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ABSTRACT

Positron emission particle tracking (PEPT) is a non-invasive technique used to mea-

sure the three-dimensional position of positron-emitting tracers. PEPT is useful for studying

myriad industrial and/or scientific systems which often are optically inaccessible. However,

when running an experiment, often little attention is paid to optimising the tracers, detec-

tors, algorithms, and experimental procedures. As a result, trajectories can be degraded

leading to inefficient use of resources. To address this opportunity, Monte Carlo simulations

are employed to model experiments and predict the tracer activity, detector geometry, and

algorithm parameters that will produce the best trajectory resolution possible and even de-

termine whether an experiment is feasible or how long the experiment should be conducted

to reduce uncertainty to an acceptable degree. Importantly, this simulated work can be

conducted prior to experiments. In this thesis, a general procedure for simulating PEPT

experiments is described which can be applied to any PEPT experiment. The results of this

work demonstrate that not only is this method able to produce realistic synthetic PEPT

data, but allows, for the first time, a quantitative comparison of PEPT algorithms, the abil-

ity to optimise experiments, and to develop new PEPT methodologies using information

difficult or impossible to extract from real experiments.
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Chapter One1

General Introduction2

1.1 Positron Emission Particle Tracking (PEPT)3

Positron emission particle tracking (PEPT) is a fully three-dimensional experimental imaging4

technique typically used to track the motion of a positron-emitting tracer over time as it5

moves through a system of industrial, scientific, or engineering significance [148]. Positrons6

are particles with the same mass as an electron but with a positive charge [3]. When positrons7

and electrons collide, they annihilate each other and produce a burst of energy in the form8

of two back-to-back 511 keV gamma rays, shown in Equation 1.1.9

e− + e+ → 2γ (1.1)

If coincident gamma rays from an annihilation are detected with a position-sensitive10

radiation detector, then the point where the positron was annihilated should fall along the11

line that connects the two rays [5]. This line is called a Line-of-Response (LoR). Since12

the annihilation point lies somewhere along an LoR, this is exploited by PEPT to locate13

a positron-emitting tracer by using multiple LoRs, typically on the order of 100, collected14

1



General Introduction

during the short time relative to the tracer’s velocity and finding the point where the LoRs15

converge [100]. An example of a typical PEPT tracer is a solid spherical particle < 1 mm16

in diameter which contains a small amount of a positron-emitting isotope and follows the17

flow patterns of the system it is placed within. The process of locating a tracer with LoRs18

is shown in Figure 1.1. When this process is conducted on successive samples of LoRs,19

the history of the tracer’s position over time can be determined. This history is called the20

tracer’s trajectory.21

Figure 1.1: Positron-emitting tracer producing LoRs which can be used for PEPT.

Crucially for PEPT experiments, the trajectory of a single tracer can be used to un-22

derstand the motion of all particles in the system if the system is at steady-state and assumed23

to be ergodic [143]. The main advantage of PEPT over conventional optical imaging meth-24

ods is that gamma rays can pass through an amount of material without being significantly25

2
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attenuated, providing the ability to image through vessel walls and opaque media [100]. The26

basic work-flow of a PEPT experiment is the following:27

1. Produce a discrete tracer which is labelled with a positron-emitting isotope and place28

this tracer in a system where the tracer is identical to the other particles of the system29

or has a Stokes Number « 1 (Section 1.4.1).30

2. Record coincident 511 keV gamma rays which are generated by positrons annihilating31

within a short distance from the tracer by using a position-sensitive radiation detector32

(Section 1.4.2).33

3. Apply a PEPT algorithm on the LoRs to reconstruct the tracer’s position over time34

(Section 1.4.3).35

4. Post-process the tracer trajectory to extract information about the system, such as36

time-averaged velocity fields (Section 1.4.4).37

The PEPT technique was first developed at Rutherford Appleton Laboratories and38

the University of Birmingham in the late 1980s and early 1990s. This technique grew out39

of early research using a positron camera, initially developed for medical applications, to40

instead image the distribution and flow of positron-emitting liquid inside industrial systems41

[43]. From these early experiments, it was realised that more information about the sys-42

tem could be collected if a discrete tracer particle was used and this method could help43

researchers understand flow dynamics in chemical processes [7]. Following this, an algorithm44

was developed which could use samples LoRs collected from the positron camera, calculate45

the tracer position during a short time slice, and then later analyse the history of the tracer’s46

location over multiple time slices [100]. This algorithm, termed the Birmingham Method,47

described in Section 1.4.3, was tested in a series of experiments with stationary and moving48

tracers demonstrating its effectiveness [100].49
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In the years since its development, PEPT has been used to study a wide range of50

different granular and liquid systems. Some of the most commonly imaged systems include51

rotating drums, fluidised beds, and pipe-flows [87, 146, 137]. Further, experiments in more52

complex systems such as coffee roasters, washing machines, and radio-labelled yeast and53

cancer cells have also been conducted [119, 58, 70, 60].54

1.2 PEPT vs PET55

Throughout this Chapter, PEPT will be explained in detail: from the physics of positron56

emission to the types of information that can be extracted from a measurement. However, it57

is worth pointing out the distinguishing features of the PEPT technique from the far more58

commonly encountered positron emission tomographic (PET) imaging [75]. PET is a medical59

imaging technique that uses positron-emitting material to visualise and measure changes in60

metabolic processes; including measuring blow flow, identifying tumours, or studying brain61

activity. The major difference from PEPT is that PET is used to quantitatively reconstruct62

the amount and distribution of a positron-emitting material. This is very different from the63

information reconstructed by PEPT, since PEPT only returns the discrete position of a tracer64

[100]. To get a quantitative distribution of the positron-emitting material, two-dimensional65

or three-dimensional images are produced from the data and treated with corrections for66

attenuation or random coincidences. These are used to reduce the noise in the images. In67

PEPT, no such corrections are used, but filtering techniques are applied to help distinguish68

whether or not data originated from the tracer. Additionally, there are nomenclature dif-69

ferences between the two fields. For example, a PEPT LoR is simply the line connecting70

two gamma-rays within a coincidence window. In PET, the meaning of an LoR is subtly71

different. A PET LoR is any possible connection between two areas of the detector system,72

typically two individual crystals. Further, the detection rate of coincidences for PET is com-73
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monly in counts-per-second (cps), while PEPT prefers to report this count-rate in terms of74

frequency (Hz). In this work, the PEPT nomenclature is used.75

1.3 Background and Motivation76

The purpose of this thesis is to present a general method of simulating positron emission77

particle tracking (PEPT) and apply these simulations to optimise the technique itself, ex-78

periments, and develop new applications. This is an important and significant endeavour79

because it provides, for the first time, a way to study the technique in isolation; methods for80

optimising real experiments in terms of the tracers, detectors, and algorithms; and synthetic81

data can be generated to explore new uses for PEPT. In this way, these simulations of PEPT82

are an optimisation strategy, a complement to pure experimental work, and a way of gaining83

deeper insight into the PEPT technique.84

The need for simulating PEPT grew out of the realisation that the time and resources85

of the Positron Imaging Centre (PIC) could be used more effectively if a method of predict-86

ing the results of an experiment were developed. Given that experimental geometries and87

materials of construction are often fixed in engineering applications, this is immensely use-88

ful. Over the course of years of running PEPT experiments, some work inevitably produced89

results which were unusable for a variety of reasons: either the tracer contained too much or90

too little activity, the detector geometry was not optimised for the experimental system, or91

the PEPT algorithms were not used with the right settings. Before running experiments, it92

is not possible to determine what the effect of experimental parameters or settings for PEPT93

algorithms will have on the quality of data recorded. Therefore, it would be beneficial to94

produce a simulated model of the experiment and be able to test a range of conditions.95

In the following sections, the fundamentals of the PEPT technique, the simulation96
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software used, the development of a method for simulating PEPT, and the myriad applica-97

tions for this new approach will be discussed in depth.98

1.4 Fundamentals of PEPT99

1.4.1 PEPT Tracers100

The ideal PEPT tracer has all the same properties as other media inside the experimental101

system, but also emits positrons at a high enough rate such that it can be located frequently102

[99, 97]. There are two ways to label materials with positrons: direct or indirect activa-103

tion [96]. Direct activation is when some atoms of the tracer material are transmuted into104

positron-emitting isotopes after being placed in a beam of high-energy protons, deuterons,105

or helium nuclei [32]. Linear accelerators and cyclotrons are capable of directly activating106

materials containing oxygen, iron, zinc, and others [32]. Alternatively, an indirect activation107

can be achieved. One method of indirect activation is to irradiate a solution of water en-108

riched with oxygen-18 using protons, which produces fluorine-18. This solution can then be109

used to coat a tracer [32]. Common types of positron-emitting isotopes used for PEPT, the110

production routes, and properties are listed in Table 1.1.111

Fluorine-18 is one of the most commonly used positron-emitting isotopes in PEPT112

because of its useful half-life and ability to be readily produced [32]. With a half-life of 109.7113

minutes, this is typically long enough to be used in a PEPT experiment over the course of114

approximately an hour and then set aside to decay to background levels of activity. This is115

useful because it limits the dose absorbed by personnel and means that the equipment can be116

used again without lingering activity contaminating future experiments. This is also useful117

when experiments are conducted with equipment that will be used outside of the lab, such as118
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Table 1.1: Positron-emitting isotopes used in PEPT, reactions for production, and half-lives.

Isotopes Production Half-life βmax (keV)

Carbon-11
C12

6 + p11 → C11
6 + p11 + n1

0

N14
7 + p11 → C11

6 +He42

20.3 mins 961

Oxygen-15

N14
7 + d21 → O15

8 + n1
0

O16
8 + p11 → O15

8 + p11 + n1
0

N15
7 + p11 → O15

8 + n1
0

2.0 mins 1735

Fluorine-18
O18

8 + p11 → F 18
9 + n1

0

O16
8 +He32 → F 18

9 + p11

109.7 mins 634

Sodium-22 Mg2412 + d21 → Na2211 +He42 2.6 years 544

Cobalt-55 Fe5426 + d21 → Co5527 + n1
0 17.5 hours 1498

Copper-61 Zn64
30 + p11 → Cu61

29 +He42 3.3 hours 1220

Gallium-66 Zn66
30 + p11 → Ga6631 + n1

0 9.5 hours 4153

Gallium-68 Ge6832 + e0−1 → Ga6831 67.7 mins 1899

industrial food processing systems where contamination with radiation is highly undesirable119

[119].120

Positrons are generated on a continuous beta spectrum in which the shape is asym-121

metrical, shifted towards low energies, and has a well-defined maximum energy [114]. This122

is because when a positron emitter decays, a daughter isotope, a positron, and a neutrino123

are produced. These three particles share the energy of the decay, demonstrated in Equation124

1.2. Sometimes all the energy is carried by the positron and sometimes it is carried by the125

neutrino. More often the energy is shared unequally between them.126

F 18
9 → O18

8 + e+ + ν (1.2)
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Positron energy is important because the energy determines how far, on average, the127

positrons can travel before interacting with a nearby electron. For PEPT and PET, the128

positron range affects the spatial resolution of the measurement, with a larger range leading129

to lower spatial resolution [88]. The range is also influenced by the materials which the130

positron is travelling through. In air, positrons can travel distances on the order of a metre131

before annihilating with an electron whereas, in water, which is much denser than air, the132

positrons only travel on the order of a millimetre [21]. In Figure 1.2 the distribution of the133

positron range in water for carbon-11, oxygen-15, and fluorine-18 is shown.134

Figure 1.2: The positron range distribution in water for carbon-11, oxygen-15, and fluorine-

18 [21].

Fluorine-18 can also be readily produced by a cyclotron such as the MC40 cyclotron135

located at the University of Birmingham or cyclotrons located at medical facilities [98].136

The irradiation of oxygen-18 enriched water only produces other short-lived isotopes which137

quickly decay, leaving only a solution of fluorine-18 and water. This solution can be absorbed138
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into anionic exchange resin tracers and coated onto other tracers and left to dry or sealed139

using an ultraviolet-curing epoxy resin [148]. However, if a tracer is used that does not have140

the same properties as other materials in the system being studied using PEPT, then the141

trajectory of the tracer may not be representative. To address this, surface coatings with142

specific properties can be used. These include hydrophobic or hydrophilic coatings or ones143

that match the cohesive, frictional, density, or the coefficient of restitution [17].144

1.4.2 PEPT Detectors and Systems145

Once a tracer has been made, the coincident gamma rays must be recorded for use in a146

PEPT algorithm. The 511 keV gamma rays produced by positron annihilation are highly147

penetrating and capable of passing through several millimetres of steel without significant148

attenuation [129]. This is a major advantage for PEPT since highly penetrating gamma149

rays make studying flow inside opaque media possible. Typically, PEPT relies on the same150

positron-sensitive radiation detectors as PET imaging [97]. However, in addition, custom-151

built detector systems for PEPT have also been produced [71, 39].152

The general goal of radiation detection is to convert the interaction of radiation with153

a detector element into a usable signal. 511 keV gamma rays interact with matter through154

two main mechanisms: photo-electric absorption and Compton scattering. In photoelectric155

absorption the full energy of the gamma-ray, hν0, is absorbed into an electron, raising the156

energy of the absorbing electron, Ee, and liberating it from the shell of an atom [29]. This157

atom later releases a characteristic x-ray as it captures an electron from an outer shell to158

fill the vacancy in the inner shell. The Equation for photoelectric absorption is shown in159

Equation 1.3.160
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Ee = hν0 − Eb (1.3)

Compton scattering is a form of inelastic scattering that occurs when a gamma ray161

with initial wavelength, λ, interacts with an electron, but only imparts some of its energy162

[19]. The ray then changes wavelength, λ′, and direction, θ, shown in Equation 1.4. Compton163

scattering is the dominant mode of scattering for 511 keV gamma rays and thus is important164

in PEPT [129, 88]. The scattered photon typically still has a significant amount of energy and165

is detected along with other rays. However, because the direction of one or both gamma rays166

has changed, the LoR created by these two rays no longer intersects the point of positron-167

emission, corrupting the LoR.168

λ′ − λ =
h

mec
(1− cos θ) (1.4)

To detect gamma-rays for PEPT, scintillation detectors are commonly used [148].169

Only certain types of materials are scintillating and these can be broadly classed into in-170

organic and organic. Inorganic scintillators are typically crystalline and have relatively171

high densities which improve their intrinsic efficiency, which is the likelihood of an inci-172

dent gamma-ray interacting with the crystal. These include sodium-iodide (NaI), bismuth173

germanate (BGO), and lutetium oxyorthosilicate (LSO) [85]. Organic scintillators contain174

carbon and can be liquid, crystal, or plastic. These are typically less dense, have poorer175

energy resolution, and typically are cheaper than inorganic scintillators [106]. Examples of176

organic scintillators are p-terphenyl, anthracene, and polyethylene naphthalate [106].177

The basic design for a position-sensitive detector which can be used for PEPT can178

be broken down into three main components: (1) scintillation crystals which have a large179

photon cross-section, (2) photo-multiplier tubes to amplify the scintillation light and localise180
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Figure 1.3: The total, photoelectric absorption, incoherent (Compton scattering), and pair-

production photon mass attenuation coefficients for water [129].

where the interaction occurred, and (3) fast electronics to quickly process the data and181

identify coincidences between detector elements to form LoRs [75]. Once scintillation light is182

produced in the crystal, it must be converted into an electrical signal. This is accomplished183

using a photo-multiplier tube (PMT) [122]. Light travels through the crystal and enters184

the PMT where it interacts with the photo-cathode, which releases an electron when the185

low-energy photon is absorbed. The electron then interacts with the dynode (an electrode186

operated in a vacuum) charged with a high voltage which releases a large number of secondary187

electrons when struck by the primary electron, effectively amplifying the original signal [54].188

As these detectors process particle interactions, a finite amount of time is needed to189

trigger the detector, record the event, and return to a state which can accept new events.190

During this time, called the dead-time, no interactions can be processed and the information191

is simply lost. There are two main models of dead-time: paralysable and non-paralysable192
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[134]. In the paralysable model, shown in Equation 1.5, when the detector is in dead-time,193

any subsequent interactions with the detector fully reset the dead-time. When a detector is194

placed in an environment with sufficiently high count-rates, no interactions can be recorded195

since the detector is always in dead-time. The measured count-rate, m, can be found from196

the expected count-rate, n, using an exponential function and a constant, τ , to represent the197

dead-time.198

m = n exp (−nτp) (1.5)

In the non-paralysable model, shown in Equation 1.6, the detector dead-time is trig-199

gered and cannot be reset by new events.200

n = m(1 +mτnp) (1.6)

This behaviour applies to detecting single events in sections of the detector system,201

such as a block detector. From these recorded interactions, an additional set of electronics202

searches for coincidences by looking for two events which were detected within a short time203

from one another. This time window called the coincidence window (CW) is dependent on204

the detector but typically in the range of a few nano-seconds to a few hundred pico-seconds205

[67]. The total coincidence-rate, shown in Equation 1.7, is comprised of true coincidences,206

scattered coincidences, and random coincidences, Ideally, the CW should be set as low as207

possible to record only valid coincidences while minimising the chance of recording a random208

coincidence.209

mTotal = mTrue +mScattered +mRandom +mBackground (1.7)
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True coincidences are formed when both annihilation photons are detected without210

being attenuated. Scattered coincidences are formed when one or both of the photons is211

attenuated, such as undergoing Compton scattering before reaching the detector. Random212

coincidences are generated when two unrelated events are detected within the coincidence.213

This could happen when two photons from separate annihilations are recorded within the214

CW. The amount of random coincidences increases linearly with the CW length. Addition-215

ally, the rate at which random events are detected in coincidence, R, is proportional to the216

detection rate between two independent sections of the detector, S, and the CW 2τ , shown217

in Equation 1.8 [125]. At high activities, random coincidences can comprise a large fraction218

of the detected coincidences. Additionally, there are also background counts which come219

from radiation outside of the FOV (such as cosimc rays) or from noise in the electronics.220

mRandom = 2τS1S2 (1.8)

The systems used for PEPT come in a variety of shapes and sizes, but the most221

common geometries are rings and opposed parallel planes. Rings provide the best geometric222

efficiency, but dual-headed geometries are better for their flexibility in accommodating ex-223

periments. Some examples of these devices are the ADAC Forte, the Large Modular Array224

(LaMA), and SuperPEPT detector systems at the University of Birmingham [103, 72, 39].225

In addition, the Siemens Inveon, the Siemens ECAT EXACT HR+ and Siemens Truepoint,226

and the Siemens ECAT EXACT3D and ADAC Vertex are more examples of PEPT systems227

[139, 73, 50, 14, 136, 9].228
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1.4.3 PEPT Algorithms229

There are a number of PEPT algorithms, all of which use different approaches to locate230

a tracer. The first PEPT algorithm was the Birmingham Method [100]. This is still the231

most widely used PEPT algorithm. However, in the nearly 30 years since its inception,232

other algorithms have been developed which take advantage of machine learning (PEPT-233

ML) or Bayesian statistics through expectation maximisation (PEPT-EM) [91, 82]. A brief234

description of these and other algorithms can be found in Section 3.2. In this section, the235

Birmingham Method PEPT algorithm, which is the original PEPT algorithm and most236

widely used, will be discussed along with general considerations for PEPT algorithms.237

The Birmingham Method’s core assumption is that in a sample of LoRs, there will be238

a fraction of LoRs which do not lead to the tracer. If these corrupted LoRs are removed from239

the sample, then the remaining LoRs can be used by finding the point in three-dimensional240

space which minimises the distance to the LoRs [100]. This is achieved by first locating241

an initial minimum distance point (MDP) using all LoRs in the sample. Then, individual242

LoRs are iteratively removed until only a user-specified fraction remains. The lines which243

are removed are the lines furthest from the MDP. The squared minimum distance from a244

given point, (x, y, z) to a line can be found using Equation 1.9, where r2 is the scalar length245

of the LoR and x12 is the distance between the two ends of a given LoR in the x-axis and246

x2 is the x-coordinate of the LoR. The total distance, D, between a point and the LoRs in a247

sample can be found using Equation 1.10. The Birmingham Method is illustrated in Figure248

1.4.249
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δ2 =
[(x− x2)z12 − (z − z2)x12]

2

r2

+
[(y − y2)x12 − (x− x2)y12]

2

r2

+
[(z − z2)y12 − (y − y2)z12]

2

r2
(1.9)

D =

√√√√ 1

N

N∑

i=0

δi (1.10)

Figure 1.4: The Birmingham Method: (a) The MDP is calculated using all of the LoRs in a

sample. (b) The MDP is recalculated after removing the corrupted LoRs.

The point which minimises D is thus the global MDP. There are two parameters250

that must be set by the user when using the Birmingham Methods, N , the number of LoRs251

in each initial sample, and, f , the fraction of remaining LoRs used to locate the tracer.252

Determining the optimal value of these parameters is non-trivial and will be discussed in253

more detail in Chapter 6. However, general rules can be applied to PEPT data sets. First,254

the sample size of LoRs should be kept reasonably small in comparison with the tracer255

velocity. Ideally, during the sample, the tracer should only move a small distance, roughly256
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comparable to the position uncertainty of the measurement, such that Equation 1.11 holds,257

where w is an experimentally measured PEPT resolution of the detector system, and v is258

the tracer velocity. If N is substituted for the LoR acquisition rate, R, and multiplied by259

the time between the first and last LoR, ∆t, then by rearranging the terms, ∆t can be found260

in Equation 1.12261

v∆t =
w√
fN

(1.11)

∆t =

[
w2

v2fR

] 1
3

(1.12)

N = R∆t = f
−1
3

[
Rw

v

] 2
3

(1.13)

However, in general, the tracer velocity is unknown, and f is dependent on a complex262

relationship between the tracer activity, its position, and scattering of gamma rays [100].263

Due to this, it is often easier to conservatively estimate the parameters and apply them264

uniformly throughout the data set, even if they are non-optimal [100, 18].265

There are two things that are important in regards to the performance of PEPT266

algorithms: (1) locating the tracer or tracers accurately, and (2) locating them often [149].267

These are often described as spatial and temporal resolution. Sometimes a combined metric268

of spatiotemporal resolution is used to convey the performance of an algorithm [149]. Spatial269

resolution is measured in terms of the distance that the PEPT located tracer is, on average,270

away from the tracer’s actual location, measured through Equation 1.14. However, the real271

position of the tracer cannot be known absolutely in real experiments. One way this is272

avoided is to use a stationary tracer, find its mean position with a PEPT algorithm, and273

then compute the standard deviation of the instantaneous positions. This is often termed the274
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uncertainty and calculated using Equations 1.15 and 1.16, where χ = x, y, z. It is important275

to understand which metric is being used when comparing different algorithms.276

ε̄spatial =
1

N

N∑

i=1

√
(xreal − xexp)2 + (yreal − yexp)2 + (zreal − zexp)2 (1.14)

σχ =

√
Σ(χ− χ̄)2

N
(1.15)

σspatial =
√

σ2
x + σ2

y + σ2
z (1.16)

Temporal resolution is a measure of how often the tracer can be detected. This is277

limited by the acquisition rate of LoRs and how many LoRs are needed per sample to locate278

the tracer. A typical data rate for the ADAC Forte PEPT detector system is approximately279

20,000 LoRs per second, or 20 kHz [103, 44]. When 100 LoRs are used per sample, this280

equates to a temporal resolution of around 200 locations per second or 200 Hz. Since the281

intervals between LoRs are variable, the sensitivity of the PEPT detector system changes282

as a function of the tracer position, and the activity of the tracer decays, it is easiest to283

calculate an average temporal resolution during an experiment [44, 149]. In this work,284

temporal resolution is calculated following Equations 1.17 and 1.18, where C is the number285

of LoRs collected during an experiment and texp is the length of the experiment in seconds.286

τtemporal =
Nlocations

texp
(1.17)

Nlocations = C/NLoRs (1.18)
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With regard to the spatial and temporal resolution of a PEPT algorithm, this is287

dependent on the sample size of LoRs [149]. For stationary tracers, larger sample sizes288

increase the spatial resolution since there is more information about where the tracer is289

located, with error decreasing for static tracers proportionally to the inverse square root, i.e.290

the standard error. Conversely, with larger sample sizes the temporal resolution is decreased291

since fewer tracer locations can be produced. The trade-off between spatial and temporal292

resolution is well defined, and shown in Figure 1.5, and can be stated as the spatial resolution,293

σ, being proportional to the inverse of the square root of the number of LoRs, NLoRs, in the294

sample, following Equation 1.19, [100, 103, 97]. Combining these two metrics is useful for295

characterising the performance of a PEPT algorithm since the influence of using different296

numbers of LoRs, and thus the effect this has on the temporal resolution can be removed. To297

combine the two metrics, the first important insight is that σspatial multiplied by the
√
NLoRs298

equals a constant, shown in Equation 1.20. Then, rearranging the terms of Equation 1.17 to299

solve for NLoRs, this can be substituted into Equation 1.20 to form Equation 1.22 where the300

constant is now ξ, the spatial resolution.301

σspatial ∝
1√

NLoRs

(1.19)

1 ∝ σspatial

√
NLoRs (1.20)

NLoRs =
C

texpτtemporal

(1.21)

ξ = σspatial

√
C

texpτtemporal

(1.22)
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Figure 1.5: (a) The spatial resolution as a function of the number of LoRs used per location

for the Birmingham Method with a stationary tracer plotted on a linear scale. (b) The

spatial resolution as a function of the number of LoRs used per location for the Birmingham

Method with a stationary tracer plotted on a log-log scale [148].

The outputs of a PEPT algorithm are the time, position, and optionally other quan-302

tities such as velocity or estimated spatial error [148]. These can be manipulated or further303

processed to study the dynamics of a system. For example, consider a tracer inside a com-304

mon household blender. During the experiment, the tracer will circulate with a constantly305

changing velocity. After using a PEPT algorithm, the tracer trajectory can be visualised306

either as a time-series plot with each position component plotted against time or as a fully307

three-dimensional plot. Examples of a time-series plot and a three-dimensional plot are308

shown in Figures 1.6 and 1.7, respectively. From the plots, there is evidence of periodic309

motion of the tracer, suggesting the presence of circulatory flow in the system, as would be310

expected for a blender.311
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Figure 1.6: An example of a time-series plot showing a tracer moving through a blender

coloured by time.

1.4.4 Post-Processing PEPT Trajectories312

Once a PEPT experiment is finished and tracer trajectories produced, the next step is to313

post-process the trajectories in order to extract useful information about the experimental314

system [149]. A great depth and diversity of information can be extracted from experiments.315

Trajectories themselves are fully three-dimensional, time-dependent, Lagrangian information316

[147]. However, most of the useful information produced by PEPT experiments is the time-317

averaged behaviour of tracers, whether it be one, two, or three-dimensional, including the318

occupancy of tracers, velocity and acceleration fields, granular temperature, and many other319

types of measurements [148, 46].320

Perhaps the easiest information extracted from a PEPT experiment is the occupancy321

[143, 148]. In other words, the fraction of the total time that the tracer spends in a particular322

volume. To perform an occupancy measurement, the volume of the system is divided into323

cells which define areas of the system of interest [148]. From the trajectory, it can be observed324
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Figure 1.7: An example of a three-dimensional plot showing a tracer moving through a

blender coloured by time.

when the tracer enters and exits a volume. This metric of occupancy can be calculated using325

Equation 1.23, where Oi is the occupancy in a particular volume, Nlocations is the number of326

times the tracer was detected in that volume, and Vi is the volume [148].327

Oi =
Nlocations

Vi

(1.23)

Simply counting the number of times a tracer is detected within an area of the system328

is a crude way to calculate the occupancy and is not a valid approach to the problem. This is329

because the time intervals between successive locations in a PEPT tracer’s trajectory are not330

always the same size due to the variable detection rate of LoRs. This depends on the position331
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of the tracer, the sensitivity of the PEPT detector system, the amount of attenuation that332

occurs, and the radioactive half-life of the positron-emitting isotope [44]. In order to improve333

the occupancy, the time that the tracer spends in each volume must be taken into account334

on a location-by-location basis using Equation 1.24.335

Oi =
1

Texp

Nlocations∑

i=0

Nlocationsi∆ti
Vi

(1.24)

Applying this occupancy method to the tracer in a blender, mentioned in Section336

1.4.3, the one-dimensional vertical occupancy profile can be produced and is shown in Figure337

1.8. By looking at the history of the trajectory over a relatively long time, statistics on the338

occupancy can be collected. The amount of time needed to run an experiment varies by the339

size of the volume and the frequency that the tracer enters and exits the volume [144]. A340

discussion on the time needed to run a particular experiment can be found in Chapter 5.341

Moving beyond spatial distributions, another type of information that is useful to342

extract from a PEPT experiment is the velocity field [148]. The crudest, yet simplest, way343

to calculate instantaneous velocity is by using the central finite difference method. This is344

done by calculating the distance between points on either side of the tracer position and then345

dividing by the time to travel that distance. The number of points, or steps, on either side,346

can be adjusted depending on how long it is desired to average over, but typically one or347

two steps on either side are enough [148]. The central finite difference method is presented348

in Equation 1.25 for individual velocity components. The velocity components can also be349

combined to produce an instantaneous velocity magnitude through Equation 1.26.350

vxi
=

1

2

[
(xi − xi−1)

(ti − ti−1)
+

(xi+1 − xi)

(ti+1 − ti)

]
(1.25)
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Figure 1.8: An example of a one-dimensional occupancy plot for a tracer in a blender.

vmagi =
√
v2xi

+ v2yi + v2zi (1.26)

By applying this method to the blender example previously used, a velocity magnitude351

field in the x-axis and z-axis can be produced, also known as a depth-averaged velocity field.352

To do this, the velocity field in each direction need to be computed, and then combined in353

a separate step. Similar to the occupancy plot, the system needs to be broken down into354

different volume elements such that the instantaneous velocities in these elements can be355
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averaged. In this example, a grid of 30 x 30 cells is used with a cell size of approximately 3.5356

mm. The instantaneous velocity magnitudes in each cell are averaged following Equation357

1.27 and a velocity magnitude field is produced in Figure 1.9. As expected, the velocities358

are highest in the centre of the system since this is where the rotating blades are located.359

vi =
1

Nlocations

Nlocations∑

i=0

vmagi (1.27)

Figure 1.9: An example of a top-down view of a two-dimensional velocity field for a tracer

in a blender.

