;(0)1z 7 )) is the probability that y A{] ) = 1 as determined by the
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classifier. We then take our loss for the lower-level problem j to be a smoothed approximation of
the test accuracy:

ak )
R N 72 . 17 n — 1’
G (0) =3 [p00) - 50] 7 where P = P
i=1 0, otherwise.
That is, £;(6) is the squared Euclidean distance from the vector [pgj ), e p%?]T to the ‘perfect’

J
classifier’s probabilities []3{1] ), f)(]%)]T
J

Example Problem We take our training data from MNIST [22], where we attempt to learn a
classifier for each digit separately (i.e. for digit j € {0, ..., 9}, learn a classifier for whether image
1 is of digit j or not). In this case, we have the same features for all lower-level problems, and we
choose NV; = 5000 and Nj = 1000 images for the training and test sets respectively. To test the
generalizability of our approach, we only solve the upper-level problem for digits 0-5 (i.e. n = 6).
We validate the final learned 6 on the same problem for the remaining digits 6-9.

We augment our upper-level problem with a regularizer which encourages well-conditioned
lower-level problems and a large value of 2 (which should yield sparse weights w)):

2
J(0) = <i((23> + a107%,

for weights a; = 10~% and ay = 1.

To test our approach, we follow [11] and use a version of DFO-LS [6, 7] which is modified
to handle dynamic accuracy evaluations as per Section 3. We use FISTA (3) for the lower-level
solver, and compare the dynamic accuracy approach with a combination of FISTA and DFO-LS,
but using a fixed number of FISTA iterations K for every lower-level solve. We impose bounds
6 € [10~%,108)2, and terminate after 80 upper-level evaluations or the trust-region radius in DFO-
LS reaches 107°.
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