1.5 Simulating PEPT360

This section will cover the types of simulation and specific simulation software which will361

be used in later Chapters. Two main simulation approaches are used (1) The Monte Carlo362

24



General Introduction

(MC) method for simulating radioactive sources and the radiation transport, then (2) the363

discrete element method (DEM) to simulate trajectories of granular media.364

1.5.1 The Monte Carlo Method365

MC is a general method of modelling stochastic events and generating probability distribu-366

tions from a large number of random events [86]. MC methods are typically used in problems367

such as radiation transport when it is too complex to use deterministic or analytical meth-368

ods [61]. For example, it is relatively easy to determine the intensity of a perfectly parallel369

beam of mono-energetic photons passing through an infinitely wide but finitely thick plate370

of uniform material using the Beer-Lambert Law, shown in Equation 1.28 [10]. However, it371

is much more complex to model radiation transport inside a nuclear reactor. For these situ-372

ations, and indeed, PEPT experiments, to determine the probability of particles interacting373

with an object like a radiation detector it is necessary to use MC methods [112].374

I = I0e
−µδx (1.28)

In essence, to use MC to model a radiation transport problem, first a source with a375

spatial distribution (point-like, linear, planar, or volumetric) is defined which emits particles376

at specified energies and angular distributions. Then a single particle is generated at a ran-377

dom position within the source and assigned random energy, momentum, and angle from the378

distributions prescribed. Next, the particle is simulated to move a small increment relative379

to the spatial and temporal scale of the particular system and physics. At the end of the380

step, the chance of the particle interacting is calculated using properties which depend on the381

particular materials the particle passed through during the step. Next, from the previously382

calculated probability of interaction, it is determined whether or not an interaction actually383
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occurs. If an interaction occurs, the particle’s energy and momentum are recalculated. If an384

interaction does not occur, the particle’s energy and momentum stay the same. These steps385

are repeated for the single particle until it either is absorbed, exits the simulated system,386

or reaches an energy threshold beyond which the particle is no longer considered. As new387

particles are then created and their interaction history is recorded, the probability distribu-388

tion of interactions becomes well-defined. One benefit of MC simulations is that they can be389

made arbitrarily accurate by increasing the number of particles simulated [76]. The number390

of particles that need to be simulated in order to develop good statistics about the interac-391

tions occurring in a particular system varies depending on the system size, the number of392

radioactive sources and the type of radiation to name a few factors [76].393

1.5.2 Geant4 Application for Tomographic Emission (GATE)394

In this work, GATE v9.1 is used to run MC simulations of radiation transport and also,395

crucially, to emulate the response of the PEPT detector to the interactions occurring within396

the scintillation crystal [56]. GATE is built on top of the Geant4 toolkit which is a general397

MC radiation transport code [1]. Geant4 is primarily used in applications of high energy398

physics, nuclear experiments, accelerator, and space physics. This software is written in399

C++ and is open-source. The novel developments of GATE are the introduction of a user-400

friendly scripting language which makes building a detector system much easier and also401

introduces expanded functionality to use the recorded interactions of particles to mimic the402

detector pulse-processing to generate a realistic response [62].403

GATE was created by the medical physics community to address the need for an404

easy-to-use MC simulation software which was flexible enough to model the complexities of405

medical detector systems and also have the user support and geometry visualisation utilities406

needed to ensure the simulations were accurate [55]. While other MC simulation software407
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exists, each has its own drawbacks which ultimately result in them not being detailed or408

flexible enough to allow realistic simulations [31, 121, 115]. GATE has been used to model409

a wide range of different detector systems such as PET systems like the Phillips Vereos410

and General Electric Discovery Single Photon Emission Computed Tomography (SPECT)411

systems like the Philips AXIS and High-Resolution Animal SPECT Imaging System, and412

also multi-modal imaging platforms like the Siemens Inveon pre-clinical Scanner [113, 118,413

123, 131, 74]. To validate GATE models of these systems, typically the National Electrical414

Manufacturers Association (NEMA) standards for characterising system performance are415

used [90].416

As a side effect of the research that has gone into producing MC simulation software,417

the tools have become powerful and flexible enough to be used for research not originally418

considered. The software GATE v9.1 is used in this work to model both detector systems419

designed for medical imaging which have now been adapted for use in PEPT experiments,420

like the ADAC Forte and Siemens Inveon [44, 74], as well as new detector systems which421

were designed for PEPT, such as the LaMA which is composed of modular boxes of detector422

which can be arranged around an experiment [39, 97]. In addition to the detectors, exper-423

imental systems studied using PEPT, such as blenders, rotating drums, and mills can also424

be recreated using GATE and PEPT tracers can be modelled and movement representative425

of their behaviour in these systems prescribed [46, 47].426

1.6 Building a GATE Model of a PEPT Detector System427

Detectors and experimental systems used for PEPT are complex and often have intricate428

geometric components, several types of radiation transport physics to consider, and multi-429

stage pulse-processing chains which all must be captured to a high degree of fidelity to430
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ensure the synthetic data produced by the model are as close to reality as possible [56, 62,431

36]. However, by using the tools provided by GATE it is possible to create a digital twin432

of a detector system and experiment [115]. In this Section, the process of developing a433

Monte Carlo detector and models of the experiments and PEPT tracers using GATE v9.1,434

examples of existing detector models, and considerations when calibrating a GATE model435

to match experimental results will be discussed. There are six main steps to setting up a436

GATE simulation: (1) defining the geometries for the detector and experiment, (2) defining437

the source, (3) setting-up the physical processes of radiation interactions with matter, (4)438

describing the detector pulse-processing chain, (5) assigning the data output format, (6) and439

prescribing the acquisition settings.440

1.6.1 Geometry441

The PEPT technique is applicable to a wide range of systems and thus there is a wide442

variation in the size of the systems studied, types of tracers used, and behaviour of the443

tracers [148]. Therefore, methods for replicating the complex geometry of these systems, the444

different types of tracers used, and the PEPT tracer trajectories are needed. Commonly used445

PEPT detectors can be arranged in rings, parallel planes (dual-headed), or modular, shown446

in Figure 1.10 [97]. Similarly, PEPT experiments can be as simple as a cylindrical tank filled447

with water or as complex as a dynamic flowing granular system in which the volume is a448

constantly evolving mix of voids and dense regions [18, 87]. Illustrations of these systems449

are shown in Figure 1.11.450

The geometry creation commands for GATE use the same core functions as Geant4,451

but GATE makes them easier to use through the GATE macro language and introduces452

several convenience functions like geometry repeaters [56]. The list of built-in analytical453

volumes includes boxes, spheres, cylinders, cones, ellipsoids, hexagonal prisms, and wedges454
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Figure 1.10: Illustrations of a (a) cylindrical ring, (b) parallel planes, and (c) modular PEPT

detector system.

Figure 1.11: An example of a (a) fluidised bed, (b) stirred tank, and (c) rotating drum.

[56]. To use an analytical geometry, the type of geometry must be selected and values for the455

parameters of the geometry prescribed. For instance, in order to create a sphere, only the456

radius needs to be defined. However, partial spheres can be made by describing the radius457

along with the angular span that the partial sphere inhabits. Similarly, boxes are created by458

defining the side lengths in the x, y, and z directions. Examples of some analytical geometries459

are shown in Figure 1.12.460
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Figure 1.12: A box, sphere, and cone in the field of view of the ADAC Forte.

Additionally, and usefully, there is also an option to import a volume using a tessel-461

lated list of vertices, for example, a stereolithography file. Tessellated volumes are created462

by using groups of three or more vertices to form a surface, then the surfaces are joined to463

form a coherent volume. Each surface can be a different size and joined to other surfaces464

which share two or more common vertices. This means that essentially any shape can be465

created by a tessellated volume and used in a GATE simulation. However, one drawback466

of a tessellated volume is that only one material can be used per volume. An example of a467

tessellated geometry is shown in Figure 1.13.468

Further, volumes can also be imported as voxelised volumes. Voxels are three-469

dimensional pixels, usually cube-shaped, and each voxel can be comprised of a different470

material. This allows for complex geometries with varied material properties to be imported471
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Figure 1.13: A tessellated volume of the coronavirus in the field of view of the ADAC Forte.

as a single volume. The use of voxelised geometries requires a three-dimensional array with472

the voxel values and an additional file called a ‘range translator’ which maps the voxel values473

to GATE materials. Originally, voxelised geometries were developed so that realistic rep-474

resentations of human or animal anatomies could be used in GATE simulations. However,475

voxelised geometries are also useful for capturing the dynamics of flowing granular systems476

if the voxel volume is time-averaged or updated as the GATE simulation progresses. An477

example of a voxelised volume is shown in Figure 1.14.478

The first geometry created in a simulation is the ‘world’, which defines the volume in479

which particles can be tracked. The world is a box centred at the origin. For all particles,480

tracking stops when they escape the world. The world can be any size but should be large481

enough to include all volumes of the simulation while not being excessively large, with ex-482

cessively large being defined as being more than an order of magnitude of space in the model483
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Figure 1.14: A slice of voxelised human head in the field of view of the ADAC Forte.

not containing any volumes of interest [56]. Excessively large world volumes will not affect484

the results of the simulations, but will slow them down since the paths of particles must485

be simulated until they reach the edge of the volume, adding additional computation. To486

define a material, the GATE materials database is used which includes a list of already de-487

fined materials common for simulation, such as sodium iodide (NaI), a common scintillation488

crystal, but can also be updated with custom-made materials [89]. In general, the material489

name must be defined and prescribed a density, and then the components of the material can490

be defined with their cross-sections for interacting with particles calculated from a reference491

table [129].492

Once the world is created, to start building a detector, one of the detector architectures493

must be selected [56]. These architectures describe how many ‘levels’ are expected in the494

geometry and what type of data will ultimately be produced at the end of the simulation.495

The levels of geometry are templates used to help modellers set up the detector geometry496
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and include common detector architectures such as cylindrical PET systems or CT systems,497

but also allow for custom architectures [75]. In the cylindrical PET system, there are four498

levels, with the largest system unit, termed a ‘rsector’: rsectors, modules, submodules, and499

crystals. When considering a typical cylindrical PET system, the rsector corresponds to a500

group of block detectors mounted to the ring in a large panel [57]. The module would be an501

individual block detector in this panel. The submodule would be considered the scintillation502

crystals which are optically coupled to PMTs [36]. Finally, each individual crystal element503

would be the crystal level. Using this architecture makes it relatively simple to use one of504

GATE’s repeater functions to populate the ring with rsectors using a ring repeater, fill in505

each rsector with block detector modules using an array repeater, and fill in each submodule506

with individual crystal elements. In this way, only one rsector and its sub-layers need to be507

fully described and can be copied to create a full detector system geometry. Additionally,508

with the same geometry commands, an experimental system, such as a mill, rotating drum,509

or fluidised bed can be replicated [47, 46, 148].510

1.6.2 Sources and Tracer Motion511

With the detector and experimental geometries defined, sources can now be added to the512

simulation which emulates PEPT tracers. In GATE, a source is defined as any volume which513

emits particles. The types of sources used to model PEPT experiments are positron-emitting514

sources and back-to-back gamma-ray sources [56]. In addition to the source definition,515

movement of the source volume can also be emulated by updating the source definition each516

time step. For each time step, all volumes are static but by making the time step small in517

relation to the source velocity, the appearance of movement is produced similar to how each518

frame of a movie is static, but at high enough frame rates changes between frames appear519

smooth.520
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To model a source, the same geometric commands used in Section 1.6.1 can be used in521

addition to new commands to prescribe the type of particles emitted, their energy, angular522

distribution, activity, and any movement of the source. The simplest source which is similar523

to a PEPT tracer is a point source which emits back-to-back 511 keV gamma rays [148]. To524

do this the particle type is set to a ‘gamma’ source. Next, the emission type is prescribed525

as ‘backtoback’ as this is already included in GATE and by default produces two particles526

opposed by 180°. However, positron annihilation does not produce two gamma rays which527

are exactly 180°, there is always some accolinearity caused by the conservation of momen-528

tum when electron and positron are not at rest [88]. To account for this, acollinearity can529

be prescribed which captures this real behaviour. Typically, the accolinearity in positron530

annihilations observed in PEPT experiments is approximately ±0.5°[149]. Next, the energy531

of the gamma rays is set to 511 keV to match that produced from positron annihilation532

and the angular distribution is defined as to isotropic to have equal probability of emission533

for all angles. Further, the shape of the source can be either a point, line, plane (circle,534

annulus, ellipsoid, square, or rectangle), or volumetric source (sphere, ellipsoid, cylinder, or535

parallelepiped) [56]. For sources other than a point source, each emission will occur at a536

random position within the source volume. After this, the activity of the source can be set537

and the half-life of the isotopes used prescribed, which will determine how many emissions538

are produced per unit of time and the decay in activity as the simulation progresses. The539

actual number of emissions per unit of time varies based on a Poisson distribution [56]. How-540

ever, the mean is the source activity. Finally, the source can be placed at any user-specified541

position within the world volume.542

While back-to-back gamma point sources are simple approximations, real PEPT trac-543

ers have a non-negligible volume and positron range [148]. Thus, defining a volumetric source544

which emits positrons is a more accurate source since it takes into account the real tracer size545

and positron range. In this case, a 1 mm diameter spherical source will be modelled which546
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has an energy spectrum equivalent to that of fluorine-18. To create this source, most of the547

commands are the same, but instead of setting the particle to gamma, a positron source548

is selected and the type of source is set to a volumetric source instead of a point source.549

Fluorine-18 emits positrons with a beta energy spectrum characteristic of fluorine-18 and is550

defined by a maximum energy [88]. GATE already contains the beta energy spectrum for551

fluorine-18 which is used in this example, but a user-defined spectrum could also be added552

which contains a list of particle energies and their probability of emission.553

It is often the case that PEPT tracers move during the experiment. Movement can554

be described as either simple analytical trajectories such as when the tracer is attached to555

a rotating object, creating periodic motion, or described by a more complex trajectory, as556

would be expected of real tracers inside flowing granular systems [47, 46]. In simple analytical557

cases, GATE provides a way to prescribe this motion using either constant velocities, constant558

rotation about an axis, or sinusoidal motion along one axis. To translate a source with559

constant velocity only the velocity vector needs to be defined. For rotation, the angular560

velocity and axis of rotation need to be defined. For sinusoidal motion, the amplitude,561

frequency, and initial phase need to be defined.562

Except in rare instances, tracer motion does not follow simple analytical trajectories.563

For these cases, GATE has the ability to read user-input files describing a trajectory as a564

series of times, positions, and rotations using the ‘Generic Move’ command. In this way, any565

arbitrary tracer trajectory can be simulated [46]. Importantly, it is the user’s responsibility566

to ensure that the time steps of the file and the time steps of the simulation match up567

such that each new position in the file corresponds to a unique time step. Otherwise, if the568

simulation time step is larger than the trajectory file time steps, some positions in the file will569

not be used since GATE only applies the position which is closest in time to the simulated570

time step. To generate this trajectory file, either user-generated code, a trajectory extracted571

from a real PEPT experiment, or a trajectory file produced from a DEM simulation could572
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be used. Using DEM to produce a trajectory file to be read by GATE ensures a trajectory573

which behaves as close as possible to a real tracer [46]. This will be explored more in-depth574

in Chapter 5, where it will be shown how a DEM simulation of a rotating drum can be575

combined with a simulated PEPT experiment to investigate the limitations of the PEPT576

technique and better understand the trajectory data produced by a PEPT algorithm in577

comparison to the prescribed trajectory. An example of trajectory extracted from a DEM578

simulation to be used with GATE is shown in Figure 1.15.579

Figure 1.15: An example of a realistic tracer trajectory extracted from a DEM simulation

which can be used to move a source in GATE [46].

1.6.3 Physical Processes and Particle Interactions580

Once the geometry is designed, the next step is to set up the physics. For a radiation trans-581

port problem, such as would be encountered when simulating a positron-emitting source, the582
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annihilation of positrons with electrons, and the transport of gamma rays through material583

several physics processes need to be considered which are electromagnetic in nature. GATE584

also has the capability to simulate hadronic process which would be needed if proton or neu-585

tron sources were used, as opposed to leptons such as positrons and electrons [1]. However,586

hadrons are not a factor in any PEPT experiments to date and will not be discussed here. To587

simulate the electromagnetic interaction of particles with matter, one of the most important588

things to consider is the mean free path of a process, λ, which can be given in terms of589

the total cross section for interacting through any of the possible processes, σ(Zi, E), as a590

function of the particle energy, E, in Equation 1.29, where ni is the number density of the591

atoms, and Zi is the number of protons in the atom.592

λ(E) =

(∑

i

[niσ(Zi, E)]

)−1

(1.29)

The mean free paths for each material are tabulated by GATE at the beginning of593

the simulation using cross-section libraries so that the step size used to progress a particle594

through a material is much smaller than the mean free path. For photons, the cross-section595

library used is the Evaluated Photon Data Library, 1997 [24]. For electrons and positrons,596

the cross-section library used is the Evaluated Electrons Data Library [108]. Physics pro-597

cesses are imported through GATE’s built-in physics lists. These are used to ensure that all598

the relevant physics processes are added to the simulation. However, the ability to import599

processes manually is also included for debugging purposes. For most work, including this600

work, the standard electromagnetic process is sufficient, which is effective between 1 keV601

and 100 TeV. Since the highest energies of gamma rays are 511 keV and the highest positron602

energies are in the MeV range, this model is appropriate. The electromagnetic processes this603

covers, but is not limited to, are the photoelectric effect, Compton scattering, Rayleigh scat-604

tering, bremsstrahlung, positron and electron annihilation, and single and multiple Coulomb605

scattering [1, 65].606
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1.6.4 Pulse-Processing607

Once the physics processes have been set up and the simulation initialised, the next step608

is to define the pulse-processing chain. This step determines how particles that interact609

with the detector are ultimately recorded by applying filters and flow logic to the stream610

of data [56, 62, 36]. The pulse-processing chain in GATE is referred to as the ‘digitizer’611

since it describes how particle interactions are converted into a digital signal which can be612

manipulated [62]. The digitizer is an important aspect of GATE simulations because it is613

responsible for converting the history of particle interactions into an output analogous to614

what would be produced by a real detector system [115]. There are a number of aspects of615

real detector systems which must be factored into the digitizer model. Generally, these can616

be considered as three separate categories: (1) limitations in the resolution of the detector617

response, (2) the readout scheme of the detector, and (3) the trigger logic for pulse-processing.618

When a particle is recorded as interacting with the detector in a GATE simulation,619

the time, position and energy of the particle are known absolutely, but in real systems, there620

always exists some uncertainty. This uncertainty results in a degradation of the temporal,621

spatial, or energy resolution and is caused by a variety of factors such as the timing counter622

frequency, crystal size, and crystal light output [88, 20]. However, in GATE, the root causes of623

uncertainty do not need to be modelled explicitly, but can rather be treated as the lump sum624

of many causes and the time, spatial, and energy resolutions calibrated to match experimental625

results [62]. One way to achieve this is by Gaussian blurring of the particle’s information. A626

Gaussian function, in this sense, blur the information from its simulated value by an amount627

within the probability density function as defined by a characteristic parameter σ, shown628

in Equation 1.30. A Gaussian blur is an ideal way to mimic the behaviour of real systems629

since this describes the probability of recording a value that is the sum of many independent630

processes, such as measurement errors [79].631
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g(x) =
1

σ
√
2π

exp−
(
x− µ

2σ

)
(1.30)

Additionally, the digitizer needs to capture the readout scheme of the detector which632

refers to how hits are grouped into pulses. Consider a block detector which has many crystal633

elements which are connected to four PMTs. The role of PMTs is to convert the scintillation634

light into a usable signal and locate which crystal an interaction occurred inside. If only635

one scintillation crystal produces light, the job of the PMT is relatively straightforward in636

figuring out where the interaction occurred using an Anger logic positioning algorithm [5].637

However, if two interactions in two separate crystals produce light at approximately the same638

time, the detector will only produce one signal with the combined light output used to assign639

the most likely crystal interaction through Anger logic [5]. Thus, in GATE simulations, it640

must be defined how to group pulses within crystals that are associated with each other and641

to define a time limit in which it is possible for two signals to ‘pile-up’ on one another. The642

readout policy is defined by using the level depth of the volumes, such that, as previously643

mentioned when describing the detector system architecture, the readout is applied only644

within groups of crystals which are a part of the same block detector or similar structure.645

Further, the time limit in which signals can pile-up on one another is set by defining a pile-up646

time, typically on the order of nanoseconds [115].647

GATE also allows users to describe how pulses are treated by trigger logic. In the648

types of detector systems used for PEPT, only a certain subset of pulses contain useful649

information. Thus not every pulse should be recorded. Moreover, when a pulse triggers the650

detector electronics, there is a period during which the segment of the detector recording the651

pulse must be reset so that it is ready to record a new pulse [134]. Further, to form LoRs652

out of the recorded pulses, they must also meet certain criteria. Of the pulses generated by653

the readout, it is known that the gamma rays produced by positron annihilation have an654

energy of 511 keV. If pulses have higher energies, they either are multiple rays piled-up on655
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one another or are generated by some other type of decay process [134]. In either case, these656

are not useful for PEPT and should be discarded. To do this, two filters are used: (1) energy657

thresholds and (2) energy windows.658

Energy thresholds can be thought of as a coarse filter in which if the light output of659

the scintillation crystal indicates that the energy of the pulse may be below the minimum660

energy threshold or above the maximum energy threshold, the detector does nothing and661

does not record the pulse [62]. On the other hand, if the pulse falls within these thresholds,662

a detector response is triggered and the pulse’s time, position, and energy are recorded.663

However, if the recorded pulse energy falls outside of a tighter energy window centred on664

511 keV, the recorded pulse is not considered for forming an LoR [62]. The values for the665

energy thresholds are detector specific. Generally, 100 keV and 1 MeV are typical values for666

lower and upper thresholds, respectively [115]. However, the energy windows are a function667

of the energy resolution of the detector [89]. The strongest factor in the energy resolution668

of the detector is the scintillation crystal material. Crystals which are composed of BGO669

typically have relatively poor energy resolution with a full-width half maximum of 50% at670

511 keV; NaI crystals are approximately 15%; and LSO crystals are approximately 5% [89].671

For the purposes of PEPT, all of the true LoRs are useful, even if there is a large fraction of672

corrupted LoRs detected [103]. This means that in practice, the energy windows can be set673

wide, typically 50% of the 511 keV photo-peak [103]. This is approximately ±127 keV, or a674

lower energy of 380 keV and an upper energy of 640 keV.675

If these criteria are met, the detector records the pulse. At this stage dead-time676

becomes important. Dead-time is the time spent by the detector during and after detection677

in which no new pulses can be recorded in that part of the detector [134]. Dead-time678

modelling is crucial for replicating the count-losses experienced by real detectors, and thus679

is an important part of the GATE model [62]. There are two main models for dead-time680

included in GATE, as mentioned in Section 1.4.2: (1) paralysable and (2) non-paralysable681
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[134]. The model names refer to the behaviour of the detector when new events interact in the682

scintillation crystal while dead-time is being experienced. In the paralysable model, shown683

in Equation 1.5, the dead-time is reset with each new interaction. In the non-paralysable684

model, shown in Equation 1.6, the dead-time is fixed after which a new pulse can be recorded.685

Of the original events that interacted with the crystal, only the ones which make it through686

this stage are passed on to further pulse-processing stages to form coincidences [56].687

To form a coincidence in GATE, a coincidence processor must be defined. First, a688

CW must be set such that only two pulses which are detected within a short amount of time689

can be paired. As shown in Equation 1.8, the rate of random coincidences is proportional to690

the length of the CW, thus it should be as short as possible, while still being long enough691

to capture the majority of true coincidences [125]. CWs are a function of the detector692

electronics, typically their length is similar to the time resolution, and are usually a few693

nanoseconds to hundreds of pico-seconds in modern PET systems [103, 113]. To form a694

coincidence, the two singles must also come from separate regions of the detector system.695

It would be pointless to form a coincidence between two adjacent block detectors, as this696

coincidence is most likely false. To fix this, geometric constraints are set to ensure the697

two events are far enough away from each other to potentially be a true coincidence. In698

GATE, this is done by setting a minimum rsector difference, which excludes LoRs from699

being formed under this threshold. Moreover, in real experiments, it is often the case that700

more than two events meet the criteria to become a coincidence. Multiple coincidences can701

also be formed when more than two events are recorded in the CW. When this happens, a702

multiple coincidence policy is needed to describe how the real system and GATE model will703

treat these cases. With GATE there are several options, but the most common policy is to704

form a coincidence with the pair of events that have the energy closest to 511 keV.705

In parallel to the coincidences formed during this stage of the digitizer, which are706

termed ‘prompt’ coincidences, an additional set of coincidences are formed by using a CW707
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that is the same length as the original window, but offset in time by an amount such that no708

coincidences formed in this ‘delayed’ line could have come from positron annihilation. In real709

detector systems, this is done to provide an estimate of the random coincidences which could710

be subtracted from tomographic PET images but does not benefit PEPT measurements [8].711

The result is two sets of coincidences that must be merged to create ‘multiplexed coincidences’712

containing both sets. During this merger, an additional, optional, non-paralysable dead-time713

model can be added which mimics the time needed to write each coincidence to file and a data714

buffer can be added if the detector system uses a buffer to temporarily cache information715

about the LoRs to prevent data from being lost while other data is being written [62]. An716

example of a digitizer model is shown in Figure 1.16.717

Figure 1.16: An example of the typical digitizer model used in PEPT detectors [45].
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1.6.5 Data Output Format and Acquisition Settings718

The data output and acquisition settings are key to reproducing realistic synthetic data.719

These are responsible for ensuring that the end result of the simulation is comparable to720

that of a real detector and that the size of the time step is small enough to resolve the721

motion of the tracer. These settings include the type of information which is recorded, data722

storage considerations, the run time of the simulation, and the size of the time step.723

The data output by a real detector system, like the ADAC Forte, are LoRs in a time-724

sorted list [103]. Each LoR is a line in the list and the columns contain a time step and725

the x, y, and z positions for both ends of the LoR. An example of a list containing three726

LoRs is shown in Table 1.2 and illustrated in Figure 1.17. However, in GATE, much more727

information can be generated alongside this. When comparing experiments to simulations,728

the equivalent data is always given to a PEPT algorithm, but GATE can also record the729

particle IDs for each event, the number of scatterings that occurred before the particle was730

detected, which volumes the scatterings occurred in, and the ID of volume in which the731

particles were created. This is useful information which allows users to better understand732

the experimental data. For example, when examining the LoRs, the true, scattered, and733

random fraction contributions can be determined directly without the use of the image734

processing techniques which are needed in real experiments where this information is not735

known [47]. Additionally, the volume IDs where a particle was emitted can be useful when736

using multiple tracers in a simulated PEPT experiment so as to verify that a PEPT algorithm737

is appropriately using the correct LoRs to locate each tracer without using LoRs from other738

tracers in the FOV.739

As for the acquisition settings, these are the parameters which prescribe how long to740

run the simulation and how short the time step should be. The activity of the particle is741

calculated at the beginning of the time step, thus the time step should not be long relative742
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Table 1.2: An example of a list of LoRs.

t1 x1 y1 z1 x2 y2 z2

1 100 100 -250 -100 -100 250

2 0 -100 -250 0 100 250

3 50 0 -250 -50 0 250

Figure 1.17: The LoRs from Table 1.2 illustrated.

to the decay constant of the isotope used in the experiment [56]. A good rule of thumb is743

to keep the change in activity less than 1%, for fluorine-18 this is a maximum time step744

of 96 seconds and for carbon-11 this is 18 seconds. Additionally, if the tracer is moving,745

it is important to ensure that the time step is small in comparison to the tracer velocity.746

This ensures that the tracer motion appears smooth since during each time step all volumes747

are static. Ideally, the tracer should not move more than a tracer diameter per time step748
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[148, 97]. This means that when using a tracer with a diameter of 1 mm that is moving a749

maximum of 1000 mm/s, the time slice should not exceed 1 ms. Alternatively, to run times750

and time slices, the total number of particles emitted can be prescribed. This method is751

independent with respect to time and is typically only useful when a handful of particles are752

wanted for visualisation purposes.753

1.7 Existing Models of PEPT Detectors Systems754

In the years since GATE was first released, myriad detector models have been developed755

[115]. These were typically designed for medical applications [115]. However, these same756

systems can be used for PEPT experiments [97]. For PEPT experiments at Cape Town,757

South Africa the Siemens ECAT Exact HR+ and at Stanford University and the University758

of Tennessee the Siemens Inveon Pre-Clinical scanner have been used for PEPT experiments759

[18, 73]. For these detector systems, there also exist GATE models which can be used to760

better understand the detector performance and optimise experiments [57, 74].761

1.7.1 Siemens ECAT Exact HR+762

The ECAT Exact HR+ is a typical whole-body ring PET scanner like those typically found763

in hospitals [57]. Like other whole-body ring scanners, the ECAT offers high sensitivity and764

spatial resolution. The design of this system is four rings, with each ring having 72 block765

detectors, and each block detector having an 8 × 8 array of BGO crystals measuring 4.0 ×766

4.1 × 30 mm3, resulting in an 82.7 cm diameter ring and an axial FOV of 15.5 cm [57]. The767

FOV of the ECAT is useful for accommodating large PEPT experiments but is fairly limited768

in the axial direction. The measured energy resolution of the detector is approximately 25%.769

In practice, an energy window of 350–650 keV is used. In order to match the experimental770
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results for the count-rate response and function of activity a paralysable singles dead-time of771

5 µs per block is added. Additionally, random spatial blurring is added within each crystal772

element. While this digitizer model is not sophisticated, it still manages to capture the773

general response of the detector. In Figure 1.18, the detector geometry is visualised.774

Figure 1.18: The GATE model of the Siemens ECAT Exact HR+ [57].

1.7.2 Siemens Inveon Pre-Clinical Scanner775

The Siemens Inveon is a pre-clinical, small animal scanner which was designed such that new776

imaging treatments and novel PET imaging agents could be tested [81]. The main design777

difference between pre-clinical scanners and clinical whole-body PET scanners is a smaller778
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ring diameter and axial FOV. However, because of their smaller size, pre-clinical scanners779

have better sensitivity and spatial resolution than larger scanners [74]. This is an important780

advantage when using these devices for PEPT experiments because it means lower activity781

tracers can be used and higher spatial accuracy achieved [88]. The Inveon has been used for782

PEPT studies at Stanford University and the University of Tennessee for single-cell tracking783

and turbulent pipe flow measurements, respectively [140, 73]. These are two types of PEPT784

experiments that would be very difficult to conduct using larger scanners due to the low785

amount of activity that can be labelled onto a single cell and the temporal and spatial786

resolution needed to resolve turbulent fluctuations [70, 137].787

To facilitate pre-clinical imaging research, a GATE model of the Inveon was created788

and made freely available [74]. This model consists of 16 detector modules, with each module789

composed of four detector blocks. Each block has a 20 x 20 array of 1.59 mm × 1.59 mm ×790

10.00 mm LSO crystals. The overall system possesses 25,600 crystals in a 161 mm diameter791

ring with a 127 mm axial length. To accurately replicate the contribution from scattered792

LoRs, a back compartment is included in the model which adds the glass light guide, PMTs,793

electronics, and a ring of lead shielding to reduce background counts. The digitizer model794

closely follows a typical PET digitizer and prescribes an energy resolution of 14.6%, energy795

windows of 250-750 keV, a paralysable singles dead-time of 7 µs per block, and a coincidence796

window of 3.432 ns. In Figure 1.19 the detector geometry is visualised.797

1.8 Calibrating PEPT Detector System Models798

Once a GATE model is created, the digitizer model must be calibrated so that the synthetic799

data is realistic [56, 62, 36]. Before using a GATE model, it must be tested against real800

experimental data and shown to replicate the experiments to a reasonable degree. The cali-801
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Figure 1.19: The GATE model of the Siemens Inveon Pre-Clinical Scanner [74].

bration of GATE models typically follows a format similar to that laid out in the performance802

characterisation experiments described by NEMA [90]. These experiments are designed to803

test the spatial resolution and count-rate response using a series of standard experiments to804

compare the performance of various detector systems [90]. By following experiments similar805

to these standards, the relevant metrics for detector performance can be calculated in a reli-806

ably reproducible way and used to compare simulated results to that of real experiments [90].807

The most important consideration when comparing simulated results to real experiments is808

to ensure the conditions of the real experiments are accurately replicated [148, 44].809
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1.8.1 Spatial Resolution810

Spatial resolution is a measure of how accurately a point-like source can be resolved with811

a PEPT detector system. This is different from the spatial resolution observed with PEPT812

algorithms and instead refers to how blurred a point source appears when a two-dimensional813

image is produced by binning the detected LoRs on a plane which intersects the source loca-814

tion [88]. The spatial resolution is reported as the full-width half-maximum (FWHM) of the815

projection image [90]. To test the spatial resolution, point-like sources are placed at specified816

locations within the detector FOV then the FWHM is measured from the projections.817

To conduct a spatial resolution measurement, a small, low-activity source, not exceed-818

ing 1 mm in diameter, is placed in specified locations in the FOV. Then, 1,000,000 LoRs are819

recorded and a planar grid with a cell size of approximately 1 mm is created [90]. This grid820

is significantly smaller than the spatial resolution and the number of LoRs passing through821

each cell is counted. Following this, the grid is summed along one axis and the FWHM822

of the one-dimensional projection is calculated, as shown in Figure 1.20. This process is823

repeated for the other NEMA-specified positions and the individual FWHM measurements824

are combined using Equations 1.31-1.34 to produce the spatial resolution. In ring detectors,825

the axial direction is defined as the vector through the centre of the system parallel to the826

detector faces. In planar detectors like the ADAC Forte, the axial direction is defined as the827

vector perpendicular to the detector faces. Additionally, the measurements taken at 1/4th828

of the FOV refer to locations halfway between the edge of the FOV and the centre of the829

FOV.830

ResTransCenter
= (Resyx=0,y=0,z=0 +Resxx=0,y=0,z=0

+Resyx=1/4,y=0,z=0
+Resxx=1/4,y=0,z=0

)/4 (1.31)
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Figure 1.20: A spatial resolution measurement of a point source. Note that Exp Axial and

Exp Transverse should be reversed due to an error in the original manuscript. [44].

ResTrans1/4 = (Resyx=0,y=1/4,z=1/4
+Resxx=0,y=1/4,z=1/4

+Resyx=0,y=1/4,z=0
+Resxx=0,y=1/4,z=0

)/4 (1.32)

ResAxialCenter
= (Reszx=0,y=0,z=0 +Reszx=1/4,y=0,z=0

)/2 (1.33)

ResAxial1/4 = (Reszx=0,y=0,z=1/4
+Reszx=1/4,y=0,z=1/4

)/2 (1.34)

1.8.2 Count-Rate Response831

The count-rate response of the detector refers to the count-rate curves for total, true, scat-832

tered, and random LoRs as a function of source activity. As higher activity sources are used,833

the effects of dead-time and pile-up induce count-losses and the higher frequency of interac-834

tions causes the random LoRs to increase exponentially [134, 125]. The NEMA standards835
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describe an experiment which uses a specialised high-density polyethylene (HDPE) cylinder836

in which a source is inserted as the basis for calculating count-rate response as a function837

of activity [90]. This source decays over time and by imaging over several half-lives, the838

count-rate response as a function of the source activity can be produced. As reported in839

other work, similar experiments using non-specialised equipment can be used in place of this840

with little effect on the overall results if an accurate model of the equipment is replicated841

in GATE [59, 68]. In this work, non-standard phantoms and a slightly modified NEMA842

protocol are used but is still an applicable approach to validating detector models because843

the simulated and experimental data are treated the same.844

To set up a count-rate response experiment, initially, the equipment is filled with a845

high-activity source. Then as the source decays a projection image is produced at regular846

intervals and the total, true, scattered, and random count-rates are extracted as a function847

of the source activity [90]. This is achieved by applying the NEMA protocol to projection848

images of the source [90]. A demonstration of the workflow for extracting count rates from849

the acquisition is shown in Figure 1.21. First, samples of a minimum of 500,000 lines-of-850

response (LoRs) are summed on a two-dimensional grid with a 1 mm cell size. The grid is851

then collapsed into a line profile of the pixel intensities. All points within ±20 mm of the852

maximum pixel are summed, and then the background is subtracted by averaging both ends853

of the ± 20 mm and multiplying by the size of the window. The counts that remain are854

true LoRs [90, 44]. The total counts are the sum of all LoRs passing through the grid and855

the scattered plus random coincidence count rate is the total counts subtracted by the true856

counts. The extracted coincidence count rates are shown in Figure 1.21.857
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Figure 1.21: A demonstration of the protocol for extracting count rates from a sample of

LoRs: (a) a sample of LoRs collected during the experiment is converted into voxels, (b) the

slice containing the maximum number of LoRs is extracted, (c) the slice is collapsed into a

line profile and the counts in the central 40 mm strip are summed and background counts

subtracted to yield a total, true, and scattered + random count-rate (d). Steps a-c are

repeated for multiple samples to generate the count-rate response as a function of activity

[45].
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1.8.3 Calibration Methods858

The calibration of GATE models refers to tuning the parameter values of the digitizer such859

that a simulation and real experiment are in reasonable agreement with one another. To860

calibrate a model, first, the performance characterisation experiments for spatial resolution861

and count-rate response are conducted both for the real detector system and for the GATE862

model and then compared [90, 44, 45]. Often these initial results do not match perfectly,863

with the match improving by tuning the parameters of the digitizer model with a calibration864

method.865

Calibrating GATE models of PEPT detector systems is a multi-parameter and multi-866

objective optimisation problem since each spatial resolution measurement and each of the867

count-rate response curves is in themselves an objective and there are numerous free-parameters868

in the digitizer model [45]. The typical method of calibration is to use the known properties869

of the detector provided by the manufacturer or by fitting models to count-rate experiments870

[36, 113, 127, 132]. Many steps in the digitizer model correspond directly to measurable871

properties of the detector, such as the energy resolution, dead-time, or time resolution [113].872

Values for these properties are often provided by the manufacturer and serve as a reliable873

starting point, but manual tuning is still needed to match the simulated and experimental874

response of the detector due to variation between each detector [44, 127]. This is done by875

adjusting parameter values, re-simulating the characterisation experiment, and assessing the876

agreement with the simulation iteratively until an optimal match between the simulated and877

real performance characteristics is achieved [44, 45].878

Additionally, model-fitting approaches to tuning the digitizer parameter values can879

be used [36, 118]. For instance, since the spatial resolution is predominately determined880

by the spatial blurring prescribed in the digitizer model only this parameter needs to be881

fitted [62]. In order to calibrate the GATE model’s spatial resolution, a range of spatial882
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blurring values can be tested and the optimal value selected by minimising the differences883

to the experimentally observed spatial resolution [44]. However, when using a model-fitting884

approach with the count-rate response, manual tuning can be avoided, but other challenges885

arise. For example, when fitting a dead-time model to the count rates, this relies on having886

both the singles and coincidence count rates, which may be available, and also involves fitting887

simplified models to the detector response, which may not capture the complexity of a real888

system [134].889

1.9 Discussion890

In the sections above, the background for the work presented in this thesis has been presented891

which includes a general introduction to PEPT, information on the simulation software used,892

a description of methods to simulate PEPT experiments, and considerations for creating and893

calibrating GATE models of PEPT detector systems. PEPT is a powerful experimental tech-894

nique, but through complementing experiments with GATE simulations, it will be shown895

that the technique can be more fully understood, its use optimised, and the technique ex-896

tended to infer new types of information from a system.897

PEPT detector systems are complex machines which have intricate components,898

multi-stage pulse-processing, and non-linear responses to source activity [56]. However, the899

ability to create faithful recreations of PEPT detector systems, such as those described in900

Section 1.7, has created an opportunity to be able to simulate the PEPT technique itself901

[44]. Therefore, to support the work in this thesis and to simulate PEPT with systems that902

are currently being used in real experiments at the PIC or other PEPT facilities, in Chapter903

2, two new PEPT detector system models created using GATE are presented. These are the904

ADAC Forte and the LaMA [44, 72, 97]. To calibrate the models, performance characteri-905
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sation experiments are conducted and then replicated in simulation, with a novel method of906

calibrating the models using an evolutionary algorithm used [45].907

In Chapter 3, GATE simulations are used to benchmark the performance of various908

PEPT algorithms in terms of both their spatial and temporal resolution by using a common909

simulated data set where the position of a PEPT tracer is prescribed [149]. This work is a910

first-of-its-kind effort to bring together PEPT researchers from across the globe to examine911

the relative strengths and weaknesses of the wide range of PEPT algorithms available. The912

performance of individual algorithms has been assessed in the past, but these were conducted913

in isolation, using different systems, and varying methods of performance characterisation914

[100, 73, 139, 138, 91, 94, 82]. Additionally, the use of a common data set and knowing915

the exact position of the GATE-simulated PEPT tracer provides a rigorous and quantitative916

measure of performance.917

In Chapters 4, 5, and 6 novel methods of using GATE simulations of PEPT experi-918

ments to optimise aspects of real experiments are demonstrated. These methods include the919

optimisation of the tracer activity and the head separation of the ADAC Forte PEPT de-920

tector system, estimating the optimal length of an experiment to collect adequate statistics921

of tracer behaviour, correcting experimentally measured quantities like the granular tem-922

perature, and establishing parameters of the Birmingham Method PEPT algorithm which923

maximise the spatial and temporal resolution of trajectories [46, 47]. While there exist meth-924

ods of optimising PEPT experiments using real data, the time and resources needed to do925

this are impractical. GATE simulations are thus presented as a useful new tool to conduct926

this type of analysis which can be conducted before equipment is moved to a PEPT facility927

and which can extract more information than could be generated experimentally.928

Chapter 7 will discuss the development of a novel PEPT methodology to determine929

the size of a PEPT tracer as it loses material to the surrounding system through attrition,930
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dissolution, or other processes. This is an application for PEPT which has previously been931

unable to do, representing a useful extension of the technique. This is demonstrated through932

simulated work, where a tracer loses material and activity to the surrounding medium then933

the f parameter of the Birmingham Method is used to infer how much activity has been lost,934

with this information used to infer the tracer’s size. Importantly, this novel measurement935

of tracer size can be generated alongside the time and position of a tracer. If this could be936

used in real experiments where the loss of particle material occurs, then not only could the937

loss of material over time be analysed, but also the areas where it occurs could be identified.938

The results of this work are an important first step towards realising this new capability939

and demonstrating how GATE simulations can be used to verify new PEPT methodologies940

without expending vast amounts of time and resources on physical experimentation.941

Finally, in Chapter 8, the sum of the work presented in this thesis will be tied together,942

the future outlook for simulating PEPT experiments discussed, and conclusions presented.943
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Chapter Two1

Development of New Detector Models2

and a Novel Calibration Method3

2.1 Introduction4

The simulation of PEPT is dependent on the availability of a validated GATE model of the5

detector system. This ensures that realistic synthetic LoRs can be generated and comparable6

data produced from real experiments. This Chapter seeks to introduce two new GATE7

models of PEPT detector systems which have been created, calibrated, and validated. These8

two detector models are for the ADAC Forte and Large Modular Array (LaMA), systems9

which have been, and still are, used at the University of Birmingham’s Positron Imaging10

Centre (PIC) for PEPT experiments [103, 102]. These detector systems are similar to those11

previously mentioned, but with key differences that make them particularly suited for PEPT.12

The main difference is that both the ADAC Forte and LaMA systems can change their13

geometry. The Forte is a dual-headed gamma camera and each head of the detector can14

be rotated around the gantry ring and the separation of the heads can be adjusted [103].15

This results in a flexible system which can change its geometry. Additionally, the LaMA is16
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a modular system composed of up to 48 ‘boxes’ which contain four block detectors each [97,17

48]. These boxes can be placed in any configuration around a PEPT experiment, allowing18

for unique geometries. A feature of these flexible geometries as will be demonstrated in later19

Chapters is that the geometry can be optimised for individual experiments. A demonstration20

of these geometry features for each of the two PEPT detector systems is shown in Figure21

2.1.22

Figure 2.1: (a) Demonstration of the rotation of the ADAC Forte detector head around the

gantry ring (the heads can also move independently), (b) four modular boxes of the Large

Modular Array.

Due to this high degree of flexibility, they are well suited for PEPT because the size23

and geometry of experimental systems can vary greatly [148]. However, this poses a challenge24

for GATE models in that the models must be able to be rapidly changed in order to match25

the specific configuration of the detector for a given experiment and still produce realistic26

simulations without each version of the GATE model needing to be calibrated and validated,27

which would limit their usefulness.28

To do this, a new method of GATE model digitizer calibration has been developed29

58



Development of New Detector Models and a Novel Calibration Method

[45]. In this method, described in Section 2.2, first, the performance characteristics are30

measured, and then a candidate set of digitizer parameters are applied to the model. The31

performance characteristics from the simulation are measured and compared to the real32

characteristics. Next, an evolutionary algorithm is used to generate a new set of candidate33

parameter values and compare their ability to reproduce the real performance characteristics34

[51]. After several iterations, the algorithm learns how to best replicate the real performance35

characteristics in an autonomous way, eventually reaching a calibration that matches the36

experiment as best as possible. Moreover, this is achieved efficiently and without bias by37

avoiding manual tuning.38

The following Sections will cover the development of the novel digitizer calibration39

method which is then applied to calibrate two PEPT detector system models in Sections40

2.3.1 and 2.3.2.41

2.2 Model Calibration using Evolutionary Algorithms42

In the previous Chapter, existing GATE models of detector systems and methods of achieving43

calibration have been covered. However, these methods can take a considerable amount of44

time to produce a calibration, could be seen as arbitrary, and are not guaranteed to produce45

the optimal calibration [115]. Here, a new calibration procedure is proposed which leverages46

recent advances in high-level problem-independent algorithmic frameworks to perform an47

efficient optimisation of a GATE model’s digitizer [51]. When trying to calibrate any type48

of simulation’s free parameters, it is often useful to test a range of conditions and assess how49

the tested parameter values replicate the measurement. In the simplest case with only one50

free parameter, the value that minimises the error to the measurement can be easily found51

and visualised by plotting candidate parameter values and the error as a two-dimensional52
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scatter plot. This can also be extended to two free parameters by plotting the error as a third53

dimension on the plot. Beyond three dimensions, the relationship between the parameters54

becomes non-intuitive in large part because they cannot be easily visualised. For these55

problems, an optimisation algorithm is needed to efficiently test a range of parameter values,56

determine the difference between simulation and reality, and then converge to the optimal57

values. However, in simulations and experiments, there often exist noisy measurements, thus58

a function defining the difference between experiment and simulation will be non-smooth and59

potentially have many false local minima [51]. This means that gradient-based optimisers60

are ill-suited for calibrating simulations [135].61

In these difficult optimisations, evolutionary algorithms excel [51]. Evolutionary al-62

gorithms are a type of bio-inspired computing which mimics natural selection. For example,63

in a population where individuals have a randomised set of genes and selective pressure is64

exerted, only the individuals which have genes that enable them to survive will reproduce.65

Due to this, the next generation of individuals will be more adapted to selective pressure66

[27]. Similarly, when an evolutionary algorithm is applied to a model with free parameters67

which can be tuned, the parameter values act as genes, a model with a specific set of pa-68

rameters is an individual, and a group of individual simulations is a generation [51]. For69

each generation, a cost function determines an individual’s fitness which acts as a selective70

pressure for the next generation. A flow diagram of how an evolutionary algorithm can be71

applied to digitizer calibration is shown in Figure 2.2.72

Applying the same logic to GATE simulations, from a large population of individual73

GATE simulations, each with a variation in the parameter values for aspects of the digitizer,74

some sets of candidate solutions will more realistically replicate the response of the detector.75

The most successful candidates can then be used to improve the next generation. After76

multiple generations, the parameter values should converge to the optimal values which77

best replicate the real performance characteristics [45]. This method is expected to offer78
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Figure 2.2: The flow diagram for ACCES is applied to optimising free parameters in a

digitizer of a GATE detector model [45].

improvements over previous calibration procedures since the optimal parameters are chosen79

by directly comparing the performance of the optimised digitizer to experiments and removes80

the need to perform manual calibration, which eliminates user bias.81

The evolutionary algorithm used for calibrating a GATE model’s digitizer is the Co-82

variance Matrix Adaptation Evolutionary Strategy (CMA-ES), which is a stochastic opti-83

miser for non-linear non-convex numerical optimisation [41, 42]. While there exist several84

types of evolutionary algorithms, the CMA-ES algorithm is used since it performed well in85

a comparative review of optimisation algorithms and there is a well-documented Python im-86

plementation CMA v3.0.3 [111, 42]. With this approach, candidate solutions are generated87

following a multivariate normal distribution for each free parameter. A particular advan-88

tage of this is that the underlying optimisation function does not need to have a continuous89

response. The addition of stochastic ‘mutations’ to the inputs tried to mimic the injection90

of new genetic material in the population allows CMA-ES to escape local minima which91

gradient-based optimisers are prone to falling into [135]. Due to the complex relationship92

61



Development of New Detector Models and a Novel Calibration Method

between parameters in the digitizer, it is expected that there will be many local minima,93

making this approach more likely to be successful than a gradient-based optimiser [62].94

One problem in using an optimiser with software like GATE is that GATE was not95

designed to be used this way. In order to interface simulation software with the existing CMA-96

ES optimiser and extend the types of problems it can be used with, a Python library has been97

developed which is called the Autonomous Calibration and Characterisation via Evolutionary98

Software (ACCES) v0.2.2 [92]. The purpose of ACCES is to use a Python script defining the99

simulation to populate the user-defined free parameters, populate the script with candidate100

solutions generated by CMA-ES, then autonomously re-launch the simulation, analyse the101

results, and generate improved candidate solutions until a termination criterion is met [92,102

42]. By supplying ACCES with a cost-function evaluation of the results of the simulation,103

the fitness of the candidate sets of solutions to parameters in the digitizer model can be104

compared [92]. In this case, the cost function is the absolute percent difference between the105

total, true, and scattered plus random coincidence count rates determined by the NEMA106

performance characterisation experiments [90].107

ACCES needs only the bounds of the search parameters, and the number of individ-108

uals in a population, and stores the results after each generation, or ‘epoch’, so that the109

optimisation state can be restored at any point. The default implementation of CMA-ES110

requires the use of a single initial standard deviation for all parameters, assuming that all111

parameters have comparable value ranges and sensitivities. ACCES scales the parameter112

values by 40 % of each parameter’s allowed range, such that parameters of vastly differ-113

ent scales can be optimised together. As parameter combinations are drawn from normal114

distributions, an initial standard deviation of 40 % naturally covers the entire parameter115

range.116

In order to allow the use of complex, potentially thread-unsafe simulations written in117
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different programming languages, ACCES launches each simulation as a completely separate118

OS process, which is either scheduled by the kernel to be run locally on a shared-memory119

machine, like a laptop or using an external workload manager to launch jobs on multi-node120

clusters. ACCES offers improvements over other interfaces to optimisers in that it is fault-121

tolerant and designed for high-performance computing. In this study, ACCES automatically122

sets up and launches batch jobs for each parameter combination to be evaluated using GATE.123

To summarise, the two critical CMA-ES configuration parameters are automatically deter-124

mined by the computing resources available and the possible parameter ranges, such that no125

manual adjustments of optimiser settings for a given problem is necessary.126

In the next Sections, ACCES is applied to GATE models of the ADAC Forte and127

LaMA to calibrate the model in comparison with experimentally observed performance char-128

acteristics. However, an initial model of the ADAC Forte was developed before this calibra-129

tion was available. In this case, both the model developed through manual calibration and130

the new model calibrated using ACCES will be discussed.131

2.3 New Detector Models132

2.3.1 ADAC Forte133

Background134

In 1999, the University of Birmingham acquired the ADAC Forte dual-headed gamma camera135

for PEPT experiments [103]. The Forte is the most extensively used PEPT detector system136

at the PIC, having a history spanning over 20 years [97]. The basic feature of the Forte is137

two large-area NaI crystal scintillators measuring 470 mm x 590 mm and 16 mm in thickness138

[103]. The two crystals are optically coupled to a glass light guide and 55 PMTs each which139
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are used to locate a gamma ray’s point-of-interaction within the crystal [5]. Each crystal140

is contained within a ‘head’ which includes the electronics, aluminium casing, and lead141

shielding. Each head is mounted on two adjustable arms, such that the distance between142

each head can be adjusted from 250 mm to 800 mm of separation. This adjustment allows the143

geometric efficiency of the camera to be adjusted, as well as allowing equipment of varying144

sizes into the field-of-view (FOV). A custom data acquisition system records LoRs [103].145

The system can produce a maximum of approximately 100 kHz of LoRs, which when using146

a sample of size of 100 LoRs per location results in a temporal resolution of PEPT tracer of147

approximately 1 ms [103]. This is sufficient to easily track tracers moving in excess of 1000148

mm/s [97].149

Manual Calibration150

To begin developing the GATE model, a geometric representation of the detector is created151

using the commands discussed in Section 1.6.1. Each head of the detector is modelled as a152

rsector and copied with a ring repeater to form two heads [44]. Importantly, the distance153

of the rsector to the origin of the system and its rotation angle can be varied using a single154

parameter for each. This allows for the head separation and the rotation angle of the detector155

to be easily changed, reflecting the behaviour of the real system. Since the scintillation crystal156

covers a wide area and multiple interactions can be recorded in different regions of a single157

head simultaneously, the crystal layer is implemented as nine rectangular pixels, with each158

measuring approximately 170 mm x 126 mm [103, 44]. The pixels are not components of159

the real detector system but are needed to capture the previously mentioned behaviour.160

A back-compartment of the glass light guide, PMTs, and electronics are added to account161

for scattering [109]. Additionally, there is lead shielding around the back and sides of the162

crystals to reduce background counts. The gantry ring is modelled as an aluminium cylinder163

with an outer diameter of 1600 mm and an inner diameter of 700 mm with a thickness of164
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10 mm. A description of the geometry model is listed in Table 2.1. The GATE physics list165

used for the model is the ‘emstandard’ list. A side-by-side view of the real ADAC Forte and166

the GATE model of the detector is shown in Figure 2.3.167

Figure 2.3: A side-by-side comparison of the (a) real ADAC Forte and (b) GATE modelled

ADAC Forte with a model of the count-rate experiment in the FOV [44].

Table 2.1: ADAC Forte geometry description [44].

Geometric Model Values

Detector Dimensions 590 x 470 x 16 mm3

Useful Detector Area 510 x 380 mm3

Dual-Head Separation 250 - 800 mm

Detector Crystal Sodium Iodide

Number of Pixels 9

Pixel Dimensions 170 x 126 x 16 mm3

Gantry Ring Diameter 1600 mm outer, 700 mm inner

Gantry Ring Thickness 10 mm
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The characterisation experiments described in Section 1.8.1 and 1.8.2 were conducted168

to provide a basis to calibrate the model. These two aspects of the detector system were169

calibrated independently. For the spatial resolution test, the source is a 0.2 mm diameter170

anionic exchange resin bead. Anionic exchange beads selectively absorb fluorine-18 ions171

from a solution of water and fluorine-18, volumetrically activating the bead with activity172

[32]. After soaking in the solution for approximately 30 minutes, the resin bead activity was173

measured with a well counter to be approximately 27.8 MBq ±0.1. The resin bead was then174

placed in the FOV.175

Figure 2.4: A diagram of the ADAC Forte digitizer model [45].

A GATE model of the spatial resolution source was designed to recreate the experi-176

mental geometry, with the source modelled as a 0.2 mm diameter plastic sphere, encapsulated177
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in a spherical plastic phantom 2 mm in diameter. This outer sphere represents the ultraviolet-178

activated epoxy and provides sufficient material for positrons from the source to annihilate179

instead of escaping into the air around the tracer while also not contributing significantly to180

scattering. By the end of the experiments, the source activity decayed to approximately 19181

MBq. The positions used to measure the spatial resolution are shown in Table 2.2.182

Table 2.2: Positions of the spatial resolution experiments in the Forte FOV [44]. The coor-

dinate system is shown in Figure 2.1.

X-Position (mm) Y-Position (mm) Z-Position (mm)

0 0 0

0 127.5 0

0 0 95

150 0 0

150 127.5 0

150 0 95

To measure the count-rate response of the Forte, a cylindrical HDPE phantom was183

used and the NEMA methods were applied to the recorded LoRs to extract the total, true,184

scattered, and random count-rates as a function of the source activity [90]. This cylinder has185

an outside diameter of 50 mm and length of 120 mm, with an internal cylindrical cavity with186

a diameter of 10 mm and length of 100 mm which is filled with a solution of fluorine-18 and187

water [44]. Initially, the activity was approximately 100 MBq at the start of the experiment188

then decayed until approximately 1 MBq was left. For this experiment, the head separation189

was set to 600 mm. At regular intervals, the recorded LoRs are used to produce a projection190

image of the source and the method described in Section 1.8.2 was used to extract the count-191

rates. The source activity was calculated based on an exponential decay equation using the192

initial activity, the time elapsed since the start of the experiment, and the decay constant193
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for fluorine-18 [90].194

Manual Results195

The spatial resolution experiment conducted in the centre of the FOV of the Forte produces a196

central axial FWHM of 16.28 mm and transverse FWHM of 5.39 mm. The spatial resolution197

was also measured at 1/4th of the FOV. The 1/4th FOV axial and transverse FWHM are198

measured to be 19.62 mm and 5.13 mm, respectively. Compared to the experiment, the199

GATE simulation without spatial blurring results in an under-prediction of the FWHM in200

both the axial and transverse directions, indicating that spatial blurring is required. The 2.5201

mm, 5 mm, and 7.5 mm spatial blurring simulations were compared, with the 5 mm blurring202

GATE simulation agreeing best with the experiment, as shown in Figure 2.5. In previous203

work, the Forte was measured to have a transverse spatial resolution of approximately 6 mm204

by fitting a one-dimensional Gaussian function to a point source profile in air [103]. The205

measurements in this work are consistent with this previously reported value. While this206

previous measurement is useful for comparison, it was unknown whether the ADAC Forte207

PEPT detector system, which has been used at the PIC for 20 years since this measurement,208

would still produce the same values, due to the degradation of components and the age of209

the system. Additionally, an added spatial blurring of 6 mm would not produce a spatial210

resolution since gamma-ray accolinearity is present in the simulation.211

After manual calibration of the digitizer model, the results of the count-rate exper-212

iment and simulation are in good agreement, with the total, true, scattered, and random213

count-rates differing by less than 10% over the range of 1-100 MBq. The count-rate response214

as a function of activity for the real experiment and simulation are shown in Figure 2.6 and215

the fraction of true and corrupted LoRs as a function of activity are shown in Figure 2.7.216

The total and true count-rates perform particularly well, with an average error of 2.87% and217
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Table 2.3: Experimental and GATE simulated spatial resolution results for the Forte [44].

Spatial Resolution Experiment 0 mm 5 mm

Blurring Blurring

Central axial (mm) 14.680 10.965 13.294

Central transverse (mm) 5.567 3.159 5.675

1/4 FOV axial (mm) 17.217 13.368 16.904

1/4 FOV transverse (mm) 4.941 2.871 5.477

Figure 2.5: A comparison of the results of the spatial resolution test with varied amounts of

spatial blurring added to the digitizer model [44].

6.04%, respectively over the range of tested activities. The peak true coincidence rate of the218

experiment is 50.3 kHz at 21.4 MBq compared to the simulated values of 48.5 kHz at 21.4219

MBq.220
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Figure 2.6: A comparison of the manually-calibrated results of the count-rate experiment

for the total, true, scattered, and random count-rates as a function of source activity [44].

Table 2.4: ADAC Forte digitizer description [44].

Digitizer Model Values

Coincidence Window 15 ns

Time Resolution 15 ns

Paralysable Dead-Time Per Pixel 1.15 µs

Non-Paralysable Dead-Time 1.15 µs

Energy Resolution at 511 keV 14%

Energy Window 350 - 650 keV (50% Photo-peak)

Intrinsic Efficiency 24%
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Figure 2.7: A comparison of the manually-calibrated results of the count-rate experiment is

shown as the fraction of true LoRs compared with the fraction of corrupted LoRs (scattered

+ random) [44].

Overall, this calibrated GATE model of ADAC Forte is in good agreement with the221

experimentally observed detector performance characteristics. This model has been shown222

to generate synthetic LoRs from conditions which replicate real experiments. However,223

while the model has been calibrated for this head separation, the model was not tested224

in other configurations. In the next section, an autonomous calibration of the digitizer’s225

free parameters in regard to the count-rate experiment will be conducted using performance226

characteristics measured at the minimal, median, and maximal head separations.227
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Autonomous Calibration228

As introduced in Section 2.2, a new method of digitizer calibration has recently been de-229

veloped which seeks to find optimal values for digitizer parameters using an evolutionary230

algorithm [45]. This method is demonstrated by simultaneously calibrating six parameters231

within the ADAC Forte digitizer model to match the count-rate response and the like before232

a manual calibration for spatial resolution was done since the spatial blurring parameter233

has little effect on the count-rate response [92, 41]. The parameters chosen to be optimised234

are the singles dead-time, coincidence dead-time, pileup, lower energy discriminator, up-235

per energy discriminator, and time resolution. These parameters were chosen because they236

have not been measured directly through a characterisation experiment meaning there is237

uncertainty in the optimal values.238

In a similar manner to the previously described count-rate response characterisation239

experiments, a new set of experiments are conducted which measure the coincidence count-240

rates of the Forte as a function of source activity at three head separations representing the241

minimum, median, and maximal head separations, or 250 mm, 525 mm, and 800 mm. The242

initial source activities for each separation were selected to test both the high-activity range243

where the effect of detector dead-time induces count-losses and to test the low-activity range244

where count-rates are linearly proportional to the source activity. In the experiments, the245

HDPE cylinder is filled with an initial activity, then placed in the centre of the FOV of the246

Forte and imaged over several half-lives until the activity is below 1 MBq. The three head247

separations and initial activities for each experiment are found in Table 2.5.248

The experimental count-rates are then compared to the simulated count rates gener-249

ated from a digitizer with a set of candidate solutions for the free parameters. For each of250

the three head separations, the total, true, and corrupted (scattered + random) count-rates251

are extracted at five different activities which cover the low-activity range where the detector252
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Table 2.5: Head separations and initial activities for each calibration experiment [45].

Experiment Head Separation (mm) Initial Activity (MBq)

Experiment 1 800 75

Experiment 2 525 60

Experiment 3 250 40

response is linearly proportional to source activity and the high-activity range when the dead-253

time and count-losses cause the detector response to be highly non-linear [90]. Since there254

are six free parameters and 45 individual data points for each parameter combination in the255

optimisation (three detector separations, five activities per separation, and three coincidence256

count rates per activity), the optimisation problem is considered to be well-constrained [45].257

Further, since the count-rates have a complex relationship to the digitizer parameters, source258

activity, and detector configuration, this makes the count-rate response characterisation an259

ideal metric for comparison.260

The fitness of parameter combinations was determined through a cost function which261

measures the percent difference between the experimentally observed and simulated count-262

rates for the total, true, and corrupted count-rates across all three head separations and263

activities. The sum for each of these percent differences is denoted as εR, εT , and εSR264

respectively and computed using Equation 2.1. Each type of count rate is treated as an265

objective to optimise and combined into a multi-objective optimisation by multiplying them266

together using Equation 2.2. In this case, each type of count rate is treated as equally267

important. Other types of cost functions could be devised in the future which treat some268

count-rates as more important than others.269

εR =
∑

100
|Rexp −RGATE|

Rexp

(2.1)
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ε = εRεT εSR (2.2)

The number of simulations per epoch is set to 150 so that a wide range of different270

parameter combinations can be tried and the simulations can be launched in parallel while271

not affecting the shared usage of the BlueBEAR high-performance computing (HPC) system272

[133]. In this work, each set of simulations has a candidate set of parameter solutions273

and is simulated using a single Intel Icelake core of the BlueBEAR HPC with 8 GB of274

memory allocated [133]. The maximum run time is set to 4 hours and 30 minutes, which275

is approximately twice as long as the expected mean run time. In the event that a set of276

simulations takes longer than 4 hours and 30 minutes, the job is terminated and the results277

are not included in the next generation of parameter solutions.278

Additionally, the bounds of the parameter values are set to only explore solutions279

which make physical sense, excluding options like a negative dead-time or upper energy level280

being below the upper energy window. The bounds are also limited where needed such that281

the solution space is finite, yet spanning a range likely to contain the optimal value based282

on an estimate from a previous manual calibration in Section 2.3.1 [44]. A list of the bounds283

and the initial values are shown in Table 2.6.284

The termination criterion for the optimisation is the standard deviation for each285

parameter reaching 10% of the initial standard deviation. This range is chosen such that286

variation in the parameter values will not significantly affect the accuracy of the model.287

The initial standard deviation is equal to the range of the bounds at the beginning of the288

optimisation and the initial scaled standard deviation is defined as unity.289

Once the optimal values are identified, they are input to the digitizer model and a290

count-rate response is generated. These simulations are run at 2 MBq intervals starting at 1291

MBq and reaching into the upper activities for each experiment. A study of the accuracy of292
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Table 2.6: Digitizer parameter bounds and initial parameter values [45].

Parameter Lower Bound Upper Bound Initial Values

Singles Dead-Time (ns) 0 2 1

Coincidence Dead-Time (ns) 0 2 1

Pile-Up (ns) 0 600 300

Lower Energy Discriminator (keV) 0 360 180

Upper Energy Discriminator (keV) 640 1200 920

Time Resolution (ns) 10 20 15

extracted count-rates for the simulation with the highest separation and lowest activity (800293

mm and 2 MBq) at different numbers of LoRs used to produce projection images showed294

that at least 10,000 events are needed to ensure that variance in the extracted count-rates is295

well below 10%. The results of this study are shown in Figure 2.8. The lowest count rate that296

would be expected in an experiment is approximately 1 kHz. As a result, it is determined that297

simulations should be run for 10 seconds of simulated time at each activity in order to ensure298

that 10,000 events are captured. In order to contextualise this proposed method of calibrating299

Monte Carlo detector models through evolutionary simulation to the existing methods, the300

ACCES-calibrated model is compared to the existing manually-calibrated model [45, 44].301

Autonomous Results302

In total, the ACCES optimisation took 56 epochs, 8400 cost function evaluations, and ap-303

proximately 4 days to complete. At the beginning of the ACCES optimisation, the candidate304

solutions for the six free parameters are broad to explore the solution space. After this initial305

period, the values begin to converge to their optimal values, as shown in Figure 2.9. The306
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Figure 2.8: The variance of the total, true, and scattered plus random count rates for the

800 mm and 2 MBq simulation as a function of the number of LoRs used to generate a

projection image [45].

scaled standard deviations are shown in Figure 2.10 to depict how the uncertainty in the307

optimisation decreases as the optimisation progresses. Initially, the standard deviations are308

wide, reflecting there is a large uncertainty in the optimal parameter values. However, as309

more candidate solutions are tried and evaluated with the cost function, ACCES learns how310

to best emulate the real detector response.311

Once the optimisation reached 10% uncertainty for each parameter, the parameters312

were considered calibrated. The final calibrated values are presented in Table 2.7. For all313

parameters except for the coincidence dead-time, the optimal solutions are well within their314

bounds, suggesting an optimal calibration that would not change with different bounds.315

However, the optimal coincidence dead-time is found to be approximately 0 ns. While this316
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Figure 2.9: The mean parameter values for each of the six free parameters with the standard

deviation of the values are plotted as error bars. After 56 epochs all parameters are below

10% standard deviation and the optimisation is completed [45].

could be due to the bounds being ill-suited to the problem, in this case, it is believed this317

demonstrates that coincidence dead-time is insignificant to the digitizer model. Further,318

support for this is that the model under-predicts the peak count rates. The opposite would319

be expected if coincidence dead-time was important since this should reduce the count-rates320

[134].321

To assess the ability of the ACCES-calibrated digitizer model to replicate the exper-322

imental data, a new set of simulations is conducted using the optimised values. The results323

of these simulations were plotted against the experimental data in Figure 2.11. To quantify324

the accuracy, a mean absolute percent difference is calculated for each head separation and325

each type of count rate and presented in Table 2.8. Additionally, the results for the manually326

calibrated digitizer model are presented in Table 2.9.327
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Figure 2.10: The standard deviation of the parameter values tried by ACCES. A lower

standard deviation represents lower uncertainty in discovering the optimal parameter values

[45].

Table 2.7: Calibrated digitizer parameter values [45].

Parameter Calibrated Value Uncertainty

Singles Dead-Time (ns) 1070 ±16.7

Coincidence Dead-Time (ns) 10 ±54.7

Pile-Up (ns) 498 ± 9.31

Lower Energy Discriminator (keV) 284 ±10.1

Upper Energy Discriminator (keV) 1020 ±30.2

Time Resolution (ns) 17 ±0.347
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Figure 2.11: The optimised GATE model count-rates are plotted against the experimental

data for the (a) 250 mm experiment, (b) 525 mm experiment, (c) and the 800 mm experiment

[45].

The average mean absolute percent differences for the 250 mm, 525 mm, and 800328

mm were 7.55%, 4.30%, and 5.48%, respectively. The separation which was closest to the329

phantom experienced the highest error between the simulation and experiment. This could330

be caused by the closer separation amplified differences between the source position in the331

simulation versus the experiment. In addition to this, the ACCES-calibrated model im-332

proves the match between simulation and experiment compared to a manually-calibrated333

digitizer model which produced a mean absolute percent difference in the count rate re-334

sponse of 17.78%, 15.42%, and 21.75%. This represents ACCES producing a calibration335
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Table 2.8: Mean absolute percent differences in the count-rates of the ACCES-calibrated

digitizer model [45].

ACCES-Calibrated Results

Head Separation 250 mm 525 mm 800 mm

Total Count-Rate 4.76% 1.71% 2.43%

True Count-Rate 4.55% 2.85% 2.25%

Scatter + Random 13.33% 8.33% 11.77%

Average Error 7.55% 4.30% 5.48%

Table 2.9: Mean absolute percent differences in the count-rate of the manually calibrated

digitizer model [45].

Manually Calibrated Results

Head Separation 250 mm 525 mm 800 mm

Total Count-Rate 11.50% 4.48% 6.25%

True Count-Rate 17.86% 15.68% 10.85%

Scatter + Random 23.98% 26.10% 48.15%

Average Error 17.78% 15.42% 21.75%

which achieves a nearly three times better agreement with the experiments. This is a signif-336

icant improvement and one accomplished without guiding the optimiser to these solutions.337

Overall, this calibration represents an agreement with the experiment that would be suffi-338

cient for the GATE model to be used as a predictive tool to generate data representative of339

real experiments and improves upon the performance of the manually-calibrated digitizer.340
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2.3.2 Large Modular Array (LaMA)341

The LaMA was developed at the PIC in the early 2000s, growing out of the need to have a342

system with flexible geometry to image large industrial systems. Initially, three CTI/Siemens343

ECAT ring scanners were dismantled to retrieve block detectors, with each block consisting344

of an 8 x 8 BGO crystal array and crystal dimensions of 6.25 mm x 6.75 mm x 30 mm. The345

BGO crystals are optically coupled to a 5 mm thick glass light guide to four photo-multiplier346

tubes (PMTs) 100 mm in length [97]. Using the extracted 192 block detectors, a system of347

48 boxes comprised of 4 block detectors each was designed. Each box was approximately348

360 mm in width, 95 mm in height (including spacers), and 460 mm in thickness with each349

of the four block detectors spaced 90 mm apart from centre-to-centre. A single box is shown350

on the left side of Figure 2.12 and a stack of four boxes are shown on the right. These351

form the fundamental building blocks of LaMA and up to 32 boxes can be connected to352

a single coincidence processor unit to form a new system. These boxes can be placed in353

any configuration, allowing for flexible geometries to be designed [35]. Since the LaMA is354

reconfigured for each experiment, the performance characteristics of the camera are difficult355

to predict, making it challenging to estimate the spatiotemporal resolution of the trajectories,356

design optimised geometries, and select ideal tracer activities.357

To address these issues, a Monte Carlo model of LaMA is created and validated in a358

configuration with two stacks of four boxes separated by 500 mm [48]. This is one of the sim-359

plest geometries that can be created. Thus by characterising its performance and validating360

the model on a small scale, the behaviour of the system when it is scaled up will remain ac-361

curate. The model is created using GATE v9.1 [56, 115, 90]. The performance of the camera362

is characterised following the industry-standard NEMA protocol and the pulse-processing363

digitizer model is calibrated through evolutionary simulation and validated against the ex-364

perimental characterisation [90, 42, 92].365
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Figure 2.12: (a) A view inside a single box where four block detectors are mounted. Boxes

are the building blocks of the LaMA. (b) A stack of four boxes. The geometry used in this

work are made of two stacks of four boxes separated by 500 mm.

Methods366

In the same way that the performance characteristics of the ADAC Forte were measured,367

this is done for LaMA as well [44]. These characteristics are compared to those observed in368

the GATE model of LaMA and used as the basis for calibrating the digitizer model. For369

the spatial resolution tests, the source used is a 1 mm sphere of anionic exchange resin,370

volumetrically activated with fluorine-18 in a solution of water produced by the University371

of Birmingham MC40 cyclotron [95]. For imaging, the source was placed in a small plastic372

sample holder and fixed to a block of polystyrene foam at six locations ranging from the373

centre of the FOV and locations at 1/4th of the FOV. The polystyrene foam was chosen374

because of its low density, and thus low linear attenuation coefficient, which will not induce375

a large amount of scattering [129]. These locations and the source activities at the time of376

the experiment are listed in Table 2.10. The source and the LaMA geometry are shown in377

Figure 2.13.378
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Figure 2.13: The spatial resolution tests are conducted using 1 mm diameter resin beads

[48].

Table 2.10: Spatial resolution test parameters.
X-Position (mm) Y-Position (mm) Z-Position (mm) Initial Activity (MBq) End Activity (MBq)

0 0 0 2.26 2.07

0 77.5 0 2.06 1.91

86.25 0 0 1.88 1.69

0 0 125 1.39 1.20

0 77.5 125 1.19 1.05

86.25 0 125 1.00 0.86

The count-rate experiment measures the response of the detector to a source over379

several half-lives. The total, true, and corrupted (scattered plus random) LoRs count rates380

were extracted using the NEMA protocol and recorded at regular intervals as a function of381

source activity [48]. The phantom is a hollow, HDPE cylinder measuring 120 mm in height382

and 50 mm in diameter. The inner cavity, which measures 100 mm in height by 12 mm383
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in diameter, is filled with a solution of fluorine-18 and water. Initially, the activity of the384

phantom was approximately 80 MBq and this activity was chosen such that the expected385

count rates exceeded the maximum rate at which LoRs can be recorded by the camera.386

The phantom was imaged over several half-lives until the activity reached near that of the387

background. The phantom and detector geometry is shown in Figure 2.14.388

Figure 2.14: (a) The count-rate experiment is conducted with the high-density polyethylene

phantom placed in the centre of FOV and imaged over several half-lives. (b) a GATE model

of the same experiment is conducted [48].

The design of a GATE model for the LaMA presents several challenges since it must389

be easily customised to rapidly prototype new geometries, only allow specific coincidences390

to be formed between connected boxes, and be able to emulate the noise, data buffer, and391

spatial blurring inherent in the system. Achieving these goals is accomplished using the tools392

available in the GATE software in addition to data post-processing.393

Since any LaMA geometry is built using boxes, to build a model of the LaMA, only394

a single box needs to be described which can later be copied, translated, and rotated to395

any position and orientation using GATE’s generic repeater function. Importantly, the four396

ECAT951 block detectors are included in each box and the 8 x 8 BGO crystal array in each397

block is defined as the ‘Sensitive Detector’ through which GATE records the interactions of398
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particles. The model of a single box is shown in Figure 2.15 from various viewpoints. The399

order in which the repeated boxes are listed determines their volume number, which will be-400

come important later when defining which pairs of boxes are valid for recording coincidences.401

Figure 2.15: A model of a box for the LaMA consisting of four ECAT951 block detectors

each with an 8x8 array of BGO crystals. The box is shown from various viewpoints and has

major components labelled [48].

The digitizer for the LaMA is shown in Figure 2.16. It is a typical digitizer model402

for a PEPT detector system, but an additional post-processing stage is implemented to403

capture aspects of the detector possible using GATE [74]. This forces the detector to only404

record coincidences between pairs of boxes which are associated with each other in the real405

coincidence processor, implements a random spatial blurring to match the experimental406

spatial resolution, and implements a bandwidth which limits the rate at which LoRs are407

written to file. Random spatial blurring is needed due to the end of the LoR being centred408

in the crystal. By randomly distributing the ends of an LoR within the crystal, a continuous409

image on which it is easier to measure the spatial resolution is produced. The post-processing410

steps for the LaMA GATE model are the last three steps shown in Figure 2.16 before the411
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final simulated detector response is produced.412

Figure 2.16: The pulse-processing model of the LaMA [48].

Even if every detail of the LaMA were known, there are differences between simulation413

and experiment which require aspects of the digitizer to be calibrated [71, 102]. In this case,414

six stages of the digitizer are chosen to be calibrated because of the assumed effect they415

have on replicating the count-rate response. These are the noise frequency, pile-up time,416

time resolution, lower-level energy discriminator, upper energy discriminator, and the non-417

paralysable singles dead-time. The noise frequency is the rate at which random events are418

generated simply by having the detectors running and is a combination of the background419

activity and electronic noise. The singles dead-time is a non-paralysable dead-time model,420

described by Equation 2.3 which limits the rate of recording single events [134].421

λout

λin

=
1

(1 + λinτ)
(2.3)
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The objective cost function used for assessing the match to the real performance422

characteristics, shown in Equation 2.4, is the product of the percent differences between the423

experiment and simulation’s total, true, and corrupted count-rate response over a range of424

source activities, calculated using Equations 2.5-2.7 [48].425

ε = εTotεTrueεCorrupt (2.4)

εTot = 100
∑

|(RTotexp −RTotsim)/RTotexp| (2.5)

εTrue = 100
∑

|(RTrueexp −RTruesim)/RTrueexp| (2.6)

εCorrupt = 100
∑

|(RCorruptexp −RCorruptsim)/RCorruptexp| (2.7)

For this optimisation, 100 epochs with 100 parameter value combinations per epoch426

were used as the terminating criteria because this provides greater than 10 times the factorial427

of the number of free parameters in the optimisation, sufficiently constraining the problem428

[51]. Each combination is simulated over 10 different activities, ranging from 2 MBq to 80429

MBq, until 5 million events are generated at each activity. The bounds of the parameters430

and their initial values are provided in Table 2.11. The optimisation is conducted on the431

University of Birmingham’s HPC system, BlueBEAR, on Icelake cores with 16 GB of memory432

each [133]. After the optimisation is finished, the calibrated parameters were extracted and433

a new set of simulations was conducted with 20 activities over the same activity range until434

30 million events are generated in order to reduce statistical error. These simulations are435

presented and compared in Section 2.3.2.436
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Table 2.11: Digitizer parameter bounds and initial parameter values for calibration [48].

Parameter Lower Bound Upper Bound Initial Values

Singles Dead-Time (ns) 0 10000 5000

Noise Frequency (ns) 1000 10000 5500

Pileup Time (ns) 0 1000 500

Lower Level Discriminator (keV) 0 400 200

Upper Level Discriminator (keV) 700 2200 1450

Time Resolution (ns) 0 30 15

Results437

For spatial resolution, six tracer positions were imaged over several minutes then the FWHM438

of the one-dimensional projection is extracted. The FWHM at these positions is used to com-439

pute the transverse and axial spatial resolutions in the centre of the FOV and at 1/4th of440

the FOV. Next, the experiments are reproduced in simulation and the crystal blurring is441

adjusted until the best match between the experiment and simulation was achieved. The442

crystal blurring which best agrees with the experiment is approximately twice the crystal443

dimensions (6.25 mm by 6.75 mm), as evidenced in Fig. 2.17. The experimental and sim-444

ulated results are presented in Table 2.12 and compared through their percent differences445

[48].446

Following the spatial resolution characterisation and crystal blurring calibration, the447

count rate response experiments were analysed to be used as a comparison for the ACCES448

optimisation. The optimisation took approximately three days to complete. At the end449

of the optimisation, the final mean parameter values were extracted. The value for these450

parameters and their uncertainty are provided in Table 2.13. Additionally, the history of451

these parameters during the optimisation (uncertainties and mean values) is presented in452
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Figure 2.17: The spatial blurring is calibrated by finding the crystal blurring that minimises

the absolute percent error [48].

Table 2.12: Results and comparisons of the spatial resolution tests for the experiment and

simulation [48].

Spatial Resolution Experiment (mm) Simulation (mm) Percent Error (%)

Central Transverse 8.26 8.38 1.44

1/4 FOV Transverse 8.95 9.37 4.72

Central Axial 21.83 22.34 2.32

1/4 FOV Axial 24.09 23.80 -1.20

Figure 2.18, demonstrating that before the end of the optimisation, each parameter reaches453

a stable value, meaning that the parameters have been calibrated [48].454
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All parameters produced reasonable calibrations within the upper and lower bounds455

given to the optimiser. Interestingly, the optimised value for the time resolution falls within456

the 12 ns ±2 ns measured in a previous characterisation of the LaMA [71]. This provides457

further evidence that the calibrated parameters correspond to physical reality and are global458

solutions, not simply local solutions. The parameter with the highest uncertainty is the459

lower-level energy discriminator. This is likely due to the relatively small impact of this460

parameter on the calibration. For example, the singles dead-time has a very strong effect461

on the simulation. This is the case because it has a strong pressure to be calibrated since it462

is applied to nearly all events which are detected. Meaning small changes in the calibrated463

values will cause large differences in the simulated count-rate response. Similarly, the lower464

energy discriminator acts on a smaller number of events which have undergone scattering465

and as a result has a somewhat higher uncertainty. However, the upper energy discriminator466

can only be applied to events that have piled up. Since the upper energy discriminator is467

set to 1990 keV, this means that at least four 511 keV events must be grouped together468

and this happens only a limited number of times in a simulation. As a result, there is not a469

strong pressure to calibrate this value resulting in a higher uncertainty but still an adequately470

calibrated value [48].471

Table 2.13: Digitizer calibration results and uncertainty [48].

Parameter Calibrated Values Uncertainty

Singles Dead-Time (ns) 6630 ±57.9

Noise Frequency (ns) 1970 ±9.39

Pileup Time (ns) 637 ±6.91

Lower Level Disc. (keV) 324 ±7.99

Upper Level Disc. (keV) 1990 ±85.5

Time Resolution (ns) 13.7 ±0.084
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Figure 2.18: Subplots showing the mean values of calibrated parameters with the error bars

as the standard deviation of solutions [48].

When the new set of simulations is conducted with the calibrated digitizer, the results472

match the experiment to a mean absolute difference of 3.41% over all three count-rates with473

the total, true, and corrupted count-rates being 2.31%, 2.18%, and 5.72%, respectively. The474

experimental and simulated count-rate response is shown in Fig. 2.19. To quantify the475

calibration further, it is also important to observe how the fraction of true and corrupted476

counts behave as a function of source activity. These results are presented in Fig. 2.20,477

showing that their behaviour is approximately the same over all activities, with the true and478

corrupted count fractions reconstructed to 1.91% and 3.72% error, respectively [48].479
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Figure 2.19: Results of the count-rate experiment and comparison of the ACCES calibrated

GATE model of the LaMA [48].

2.4 Discussion480

In this Chapter, the development of two new GATE models for PEPT detector systems and481

their calibration to experimentally observed performance characteristics using a novel, au-482

tonomous calibration method was presented. These GATE models are particularly useful for483

the PIC since these two systems are the most used and by having a validated model, a better484

understanding of their performance in different configurations can be gained [97]. Moreover,485

the ability to simulate the response of the system with a model of a PEPT experiment and486

PEPT tracer presents an opportunity to optimise the data acquisition through the use of487

tailored detector geometries and tracer activities.488

In PEPT experiments, a balance between the quantity and quality of LoRs is desired.489
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Figure 2.20: Results of the count-rate experiment in terms of the true and corrupt count

fractions and comparison with the ACCES calibrated GATE model of the LaMA.

High count-rates are needed to create a sufficient temporal resolution of tracers along their490

trajectory, but increasing the source activity can result in poor count-rates due to excessive491

dead-time. Additionally, the fraction of corrupted events also increases at high count-rates,492

degrading the spatial resolution of reconstructed trajectories [125, 148]. As evidenced by the493

experiments, the detector response is shown to be a complex relationship between the source494

activity and detector head separation, which will be explored in more detail in Chapter 4.495

Using this model, a prediction of the optimal source activities and head separation can be496

made.497

Moreover, the use of evolutionary algorithms to calibrate a digitizer has been proven498

to be a viable and useful strategy [45]. Calibrating digitizers has often been a time-consuming499

process and is not guaranteed to produce optimal calibration. However, by comparing the500
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real performance characteristics and simulated performance characteristics generated from501

a set of candidate solutions and applying an evolutionary algorithm to search the optimal502

set autonomously, both of these problems are solved. No active attention needs to be given503

to the calibration once the ACCES optimisation is created. Users need only to check in504

once the optimisation is finished after a few days to validate the final set of solutions. If505

the initial bounds of the search contain the optimal solution, the number of simulations per506

epoch is sufficient to learn the response of the detector to each free parameter and produce507

an optimal set of candidate solutions.508

To assist users in developing their own optimisations using ACCES, an example of509

this method with test data is included within the GitHub repository found here. This exam-510

ple uses a simulated count-rate response of the ADAC Forte GATE model with prescribed511

parameter values in the digitizer as the ground truth response, then uses ACCES to cali-512

brate two parameters, the singles dead-time and time resolution, to match the ground truth513

response. Two parameters were chosen because this is a more complex optimisation than a514

single parameter, yet easier to visualise than an optimisation with three or more parameters.515

The prescribed values for the singles dead-time and the time resolution are 1000 ns and 15516

ns, respectively. The methodology in this simple example follows the same as that described517

in Section 2.3.1. The results from this optimisation in Figure 2.21 show the optimal param-518

eter was determined to be 995.016 ns for the singles dead-time and 15.022 ns for the time519

resolution, which matches the prescribed parameters.520
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Figure 2.21: An example of an optimised GATE model with two free parameters. (a)

The scaled standard deviation for each parameter over several epochs of simulations (b) a

Voronoi diagram of the parameter combinations shows the solution converges to the optimal

parameters. Each point is a candidate solution and the larger the point or lighter blue the

Voronoi plot the higher the error in the cost-function evaluation [45].
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Chapter Three1

Benchmarking PEPT Algorithms2

3.1 Introduction3

One of the advantages of using PEPT over conventional, optical-based methods of imaging4

is that 511 keV gamma-rays can penetrate through opaque media and thick-walled systems5

[100]. This allows for tracking in a variety of systems which cannot be studied using other6

methods [147]. However, when using real data to track a PEPT tracer, this can present7

a challenge to verify whether or not the trajectory generated by a PEPT algorithm is an8

accurate reflection of the real tracer’s behaviour. Additionally, since there exist multiple9

PEPT algorithms and these have been tested through a variety of disparate experiments10

using different types of detectors, comparisons between algorithms can not easily be made.11

A variety of methods have been developed to test the accuracy of PEPT algorithms.12

One such method involves using a static, tracer placed in the centre of a PEPT detector13

system. A PEPT algorithm is then used to find the tracer’s location several times and the14

three-dimensional standard deviation from the mean position of the tracer is given as the15

accuracy. [100]. This is equivalent to Equation 1.16 described in Section 1.4.3. However, as16

shown previously in Figure 1.5, the accuracy of a PEPT algorithm improves proportionally17
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to the inverse square root of the number of LoRs used per location [100, 97]. Though, with18

this, a trade-off in the temporal resolution is required, since fewer positions can be generated19

with a larger sample size of LoRs [100, 97].20

A similar experiment can be conducted using a moving source with a known trajectory.21

For example, with a tracer placed on the edge of a horizontally rotating disk moving at a22

constant known angular velocity, the motion of the tracer can be described using sine waves23

[100]. By fitting the trajectory to this form and taking the average vertical component as a24

mean position, the instantaneous differences can be calculated and used to compute a three-25

dimensional standard deviation from the expected trajectory. However, while these provide26

a measure of accuracy, both methods are subject to systematic bias in the tracer position27

and uncertainty. Since the true position of the tracer is not precisely known and a wobble28

in the rotating disk can distort the expected trajectory, the bias cannot be determined so29

these methods are limited in their usefulness [47].30

One way to attempt to resolve this is to conduct a simultaneous complementary31

measurement. In previous work, a PEPT measurement of jet flow through a baffle in a32

transparent system with simultaneous high-speed video of the tracer has been compared33

[69]. These measurements showed that the tracer trajectories were comparable and the34

reconstructed velocity fields differed only slightly. However, since there still exists uncertainty35

in both measurements this makes it hard to quantify the exact accuracy of a PEPT algorithm.36

Therefore, to solve this problem, an approach where the trajectory is known absolutely is37

needed.38

The goal of this Chapter is to use GATE models to create a data set where the exact39

position of the tracer is known at all times, thereby creating a framework for comparing the40

performance of PEPT algorithms. Since GATE simulations can produce LoRs which emulate41

those produced by PEPT detector systems and the position of the source is prescribed, this42
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makes these models ideal for comparing PEPT algorithms. Producing this common data43

set of benchmark tests and collaborating with the creators of different PEPT algorithms,44

provides, for the first time, a quantitative and comparative assessment.45

The benchmark tests have been carefully designed to allow a comprehensive, quanti-46

tative and, fair comparison of PEPT algorithms [149]. As different algorithms will inherently47

possess strengths and weaknesses, the benchmarking framework is comprised of a number of48

individual tests, each designed to evaluate a specific aspect of an algorithm’s performance.49

Since not all PEPT algorithms are designed for multiple tracer tracking, these tests are di-50

vided into two parts: one assessing an algorithm’s ability to locate a single PEPT tracer,51

and the other, the ability to locate and distinguish multiple tracers.52

The analysis judges an algorithm’s performance based on a number of quantities,53

including both spatial and temporal resolution, the number of tracers successfully tracked,54

and resilience to noise. Each individual test is performed using two different PEPT detector55

system geometries, which are the ADAC Forte and Siemens ECAT [44, 57]. This is done to56

ensure that algorithms developed for a ring-shaped detector are not unfairly disadvantaged57

by being tested exclusively on a planar detector, and vice-versa.58

In order to make the comparisons of algorithms fair, no users of their respective59

algorithms were permitted to know the ground-truth locations of the tracers. To aid other60

developers of PEPT algorithms in using these benchmarks, the GATE data set and the61

Python functions used to compare the various algorithms against the ground truth positions62

of the simulated tracers can be found here.63
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3.2 Description of Algorithms64

3.2.1 Birmingham Method65

The Birmingham Method, developed at the University of Birmingham is the oldest, yet most66

widely-used PEPT algorithm [100]. The fundamental principle of the method is, for a given67

set of LoRs, some of the LoRs will be true LoRs, which lead back to the PEPT tracer, and68

some will be corrupted through scattering or are random LoRs. The unique feature of the69

Birmingham Method is that it can discard a specified fraction of the LoRs, ideally leaving70

only the true LoRs to locate the tracer [100].71

The algorithm considers a sample containing a user-defined number of consecutive72

LoRs, NLoRs, from a PEPT data set. Each LoR in the sample is defined by two points73

which are the positions the coincident gamma rays interact with the detector. The smallest74

perpendicular distance between the LoRs defined by these points is then determined and75

called the minimum distance point (MDP), (x, y, z). If all of the LoRs in the sample lead76

back to a single point, then the δ(x, y, z) is exactly 0. However, because of the limitations77

of spatial resolution, movement of the tracer, and incorporation of corrupted LoRs in the78

sample, δ(x, y, z) will have some positive value.79

When all of the LoRs in a sample are used, the MDP will likely be distorted from80

the actual location of the PEPT tracer. Since the MDP will still likely be close to the81

actual location of the tracer, the Birmingham Method considers the LoR which has the82

largest δ(x, y, z) to be the most likely corrupted LoR. This LoRs is removed and the MDP83

is recalculated. This process is repeated until only a user-specified fraction of LoRs from84

the original sample remains. The fraction that remains in the sample is called f and must85

be provided by the user. The best value for f is one which removes all of the corrupted86

LoRs and leaves only the true LoRs. Determining the optimal value for f , often called fopt,87
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is difficult since it is PEPT detector specific, dependent on the position and activity of the88

tracer, and is affected by the amount of scattering in the experimental system. There are89

ways to determine fopt using static or moving tracers which will be discussed in Chapter 4,90

but most commonly a conservative estimate is used [18]. The role of f in the Birmingham91

Method is demonstrated in Figure 3.1.92

Figure 3.1: The Birmingham Method removing corrupt LoRs illustrated. In (a) all the LoRs

are considered, in (b) half of the LoRs are considered, and in (c) a fifth of the LoRs are used

[149].

3.2.2 G-Means Method93

The G-Means method was developed at the University of Tennessee, Knoxville to enable94

multiple tracer tracking [139]. Instead of using a fixed number of LoRs per sample, this95

method begins by tracing LoRs from a given time step onto a three-dimensional grid of96

voxels within the FOV of the PEPT detector system. Voxel sizes and the time step are97

prescribed by the user and typically range from 0.5 mm - 2 mm and 1 ms - 100 ms. As98

LoRs are summed into the voxels grid, the voxels which are near the tracers will have a99

higher fraction of the LoRs passing through them. Initially, a check is made to ensure that100

the maximum voxel value is above a user-specified threshold value. If this check is passed,101

the grid of voxels is then high-pass filtered based on a fraction, usually 0.25-0.5, of the peak102

line-crossing value. This filters out the voxels which do not have a large number of LoRs103
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passing through them by setting their value to 0. The remaining voxels are then clustered104

via G-Means clustering to determine the positions of tracers within that time step [38].105

G-Means is a modified k-means algorithm that uses statistical checks to overcome106

the limitation of traditional k-means which requires the number of clusters in the data set107

to be specified [2]. PEPT tracers are identified as follows: Firstly, each voxel is treated as108

a number of points positioned at the centre of each voxel. The number of points is equal109

to the number of LoRs which pass through the voxel. Initially, it is assumed that only one110

cluster is present and a three-dimensional Gaussian function is fit to all of the points. At111

this stage, an Anderson-Darling (A-D) test [4] is used to determine the ‘goodness-of-fit’ to112

the Gaussian form. If the cluster fails the test, then subsequently two Gaussian functions are113

fit to the points and the A-D test is performed again. By repeating this process, the natural114

number of clusters becomes apparent when all clusters pass the A-D test. The centroids of115

each cluster are taken to be the positions of the PEPT tracers.116

After all of the tracers are identified within each time step from a given measurement,117

they are linked into continuous trajectories using a nearest-neighbours algorithm [139]. A118

linking method is needed in multiple tracer tracking methods since the ID of the tracer cannot119

be obtained through PEPT alone. This linking method has been seen to offer sufficient results120

when the between-frame displacements of tracers are shorter than the average tracer spacing.121

If between-frame displacements are larger, such as in the case of fast-moving flows and/or122

low data acquisition rates, a more robust linking algorithm may be used that employs the123

prediction of tracer position based on the fitting of tracer positions from multiple consecutive124

frames [104, 140].125
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Figure 3.2: Visual depiction of clustering via G-Means. Clustering begins by treating the

data as one cluster (a). This is then split into two clusters (b) and then three (c). Further

splitting is rejected at this point and assumed that the algorithm has found the total number

of tracers [149].

3.2.3 Spatiotemporal B-Spline Reconstruction126

Spatiotemporal B-spline reconstruction [73] (SBSR), is a technique developed at Stanford127

University. The goal of this algorithm is to find the trajectory that is most consistent with128

a sparse set of LoRs. Unlike most prior PEPT algorithms which were developed with indus-129

trial applications in mind, the SBSR method’s intended purpose is focused on biomedical130

applications, having recently been demonstrated through tracking the migration of single131

cells in live subjects [60]. To this end, the algorithm is designed to track tracers using a132

minimal number of LoRs. In biomedical applications, this is needed due to the small size133

of the tracers, and hence typically low activity, used for single-cell tracking and blood flow134

studies [73].135

In this method, the trajectory of a PEPT tracer is modelled as a piece-wise three-136
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dimensional spline of the continuous temporal variable t [66]. Each of the three spatial137

coordinates is modelled as a weighted sum of spline basis functions, Bi(t). Therefore, each138

trajectory, r⃗(t), is represented by three sets of basis coefficients, a⃗i = (axi , a
y
i , a

z
i ), shown in139

Equation 3.1.140

r⃗(t) =
N∑

i=1

a⃗iBi(t). (3.1)

The number, N , of basis functions can be adjusted by the user for each data set.141

Once the spline basis functions are set up, a convex optimisation algorithm is used to find142

the spline weights that best match the recorded LoRs. The objective function used for this143

reconstruction is the sum of the squared distances between each recorded LoR and the time-144

matched location along the estimated spline trajectory. For instance, if an event was detected145

at time t0 by the scanner, the algorithm will compute the estimated position of the source146

along the spline trajectory at the exact same time t0, then compute the distance between this147

point and a single LoR. This distance is then squared and added to the objective function. A148

decrease in the objective function means that the reconstructed spline trajectory lies closer149

to the LoRs. As the objective function is convex, the optimisation is guaranteed to converge150

to a unique trajectory.151

The SBSR algorithm also accounts for scattered and random coincidences. These152

events can have a large impact on the estimated position of the source because the distance153

penalty in the objective function is squared. Therefore, the distance penalty is capped154

beyond a maximum threshold, which is set according to the spatial resolution of the PET155

scanner. For the benchmark tests reported later in this article, the reconstructed data used156

a distance penalty threshold of 8 mm. An example demonstrating the basic method of the157

SBSR algorithm is shown in Figure 3.3158
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Figure 3.3: Simple illustration of the SBSR method. The algorithm uses a least-squares

approach to determine the best-fitting three-dimensional spline for a given set of points

[149].

3.2.4 Feature Point Identification Method159

The feature point identification (FPI) method was developed at the University of Tennessee,160

Knoxville as a successor to the G-Means method [138]. The FPI method begins similarly to161

the G-Means method by using a voxelised grid in which the crossings of LoRs in a sample are162

summed. Since a voxelised grid is the three-dimensional version of two-dimensional pixels,163

techniques which were originally developed for image processing can similarly be adapted164

for voxels to identify and track tracers [117, 23].165

In treating the voxel grid as a three-dimensional image, where N t(x, y, z) is the number166

of line-crossings at voxel position (x, y, z) during a time step t. The image can be first167
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smoothed via a convolution-based filter. Typically, this is performed with a box-car kernel168

over a cubic region of width 2w + 1 where w is the smoothing size, using Equation 3.2:169

N ′t(x, y, z) =
1

(2w + 1)3

x+w∑

i=x−w

y+w∑

j=y−w

z+w∑

k=x−w

N t(i, j, k) (3.2)

In addition to this, convolution with a Gaussian kernel for image smoothing can also170

be applied. This is useful in cases in which significant background noise is expected due to171

a large number of scattered events [140]. Examples of the raw line-crossing grid and the172

smoothed image are seen in Figure 3.4.173

Figure 3.4: Visual depiction of the FPI method, showing (a) unfiltered line-crossing grid and

(b) a filtered grid [149].

Next, tracer positions are estimated as local intensity maxima in the smoothed image174

N ′t. These local maxima are taken to be voxels with intensities in the upper rth percentile175

of a given time frame and a line-crossing value greater than any other voxel within a neigh-176

bourhood of 2w + 1. The value r is adjusted based on the amount of noise in an image and177

the subsequent effective ‘brightness’ of each tracer relative to the background.178
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The parameter w serves as an apparent tracer image size, where the image of each179

tracer is a cube of high LoR density centred at the maxima. However, w also limits the180

between-tracer separation that can be resolved in a given time step. Below a separation of181

w voxels, the tracer that appears brightest will be detected, and the others will be ignored182

but will bias the detected position of the brightest tracer toward the centroid of the tracers183

involved. Thus, if two tracers approach closely, the one having the higher activity is likely to184

be followed while the measured history of the other tracer will be split into two. If possible,185

w should be chosen such that it is smaller than expected tracer-tracer separations.186

Final tracer positions are calculated using one-dimensional Gaussian fits in each spa-187

tial direction of each identified cluster. This removes a pixel-locking defect that biases188

calculated positions toward centres or edges of voxels that were observed in the G-Means189

algorithm. Further, in order to link tracer positions from multiple frames into a coherent190

trajectory, a nearest-neighbour or tracer location prediction linking algorithm can be used191

[104, 140].192

3.2.5 Spherical Density Method193

The spherical density method (SDM) was developed at the University of Cape Town and rep-194

resents a somewhat different approach than other PEPT algorithms [94]. The SDM requires195

the user to provide information regarding the size of the tracer and also the positron range196

[94]. The additional parameters remove sources of uncertainty involved in other methods,197

allowing the more targeted removal of erroneous LoRs, and thus may potentially yield higher198

accuracy.199

The method’s operation is predicated on two main assumptions: (1) a positron’s mean200

free path, λ, between emission and annihilation is smaller than the tracer radius and (2) the201
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highest and most uniform concentration of annihilation centres lies within a radial distance202

r∗ of the emitted positron.203

The first assumption relies on the positron range, which is typically on the order204

of a millimetre in water. PEPT tracers are often approximately this size and significantly205

denser than water, meaning the majority of positron annihilation will occur within the206

tracer [88]. The second assumption seeks to relate the method of tracer activation to the207

spatial distribution of positron annihilation. With directly activated tracers, the tracer is208

uniformly activated, meaning the positron-emitting isotope is evenly distributed throughout209

the volume of the tracer. However, with indirect activation, depending on the exact method210

used, the positron-emitting isotope may be mostly concentrated on the surface. Whether211

the tracer is volumetrically activated or surfaced activated can affect the spatial distribution212

of positron annihilation, which surface-activated tracers having a larger radial distance in213

which positrons can annihilate.214

Using these two assumptions, the SDM algorithm searches for a concentration of LoRs215

which pass within a distance of each other. The distance between LoRs is determined by216

the radius of the tracer, mean free path of positrons in the material being imaged, and217

the method of tracer activation (volumetric or surface activation). This process can then218

be repeated for all LoRs until a number of concentrations, called sets, sn, are identified.219

The set possessing the largest number of LoRs is taken to represent the tracer location. In220

cases where multiple sets possess the same number of remaining LoRs, the algorithm simply221

chooses the first such set. As can be seen in the present case, it is typically unimportant222

which of these sets is chosen, as all true LoRs belonging to the chosen set are members223

also of the other sets with the same maximum number of remaining LoRs. The SDM is224

demonstrated in Figure 3.5.225

In order to perform multiple tracer tracking, the algorithm is run as described above,226
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Figure 3.5: Visual depiction of the SDM: (a) first a sample of LoRs in the FOV is shown,

(b) then the LoRs which interact with each other are identified, (c) next a region of interest

where the most LoRs interact is located, (d) then the LoRs in this region are used to locate

the tracer [149].

and the centroid of the set containing the largest number of true LoRs is taken as the position227

of the first tracer. The LoRs corresponding to this set are then removed from the data set, and228

the algorithm is re-applied to the remaining LoRs. This process is then repeated until all Nt229

tracers within the system have been detected. In order to associate computed centroids from230

a given sample with the subsequent sample of centroids, the algorithm computes the absolute231

separation distances between each new centroid and those from the previous sample. If the232

time step between successive frames is suitably small, and the tracer velocities suitably low,233

it can be assumed that for two successive computed centroids, the tracer would not have234

moved significantly from its initial computed position. On this basis, the algorithm can235
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associate each newly computed centroid with the nearest neighbour from the previous set.236

3.2.6 PEPT using Machine Learning237

The PEPT using machine learning algorithm (PEPT-ML) was developed at the University238

of Birmingham in 2020 and builds upon modern machine learning techniques [91]. It was239

built specifically to extract tracer trajectories even in the presence of significant amounts of240

corrupted LoRs and is capable of locating sources even with low numbers of LoRs per sample.241

These features help PEPT-ML to locate both small and fast-moving tracers. An important242

focus in its development was handling non-ideal practical aspects of PEPT experiments,243

such as unknown numbers of tracers that may collide, leave the field of view, or decay.244

Accordingly, PEPT-ML introduced a number of general-purpose techniques for identifying245

tracer trajectories even after intersections or collisions. It was implemented in the context246

of a broader Python library that also includes auxiliary tools, a user-focused interface, and247

a straightforward generation of interactive three-dimensional plots.248

The PEPT-ML algorithm starts by subdividing a data set of LoRs into samples of249

equal length or optionally variable length. For each sample, all pairs of LoRs which pass250

within a user-defined value, dmax, from one another are transformed into cutpoints. A251

cutpoint is the halfway point of the segment connecting a pair of LoRs at their point of252

closest approach. This is a very different approach than voxel-based algorithms, generating253

a cloud of point data instead. To cluster these point clouds, PEPT-ML uses an open-254

source, high-performance implementation of Hierarchical Density-Based Spatial Clustering255

of Applications with Noise (HDBSCAN) [11, 84].256

Another important aspect of this algorithm is the use of ‘second-pass’ clustering. This257

exploits the fact that tracer locations found by PEPT algorithms are, more or less, scattered258
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around the real tracer position. However, it is possible to improve the trajectory by averaging259

the positions. This is achieved by reapplying the HDBSCAN algorithm to a sample of the260

cluster centres. This treats the PEPT locations as a point cloud, similar to the cutpoints, and261

finds the centroid, yielding a better estimate of the tracer location. Additionally, typically262

only approximately 30 locations are needed in this step. This is effectively a smoothing263

filter, but when the temporal resolution is high with respect to the tracer velocity this264

allows second-pass clustering to retain fidelity in tracer trajectory. Further, second-pass265

clustering can be beneficial by excluding erroneous tracer positions which are further away266

from other centroids. While this method is more computationally expensive than many267

other algorithms, due to the high-performance, parallel implementation, PEPT-ML is still268

very competitive speed-wise [91].269

In the case of multiple tracers the reconstructed positions must be split into individ-270

ual trajectories. The current trajectory separation approach uses a spatiotemporal-based271

segregation step and signature-based linking. The segregation stage involves a single-linkage272

clustering algorithm which connects all points and then removes paths longer than a max-273

imum distance. However, points that are in the same spatial position at different times274

must be differentiated. To do this, a custom spatiotemporal metric is used, which limits275

which locations can be connected. A second stage, making use of the cluster sizes, can276

then be employed if it is expected that tracers may collide or intersect with one another.277

This signature is the number of cutpoints around each tracer location. When tracers are278

of differing activities, it is expected that more of the LoRs in a sample will belong to the279

higher activity tracers. Since the number of cutpoints produced by a sample of LoRs scales280

quadratically with the number of LoRs meeting the max distance cutoff, this means that281

even small differences in the activity can be registered and used to correctly piece together282

tracer trajectories. The basic workflow of the PEPT-ML algorithm is shown in Figure 3.6283

[91].284
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Figure 3.6: Illustration of steps used by PEPT-ML in tracking two 1 mm diameter tracers

in a bubbling fluidised bed, imaged at the University of Birmingham. Panel (a) depicts 400

LoRs from the data set. Panel (b) shows their corresponding cutpoints, computed for pairs

of LoRs which are closer than dmax = 0.5 mm. Panel (c) colour-codes the cutpoints by the

cluster IDs assigned by HDBSCAN: green represents noise, purple is cluster one and orange

is cluster two; centroids are shown as large circles, blue and red, respectively. Panel (d)

depicts the tracer locations found after the first pass of clustering of 80,000 LoRs; panel (e)

shows the corresponding tracer locations after the second pass of clustering. Both panels

(d) and (e) colour-code points by their cluster size. Panel (f) illustrates the separated tracer

trajectories, colour-coded by the trajectory ID [149].
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3.2.7 PEPT using Expectation Maximisation285

The PEPT expectation-maximisation algorithm (PEPT-EM) was developed at the Univer-286

sity of Edinburgh in collaboration with the University of Birmingham, expanding on the287

original concept of the Birmingham Method [82]. This method clusters LoRs into ‘inlier’288

and ‘outlier’ sets similar to how the parameter f is used to separate true and corrupted289

LoRs. Using a maximum-likelihood approach based on Bayesian statistics, the LoRs in a290

set of data can be allocated to one of many clusters which are iteratively recalculated until291

convergence [82]. Scattered or random LoRs are assigned to a larger outlier cluster.292

The PEPT-EM method is novel in that it is based on a physical model of positron293

emission and LoR generation. For a set of K tracers, each tracer has a centre defined as x⃗k294

where k = 1, 2, · · · , K and emits positrons that annihilate a short distance away from the295

centre at yk, where the probability of annihilation at yk is defined by a Gaussian distribution296

around the centre x⃗k with a variance σ2
k. In addition, the relative weight of each cluster is297

defined by ρk to characterise their relative activity.298

This sets up the problem as a Gaussian mixture, which can be solved using expectation299

maximisation. Present in all samples of LoRs is an outlier cluster where k = 0, centred at the300

middle of the FOV and with a variance of the order of the size of the FOV. The inverse of this301

variance is termed α, such that α−3/2 is of the order of the volume of the FOV. In practice,302

this value is a constant that requires fine-tuning. The weight of this cluster, ρ0 is also defined303

by normalising ρ such that
∑K

k=0 ρk = 1. Using this information, the log-likelihood of finding304

each cluster with parameters x⃗k, σ
2
k, ρk in a set of lines L as Equation 3.3. With an initial305

guess of the clusters, the solution is optimised iteratively until the likelihood is maximised.306

L
(
{x⃗k, σ

2
k, ρk}1≤k≤K

∣∣L
)
=
∑

ℓ∈L

log

(
ρ0α +

K∑

k=1

ρkσ
−2
k e−D2(x⃗k,ℓ)/2σ

2
k

)
. (3.3)

112



Benchmarking PEPT Algorithms

In order to use expectation maximisation, unobserved, or latent, variables are intro-307

duced. These variables are used to simplify the model. The iterative nature of the algorithm308

requires alternating between the calculation of the latent weights and maximising the like-309

lihoods until convergence is achieved. The convergence of the inlier and outlier cluster is310

illustrated in figure 3.7.311

Figure 3.7: (a) A schematic of the initial clusters generated by the PEPT-EM algorithm,

showing clusters k = 0, 1, 2, 3. (b) After convergence, the large outlier cluster, k = 0,

accounts for detected LoRs that have undergone scatter or are due to random coincidences,

while smaller clusters converge using their most-likely LoRs [149].

The number of iterations to reach convergence can vary depending on the number of312

clusters and the initial guess. Typically for the first frame, a number of the order of 1000313

iterations is used. However, when tracking trajectories, convergence can be achieved using314

fewer iterations provided that the time interval between batches of LoRs is sufficiently small315

that the tracer centroids have only moved a small distance. Consequently, by updating the316

position of individual clusters trajectory separation is implicitly achieved.317

113



Benchmarking PEPT Algorithms

3.3 Description of Benchmarks and Data Analysis318

The single tracer tests are designed to test the minimum number of LoRs needed for position319

reconstruction, the maximum tracer velocity, robustness to noise, and the ability to track320

tracers near the edge of the FOV. All algorithms are tested on these metrics. However,321

multiple tracer tests are also conducted using the G-Means, FPI, SDM, PEPT-ML, and322

PEPT-EM algorithms. The multiple tracer benchmarks are designed to test the minimum323

separation distance between tracers needed to resolve both tracers, the ability to distinguish324

false positives from real tracers, test the trajectory linking of moving tracers, and compare325

the ability to track large numbers of tracers.326

For all simulated tests, 10 MBq of fluorine-18 is prescribed as the activity of a 2 mm327

diameter, volumetrically activated glass tracer in air, unless otherwise specified. The particle328

emitted by the source are positron and the GATE physics list used is ‘emstandard’. Within329

a short distance of emission, the positrons will annihilate with an electron and produce two330

511 keV coincident gamma rays. In instances of multiple tracers, a total activity of 10 MBq331

is divided equally between tracers. The tracer size, the isotope used, and total activity was332

chosen to reflect common practices in PEPT experiments [148].333

3.3.1 Single Tracer Tests334

Minimum LoRs335

The first test, and the most fundamental, is designed to evaluate the accuracy of PEPT336

algorithms as a function of the number of LoRs used, as well as their ability to locate tracers337

using small numbers of LoRs. The test simply requires the reconstruction of a single, static,338

point-like tracer of a prescribed ‘activity’, i.e. a number of LoRs ranging between N = 10 and339
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N = 10, 000. For each sample size, N , 10 repeat tests are performed, each with a different340

random set of LoRs. The tracer location is fixed at 0, 0, 10 mm near the centre of the FOV.341

Placing the tracer exactly in the centre of FOV is avoided since this could result in randomly342

distributed noise giving the appearance of higher-than-expected accuracy.343

The algorithms must use all LoRs in a sample to locate the tracer once. Thus, for344

each N , 10 repeats are used to assess the average error from the prescribed tracer location345

as well as the standard deviation of the errors. The performance of each PEPT algorithm is346

judged on the accuracy of the mean reconstructed tracer position using Equation 1.14 and347

if a location is able to be returned at all for low numbers of LoRs.348

Maximum Velocity349

This test establishes the ability of a PEPT algorithm to track fast-moving tracers. It involves350

reconstructing the trajectory of a constant velocity moving tracer following a one-dimensional351

‘sawtooth’ path. The test is repeated for 10 different velocities ranging from 0.04 m/s to 20352

m/s, a span designed to represent and possibly exceed the range of velocities that might be353

encountered in a real PEPT experiment. The range of motion is between ± 10 mm and the354

tests are conducted separately for axial and transverse motion with respect to the PEPT355

detector systems. An example of this trajectory is shown in Figure 3.8.356

The sawtooth path is specifically chosen to introduce significant accelerations and357

discontinuities and thus further challenge the algorithms. Since the trajectory of the tracer358

is reconstructed and there are several positions comprising a trajectory, there is a trade-off359

between spatial and temporal resolution. Thus, to compare the results of the different algo-360

rithms, which may use different amounts of LoRs per location, they are compared through361

the combined spatiotemporal resolution of the trajectory which is the mean position error362

divided by the inverse square root of the number of locations found. This penalises low363
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Figure 3.8: An example of the sawtooth trajectory used in the velocity test.

accuracy and low numbers of returned positions. The location error is again calculated as364

per Equation 1.14 using the prescribed position for the tracer and used with Equation 1.22365

to determine the spatiotemporal resolution. Each algorithm is judged on the spatiotemporal366

resolution as a function of the tracer velocity.367

Robustness-to-Noise368

The goal of this test is to establish the ability to handle noisy data. In real PEPT exper-369

iments, noise is caused by random and scattered LoRs [148]. To produce realistic noise,370

scattered LoRs are generated by placing the GATE-simulated static source at the centre371

of a 50 mm diameter sphere of scattering material near the centre of the FOV at 0, 10, 0372

mm. The physical properties of the sphere are varied to elicit different levels of scatter, and373

thus different levels of noise. The scatter media used are air, polyethylene, water, polyvinyl374
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chloride (PVC), aluminium, sodium iodide (NaI), cadmium zinc telluride (CZT), stainless375

steel, copper, and bismuth germanate (BGO). The details of these materials, including their376

densities and attenuation coefficients, are listed in table 3.1. Figure 3.9 illustrated the set-up377

of the test.378

Figure 3.9: Figure illustrating the (a) scatter sphere, (b) scatter sphere in the simulated

ADAC Forte PEPT detector system, and (c) the scatter sphere in the simulated Siemens

ECAT PEPT detector system [149].

From the simulation, 10,000 LoRs are generated and provided to the users of the379

PEPT algorithms. Users have the choice to provide a single position for the tracer or an380

average position. The algorithms are judged on their ability to accurately locate the tracer381

through Equation 1.14. The results are presented as the spatial accuracy as a function of382

the attenuation coefficient of the sphere.383

Field-of-View384

In this test, a simple, linear tracer trajectory is simulated, with the tracer starting outside385

the PEPT detector system, passing through the centre of the FOV, and then out the other386

end. The tracer moves at a constant 100 mm/s velocity starting at -250 mm from the centre387

of the FOV and finishing at 250 mm. The goal of this test is to establish the ability of the388
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Table 3.1: List of materials and properties used in the robustness to noise benchmark tests

[129, 149].

Material Density (g/cm3) Cross-section (cm2) Attenuation Coeff. (cm−1)

Air 0.00129 0.0806 0.000111

Polyethylene 0.960 0.0986 0.0946

Water 1.00 0.0960 0.0960

PVC 1.65 0.0890 0.147

Aluminium 2.70 0.0837 0.226

NaI 3.67 0.0933 0.342

CZT 5.68 0.0896 0.509

SS304 7.92 0.0832 0.659

Copper 8.96 0.0827 0.741

BGO 7.13 0.1501 1.070

algorithms to track tracers not only in the centre of a detector’s FOV, where the spatial389

and temporal resolution are the greatest but also near the edges where sensitivity and the390

fraction of true LoRs may be reduced. Figure 3.10 illustrates the trajectory of the simulated391

tracer through the FOV of the PEPT detector systems.392

The PEPT algorithms are judged on their ability to accurately locate the tracer with393

the spatial error calculated from Equation 1.14 using the prescribed positions of the tracer.394

In addition to the mean error and the standard deviation of the errors, the spatiotemporal395

resolution is calculated using Equation 1.22 and the instantaneous spatial errors are presented396

as a function of tracer position.397
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Figure 3.10: Figure illustrating the trajectory of the tracer moving through the centre of the

FOV for the (a) ADAC Forte and (b) Siemens ECAT [149].

3.3.2 Multiple Tracer Tests398

Minimum Tracer Separation399

In this test, a pair of 2 mm diameter tracers, each 5 MBq, are separated by a variable centre-400

to-centre distance. The value of this distance is varied from 30 mm down to 2 mm, which401

is the distance the two simulated tracers are in contact, representing collision. Two sets402

of simulations are conducted with one set having the tracer separated axially with respect403

to the PEPT detector system and another transverse. The axial direction in the Forte is404

defined as perpendicular to the detector face, while in the ECAT it is parallel and vice-versa405

for the transverse direction. Spatial resolution is typically worse in the axial direction due406

to oblique LoRs, presenting additional challenges.407

The purpose of this test is to assess the ability of a given algorithm to resolve two408

tracers in close proximity, as opposed to falsely merging them into a single location which409
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has been seen in other PEPT experiments, [49]. This is an important aspect for PEPT410

algorithms when multiple tracers are used since during an experiment tracers may pass near411

to each other or collide.412

In each simulated case, 10,000 LoRs are provided to the users and either the two413

trajectories, or two average positions are returned. To assess their ability to distinguish the414

tracer it is first noted if the algorithm returns a merged position or two separate positions,415

then the mean spatial error is calculated using equation 1.14.416

False Positives417

In this test, the algorithms must locate an array of 4, 8, and 16 tracers arranged, respectively,418

to form a square, a cube, or a ‘tesseract’. These geometries are deliberately chosen to include419

high degrees of symmetry to create areas of overlap between LoRs from different tracers420

which may be falsely interpreted as tracer positions. In the case of the square arrangement,421

for example, high concentrations of intersecting LoRs at the centre of the square could be422

falsely interpreted as a 5th tracer location. In the case of a cube or tesseract this issue is423

exacerbated, as well as introducing other such intersection points. This test is therefore424

designed to assess an algorithm’s resilience to false tracer locations. Figure 3.11 shows the425

relative positions of the tracers for each of the three shapes.426

All arrangements share a vertex separation of 10 mm, meaning that no two tracers lie427

closer than this distance. This specific minimum separation distance is chosen to be greater428

than the detector resolution and corresponds to the separation above which the tracers are429

not likely to be merged. This ensures that the test does not unfairly re-examine the abilities430

tested previously. The algorithms are compared based on the presence of any false positive431

in the returned positions and also the mean error for the tracers, calculated using Equation432

1.14.433
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Figure 3.11: Figure illustrating the positions of tracers for the false positive test. The three

tests correspond to groups of 4, 8 and 16 tracer arrangements, respectively, in a square, a

cube and a tesseract. Note that in reality each group of tracers are simulated separately and

centred at 0, 0, 0 mm.

Trajectory Linking434

This test aims to assess not only an algorithm’s ability to locate a tracer but also to follow435

the tracer across multiple time steps. To test this, three tracers are placed on the edge of an436

imaginary sphere and rotated about two axes. Each tracer is separated from the others by437

a fixed distance of 34.5 mm, moving continuously across the surface of a sphere of diameter438

40 mm at a constant velocity of 0.8 m/s. This specific motion was chosen because while439
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the tracers are always separated spatially, their trajectories will intersect if plotted without440

respect to time. As such, this is a test not only of the raw location accuracy of a method441

but also of the associated trajectory separation. Figure 3.12 shows the initial position of the442

three tracers and their trajectory history.443

Figure 3.12: Figure illustrating the (a) initial position of the three tracers and (b) their

trajectory history for the trajectory linking benchmark [149].

To assess the performance of the PEPT algorithms in this test, the reconstructed tra-444

jectories are compared individually against the relevant prescribed positions. In particular, it445

is observed whether the positions in a trajectory all correspond to the same simulated tracer.446

Additionally, the mean spatial error and standard deviation of the errors are calculated using447

Equation 1.14. Further, the spatiotemporal resolution is calculated and compared among448

the PEPT algorithms.449

Large Numbers of Tracers450

The eighth test is intended to assess limitations on the number of tracers, Nt, that can be451

tracked simultaneously by a given algorithm, evaluating how the algorithm’s accuracy is452
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influenced by increasing Nt. The test consists of nine distinct data sets, each containing a453

different number of tracers placed in random positions throughout the FOV of the PEPT454

detector system. The tests are deliberately conducted with pseudo-random numbers of455

tracers such that those attempting the benchmarking tests were not able to make an educated456

guess as to the expected number of locations in a given data set, and thus deliberately tune457

their algorithms to more precisely detect this number. For each set of tracers simulated,458

10,000 LoRs were provided to users of the PEPT algorithms and a single position or average459

position was returned for each tracer.460

Two aspects of the codes’ performance are directly tested: first their ability to locate461

large numbers of tracers with no prior information regarding the specific number to be462

located, and second the accuracy of tracer locations. The results of PEPT algorithms’463

performance are presented as the percentage of tracers correctly found and also the mean464

spatial accuracy calculated using Equation 1.14.465

3.4 Results466

The results of each benchmark test are presented in this Section in the same order as they467

were described in Section 3.3. The goal of these tests is not to show whether one algorithm is468

superior to all others, but rather to show their relative strengths and weaknesses. Beginning469

with the minimum LoRs test, the results of each algorithm are shown in Figure 3.13.470

From Figure 3.13, it is shown that the spatial accuracy increases when more LoRs are471

used to locate the tracers. This holds true for all of the algorithms tested. Interestingly, when472

the results are plotted on a log-log plot, the precision of all algorithms show error decreases473

proportionally to the inverse square root of the number of LoRs used, which matches previous474

studies with the Birmingham Method [100, 97]. This is because for stationary tracers, larger475
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Figure 3.13: (a) The spatial accuracy of the PEPT algorithms as a function of the number of

LoRs used in the ADAC Forte geometry and (b) the results in the Siemens ECAT geometry.

Additionally, the proportionality to the inverse square root of the number of LoRs used is

demonstrated [149].

sample sizes increase the spatial resolution since there is more information about where the476

tracer is located, with error decreasing for static tracers proportionally to the inverse square477

root, i.e. the standard error. However, the proportionality constant of different algorithms478

appears to be different.479

Despite being the oldest algorithm, the Birmingham method achieves the highest480

overall accuracy in both PEPT detector system geometries and performs consistently well481

across all tests. In many cases, it is observed to outperform even the most recent algorithms,482

though PEPT-ML and FPI are observed to yield better results in some cases, but within483

the margin of error of the Birmingham Method. PEPT-EM behaviour is somewhat more484

unpredictable. It is believed that in the case of having only 10 LoRs, no outlier cluster could485

be identified, and PEPT-EM solely relied on the alpha parameter being well-tuned to reject486
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LoRs that are far away from the fitted cluster, resulting in relatively poor performance.487

5 of the 7 algorithms managed to produce a location using only 10 LoRs, though in all488

cases the error was > 1 mm. For N ≤ 50, SDM did not return a result and while the G-489

Means algorithm returned values which in many cases were erroneous, leading to significant490

error bars, reflecting the large standard deviation from the mean location. Ultimately, all491

algorithms were found to yield sub-millimetre accuracy with as few as 100 LoRs and a clear492

relationship between the number of LoRs used and the spatial accuracy was identified.493

In the maximum tracer velocity test, the PEPT algorithms are observed to exhibit494

a somewhat richer phenomenology than the previous benchmark. The results for this test495

are shown in Figure 3.14. The Birmingham Method PEPT algorithm, though typically496

producing the best results in the previous, stationary-source tests, now exhibits the largest497

location errors in a significant majority of cases. Conversely, the PEPT-EM algorithm, which498

produced some of the weakest results for the stationary source in the ECAT geometry, now499

produces the smallest errors for all but two cases. In the ADAC geometry, while PEPT-EM500

performs strongly for slow-moving tracers its accuracy falls off rapidly as velocity increases,501

to the point where at high velocities it gives the largest error of all algorithms tested. This502

is likely due to the fact that at the highest velocities the algorithm cannot meaningfully503

identify both an ‘outlier’ and ‘inlier’ cluster.504

PEPT-ML consistently performs well across both PEPT detector system geometries505

and all velocities. The SBSR algorithm also performs extremely well, in particular in the506

ADAC geometry, and in the case of fast-moving tracers. This may be expected since the507

SBSR algorithm was designed to accurately locate moving tracers using minimal numbers of508

LoRs. All algorithms degrade in spatiotemporal resolution when the tracer velocity increases.509

The effects of this are demonstrated through Figure 3.15, showing that at high velocities the510

trajectories are sparser and more inaccurate. This also shows the effect PEPT detector511

systems have on the quality of data. The ECAT geometry has a higher sensitivity than the512
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Figure 3.14: The error in PEPT detected positions increases when tracers move at a higher

velocity. (a) The Forte detector geometry and movement in the axial direction and (b) shows

Forte detector geometry and movement in the transverse direction. (c) The ECAT detector

geometry and movement in the axial direction, while (d) shows the ECAT detector geometry

and movement in transverse direction [149].

Forte, thus producing more LoRs and better trajectories.513
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Figure 3.15: Example trajectory for the velocity tests over two periods of motion. (a) Forte

geometry and for vtracer = 80 mms−1. (b) Forte geometry for vtracer = 10240 mms−1. (c)

ECAT geometry and for vtracer = 80 mms−1. (d) ECAT geometry for vtracer = 10240 mms−1

[149].

Ultimately this benchmark demonstrates that tracer velocity plays a role in PEPT514

algorithm performance, with higher velocity tracers not able to be tracked as well as static515

tracers [18]. This is to be expected, especially at higher velocities since the tracer will have516
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moved a non-negligible distance relative to its size in the time it took to collect the LoRs in517

single sample [97].518

In the robustness-to-noise test, unlike the two preceding tests which produced rela-519

tively clear trends and generally straightforward results, the results are more complex. While520

the overall trend is a general increase in error when more noise is present, the individual521

behaviours of several algorithms are observed to be somewhat erratic. This is perhaps most522

pronounced in the PEPT-ML and PEPT-EM algorithms, which for different scatter spheres523

can yield both the highest and lowest accuracy of all tested algorithms. The full results are524

presented in Figure 3.16.525

Figure 3.16: The error in PEPT detected positions increases when more LoRs are corrupted

by scattering. (a) Forte detector geometry and (b) ECAT detector geometry [149].

In terms of yielding a continuous trend, only the G-Means algorithm offers any such526

predictability, suggesting it is the least sensitive to noise. However, on average, it yields the527

lowest accuracy. The FPI, SDM, and SBSR methods all yield relatively consistent and strong528
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results across both detector geometries. The Birmingham method shows both relatively good529

consistency and accuracy, though it is somewhat less reliable in the ECAT, perhaps due to530

incorrect tuning of the f parameter.531

The origins of the variation in location error are not entirely clear. The most likely532

explanation is that under high-noise conditions, random fluctuations in the LoR density533

field may be comparable in magnitude to that registered at the true tracer location and534

that certain algorithms are more susceptible to this. These findings raise the question as to535

whether ability or reliability is the most important factor when choosing an algorithm. If the536

former, then PEPT-EM would be the most sensible choice but would run the risk of producing537

erroneous tracer locations. If the latter, then the FPI, SDM, or SBSR method would provide538

a safer choice. A deeper investigation into the origins of the observed inconsistencies in539

location would make a valuable future study and is addressed for the Birmingham Method540

in Chapter 6.541

In the FOV benchmark test, in terms of overall accuracy, all codes are observed to542

achieve sub-millimetre precision for both PEPT detector system geometries with respect543

to their mean spatial error results, shown in Figure 3.17 along with the average temporal544

resolution. These metrics are combined into the spatiotemporal resolution of the trajectory545

in Figure 3.18.546

In the ADAC geometry, the Birmingham Method and PEPT-ML algorithms are ob-547

served to provide the highest accuracy, and in the ECAT geometry, the FPI and PEPT-EM548

algorithms perform similarly well. Whereas the Birmingham Method, FPI, and PEPT-EM549

algorithms all follow relatively consistent trends, PEPT-ML’s accuracy varies more errati-550

cally. Nonetheless, the PEPT-ML algorithm displays significantly higher temporal resolution551

than the other codes whilst maintaining a comparable spatial resolution, as is illustrated by552

the spatiotemporal resolution, shown in Figure 3.18. Comparable performance from many553
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Figure 3.17: The mean error and standard deviation of the spatial errors for the PEPT algo-

rithms for the FOV benchmark in the (a) ADAC Forte and (b) Siemens ECAT geometries,

as well as the temporal resolution for the PEPT algorithms in the (a) ADAC Forte and (b)

Siemens ECAT geometries [149].

of the methods is seen, with especially good results from PEPT-ML. This may again be due554

to the use of second-pass clustering to significantly improve spatial and temporal resolution555
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Figure 3.18: The spatiotemporal resolution of the PEPT algorithms in the (a) ADAC Forte

and (b) Siemens ECAT [149].

for low-acceleration tracers.556

In addition to these metrics, how the spatial accuracy changes as a function of the557

source positions within the FOV is also tested. The results of this test are shown in Figure558

3.19.559

In general, spatial error values of the majority of algorithms follow an approximate560

U-shape, with a minimum at the centre of the detector and a maximum near its edge. This is561

likely due to the higher proportion of random events near the edges of the detectors, where it562

is more likely that one-half of an annihilation-pair of gamma rays will hit the detector and the563

other miss. The corresponding increase in corrupted LoRs will tend to ‘pull’ the measured564

location toward the centre of the field of view. Further, for the algorithms which use time565

slice instead of a fixed number of LoRs, such as FPI and G-Means, the lower rates of LoRs566

near the edge of the PEPT detector system will cause an increase in the error. However,567

the PEPT-ML algorithm does not exhibit this behaviour, perhaps due to the second-pass568
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Figure 3.19: The spatial accuracy of the PEPT algorithms varies as a function of the source

position in the (a) ADAC Forte and (b) Siemens ECAT [149].

clustering which combines multiple locations into a smoothed trajectory.569

Additionally, there exists a slight asymmetry to the ‘U’-shape. This is because in the570

Forte geometry, the detectors are fixed to a large aluminium gantry ring about which they571

are able to rotate. Similarly, in the ECAT geometry, tungsten shielding on one end of the572

ring acts to partially shield the detectors from rays emanating from outside of the FOV. The573

material in both cases increases the proportion of detected LoRs corrupted by scattering,574

increasing the error in the PEPT reconstructed position.575

Overall, this test shows not only the importance of the detection rate of LoRs in the576

accuracy of the algorithms but also the effect the PEPT detector system geometry can have577

on the accuracy of the returned tracer locations.578

The next four tests cover the results of the PEPT algorithms which are capable of579

tracking multiple tracers simultaneously. These algorithms are G-Means, FPI, SDM, PEPT-580
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ML, and PEPT-EM. The first multiple tracer test is the minimum separation distance in581

which two tracers can be resolved. The most interesting result from this test is that the582

PEPT-EM, PEPT-ML, FPI, and SDM algorithms are all capable of successfully resolving583

the two separate tracers up to and including the point of contact. This is a potentially584

highly consequential finding, as it had previously been assumed that the PEPT technique585

was incapable of imaging tracer collisions. This observation, therefore, potentially opens up586

a number of valuable new applications for PEPT.587

All five codes tested are observed to achieve sub-millimetre accuracy across the ma-588

jority of the tested tracer separation values, with the highest overall accuracy being achieved589

by PEPT-EM and the lowest by the SDM. The full results from this test are shown in Figure590

3.20.591

The accuracy levels achieved by all codes are observed to remain relatively inde-592

pendent of the tracer separation for comparatively large distances (> 5 mm), and sharply593

increase after this point in all cases except for PEPT-EM, which maintains a remarkable594

degree of precision, approximately < 100 µm, even to the point of contact. This impres-595

sive consistency is perhaps due to the fact that, unlike other PEPT algorithms, the Gaussian596

mixture model underlying PEPT-EM is based on a more comprehensive mathematical model597

of the physics underlying PEPT. That is, PEPT-EM seeks to maximise the probability of598

there being exactly 2 tracers clusters, rather than trying to identify N clusters and their599

locations. This makes the task simpler as only the positions and sizes of the clusters need600

to be calculated.601

It is also of note that in many of these results, there appears to be a gap of roughly 0.1602

mm between the accuracy achieved by PEPT-EM and PEPT-ML and that of the G-Means603

and FPI methods. This may be due to a small discretisation error caused by the use of604

voxels in the latter methods. For this exercise, both G-Means and FPI used 1 mm grids for605
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Figure 3.20: The measured error in PEPT location for the case of two static tracers separated

by various centre-to-centre distances ranging from 2 mm (tracers in contact) to 30 mm.

(a) Forte detector geometry and separation in the transverse direction. (b) Forte detector

geometry and separation in the axial direction. (c) ECAT detector geometry and separation

in the transverse direction. (d) ECAT detector geometry and separation in the axial direction

[149].

line density tallying.606

In the false positives benchmark, PEPT algorithms are thought to be susceptible to607

returning false locations caused by overlap between LoRs generated from different tracers.608

In this test, multiple tracers in highly symmetrical positions were placed in the FOV and the609
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objective for the algorithms is to accurately locate the positions of the tracers while ignoring610

areas where a false tracer position is generated. However, all codes, except for SDM, located611

all tracers in all cases. The generally-observed increase in location error for the tesseract,612

however, suggests an influence from the ‘cross-talk’ between tracers, though this seemingly613

manifests itself as a shift in detected positions as opposed to an outright false location.614

The SDM algorithm, on the other hand, produced a large fraction of locations which were615

between tracers in the areas where LoRs overlap.616

For all algorithms tested, we observe a general decrease in accuracy with increasing617

tracer number, as shown in Figure 3.21. At higher Nt, all algorithms experience a more618

significant decrease in accuracy and, in the case of the ECAT geometry at least, a relative619

decrease in the differentiation between different algorithms.620

Figure 3.21: The measured error in PEPT location for the case of the false locations bench-

mark [149].

While this trend of increasing error could simply be due to an increase in tracer621

number, it is notable that a similar trend is not observed in the results of testing large622

numbers of tracers, where tracer positions are entirely random. This suggests that it is623

indeed the symmetry of the systems modelled here producing an additional confounding624
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effect. Specifically, it is observed that the measured tracer locations produced by SDM625

are biased toward the centre of the arrangement of tracers, as evidenced in Figure 3.22.626

There also exists a different form of error observed between the two PEPT detector system627

geometries for the algorithms where a greater spread of errors corresponds to the direction628

of lower spatial resolution (in the x-axis (axial) for the ADAC Forte and the z-axis (axial)629

for the ECAT).630

Figure 3.22: The individual positions of the tracers given by each algorithm for the arrange-

ment of 16 tracers in the (a) ADAC geometry and (b) ECAT geometry. Some positions

given by the SDM algorithm in particular are shown to be biased toward the centre of the

arrangement of tracers [149].

Ultimately, this test shows that lower numbers of tracers and lower degrees of symme-631

try produced more accurate results. All algorithms are observed to achieve sub-millimetre632

accuracy, with PEPT-ML and PEPT-EM both providing resolution on the scale of 100 mi-633

crons in the 8 tracer case, and the latter achieving accuracy of below 10 microns in the 4634

tracer case. It is also interesting to note that there seemingly exist 3 distinct groups in the635

observed results, corresponding to 3 broad groups of algorithms: mesh-free clustering meth-636

ods, meshed clustering methods, and iterative methods. The small difference in measured637
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error between the meshed methods (G-Means and FPI) and mesh-free clustering methods638

(PEPT-ML and PEPT-EM) potentially arises due to the effect of pixelation. The relatively639

increased error in SDM may be caused by the iterative nature of the algorithm. As data are640

being discarded for each additional tracer detected, it stands to reason that the precision of641

locations will decrease with a higher number of tracers due to the discarding of true LoRs.642

The next benchmark seeks to test the trajectory-linking aspect of PEPT algorithms.643

The results show that all of the tested algorithms were able to distinguish and link the644

separate paths followed by the three moving tracers. In other words, all PEPT algorithms645

yield trajectories with consistent IDs, avoiding the common pitfalls of tracers switching IDs646

at points of intersection or being confused with other tracers at some point in their trajectory.647

Additionally, all algorithms produced sub-millimetre accuracy in this case of three moving648

tracers.649

For both detector geometries, PEPT-ML and PEPT-EM produced both the highest650

and most consistent accuracy. The full results of this benchmark in terms of overall spatial651

accuracy and spatiotemporal resolution are shown in Figure 3.23.652

Despite relatively large errors and the largest variability of all codes tested in the653

ADAC geometry, in the ECAT geometry, the G-Means algorithm shows a capability similar654

to that of PEPT-ML and PEPT-EM and even outperforms its successor, FPI. As discussed655

previously, however, the simple measure of overall error does not account for the frequency656

of detection. If instead the spatiotemporal resolution is considered, an improved relative657

performance from FPI is observed. The FPI algorithm also outperforms the PEPT-EM658

in the ECAT geometry. PEPT-EM offers very high spatial accuracy but produces a lower659

temporal resolution, which degrades the spatiotemporal resolution.660

Ultimately, the results of this test show all algorithms were capable of reliably re-661

constructing and delineating the trajectories of multiple moving tracers, even when the662

137



Benchmarking PEPT Algorithms

Figure 3.23: The results of trajectory linking test for the PEPT algorithms capable of

tracking multiple tracers in the ADAC Forte and Siemens ECAT geometries. (a) spatial

accuracy in the Forte, (b) spatial accuracy in the ECAT, (c) spatiotemporal resolution in

the Forte, and (d) spatiotemporal resolution in the ECAT [149].

trajectories are observed to cross one another, though the PEPT-ML algorithm offers the663

highest and most consistent accuracy.664

The final benchmark test examines the ability to locate large numbers of tracers within665

the FOV. This pushes the limits of how many tracers are able to be tracked simultaneously666

and also adds noise to the sample since many true LoRs from a particular source will likely667

pass near other tracers. Of all the algorithms tested, the results show that the majority are668
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able to locate all or nearly all of the tracers successfully. The full results are shown in Figure669

3.24 in terms of the percentage of tracers successfully found and the mean accuracy of their670

returned positions.671

Figure 3.24: The results of the maximum number of tracers for the PEPT algorithms in the

ADAC Forte and Siemens ECAT geometries. (a) percentage of tracer found in the Forte,

(b) percentage of tracer found in the ECAT, (c) spatial accuracy in the Forte, (d) spatial

accuracy in the ECAT.

For the ECAT geometry, the SDM, FPI and PEPT-ML algorithms successfully locate672

all tracers in all tested cases, with the latter two also receiving a perfect score for the673

ADAC geometry. The G-Means algorithm also performs relatively well, typically losing only674
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a relatively small fraction of tracers in cases below 40 tracers. The PEPT-EM algorithm675

performs well for comparatively low tracer numbers in the ECAT geometry, but loses tracers676

in almost all ADAC test cases, the fraction of lost tracers generally increasing with Nt.677

In terms of the accuracy with which the successfully-located tracers are found, the678

algorithms perform relatively similarly, with PEPT-ML and PEPT-EM generally producing679

the highest overall accuracy, though PEPT-EM in many cases is detecting a smaller fraction680

of the total tracer number present than the other algorithms, thus potentially skewing this681

metric in its favour by not including poorly located tracers.682

Perhaps the most striking feature of this plot, however, is the consistency in average683

spatial accuracy across the full range of tracer numbers explored. The FPI method, for684

example, can seemingly detect 79 tracers just as precisely as it can detect 6! Indeed, all685

algorithms tested are found to consistently produce millimetre- or submillimetre accuracy686

across practically all data sets. This observation bodes well for future research using large687

numbers of PEPT tracers, a possibility that to date has yet to be properly explored and688

exploited.689

3.5 Discussion690

The results from the PEPT algorithm benchmark tests offer the first comparative assessment691

of PEPT algorithms. Perhaps the most notable finding is that of the diverse suite of PEPT692

algorithms, there does not exist a single ‘best’ algorithm. Rather, all exhibit particular693

strengths and weaknesses. As such, to get the most out of the PEPT technique, it may be694

advisable to use different algorithms for different goals. For example, when tracking slow-695

moving and relatively active single tracers, the highly computationally efficient Birmingham696

Method is likely the ideal algorithm. Conversely, for applications requiring the tracking of697
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large numbers of tracers, or where the imaging of tracer-tracer collisions is desirable, instead,698

one of the more modern, but more computationally intensive, algorithms such as PEPT-ML,699

PEPT-EM or FPI should be employed. If tracer activity is limited, or the detected count-rate700

is otherwise limited or inconsistent, the SBSR method may be the optimal choice.701

This international collaboration not only demonstrates the strengths and weaknesses702

of different approaches but also moves the community of PEPT researchers forward in terms703

of collaboration and future development of algorithms. To this end, the FPI method has been704

incorporated into the ‘pept’ Python package, along with the Birmingham Method and PEPT-705

ML algorithm. This means that researchers who want to use these algorithms only need to706

install one package and the tools developed within can be used interchangeably between707

them. For example, in the Python package implementation of the FPI method, both a fixed708

number of LoRs can be used as well as the time slice approach it was originally developed709

to use. Similarly, overlapping windows of LoRs, second-pass clustering using HDBSCAN,710

and trajectory separation methods are now shared between the algorithms. This is a major711

development in standardising the PEPT technique, moving away from individuals working712

on similar problems in isolation and towards communities developing best practices and713

shared projects.714

Additionally, without the use of the simulation methods presented in this thesis for715

modelling PEPT tracers and detectors, this work would not have been possible. It is only716

through the development of GATE models for the ADAC Forte and adaptation of the pre-717

existing model of the Siemens ECAT that the ability to model PEPT experiments in detectors718

which are the same as those used at real PEPT facilities could be achieved. Moreover, the719

simulated experiments provide a direct comparison of the PEPT reconstructed positions of720

tracers to their prescribed location in the GATE simulation, creating, for the first time, a721

quantifiable accuracy of PEPT algorithms that is not biased or contains uncertainties on the722

same magnitude as the measurement.723
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To make the most use of these benchmarks and the PEPT algorithm comparison724

functions, they have been made public and freely downloadable from a data repository. This725

ensures that future researchers who develop PEPT algorithms can create a comparison of726

their algorithms to those tested in this work.727
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Chapter Four1

Optimising Tracer Activity and Detector2

System Geometry3

4.1 Introduction4

As has been shown in previous Chapters, GATE models of PEPT detector systems, tracers,5

and experiments are capable of producing realistic synthetic data. The data can be treated6

the same as experimentally acquired LoRs and used in conjunction with PEPT algorithms.7

Since simulated experiments offer precise control of tracer properties, source locations, and8

experimental geometries, with the simulations themselves able to be rapidly changed through9

parameterised scripts, this allows for testing variations of PEPT experiments [44]. Moreover,10

through the techniques developed in this thesis, the effect of variations in PEPT experiments11

can be quantified in terms of the spatial, temporal, and spatiotemporal resolution of recon-12

structed tracer trajectories [149].13

This Chapter seeks to develop a technique to optimise two practical aspects of PEPT14

experiments: tracer activity and detector geometry. These are important for PEPT because15

they influence the rate at which LoRs are recorded and the quality of the LoRs in terms16
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of the fraction that can be used to locate the tracer [44]. Tracer activity determines the17

production rate of coincident gamma rays from positron annihilation, whereas the detector18

geometry affects the fraction of these rays which interact with the detector [148]. While the19

ideal rate at which coincident gamma rays emitted from a point-like tracer will interact with20

a PEPT detector, R, can be determined by finding the solid angle covered by the area of21

the scintillation crystals, or geometric efficiency, εg, the probability of interaction within the22

crystal volume, or intrinsic efficiency, εi, and the tracer activity, A, using Equation 4.1, it is23

non-trivial to determine how the complex geometry of an experimental system affects this24

[44, 47]. Moreover, the highly non-linear response of the detector caused by the electronic25

pulse-processing chain further complicates this [44].26

R = εgε
2
iA (4.1)

The current protocols for running PEPT experiments do not often allow for optimi-27

sation of these factors [148]. Since the University of Birmingham’s Positron Imaging Centre28

(PIC) is a user-facility, usually a single week or only a few days are allotted to groups run-29

ning experiments [98]. Setting up the equipment and beginning data acquisition as soon as30

possible is more important than taking several days to establish the optimal experimental31

protocol. In many instances, this can be acceptable, owing to the fact that there is a fairly32

wide band of conditions which will yield tracer trajectories of sufficient resolution that will33

provide the information researchers are interested in [100, 47]. However, some experiments34

have been unsuccessful because PEPT tracers were not active enough (or too active) for the35

detector geometry used. Additionally, in the experiments that were successful, it is possible36

that more about the system could be learned if better resolution trajectories were extracted.37

Therefore, starting an experiment using the optimal conditions is desired. By run-38

ning GATE simulations prior to real experiments, not only can more combinations of tracer39
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activities and detector head separations be tested than is possible through real experimenta-40

tion, but also the results of the simulations can be analysed and optimal settings established41

before experimental equipment is moved to the PEPT facility. For this reason, it would be42

beneficial to use GATE simulations prior to PEPT experiments in order to explore a range43

of possible ways to run the experiment. These simulations would save the considerable44

amount of time and resources needed for physical experimentation and still provide helpful45

information that will optimise data acquisition.46

In the following Sections, one method of finding these optimal settings will be demon-47

strated using a GATE model of the ADAC Forte and a hypothetical experiment [44]. In48

the simulation, an experimental geometry representative of a continuous blender used in the49

pharmaceutical industry is created and an analytical trajectory of a tracer moving through50

the blender is simulated [153]. The blender is placed in the centre of the field-of-view (FOV)51

and the tracer makes one pass through the system. In this example, only the tracer activity52

and head separation are changed, with the LoRs recorded by the GATE model processed53

using the PEPT-ML algorithm to form a trajectory [91]. Using the prescribed position of the54

tracer, the reconstructed trajectory is analysed for spatial resolution, temporal resolution,55

and the combined spatiotemporal resolution [149]. Finally, the results of a parameter sweep56

of tracer activity and detector head separation are compared and discussed, with a method57

of selecting the optimal settings demonstrated.58
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4.2 Methods59

4.2.1 GATE Simulation60

The simulated PEPT experiment is modelled on a continuous blender used in the pharma-61

ceutical industry to blend powders of a drug formulation [156]. This blender is proprietary62

and specifics of the model, such as the impeller design are omitted from this work. However,63

in practice, these could be added if the model were being used to inform real experiments.64

In this case, the geometry is generalised and consists of three main parts: an aluminium65

outer shell, a powder-filled interior, and an axially rotated impeller shaft. The aluminium66

outer shell is 80 mm in radius and 5 mm wall thickness, the inside of the mixer is filled with67

microcrystalline cellulose (MCC) power with a bulk density of 1 g/cm3, and the middle of68

the blender is a hollow aluminium impeller shaft 25 mm in radius with a 5 mm wall thick-69

ness [128]. The blade, in this case, is not modelled due to the proprietary design but is only70

expected to slightly contribute to the overall amount of scattering in the system. Some scat-71

tering is expected, but due to the low volume of the blade compared to other components,72

like the shaft and walls, it is negligible. The mixer is tilted upward at 15 degrees to match73

how it is typically used in industry [83]. An image of the GATE-modelled blender is shown74

in Figure 4.1.75

The tracer is modelled as a positron-emitting fluorine-18 source. The geometry of the76

tracer is a solid MCC sphere, 0.5 mm in radius, with a density of 1.58 g/cm3. In reality,77

the motion of the tracer is a spiralling trajectory as it is blended with the other powders78

in the formulation in order to make a homogeneous mix [156]. This motion is mimicked in79

the GATE simulations by prescribing a helical trajectory through GATE’s Generic Move80

function. A series of times and positions for the tracer are read from a file. To create the81

trajectory file, first, the motion for the tracer is modelled as a helix where the tracer moves in82
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Figure 4.1: A cross-section of the continuous blender GATE model.

a circle with respect to the XY-plane (plane perpendicular to the ground and detector faces)83

and with a constant velocity in the Z-direction (direction parallel to the ground and detector84

faces). The radius of the circle is 50 mm to coincide with the centre of the blender. Once85

the helical trajectory is created, the trajectory is rotated 15 degrees in the X-axis by using a86

three-dimensional rotation matrix. The rotation matrices are shown in Equations 4.2-4.4. In87

this way, the tracer moves through the centre of the GATE-modeled blender, throughout its88

length, and moves at a constant velocity of 200 mm/s. In the future, a trajectory captured89

from a DEM simulation of the same system can be used for realistic tracer motion [46]. The90

original helical trajectory and the trajectory which has been rotated 15 degrees are shown91

in Figure 4.2.92
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Rx(θ) =




1 0 0

0 cos θ − sin θ

0 sin θ cos θ




(4.2)

Ry(θ) =




cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ




(4.3)

Rz(θ) =




cos θ − sin θ 0

sin θ cos θ 0

0 0 1




(4.4)

The geometry of the continuous blender and the MCC tracer are imaged using the93

GATE model of the ADAC Forte. This PEPT detector system has two detector heads which94

can be separated up to 800 mm to accommodate a variety of experimental equipment [103].95

Often it is unknown what tracer activity and detector head separation is optimal for a given96

experiment such as this. By using this GATE model it is possible to test a range of different97

experimental conditions and directly observe their effect on the quality of the trajectories.98

In this work, a matrix of different experimental conditions is simulated which explores the99

parameter space more quickly and thoroughly than is possible from real experiments. The100

blender and PEPT tracer are shown inside the FOV of the ADAC Forte in Figure 4.3101

The detector separation is varied from 200 to 650 mm in 50 mm increments and the102

tracer activity is varied from 1 MBq to 30 MBq in increments of 1 MBq. This is equivalent103

to 300 different combinations of the head separation and tracer activity, representing, at a104

minimum, 10 different real experiments if initially a 30 MBq source was used and allowed to105

decay to 1 MBq. Each experiment would take approximately 9 hours to complete, assuming106
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Figure 4.2: The original helical trajectory and the trajectory which has been rotated 15

degrees to move through the continuous blender.

fluorine-18 was the positron-emitting isotope used.107

For the tracer to move along 500 mm of the blender this takes approximately 8.25108

seconds. This is set as the length of the data acquisition. In the middle of the simulated time,109

the tracer passes through the centre of the FOV. A time slice of 0.0001 seconds is prescribed110

so that the tracer only moves 0.02 mm between slices, a distance considerably smaller than111

the tracer radius. This ensures that the trajectory of the tracer appears continuous. The data112

output is set to coincidences so that LoRs can be generated and the same Forte geometry113

and digitizer settings are the same as those prescribed in Chapter 2.114
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Figure 4.3: (a) A cutaway of the continuous blender in the ADAC Forte. (b) The full blender

in the Forte FOV with the MCC tracer emitting positrons which form back-to-back gamma

rays.

4.2.2 Data Post-Processing115

Once all simulations have been completed, the detected LoRs are passed through a PEPT116

algorithm to extract the tracer trajectories. In this work, the PEPT-ML algorithm is used to117

transform samples of LoRs into trajectories [91]. For a full understanding of the PEPT-ML118

algorithm, please refer to Section 3.2.6. In processing the results of these simulations, a119

common set of algorithm parameters were used to generate trajectories. This ensures all120

simulated results are treated equally but could result in the non-optimal parameters being121

used. A sample size of 200 LoRs is used to compute the cutpoints with only cutpoints falling122

within a range of 0.15 mm considered for clustering. Additionally, only the 15% most densely123

clustered cutpoints are used to calculate the position of the tracer. Second-pass clustering is124

similarly applied, but with 70% of the densest detected positions considered for clustering.125
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To compare the detected and prescribed trajectories, both the position error and the126

frequency of detection must be taken into account. Low values in position error denote good127

spatial resolution, whereas high values of detection frequency denote good time resolution.128

The position error in this work is given as the mean three-dimensional distance between129

the detected and prescribed positions, calculated using Equation 1.14. The frequency of130

detection is calculated as the number of detections in a trajectory, divided by the time elapsed131

from the first detection to the last, calculated using 1.17. Additionally, to get an overall132

measure of the quality of the trajectories, the spatiotemporal resolution is calculated using133

Equation 1.22, which combines the spatial and temporal resolutions [149]. From previous134

work, it is known that spatial resolution decreases proportionately with the inverse square135

root of the temporal resolution [100, 103, 97].136

4.3 Results137

The first thing to note from these simulations is that the count-rate versus activity curves138

produced by each head separation have a complex relationship. Due to the differing geometric139

efficiencies of the detector geometry and the count-losses caused by dead-time effects, the140

count-rates do not follow a linear relationship with geometric efficiency or tracer activity141

[44]. Instead, from Figure 4.4, it can be seen that the lower head separation and higher142

tracer activities do not always produce high LoR count-rates.143

Since a common sample size of 200 LoRs is used to find a tracer location and each144

simulation runs for the same amount of time, this means that the count-rates are essentially145

a surrogate for the temporal resolution. To better visualise how the count-rates affect the146

temporal resolution, a two-dimensional grid can be used for each tested combination of head-147

separation and tracer activity and then coloured by the temporal resolution. The temporal148
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Figure 4.4: The total count-rate response of the ADAC Forte to variations in the head

separation and tracer activity.

resolution is shown in Figure 4.5.149

In terms of the temporal resolution, there is a clear range of conditions which produce150

the optimal number of tracer locations. These conditions are the combinations of the head151

separation and tracer activity which produce the highest LoR count-rates. Additionally, it152

appears that the best combinations are a balance between the head separation and tracer153

activity, with the optimal head separation decreasing as the activity on the tracer decays.154

When the spatial resolution results are taken into account, the relationship becomes155

more complex. Figure 4.6 shows the results of comparing the PEPT reconstructed trajec-156

tories to the GATE-prescribed positions. Again a similar relationship between the head157

separation and tracer activity is demonstrated, but with somewhat more erratic results,158
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Figure 4.5: The temporal resolution of each combination of detector head separation and

tracer activity.

perhaps owing to only using a single pass of the tracer through the blender, and with the159

low separation and high tracer activity combinations showing the lowest spatial resolutions,160

likely caused by the large fraction of corrupted LoRs being recorded.161

To better understand the relationship between the head separation and tracer activ-162

ity as it relates to the temporal and spatial resolutions it is necessary to plot the PEPT163

reconstructed trajectories against the GATE-prescribed trajectory. A plot of the highest164

separation and lowest activity, lowest separation and highest activity, and a medial separa-165

tion and activity is shown in Figure 4.7. In this plot, a few things about the effect head166

separation and tracer activity have on the quality of trajectories become evident. First,167

in the high head separation and low activity case (1 MBq and 650 mm) the trajectory is168

sparsely populated and slightly pulled toward the centre of the FOV due to the low detec-169

tion rate of LoRs. Secondly, the low separation and high tracer activity case (30 MBq and170

200 mm) shows a relative improvement in the number of locations in the trajectory but is171
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Figure 4.6: The spatial resolution of each combination of detector head separation and tracer

activity.

substantially distorted on the ends due to the large fraction of corrupted LoRs generated172

from random coincidences, leading to degradation in the spatial resolution. Finally, it is only173

when a balance is struck between the head separation and tracer activity (7 MBq and 350174

mm) that the trajectory is densely populated and accurate to the prescribed positions of the175

tracer.176

Moreover, when the spatiotemporal resolution from each simulation is calculated, a177

clear optimal set of conditions can be identified. The spatiotemporal resolution for each178

simulation is shown in Figure 4.8. From this plot, the optimal head separation and tracer179

activity are approximately 300 mm - 350 mm and 6 MBq - 8 MBq. It is at these settings that180

both the LoR count-rate and the accuracy of the PEPT algorithm are maximised, leading181

to the best possible reconstruction of the tracer trajectory.182

However, during an experiment, the activity of the tracer is always decaying. While183
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Figure 4.7: The PEPT reconstructed trajectories compared to the GATE prescribed trajec-

tory for three combinations of a head separation and tracer activity.

fluorine-18 has a half-life of approximately 109 minutes, PEPT experiments can typically last184

anywhere between 30 minutes and 3 hours. Because of this, if the experiment was started185

with the previously identified optimal head separation and tracer activity, by the end of the186

experiment the tracer will have likely decayed below the optimal activity range. This means187

that a larger head separation and higher tracer activity are needed at the beginning of the188

experiment.189

The tracer activity will decay regardless of what happens, but the head separation is190

controllable and can be adjusted during an experiment. Therefore, by finding an equation191

which describes the optimal head separation as a function of the tracer activity, once the192

optimal initial activity is found, the heads of the detectors can be slowly moved in as the193

activity decays. Using Figure 4.8, the optimal head separations can be found for each activity194
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Figure 4.8: The spatiotemporal resolution of the PEPT reconstructed trajectories.

and an equation is fitted to determine this relationship. The fit appears to be more complex195

than a linear relationship and roughly takes the form of a power law. By assuming this196

form, generalised by Equation 4.5, the extracted data points can be used to find the best197

fitting parameters, where S is the head separation, A is the tracer activity, and a, b, c are198

parameters. Figure 4.9 shows the extracted optimal combinations of head separation and199

tracer activity overlaid on the spatiotemporal resolution with the best-fit line and optimal200

power law parameters.201

S = a(A− b)c (4.5)

From this, optimal head separation can be defined as a function of activity. Next,202

the optimal starting activity can be found by setting the desired length of time to run the203

experiment and then integrating the spatiotemporal resolution associated with each optimal204
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Figure 4.9: The spatiotemporal resolution of the PEPT reconstructed trajectories with the

overlaid fitted equation describing the activities and head separation which maximise the

spatiotemporal resolution.

activity over an initial activity and the ending activity at the end of the experiment. This205

yields an average spatiotemporal resolution and can be calculated using Equation 4.6. The206

optimal spatiotemporal resolution is extracted from Figure 4.8 and plotted as a function of207

activity in Figure 4.10.208

ζ̄ =
1

Ai − Af

∫ Af

Ai

ζ(A)dA (4.6)

The average spatiotemporal resolution as a function of the initial activity for different209

lengths of time running a PEPT experiment is shown in Figure 4.11. With this, it can210
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Figure 4.10: The optimal spatiotemporal resolution of the PEPT reconstructed trajectories

as a function of activity.

now be determined what the initial tracer activity and detector head separation of a PEPT211

experiment should be. Further, using Equation 4.5 and the fitted parameters from Figure212

4.9, as the source decays the head separation can be adjusted.213

4.4 Discussion214

This now creates a powerful new tool for PEPT users to be able to get the maximum215

spatiotemporal resolution trajectories from an experiment. This type of optimisation has216

not previously been possible due to the considerable amount of time needed for physical217

experimentation. However, by using GATE simulations to produce realistic estimates of218
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Figure 4.11: The average spatiotemporal resolution of the PEPT reconstructed trajectories

as a function of initial tracer activity for different lengths of a PEPT experiment with the

optimal initial activities listed in the legend.

data produced using an experiment, variations in the tracer activity and detector geometry219

can be rapidly tested. Additionally, through the methods demonstrated in this Chapter,220

a way to quantify the increase in spatiotemporal resolution has been demonstrated. This221

provides a justifiable reason why particular tracer activities and detector head separations222

were used during a PEPT experiment, making the technique more rigorous.223

While this technique was demonstrated in one specific PEPT experiment, the methods224

demonstrated in this Section can similarly be applied to any PEPT experiment, given a model225

of the detector and experimental geometry. The ADAC Forte was used in this work because226

it is the most widely used PEPT detector system at the PIC and a validated GATE model227
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exists [103, 44, 149, 45]. However, validated GATE models of other PEPT detector systems,228

such as the Siemens ECAT and the Large Modular Array (LaMA) could similarly be used229

[57, 72]. While the geometry of the Siemens ECAT cannot be changed, the modular design230

of the LaMA provides more customisation in geometry than is possible with the ADAC Forte231

[71, 97]. Therefore, this work provides a method for establishing an optimal LaMA geometry232

through a quantifiable comparison of proposed geometries.233

It should also be noted that several types of optimisation can be conducted for differ-234

ent aspects of the same experiment. For example, while it was shown in this Chapter that235

tracer activity and the detector head separation can be optimised, in the next two Chapters,236

it will be shown how the GATE simulations can also be used to optimise the length of an237

experiment, methods of correcting PEPT measurements, and also the optimisation of pa-238

rameters in PEPT algorithms [46, 47]. These other factors can be established independently239

and combined, thus creating an optimised workflow for PEPT which includes aspects of240

the experimental design, use of algorithms, and data post-processing. As the use of GATE241

simulations for the optimisation of PEPT experiments is further developed and matures, it242

is possible that similar work can become standard practice and be implemented before all243

PEPT experiments.244
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Chapter Five1

Optimising Experiment Length and2

Measurement Corrections3

5.1 Introduction4

This Chapter addresses establishing the length of time needed to collect adequate statistics5

of tracer behaviour and, additionally, correcting reconstructed tracer behaviour from known6

distortions [46]. When running PEPT experiments, it is often unknown if the tracers will7

have generated enough data for the behaviour of the system to be adequately characterised8

[144]. This is complicated by the fact that tracer motion is stochastic, meaning the specific9

path a tracer may take is unpredictable as it undergoes collisions with other discrete particles10

and walls in a granular system [147]. By chance or because of the tracer properties, a PEPT11

tracer may only explore certain regions of the experimental system, potentially leading only12

to that particular tracer behaviour being characterised and not being extendable to the bulk13

behaviour of all particles [150].14

This would violate a core assumption of many PEPT experiments, ergodicity, meaning15

that if the experiment is run long enough with identical particle species, then the average16
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behaviour of one particle reflects that of all others [37]. On a short time scale, all particles17

will reflect local behaviour, but through averaging over a longer time, the behaviour of an18

individual tracer should approximate the bulk behaviour [143]. The time needed to reach19

ergodicity is difficult to know prior to the experiment [144]. Additionally, tracer size, density,20

and shape can lead to segregation effects, resulting in different behaviour for particles of21

different species [150].22

Furthermore, when analysing the reconstructed trajectory of the tracer, especially in23

systems that are opaque and without complementary imaging techniques, it can be difficult24

to know if the reconstructed fields of the systems correspond to the real behaviour of the25

tracer or are influenced by a distortion in the measurement [49]. Examples of these fields are26

the velocity field or more sophisticated measurements like the granular temperature fields27

[148]. Since in real experiments, these measurements have no basis of comparison to the real28

tracer behaviour, what PEPT provides is all that can be known. This is different in GATE-29

simulated experiments because the tracer trajectories are prescribed, meaning the fields30

from PEPT trajectories can be directly compared to the fields generated by the prescribed31

trajectories, providing insight into distortions from PEPT measurements [49, 46, 47]. It is32

then possible that if the real behaviour of the tracer is known it could then be used to correct33

the PEPT measurement, bringing it back in line with reality [46]. However, if this method34

is to be used to correct experimental measurements, then the GATE-simulated trajectories35

must closely approximate reality.36

The goals of this Chapter are to demonstrate how realistic tracer trajectories pre-37

scribed in a GATE simulation can be used to optimise the length of time needed to run38

an experiment such that the ergodic assumption is valid and, additionally, to develop a39

framework for correcting PEPT reconstructed fields which are informed by the prescribed40

behaviour of the tracers. To do this, a new method of using highly-detailed Lagrangian41

trajectories of particles from a discrete element method (DEM) simulation as the basis for42
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GATE-simulated PEPT experiments is created [64, 46]. For the first time, this will allow43

a meaningful and direct comparison between PEPT and DEM data since the prescribed44

tracer position provides a means of direct comparison between a known trajectory and its45

PEPT-reconstructed measurement.46

First, a DEM simulation of a system representative of a typical PEPT experiment47

is created and individual particle trajectories are extracted. In this case, the experimental48

system is a small rotating drum, known commercially as the GranuDrum, which is used49

for powder flow characterisation [30]. Then this trajectory is prescribed as the motion of a50

positron-emitting tracer in a simulated PEPT experiment using calibrated GATE model of51

the ADAC Forte dual-headed PEPT detector system [44, 45]. The GATE-simulated PEPT52

experiment reproduces the behaviour of the PEPT detector system, produces output quan-53

titatively similar to that of real detectors, and can be processed using a PEPT algorithm54

to locate the tracer. To assess the difference between the DEM trajectory and the PEPT55

reconstructed trajectory, the trajectories are compared point-by-point to compute an av-56

erage two-dimensional spatial error. Then, both trajectories are post-processed using the57

same treatment to reconstruct Eulerian, or time-averaged, fields which describe the system58

behaviour [148]. Since values generated from DEM are the prescribed data, PEPT recon-59

structed values can be compared to assess to what extent the behaviour of the modelled60

system is captured and, crucially, to what extent the PEPT-reconstructed trajectories differ61

from the model DEM, potentially allowing for the measurement to be corrected.62
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5.2 Methods63

5.2.1 DEM Simulation of a Rotating Drum64

To generate realistic tracer trajectories, first, a DEM simulation must be created. DEM is65

a simulation technique for the numerical modelling of granular systems by solving Newton’s66

equations of motion in discrete time-steps [25]. This method resolves the Lagrangian motion67

of the particles, detects contacts, and calculates contact forces between particles. DEM is68

therefore a powerful tool to predict granular behaviour. In this work, the system simulated69

is the GranuTools Granudrum [30]. The GranuDrum is a type of rheometer, or flow charac-70

terisation equipment, for measuring properties of granular media [78]. It consists of a small,71

thin, rotating drum inside a box with a camera to measure the dynamic free surface which72

allows for the calculation of the angle-of-repose [120]. An image of the GranuDrum is shown73

in Figure 5.1. The reason why this system was chosen is that the experimental volume is74

relatively small, which reduces the computational resources needed, and the device has good75

mixing properties, which allows for the tracer to explore all areas of the system sufficiently76

within a relatively short amount of time, thereby reducing the length of time needed for the77

DEM simulation.78

The DEM software LAMMPS Improved for General Granular and Granular Heat79

Transfer Simulations (LIGGGHTS) is used to simulate the GranuDrum behaviour [64].80

The DEM model is created with a hollow rotating cylinder of the same dimensions as81

the GranuDrum and filled with simulated mono-disperse spheres of microcrystalline cel-82

lulose (MCC). MCC is a commonly used material in the pharmaceutical industries which83

has been used in PEPT experiments in previous work [155]. A geometric description of84

the GranuDrum can be found in Table 5.1 and a side-by-side comparison of the real and85

simulated GranuDrum rotating drum is shown in Figure 5.2.86
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Figure 5.1: An image of the GranuTools GranuDrum [46].

The drum is filled with 10,000 mono-disperse MCC spheres of diameter 1.8 mm and87

rotated at 45 rotations per minute (RPM) for 30 minutes. At this RPM, the MCC particles88

are within the cascading flow regime, where mixing is expected to be strong [87]. Higher89

regimes such as cataracting and centrifuging can result in the crushing of particles or particles90

centrifuging around the edge of the drum, whereas lower speed regimes such as slipping91

and slumping result in the particles sliding over each other rather than properly mixing92

[101, 152]. The positions of all particles are recorded and used to extract trajectories for93

comparison with PEPT-detected trajectories of a single tracer. At the end of the simulation,94

the trajectories of all 10,000 particles have been recorded at a time-interval of 1 ms, as95

this keeps the distance travelled by the fastest particles (moving at approximately 1 ms−1)96

between successive locations smaller than the radius of the MCC sphere itself. This frequency97

is also representative of the achievable temporal resolution of the ADAC Forte PEPT detector98
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Figure 5.2: (a) An image of the GranuTools GranuDrum. (b) Simulated GranuDrum visu-

alisation coloured by particle velocity [46].

system used to image the flow.99

The material properties of the DEM particles used in the simulation are shown in Ta-100

ble 5.2. The first four parameter values in the table were determined using the Autonomous101

Characterisation and Calibration using Evolutionary Simulation Software, ACCES [92] The102

remaining parameters were obtained from published values [128].103

Table 5.1: GranuDrum Description [46].

Characteristic Values

Drum Diameter 84 mm

Drum Thickness 20 mm

Glass Wall Thickness 3 mm
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Table 5.2: Measured material properties of MCC particles prescribed to the LIGGGHTS

simulation [46].

Simulated Property Values

Particle-Wall Friction 0.32

Particle-Particle Friction 0.32

Coefficient of Restitution 0.3

Rolling Friction 0.0025

Young’s Modulus 5 x 106 Nm−2 [53]

Poisson’s Ratio 0.3 [77]

Density of MCC 1580 kgm−3 [128]

5.2.2 GATE Simulation of a Rotating Drum104

Following the simulation of the DEM model, the raw DEM data were converted into a format105

that can be used in a GATE simulation. Two things are needed from this data: (1) individual106

trajectories of particles, and (2) a three-dimensional array representing the packing density of107

the flowing MCC powder which can be used to approximate the scattering of gamma-rays in108

the drum. To perform both of these tasks, a Python library, DEM2GATE, was created [46].109

GATE has capabilities to read from files containing trajectory information and can import110

complex geometries from the three-dimensional image, called voxelised geometries. The111

novel work described here is the process of extracting this information from a LIGGGHTS112

simulation and converting it to a GATE readable format. The workflow for this task is as113

follows:114

1. Tracer Trajectories115

(a) Extract particle position from LIGGGHTS;116
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(b) Convert trajectories to GATE Placements Format;117

(c) Prescribe trajectory to GATE source.118

2. Voxel Array119

(a) Calculate a three-dimensional array of packing density;120

(b) Export array as a MetaImage;121

(c) Define GATE material definitions;122

(d) Create a GATE range translator;123

(e) Place voxel array in GATE simulation.124

The DEM2GATE software is free and open-source and can be used by interested125

researchers who wish to apply these techniques to their own work. The software can be126

found in the Positron Imaging Centre’s DEM2GATE GitHub Repository.127

The DEM simulation of the GranuDrum tracks the position of all 10,000 simulated128

particles simultaneously. For every time step, the positions are updated based on the current129

forces acting on the particles. At regular intervals of 1 ms, the positions of all tracers are130

written to the VTK file. To extract a DEM trajectory, the VTK files are read into Python131

using a VTK reader, allowing a user to view and select specific data. Next, the time and x, y,132

and z positions for a specified particle are extracted and written into the GATE placements133

file format. The Placements file is a text file consisting of a header describing the format of134

the data accompanied by the data columns. GATE uses this file to identify where a source135

should be placed inside the simulation during a particular time step by selecting the time and136

corresponding positions that are closest to the current GATE time step. Finally, the particle137

trajectory is prescribed in the GATE simulation by declaring that the source position should138

be read from this placement file via the Generic Move function.139
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The second set of data to extract from the simulated rotating drum is a 3-dimensional140

array of the packing density, which is used to produce a voxel array for the GATE simulation.141

In this representation of the GranuDrum, each voxel has a value corresponding to the number142

of particles it contains; when all voxels are the same size, this provides a measure of packing143

density. To generate a voxel array of the flowing particles in the GranuDrum, an empty array144

is first created which breaks up the drum volume into a 50 x 50 x 50 grid over the simulation145

space of the LIGGGHTS simulation, -0.048 to 0.048 m in the x and z, then -0.002 to 0.0221146

m in the y-direction. This array is created in Python using NumPy arrays binning the VTK147

particle data. Then, for each time step, the number of particles in each voxel is summed,148

creating a time-averaged packing density. This voxel array is normalised and stored in a149

GATE-readable MetaImage format.150

To map the normalised voxel value to the real corresponding bulk density, the max-151

imum bulk density of the MCC particles must be calculated by multiplying the particle152

density, ρ = 1580 kgm−3, with the packing density. In this case, a loose random packing153

fraction of 0.6 was used, yielding a bulk density of ρ = 948 kgm−3 [93]. This is then equated154

to the maximum voxel value. All other voxels are mapped to 50 discrete combinations in155

between the bulk density and the density of air, e.g 20% of the bulk particle density and156

80% air density would lead to ρ20/80 = 189.9 kgm−3. This is accomplished using a GATE157

range translator which uses the voxel value to choose a material from the list of predefined158

material mixtures.159

Once the voxel array has been created, shown in Figure 5.3, this must be converted160

to a GATE-readable format. This is accomplished by saving the voxel image as the medical161

imaging format, MetaImage, followed by creating a range translator to map the voxel values162

to predefined materials in the GATE material database. The three-dimensional NumPy163

array of packing density is converted to a MetaImage by using the SimpleITK Python package164

and specifically the GetImageFromArray function. To map the voxel values to the predefined165
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materials, a GATE range translator is applied which uses the voxel value to choose a material166

ranging from bulk MCC to air. To ensure that a smooth transition from bulk MCC to air167

occurs, 50 material combinations between bulk MCC and air are generated. Each material168

has density calculated using the respective fractions of bulk MCC and air.169

Figure 5.3: The packing density of the GranuDrum from a slice of the three-dimensional

voxel array [46].

Next, the tracer trajectories and voxel array, along with a geometric representation170

of the GranuDrum structure, are placed in the centre of the field-of-view (FOV) of the171

validated model of the ADAC Forte detector [44]. The geometric model is shown in Figure172

5.4. Two scenarios are simulated: a single DEM trajectory in air without the GranuDrum173

and a single DEM trajectory in the GranuDrum geometry. These represent a best-case174

(minimal scattering) and a realistic case (considerable scattering) for a PEPT experiment,175
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respectively. It is worth noting that the velocity of the tracer in both cases remains the176

same, and the tracer follows the same trajectory.177

Figure 5.4: An annotated visualisation of the GATE-simulated GranuDrum [46].

The geometric model of the GranuDrum follows the description given in Section 5.2.1.178

To be consistent with the real GranuDrum, the rotating drum inside the GranuDrum struc-179

ture is translated 145 mm closer to one side of the ADAC Forte detector. This has the effect180

of reducing the count-rate detected from the tracer due to the lower geometric efficiency.181

The trajectory is co-registered with the voxel array such that the DEM trajectory is fully182

within the voxels at all times. This case will have considerably more scattered LoRs due183

to the added material between the tracer and detector. In turn, it will result in both a184

lower detection rate for the tracer and less accurate detection, caused by the incorporation185

of scattered LoRs in PEPT algorithms, thus providing a full, true-to-life representation of a186
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real PEPT experiment.187

Once the detector model is applied and set to a detector separation of 600 mm, the188

next step is to define the source. The DEM particle is a solid 1.8 mm diameter sphere of MCC189

with density ρ = 1580 kgm−3. This material definition is added to GATE and modelled as a190

volumetrically activated, positron-emitting source of 10 MBq activity. A 10 MBq tracer has191

been shown to result in a count-rate near the peak true LoR count-rate for the ADAC Forte192

at 600 mm separation [44]. The positrons are prescribed an energy spectrum corresponding193

to that of fluorine-18. Then, using the Generic Move function, the DEM trajectory which194

has been converted to a GATE placements file is prescribed as successive positions of the195

source. This allows the GATE-modelled tracer to take the same path as the DEM tracer,196

with the addition of emitting positrons.197

To run GATE simulations efficiently, the inherent parallelisation of GATE is leveraged198

by splitting the simulation into smaller jobs, rather than simulating the whole 30-minute199

trajectory in one simulation. The recorded LoRs are then combined later. The simulations200

are run on BlueBEAR, the University of Birmingham’s High-Performance Computer [133].201

The 30-minute simulation is broken into 200 smaller jobs, each running for 9 seconds of202

the simulation. The output of the simulation contains LoRs which can be processed with a203

PEPT algorithm to extract a trajectory of the tracer.204

5.2.3 Data Analysis205

Several PEPT algorithms exist, as has been mentioned in Chapter 3, and their performance206

has been assessed in other work [149]. The PEPT-ML algorithm is used in this work to207

cluster samples of the recorded LoRs and locate the tracer position [91]. The sample size208

of LoRs is prescribed as NLoRs = 200. A moving window of LoRs is used to provide more209
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samples of LoRs, with the latter 50% of LoRs in a given sample used in the next sample.210

All cutpoints falling within 0.15 mm of the LoR pair are saved for clustering. For each211

sample of cutpoints, the densest 15% of points are considered core points of the cluster and212

their centroid is calculated. After this, the reconstructed tracer location second-pass clusters213

with a sample size of 30 points, with 70% of the densest points being the core points and214

their centroid calculated. To produce nearly as many second-pass locations as the first-pass215

method, a moving window of one less than the sample size is applied, in this case, a sample216

size of 29. An example of a sample of LoRs and a reconstructed tracer trajectory from the217

GATE simulation are shown in Figure 5.5.218

Figure 5.5: (a) A sample of 200 LoRs and (b) a PEPT reconstructed trajectory of approxi-

mately 25 seconds of the tracer flowing in the GranuDrum [46].

Once a PEPT trajectory has been produced, there are two ways to assess the accu-219

racy of the PEPT-detected trajectory. The first method is to compare the position of the220

tracer compared to the prescribed position, averaging the mean three-dimensional error using221

Equation 1.14. However, while looking at the point data of a trajectory is useful for char-222

acterising the uncertainty in the position of an individual tracer, an individual tracer does223
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not necessarily explore the whole phase-space of particles within the system, particularly if224

it has not been exploring the system for a long enough time [144]. A more robust method225

of comparison would be to compare a reconstructed field of the system to a field produced226

directly from the DEM simulated particles. For example, an Eulerian flow field generated227

from a simulated PEPT measurement, such as the velocity field, can be compared to the228

field reconstructed using the model DEM data. Comparison of macroscopic fields shows not229

only to what extent PEPT trajectories follow an individual tracer but also how well the bulk230

behaviour of the system is reconstructed from a single tracer. This type of comparison is231

more significant for PEPT users because it is a measure of how the uncertainty in PEPT232

trajectories actually affects the measurement of a bulk system behaviour.233

In this work, both the overall spatial error of the PEPT trajectory and the effect of234

this on the measurement of bulk system behaviour is examined. The generation of PEPT235

reconstructed fields also offers an opportunity to take advantage of the recent developments in236

the PEPT-ML library which uses time-step interpolation and polynomial fitting of positions237

in a Savitzky-Golay filter to derive tracer velocity [116]. The reconstructed Eulerian fields238

for the PEPT trajectory in air and PEPT trajectory inside the model of the GranuDrum239

are compared against fields generated by averaging all DEM trajectories.240

All Eulerian fields are generated using the same procedure, whereby for each time step241

of a trajectory, an instantaneous measurement of a system field is assigned to bins spanning242

the drum volume. For simplicity and because the GranuDrum has a small drum thickness in243

comparison to its diameter, only two-dimensional fields are computed. The number of bins244

in each dimension as well as the value range over which the function is applied is provided245

by the user, and then the mean, standard deviation, or counting is performed on the values246

falling within each bin. The fields calculated in this work are velocity components, velocity247

magnitude, acceleration components, acceleration magnitude, granular temperature, and248

occupancy. All fields are computed on the same 30 x 30 grid spanning ±45 mm in the x249
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and y directions centred on the centre of the GranuDrum, producing a field with 3 x 3 mm250

resolution. Velocity is calculated using a Savitzky-Golay filter with a window size of y points251

as a step within the PEPT-ML algorithm and is written into the trajectory as an appended252

column of data, thus the velocity components and magnitude are pre-computed and only253

need to be binned. The velocity fields are calculated by finding the mean values within each254

bin. Acceleration is calculated by numerically differentiating the velocity by time according255

to Equations 5.1 and 5.2. The acceleration fields are calculated by finding the mean values256

within each bin.257

ax = ∆vx/∆t (5.1)

a =
√

a2x + a2y (5.2)

Granular temperature is a measure of the squared velocity fluctuations [143]. This258

is shown in Equations 5.3 and 5.4, through which the 1-dimensional and two-dimensional259

granular temperatures are calculated. To compute the granular temperature field, first, the260

x and y velocity fields are calculated and the bin number for each instantaneous velocity is261

recorded. Using this information, the mean velocities are subtracted from the instantaneous262

velocity to produce the fluctuating velocity according to the tracer location within the system.263

Then the granular temperature can be calculated using the squared velocity fluctuations and264

multiplying by the mass of the tracer [143].265

Tx = m(vxi − v̄x)
2 (5.3)

T =
1

2
(Tx + Ty) (5.4)
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The occupancy measures how long a particle spends within a region of the system.266

This is useful since occupancy is an indirect measurement of particle density in different267

areas of the systems, which can be used to infer particle dynamics in industrial systems [100,268

87, 119]. In this work, the DEM and PEPT trajectory positions are recorded in constant269

intervals of time and continuously tracked, thus the occupancy percentage for a bin can be270

calculated by counting how many times a particle has been found in that bin, multiplying271

by the time-step, then dividing by the difference in time between the last and first particle272

position in the trajectory. The occupancy is calculated using Equation 5.5.273

O = 100
Npointststep
tf − t0

(5.5)

All Eulerian fields for DEM and PEPT are binned in 3 x 3 mm bins, computed over the274

same range, and using the same number of bins. To compare the fields, the mean bin percent275

difference is calculated. The percent difference is calculated by finding the absolute difference276

between the PEPT reconstructed fields and baseline DEM model fields, then dividing by the277

DEM model value and multiplying by 100. The individual bin percent differences are then278

averaged as shown in Equation 5.6.279

εMean =
100

Nbins

∑

N=1

Nbins
|XExperiment −XModel|

XModel

(5.6)

However, to avoid outlier bin errors distorting the mean percent difference due to a280

low number of tracer passes, a threshold is set using the occupancy so that only bins which281

have an occupancy higher than 0.00225% are considered. This value was chosen by looking282

at the cumulative probability distribution of the bin occupancy, as shown in Figure 5.6. An283

occupancy of 0.00225% immediately precedes a sharp rise in the plot, thereby excluding284

only the bins which are not adequately explored and do not contribute significantly to the285
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overall system behaviour. The results of this threshold applied to the occupancy are shown286

in Figure 5.7.287

Figure 5.6: The cumulative probability of occupancy in the GranuDrum used to determine

which bins to consider for comparison [46].

5.3 Results288

The results can be summarised according to the three main components of this work: (1)289

analysis of the DEM simulation, (2) comparison of the PEPT reconstruction with the DEM290

model, and (3) demonstration of a new method to correct PEPT reconstructed values based291

on the model DEM.292
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Figure 5.7: (a) A threshold is applied to remove bins that the tracer explores only a few

times. (b) The bins left after thresholding are the only bins used for comparison in later

analysis [46].

5.3.1 Analysis of the DEM Simulation293

Using the full 30-minute trajectories extracted from the DEM simulation of the mono-294

disperse GranuDrum, the Eulerian fields were generated. In Figure 5.8, the velocity com-295

ponents and magnitude field are shown. This reveals an active, fast-moving region on the296

free surface and a passive and slow-moving region in the bulk. These are both well-known297

features of rotating drums operating at the Froude number of 0.1, demonstrating that the298

simulation provides sensible flow behaviour [28].299

Numerically differentiating the tracer velocity with respect to time yields acceleration.300

The acceleration magnitude field is produced and shown in Figure 5.9. The shoulder and toe301

regions experience the highest accelerations. The shoulder of a rotating drum is the region302

at the top of the cascade where particles depart from the wall [87]. The toe of a rotating303

drum is the region at the bottom of the particle cascade where particles impact the wall304

[87]. Since particles in the shoulder falling down the cascade are accelerated by gravity and305

particles in the toe are abruptly decelerated by crashing into the drum wall this is expected.306
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Figure 5.8: Velocity fields of particles in the mono-disperse DEM simulation of the

GranuDrum: (a) mean particle velocity in the x-direction, (b) mean particle velocity in

the y-direction, and (c) mean particle velocity magnitude [46].

Figure 5.9: Acceleration fields of particles in the mono-disperse DEM simulation of the

GranuDrum: (a) mean particle acceleration in the x-direction, (b) mean particle acceleration

in the y-direction, and (c) mean particle acceleration magnitude [46].

The granular temperature is shown in Figure 5.10. The granular temperature is307

highest in the active region of the drum and especially in the toe. This is because collisions308

in this area are frequent and energetic, leading to large fluctuations in velocity [151].309

These fields and the previously calculated occupancy field were then generated for310

every minute of the simulation time for individual DEM particles. These are compared to the311

previously shown fields produced after 30 minutes using all of the particles which represent312

the steady-state behaviour of the drum. This is done to investigate how the measured system313
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Figure 5.10: Granular Temperature in the mono-disperse GranuDrum DEM simulation[46].

behaviour reconstructed from a single particle compares to the time-average bulk behaviours314

of the system. This shows how long is needed for one particle to approximate the behaviour of315

all particles, finding at what point the ergodicity is achieved to a specified level of agreement.316

The results of this comparison are shown in Figure 5.11.317

Across all measured fields, the differences from steady-state fields are found to decrease318

logarithmically with the measurement time. Derived measurements of lower-order than319

acceleration, such as velocity, are found to reach a high level of accuracy relatively quickly; 1%320

mean difference after 10 minutes of measurement time. Higher-order derived measurements321

like acceleration, which rely on the velocity measurement, take longer to reach the same level322

of accuracy. For all fields, the mean percent differences are under 10% by 30 minutes. These323

results show for this particular system not only can system behaviour be reconstructed from324
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Figure 5.11: Estimating the time needed to ensure adequate statistics are collected: (a) a

single tracer compared to the bulk behaviour, (b) average of multiple tracers with error bars

representing standard deviation of the percent differences [46].

single particles, but also the length of measurement time needed to reach a desired level of325

accuracy can be estimated.326

5.3.2 PEPT Reconstruction327

After running the GATE simulations of a particle in air and of a particle in the simulated328

mono-disperse GranuDrum, the reconstructed PEPT trajectories are compared to the pre-329

scribed DEM trajectory. For a 2-second long segment of the simulation, the positions for the330

DEM tracer and the two PEPT reconstructed trajectories are plotted and then compared331

point-by-point to compute a mean spatial error. Further, the instantaneous spatial errors are332

plotted according to the tracer positions in Figure 5.12. The tracer in air and the tracer in333

the GranuDrum voxels over the 30-minute trajectory are tracked to a mean spatial accuracy334

of 0.175 mm and 0.412 mm, respectively. Additionally, the detection rates of the two tracers335

are 889 Hz and 355 Hz, respectively. This demonstrates that DEM2GATE can be used to336

reconstruct particle behaviour and then quantify the spatial and temporal resolution of the337

reconstruction.338
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Figure 5.12: The prescribed DEM trajectory, simulated tracer in air, and simulated tracer

in the GranuDrum: (a) the positions of the tracer, (b) the error in the PEPT reconstruction

[46].

The spatial errors can be broken down further into the mean spatial error in each bin,339

shown in Figure 5.13. Figure 5.13 provides information about where spatial errors occur and340

indicates why this happens. Higher errors occur when the tracer is falling from the shoulder341

of the drum or crashing into the toe region. By referring back to Figure 5.9, these are the342

two areas with the highest accelerations.343

When a bin-by-bin comparison between the spatial error in PEPT measurement and344

the model DEM acceleration is plotted in Figure 5.14, the relationship between the two is345

shown to be a linearly increasing spatial error with increasing tracer acceleration. When a346

straight line is fitted to the data, the y-intercept is the mean error that is to be expected347

for a tracer at rest or at constant velocity. The y-intercept value is higher for the tracer in348

the GranuDrum voxels, most likely due to the increase in scattered LoRs as this has been349

shown to increase PEPT error in other work and thus demonstrates that this is an important350

relation with real physical significance [149].351

Additional analysis of the PEPT trajectories is performed by reconstructing the Eu-352
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Figure 5.13: The binned mean errors of the PEPT reconstructed trajectory: (a) the mean er-

ror of the tracer simulated in air, (b) the mean error of the tracer simulated in the GranuDrum

[46].

lerian fields. These are calculated in the same manner as the DEM fields and are calculated353

every minute and then compared to the DEM values calculated using all the model DEM354

trajectories after 30 minutes of the simulation. The results of comparing the Eulerian fields355

are shown in Figure 5.15. Figure 5.15 shows that for the velocity, acceleration, and occu-356

pancy fields the PEPT reconstruction aligns with the model DEM fields, but for granular357

temperature, the fields do not align and do not get more accurate with longer measurement358

times.359

5.3.3 Correcting PEPT Measurements360

As shown in Figure 5.15, the PEPT reconstructed granular temperature fields do not agree361

with the model DEM fields. These fields rely on the fluctuating velocity components and,362

as such, they are particularly prone to errors caused by both low temporal resolution and363

the inherent uncertainty in PEPT measurements. The low temporal resolution of a PEPT364
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Figure 5.14: The PEPT spatial error increases linearly with acceleration, with the y-intercept

being the mean error for a constant velocity tracer; the y-intercept is higher for the PEPT

tracer in voxels because of the increased scattering of LoRs [46].

measurement in comparison with the behaviour of the DEM tracer smooths out fluctuations365

in velocity while uncertainty in the PEPT measurement induces fluctuations in velocity.366

These two factors come together to produce errors in the PEPT reconstructed fields.367

However, when the PEPT and model DEM fields are compared bin-by-bin, there368

exists a correlation between them, shown in Figure 5.16. When the square root of the369

granular temperature (square root since this is calculated using a squared velocity term) for370

the PEPT reconstruction and model DEM are compared, a straight line can be fitted to the371

data. The fitted equations show that bins with low granular temperature in the model DEM372

fields are over-predicted by PEPT, as evidenced by a positive y-intercept. Further, at high373

granular temperatures in the model DEM, PEPT measurements under-predict the values,374
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Figure 5.15: Estimating the time needed to ensure adequate statistics using results from a

PEPT tracer: (a) in air and (b) in the GranuDrum. Notice the Granular Temperature is

not improving for either case with additional measurement time [46].

as evidenced by a slope gradient of less the 1.375

Not only does this result provide insight into a possible source of error when comparing376

PEPT measurements with DEM models, but also shows that the PEPT measurements have377

predictable errors which can be corrected. To correct the PEPT measurement, the terms of378

the linear model can be rearranged and applied to the PEPT reconstructed fields. When this379

is done, the mean bin percent difference over the measurement time aligns more closely to380

what is expected from the model DEM simulation, as shown in Figure 5.17. This correction381

method is robust because it is not dependent on the overall behaviour of the particle within382

the system, only its velocity fluctuations. Thus, to produce a correlation between the PEPT383

reconstructed values and model DEM values, a fully calibrated DEM model is not required,384

only a model which produces velocity fluctuations across the range which might be expected385

in the experiment.386
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Figure 5.16: A correlation between the PEPT reconstructed and model DEM fields can be

used to correct the PEPT-measured granular temperature [46].

5.4 Discussion387

In this Section, the use of novel tools in the open-source DEM2GATE library to com-388

bine DEM simulation with GATE-simulated PEPT experiments was demonstrated. A389

LIGGGHTS DEM simulation of mono-disperse MCC particles in a model of the GranuTools390

GranuDrum was simulated and the DEM simulation used as the basis of a GATE-simulated391

PEPT experiment [64, 30]. From this DEM simulation, Lagrangian trajectories of individual392

particles were extracted and, additionally, a volume representing the time-averaged particle393

density throughout the rotating drum was produced.394

A GATE simulation was created using the extracted DEM trajectories to move a395
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Figure 5.17: The mean bin percent differences for the PEPT reconstructed tracers: (a) in

air, and (b) in the GranuDrum. When the correction for granular temperature is applied,

the mean bin percent differences for these fields are improved, reaching approximately 10%

after 30 minutes [46].

positron-emitting source modelled on a PEPT tracer. In a separate GATE simulation,396

the volume of particle density and a structural model of the GranuDrum were added to397

produce realistic gamma-ray scattering that would be expected in a real experiment. The398

synthetic LoRs collected over the 30-minute-long trajectory were processed using the PEPT-399

ML algorithm, yielding a PEPT-tracked version of the trajectory in both GATE-simulated400

experiments [91]. The reconstructed trajectories were compared with the prescribed model401

DEM trajectories through point-by-point comparison, as well as through two-dimensional402

Eulerian fields. This analysis showed that there were two main drivers of spatial error,403

particle acceleration and gamma-ray scattering, with the effect of these being quantified.404

Another important finding was that the accuracy of reconstructed fields is shown to405

depend on the length of measurement time. Specifically, the DEM data show that accuracy406

improves logarithmically for the reconstructed fields and that higher-order derived measure-407

ments, such as acceleration fields, take longer to reach a desired level of accuracy compared408
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to lower-order derived measurements, like velocity fields. The reason for this was assumed409

to be because of error propagation in the higher-order measurements. After 30 minutes410

of a single-particle GATE-simulated PEPT measurement velocity, acceleration, and occu-411

pancy fields were reconstructed to within 10%. However, the granular temperature PEPT412

measurements produced mean bin percent errors of approximately 50% and above. A cor-413

rection for the PEPT data was developed by comparing the PEPT and DEM values for414

these two measurements on a bin-by-bin basis, finding they were linearly correlated. Low415

model DEM values in these fields were over-predicted in the PEPT measurement, and then416

under-predicted for higher values. When the PEPT measurement correction was applied,417

the granular temperature for both GATE-simulated PEPT experiments after 30 minutes of418

measurement time reached approximately a 10% mean bin error.419

This work shows, to the extent that DEM simulations replicate the real behaviour of420

particles in granular media, that GATE-simulated PEPT experiments faithfully reproduce421

the PEPT-measured Lagrangian particle trajectories with high spatiotemporal resolution422

[46]. The Eulerian fields reconstructed from the single-particle GATE-simulated PEPT ex-423

periments are capturing the dynamics produced from full-field DEM data, thus suggesting424

that the PEPT experiments capture real system behaviour. Regarding the length of a PEPT425

experiment, there has been work to try and relate the necessary duration to key system pa-426

rameters, finding that duration scales with the system size and inversely with mean velocity427

[144]. However, these findings were made using only the DEM trajectories of particles and do428

not take into account the spatial and temporal resolution limitations of the PEPT technique.429

Additionally, there has never previously been an attempt to correlate PEPT-measured quan-430

tities to known DEM quantities, with this work being the first of its kind in demonstrating431

that it is possible to correct a PEPT measurement. The methods introduced in this Chapter432

can be similarly applied to any DEM-simulated granular system, provided that the DEM433

output has been verified to represent the realistic flow behaviour of the system. A trajectory434
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extracted from the DEM simulation can be used to assess whether the expected trajectories435

from a real PEPT experiment are of good enough resolution to track the real granular mo-436

tion, and thus would be sufficient to calibrate a DEM model. Ultimately, this work provides437

a way to estimate how long an experiment should be run to reach a desired level of accu-438

racy and also provides a framework for correcting PEPT measurements of behaviour like the439

granular temperature.440
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Chapter Six1

Optimising PEPT Algorithm Parameters2

6.1 Introduction3

Many PEPT algorithms discussed and evaluated in Chapter 3 have user-prescribed parame-4

ters which are used to improve their accuracy [100, 138, 94, 91]. For example, the PEPT-ML5

algorithm requires users to prescribe the maximum distance between LoRs which could form6

a cutpoint for clustering [91]. Additionally, the feature point identification (FPI) PEPT7

algorithm requires users to prescribe a voxel threshold to filter out voxels which contain few8

crossing of LoRs so that tracers can be identified from the background noise [138]. While9

these algorithms often come with default settings, to get the best results the parameters10

should be tuned [149]. However, determining the optimal values is subjective to the user11

because there are not methods of comparing the PEPT-reconstruction to the known tracer12

behaviour in real systems [149].13

This Chapter seeks to provide a method of establishing the optimal values for free14

parameters in PEPT algorithms by creating GATE simulations of PEPT experiments with15

prescribed tracer motions. Since the trajectory of the tracer is prescribed, this provides16

a quantitative method of comparing the accuracy of PEPT reconstruction when certain17
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parameter values are used [47]. While similar methods of parameter optimisation could18

be demonstrated with any PEPT algorithm with free parameters, this Section will cover19

the optimisation of the Birmingham Method’s NLoRs and f parameters. The Birmingham20

Method is the most used PEPT algorithm and requires only these two parameters to function21

[100]. The NLoRs parameter specifies how many LoRs should be included in a sample while22

the f parameter specifies the fraction of LoRs in the sample which should be used to calculate23

the tracer position.24

The Birmingham Method (BM) PEPT algorithm was designed such that only a frac-25

tion of the LoRs in a sample should be used to find the tracer position and the most likely26

corrupted LoRs removed [100]. Corrupted LoRs may form when scattering in one or both of27

the detected rays and the formation of random LoRs is caused by two unrelated rays being28

detected within the coincidence window [125, 148]. By initially using all of the NLoRs to29

estimate the tracer position, the LoR furthest from this point can then be removed and the30

remaining LoRs are recycled to update the position. This iterates until only a user-specified31

fraction of the LoRs remain, f . The parameter values used are typically conservative so they32

can be applied to many different systems and produce reasonable trajectories [100].33

It is known that thicker and denser systems will cause more scattered LoRs and34

that more active tracers will cause more random LoRs [44]. However, little has been done35

to develop ways to understand how this affects PEPT measurements and, further, predict36

the values for f and NLoRs which will maximise the spatial and temporal resolution of37

the Birmingham Method. Existing methods rely on using a static point-like tracer and38

measurements of the standard deviation of the tracer position, rotating disk studies where39

the tracer positions can be determined based on the rotation rate and radius of the disk, or40

by estimating the location error by indirect means [100, 18, 16]. However, these methods41

are oversimplified and not able to directly measure the spatial error of the tracer.42
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This Section seeks to build upon these methods by using both PEPT measurements43

and GATE simulations to investigate how the spatial accuracy of the Birmingham Method is44

affected by the parameters f and NLoRs under a range of experimental conditions, including45

both stationary and moving tracers. The GATE model of the ADAC Forte is used to46

generate synthetic LoRs from recreations of real experiments [44, 45]. These serve as further47

validation for the GATE model and are later expanded to test a range of conditions not48

explicitly considered during the experiments. The values for f and NLoRs which maximise the49

spatial accuracy for each PEPT trajectory are extracted as a function of the tracer position.50

To utilise this information, a new version of the Birmingham Method, called the Dynamic-51

BM (DBM), is developed which dynamically changes the fraction of LoRs remaining in the52

sample and the sample size of LoRs based on an estimate of the tracer position. This new53

method is expected to provide both higher spatial and temporal resolution than the original54

Birmingham Method algorithm since it can use the optimal parameter combination on a55

sample-by-sample basis.56

6.2 Methods57

6.2.1 Static Tracer Experiments58

The tracer chosen for this experiment is a 1 mm diameter sphere of anion exchange resin59

labelled with fluorine-18. Fluorine-18 is an ideal positron-emitting isotope for PEPT because60

it has one of the lowest energy spectra for positrons and thus a low range [57]. The anion61

exchange resin adsorbs fluorine-18 ions from a solution of radioactive water produced on-site62

at the Positron Imaging Centre [96]. On the day of the experiment, the tracer was activated63

with an initial activity of 2.8 MBq and placed inside a 0.5 ml plastic vial for handling.64

According to a recent characterisation of the ADAC Forte, a tracer of 2.8 MBq will produce65
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less than 5% random LoRs, meaning nearly all LoRs not intersecting the tracer location will66

most likely have undergone scattering before being detected [44].67

To attenuate the 511 keV gamma-rays, the vial is placed in the centre of an 800 ml68

cylindrical glass beaker filled with 500 ml of bulk density attenuating material. The inner69

diameter of the beaker is 100 mm and filled to the height of 65 mm, confirming that a volume70

of material of approximately 500 ml is used. The wall thickness of the beaker is 5 mm. Once71

filled, the beaker mass was measured. The initial mass of the beaker was subtracted to find72

the total mass of the attenuating material. The density of the materials, ρ, is calculated73

by dividing the mass by the volume. The materials and their properties are listed in Table74

6.1. Materials like air and high-density polyethene (HDPE) have low linear attenuation75

coefficients, µ, while steel and copper have larger coefficients, meaning they will attenuate76

a larger fraction of the gamma rays [129]. A small sample of some of these materials and77

the filled beaker is shown in Figure 6.1. The fact that materials are bulk and porous is not78

expected to have an effect in this experiment since the diameters of the materials are much79

smaller than the diameter of the beaker. The attenuation of gamma rays in this experiment80

will approximate those of a continuous attenuation medium.81

During the experiment, the beaker is placed in the centre of the field-of-view (FOV) of82

the ADAC Forte [103, 44]. The two heads of the Forte are set to their maximum separation83

of 800 mm to achieve the most uniform illumination. Each material is imaged until more84

than 1,000,000 LoRs have been collected, which is enough to locate the tracer several times85

using the Birmingham Method across a range of NLoRs in the sample size. Since the position86

of the tracer is not known exactly, the standard deviation of the PEPT detected position, the87

PEPT uncertainty, σ, is used to quantify the performance of different f and NLoRs param-88

eter combinations. This is calculated using Equation 1.16, which is the three-dimensional89

standard deviation of the detected positions.90
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Table 6.1: List of the bulk materials and their attenuating properties [129, 47].

Material ρbulk (g/cm3) µ/ρbulk (cm2/g) µ (cm−1) Attenuation (%)

Air 0.00129 0.0806 0.000111 19.4

HDPE 0.890 0.0931 0.0828 64.8

MCC 1.421 0.0915 0.130 78.0

Glass 1.661 0.0858 0.143 80.7

Steel 4.425 0.0832 0.368 98.0

Copper 5.025 0.0827 0.415 98.7

Figure 6.1: (a) A small sample of four of the materials used to induce attenuation. From

left to right: steel, copper, glass, and MCC. (b) The beaker is filled with steel balls and the

source is placed in the centre of the field-of-view (FOV) of the Forte [47].
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6.2.2 Moving Tracer Experiment91

In previous work, the spatial accuracy for static tracers has been shown to improve when92

more LoRs are used per sample [149]. However, in real PEPT experiments, the tracer93

typically moves, limiting the NLoRs per sample which can be used. This is because if the94

tracer moves more than a few millimetres between the detection of the first and last LoRs in95

the sample the PEPT-detected position will incur higher spatial errors [100, 46]. Thus there96

should always exist an optimum NLoRs per sample for moving tracers.97

To investigate this in a system representative of a PEPT experiment, an attritor mill98

is placed near the centre of FOV and a tracer is fixed to the end of the impeller as it rotates99

in the mill at 100 RPM. Mills of this type are used across a wide range of industrial and100

pharmaceutical applications and have been studied in the past using PEPT [153, 26]. Due to101

the thick steel walls and predictable circular rotation of a particle fixed to the impeller, this102

system is ideal to investigate the effect of NLoRs on the spatial accuracy of the Birmingham103

Method. In other work, similar rotating systems have been used to better understand how104

changing the parameters f and NLoRs affects PEPT measurements [100, 18]. The attritor105

mill and a schematic of the mill dimensions are shown in Figure 6.2.106

The tracer used for this experiment is a 1.2 mm diameter microcrystalline cellulose107

(MCC) bead activated with a solution of fluorine-18 and water to an initial activity of 22108

MBq. A tracer of this activity is ideal for PEPT experiments in the Forte since this is109

approximately the activity which will produce the highest true LoR count-rate before dead-110

time and random LoRs degrade the measurement [44]. This tracer is taped to the end of the111

upper impeller in the attritor mill at a radius of 63 mm. At 100 RPM the tracer will rotate112

at a constant velocity of 660 mm/s. The mill is then placed near the centre of the FOV of113

the ADAC Forte at a head separation of 510 mm. The mill is imaged over approximately 1114

minute (i.e. 100 rotations) to develop good statistics of the tracer locations as it rotates.115
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Figure 6.2: (a) The attritor mill near the centre of the FOV of the ADAC Forte. (b) A

schematic of the dimensions of the mill and the tracer fixed to the impeller [47].

To assess the performance of different f and NLoRs combinations using the Birm-116

ingham Method, first, each directional component of the PEPT trajectory is fitted to a117

sinusoidal equation as a function of time, t, as shown in Equation 6.1. The amplitude, A,118

in the x and z components should be approximately 63 mm and in the y component, 0 if119

the mill is perfectly oriented with respect to the detector axes. Since the mill is likely not120

perfectly level a sinusoidal equation is fitted to the y-component as well. The rotation rate,121

ω, is approximately 100 RPM, and ϕ is the phase shift which depends on the initial position122

of the tracer. The PEPT deviation from this motion is calculated by comparing each PEPT123

detected position to the predicted position using the fitted equations. In this way, the mean124

spatial error of the trajectory is calculated using Equation 1.14.125

xFit(t) = A sin(ωt+ ϕ) + c (6.1)
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6.2.3 GATE Simulations126

The GATE model of the ADAC Forte used in this work has been validated using a char-127

acterisation of the detector when it was installed at the PIC and calibration experiments128

following an industry-standard protocol, showing agreement between simulation and exper-129

iment to within 10% across all tested metrics [44]. This GATE model of the ADAC Forte is130

first used to repeat the experiments described in Sections 6.2.1 and 6.2.2 for comparison and131

further validation. After this, the GATE model and recreated attritor mill are used to ex-132

pand the tested conditions to observe how the optimal combination of f and NLoRs changes133

throughout the system. These optimal parameters are used in Section 6.2.4 to develop the134

DBM algorithm.135

Following the experiments, the tracer, geometry, and detector for the static tracer136

experiments are replicated in GATE. This starts by creating a radioactive tracer defined as a137

1 mm diameter resin sphere, emitting positrons with a fluorine-18 energy spectrum [88]. The138

tracer is placed inside a geometric model of the glass beaker which has been filled with 500139

ml of bulk-density material. A cross-section of the beaker and source geometry is shown in140

Figure 6.3. To replicate the attenuation of each material, new material definitions are added141

to the GATE material database which is described in Table 6.1. The tracer is prescribed142

an activity equal to that of the tracer activity at the beginning of each data acquisition.143

Initially, the tracer was approximately 2.8 MBq, but by the end of all experiments decayed144

to approximately 1.3 MBq. For each simulation, the activity is adjusted accordingly to145

compensate for decay. Finally, the tracer and beaker are placed in the centre of the FOV of146

the GATE model of the ADAC Forte. The detector separation is set to 800 mm. While the147

exact positions of the tracers simulated in GATE are known, Equation 1.16 is still used to148

calculate the PEPT uncertainty to compare the real experiment and simulations directly.149

Similar to before, the moving tracer experiment is recreated using the GATE model150
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Figure 6.3: (a) The ADAC Forte dual-headed positron camera at the Positron Imaging

Centre (left). GATE model of the Forte with a cutaway of the experimental geometry and

source in the centre of the FOV (right) [47].

of the ADAC Forte. The head separation is set to 510 mm, which is as close to the system151

as the detectors could be set. A lower head separation results in higher geometric efficiency,152

meaning LoRs can be collected at a higher rate. At the time of the experiment, the tracer153

was measured to approximately 20 MBq. This is modelled in GATE as a 1.2 mm diameter154

sphere emitting positrons with a fluorine-18 energy spectrum.155

The mill dimensions can be found on the right-hand side of Figure 6.2 and are recre-156

ated in the GATE simulation as shown in Figure 6.4. It consists of a 70 mm diameter vessel157

lined with polyethylene and a stainless-steel impeller with 4 pins. The polyethylene liner is158

10 mm thick and the outer stainless-steel wall is 5 mm thick. The inside of the vessel is filled159

with air to match the experimental conditions.160

The whole mill is rotated about the y-axis at 100 RPM to induce tracer motion. This161

is achieved through discrete rotations of every simulation time-step of 0.0005 s. For the162

tracer fixed at a 63 mm radius, this results in a change in position of approximately 0.33 mm163
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Figure 6.4: (a) The GATE model of the ADAC Forte PEPT detector system. (b) A cut-away

of the attritor mill. In the cut-away, the major components are labelled [47].

per time-step. This is smaller than the tracer diameter and can thus be safely used to mimic164

continuous tracer motion [46]. The GATE simulation produces LoRs which are processed in165

the same way as real PEPT data. A range of different f and NLoRs values are used to locate166

the tracer. The PEPT trajectory is then compared back to the GATE-prescribed tracer167

positions to calculate an error based on Equation 1.14. The GATE simulated tracer position168

is known exactly and there is no variability in its rotation rate or system vibration present.169

As such, the spatial accuracy of the GATE simulated tracer is expected to be somewhat170

higher than in the real experiment.171

6.2.4 Dynamic Birmingham Method172

In PEPT experiments, the scattering environment and detector sensitivity change as a func-173

tion of the tracer position. The amount of corrupted LoRs in a sample affects the optimal174
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f while the sensitivity affects the optimal NLoRs. However, the Birmingham Method uses175

constant parameter values. This means users must choose a conservative parameter combi-176

nation that will work over the whole data set. Inevitably, this will return trajectories with177

lower spatial accuracy than is theoretically possible. To solve this problem, a variant of the178

Birmingham Method is developed called Dynamic-BM (DBM), ‘Dynamic’ because it can179

dynamically change f and NLoRs to the optimal values determined by a GATE simulation180

as the tracer moves through the system.181

Initially, the DBM uses constant values of f and NLoRs to estimate the position of the182

tracer. Then, for each initially-estimated tracer position, the optimal parameter values are183

looked up from a table produced by Monte Carlo simulation. To use this table, the predicted184

3-dimensional location of the tracer and other optional information is input, then the closest185

simulated position is found and the optimal parameters are output. This approach relies186

on simulating a sufficiently high number of tracer positions within the system so that the187

change in parameter values between adjacent simulated positions is smooth.188

To test the DBM, the attritor mill is simulated using GATE with the tracer placed189

in a range of initial positions. To match the experimental conditions, the mill is rotated at190

100 RPM and the tracer activity is set to 22 MBq. Each tracer position is a new GATE191

simulation. The initial tracer positions are seeded in one quadrant of the mill to take192

advantage of the symmetry of the system. The positions are created in regular intervals in193

the x and z direction from 0-60 mm in 20 mm steps and the y-direction from ±50 mm in194

12.5 mm steps. The positions falling outside of the system or intersecting the impeller are195

removed, leaving a total of 84 positions. Since the impeller is rotating, the position of the196

tracer is important for the optimal f and NLoRs values since it will cause different amounts197

of scattering depending on its rotated angle. In the simulation, the rotation of the impeller198

is prescribed so it is known, but during a PEPT experiment, this can be more difficult to199

ascertain. However, the ADAC Forte can record readings from an optical switch directly into200
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the data file, allowing the impeller rotation angle to be recorded throughout an experiment201

[99]. The 360◦ is divided into 30◦ increments and the optimal f and NLoRs are calculated202

over this range.203

To use the look-up tables, first, the amount the mill is rotated must be determined.204

This is done by multiplying the time by 360◦ and dividing by the rotation period, 0.6 s.205

Since all rotations beyond 360◦ are duplicates of previous rotations, a modulo operation206

is performed. Then all the simulated positions within the nearest rotation are compiled207

and the values of f or NLoRs for the position closest to the PEPT estimated position are208

extracted. Using this method, the optimal f and NLoRs of any point within the system can209

be determined. Due to the change in NLoRs per sample, the number of detected positions210

in a trajectory processed using the Birmingham Method and the DBM may vary. To ensure211

the changing parameters are used at the appropriate position within the data set, the f and212

NLoRs are linearly interpolated as a function of time and the average time of the LoRs in213

each sample is used to compute the exact parameter values.214

To assess the performance of the DBM, it is compared to both the default Birmingham215

Method parameter values of 0.05 f and 250 NLoRs as well as the best constant parameter216

values. This represents the default and the best possible Birmingham Method performance,217

showing how dynamically changing the parameter values can improve PEPT algorithms.218

6.3 Results219

6.3.1 Model Validation220

Each of the static tracer experiments described in Sections 6.2.1 and 6.2.2 produces a unique221

fraction of attenuation. Some of the coincident 511 keV gamma-rays attenuated via Compton222
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scattering are inadvertently passed to the PEPT algorithm as corrupted LoRs. When the223

attenuating medium is air, the amount of corrupted LoRs is relatively low, but as the medium224

becomes more attenuating, a larger fraction of LoRs are corrupted. This is shown in Figure225

6.5 where the LoRs from the air, glass, and copper experiments are plotted.226

Figure 6.5: Three samples of 200 experimentally acquired LoRs from the static tracer ex-

periment for (a) air, (b) glass, and (c) copper show that the amount of corrupted LoRs in

the sample increases with more attenuation [47].

Since these materials produce different fractions of corrupted LoRs, the optimal f227

for each experiment should be a unique value. The LoRs from the real experiment and228

simulations were both processed using the Birmingham Method under a range of f and229

NLoRs and the variation of the standard deviation in position for different combinations of230

the two parameters is plotted as colour variation in Figure 6.6. These plots show that for231

static tracers the optimal value of f is decreased when more corrupted LoRs are present and232

the standard deviation in the position decreases as more NLoRs per sample are used. The233

experiment and GATE simulations closely agree across all the parameter combinations, both234

in the optimal values for f and in the standard deviation in the tracer position. For a static235

tracer, the optimal value for f remains constant and the standard deviation in position will236

always decrease with greater NLoRs. The optimal values for f across all the materials tested237
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for both the experiment and the simulation are shown in Figure 6.7. Additionally, in this238

figure, the values for f which minimise the uncertainty are plotted against the fraction of239

true LoRs demonstrating that f must decrease when more attenuation occurs. Moreover,240

this shows that the values for f which minimise position uncertainty are approximately241

equivalent to the fraction of true LoRs in the sample. This, until now, has been an assumption242

of the Birmingham Method, but this work now provides the first direct evidence that this243

assumption is true. The experiment and simulation provide similar values in both the overall244

PEPT uncertainty across all the parameter combinations tested and also the values of f245

which minimise the uncertainty for a given NLoRs.246

Figure 6.6: Position uncertainty in the static tracer experiments and simulations for air

(left), glass (middle), and copper (right), and the absolute difference between the simulation

and experiment [47].
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Figure 6.7: (a) A comparison of the optimal values for f across all the materials tested. (b)

A comparison of the optimal values for f across all the materials as a function of the fraction

of true LoRs in the sample [47].

A similar analysis was conducted for the moving tracer experiment. A 22 MBq tracer247

was fixed to the impeller of an attritor mill and rotated at 100 RPM. In this case, a posi-248

tion error was calculated using Equation 6.1 for the experiment and simulation. A range of249

constant f and NLoRs values are used with the Birmingham Method to assess the spatial250

errors produced under different parameter combinations. Trajectories of the experiment and251

simulation are presented in Figure 6.8 showing that the rates of detection are approximately252

the same. In Figure 6.9, the parameter values for f and NLoRs are varied to assess their effect253

on the spatial error of the reconstructed PEPT trajectory and find the optimal combination.254

The experimental plot has a generally higher error because the error was calculated using255

fitted functions, assuming perfect circular motion, whereas the GATE simulations benefit256

from having analytical functions describing the tracer motion. From Figure 6.9, the optimal257

values for f and NLoRs for the real experiment are determined to be 0.275 and 1400, respec-258

tively. Similarly, the optimal parameters for the simulation are determined to be 0.25 and259

1300, respectively. The optimal parameters and their percent errors are shown in Table 6.2.260
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Figure 6.8: Trajectories for the (a) experimental tracer in the attritor mill under a constant

f of 0.25 and NLoRs of 1500 compared to the (b) simulated tracer trajectory under the same

parameters [47].

Figure 6.9: The parameter values for f and NLoRs are varied for the (a) real experiment and

(b) GATE simulation of the moving source, affecting the spatial error of the reconstructed

PEPT trajectory [47].

6.3.2 Dynamic Parameter Optimisation261

For each of the tested positions in the expanded GATE simulation of the attritor mill, the262

optimal values for f and NLoRs were recorded as the tracer moves through the system. These263
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Table 6.2: Comparisons of the experiment and simulation in the optimal parameters for the

moving tracer experiment [47].

Method Optimal f Optimal NLoRs

Experiment 0.275 1400

Simulation 0.25 1300

Percent Error (%) -9.09 -7.14

optimal parameters were calculated for every 30◦ rotation to update their values continuously.264

Figure 6.10 shows the change of optimal parameters at two different degrees of rotation, one265

where the least amount of attenuation occurs and another where the tracer is behind the266

impeller shaft, with respect to the detectors, where the most attenuation occurs. As the mill267

rotates, the optimal parameters fluctuate, becoming more or less conservative when more268

corrupted events are recorded or the count-rate decreases, such as when the tracer passes in269

front or behind the impeller shaft.270

Figure 6.10: (a) The results of a parameter sweep when the tracer is beside the impeller

shaft where the least amount of LoRs have been attenuated. (b) The effects of the tracer

passing behind the impeller shaft where a larger fraction of LoRs are attenuated [47].

After the optimal parameters have been extracted, these are used to inform the DBM271
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algorithm. Each simulated trajectory is reprocessed with an estimate of the optimal param-272

eters and the mean spatial error is calculated over the trajectory. These are compared to273

the trajectories extracted using the default and the best constant parameters. The results274

of this comparison are in Table 6.3. The mean spatial error of the default Birmingham275

Method parameters, best constant parameters, and the DBM are 2.20 mm, 0.544 mm, and276

0.517 mm, respectively. While the default parameters can reconstruct the trajectory, when277

tailored parameters extracted from Monte Carlo simulation are used, in this case at least,278

the errors decrease to nearly a quarter of their original values. When dynamic parameters279

are used, the errors decrease by 76.5% over the default parameters and by 4.03% over the280

best constant parameters. A histogram of the percent changes in spatial error between the281

trajectories produced with the best constant parameter and the DBM is shown in Figure282

6.11. This plot shows the DBM increases the accuracy of nearly all trajectories and also283

some individual trajectories are improved by over 10%. The trajectories which are the most284

improved are from areas of the system around the impeller blades where the local optimal285

parameters deviate the most from the best constant parameters.286

Table 6.3: Mean trajectory comparisons using different algorithm parameter methods [47].

Parameters Spatial Error (mm) STD (mm) Locations (N)

Default 2.20 1.48 1337

Best Constant 0.544 0.372 223

Dynamic 0.517 0.3481 236

6.4 Discussion287

This Chapter demonstrates that realistic synthetic data produced by GATE simulations can288

be used to optimise PEPT algorithm parameters, representing a departure from previous289
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Figure 6.11: The change in spatial accuracy for each trajectory. The mean improvement is

4.03% over the best constant parameters [47].

approaches to algorithm optimisation. Optimisation of PEPT algorithms has previously been290

limited in use and often impractical in terms of the time and resources needed to characterise291

the PEPT detector system response to a tracer in an experimental system and quantify how292

algorithm parameters affect the quality of reconstructed trajectories. In particular, using293

simulated data has been shown to produce the same optimal parameter values as carefully294

controlled real experiments and to be useful in identifying the optimal PEPT algorithm295

parameters which lead to the best reconstruction of simulated tracer trajectories in conditions296

which could not be directly tested.297

The optimisation of the PEPT algorithm parameters was explored by using a validated298

GATE model of the ADAC Forte PEPT detector system and a model of an experimental sys-299

tem which would be studied using PEPT. Previously, the use of static tracers or predictably300
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moving tracers to find the optimal parameters values for PEPT algorithms has been used301

in other work [18, 16, 100]. However, these methods lack the ability to compare the actual302

location of the tracer to its PEPT reconstruction, instead relying on indirect measurements303

such as the standard deviation of the positions. As such, they are susceptible to bias. By304

using GATE simulations, the prescribed position of the tracer can be compared to its PEPT305

reconstructed location.306

Additionally, since GATE simulations can be rapidly changed, a much wider variety307

of conditions can be tested than would be possible in physical experimentation. In real308

experiments, typically only one location can be tested at a single activity [100]. However,309

since the LoR count-rate and the fraction of corrupted LoRs in a sample are sensitive to the310

tracer position, this approach can only provide a rough estimate of the optimal parameters311

[44]. By using GATE simulations in which the location and activity can be changed rapidly,312

the complex three-dimensional nature of the optimal parameters can be discovered and313

also the state of the experimental system taken into account to dynamically update the314

PEPT algorithm parameters on a sample-by-sample basis [47]. Doing this achieves the315

optimal spatial and temporal resolution of a PEPT trajectory. Moreover, using the methods316

presented here, GATE simulations conducted in conjunction with PEPT experiments can317

be used to remove the guesswork of choosing f and NLoRs. This means users of PEPT318

algorithms do not need to be experts to produce good trajectories, making the Birmingham319

Method PEPT algorithm more rigorous and more accessible.320

This work is the first to develop these techniques and apply them to real and hy-321

pothetical PEPT experiments. The results show that these methods of optimisation are322

worthwhile and would provide valuable improvement in PEPT experiments if applied. Due323

to the time and resources needed for physical experimentation, optimisations of experiments324

have only seen limited use. However, the use of realistic GATE simulations is now a viable325

option when a validated GATE model of the PEPT detector system and recreation of the326
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experimental geometry is used [47]. When combined with a DEM tracer trajectory, these327

simulations become even more valuable as a stand-in for real data [46]. While this work328

was conducted using the Birmingham Method PEPT algorithm and the ADAC Forte detec-329

tor system, a similar workflow could be applied to other PEPT algorithms which have free330

parameters, such as the Feature Point Identification PEPT algorithm, and other detector331

systems for which a validated GATE model exists, such as the Siemens Inveon [138, 74].332
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Chapter Seven1

Measuring Tracer Size with PEPT2

7.1 Introduction3

In the previous Chapters, the development of GATE models of PEPT detector systems,4

applying these models to benchmark PEPT algorithm performance, and using simulations5

of PEPT experiments to optimise data acquisition and trajectory reconstruction has been6

discussed. However, simulating the response of a PEPT detector system is not only useful for7

improving the existing ways of using the PEPT technique, but also for exploring new uses.8

As will be shown in this Chapter and next, the ability to create a model of an experiment9

where all aspects are controlled and precisely known creates opportunities to improve PEPT10

such that different types of information can be extracted and, additionally, to apply PEPT11

to new types of experiments. This Chapter will cover a novel PEPT methodology to infer the12

size of a volumetrically activated tracer as it decreases in size and loses some of its activity13

to the system in which it is contained.14

The advantage of using simulations rather than real experiments to develop new uses15

of PEPT is two-fold: (1) the conditions in the simulation are known absolutely, thus providing16

a concrete way to compare the results of the PEPT reconstruction to the prescribed values,17
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Figure 7.1: A volumetrically activated PEPT tracer which loses material during an experi-

ment through attrition, dissolution, or other mechanisms produces a smaller daughter tracer

and the lost material disperses into the system. Both the daughter tracer and the lost ma-

terial may contain positron-emitting material.

and (2) the limited time and resources of PEPT facilities like the University of Birmingham’s18

Positron Imaging Centre (PIC) or hospitals do not need to be expended on experiments for19

which the value of the results are uncertain or difficult to measure.20

In PEPT experiments, often the experimental system is opaque, dense, or fast-moving21

which means that tracer size cannot typically be obtained through optical measurements22

[148]. Moreover, during a real experiment, it is not necessarily impossible to stop the exper-23

iment, physically extract the tracer, measure its size, reintroduce it to the system, and then24

continue the experiment, but carries with it more complexity and the risk of disturbing the25

measurement. Handling radioactive material also carries with it a radiation safety risk to26

personnel. Additionally, it is beneficial to provide a proof-of-concept before applying a new27

methodology to experimental data, thus verifying that it works as intended. Therefore, using28

simulated results showing that a methodology produces the expected results demonstrates29
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that it can be a valuable new tool. In the next Sections, why these new methodologies30

are useful extensions of the PEPT technique, the development of the methodologies using31

GATE simulations, and the results of proof-of-concept studies will be presented. For the32

purposes of this Chapter, the loss of material from a particle will be referred to as parti-33

cle attrition, although there are several distinct mechanisms at play in different processes.34

Attrition specifically refers to when edges of particles suffer abrasion or when a weak plane35

of a particle is stressed to fracture [12]. However, the dissolution of soluble particles could36

similarly be studied using the technique presented in this Chapter.37

7.2 Background38

In many areas of engineering and physical sciences, the size of particles and the particle39

size distribution (PSD) play a role in many aspects of a process, such as understanding the40

physical and chemical properties of a material, reaction rates of solids, and flow behaviour41

[130]. Changes in particle size over time can be caused by attrition, fracture, dissolution or42

loss of material through other mechanisms such as a phase change [130]. One area where43

particle sizes are especially important is in the mineral and chemical processing industries44

[22]. Over-processing particles during mixing in solid-liquid agitated vessels can lead to45

particle damage, diminished product quality, and expending more energy than needed in a46

process, which increases costs [110]. Monitoring the changes in PSD is typically a manual47

process involving sample collection for offline analysis [6]. In addition to offline analysis48

real-time process monitoring of PSD using optical or acoustic methods is increasingly used,49

which provide the ability to make rapid changes to process control [80, 52].50

However, these methods do not provide insight into where or how the loss of particle51

material occurs. To fill in these gaps, discrete element method (DEM) simulation can be52
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used to provide more insight into the behaviour of particles over time and why material is53

lost [33, 34]. This insight is gained because a single particle and its loss of material over time54

can be observed in simulation. While the attrition rates calculated from DEM simulations55

and real experiments can be compared as a method of validating the results, there does not56

currently exist a way to directly validate the attrition experienced by individual particles,57

limiting its usefulness [40]. To fully understand the causes of attrition, a method of direct58

observation is needed.59

One method of tracking the trajectory of a single particle through an opaque system60

is through PEPT [148]. If this method could be extended to also infer the size of tracer61

particles over time, then this information could be used to better understand attrition rates62

and, crucially, determine where attrition occurs within a system. This Chapter seeks to63

extend the Birmingham Method PEPT algorithm such that a tracer size can be measured64

while it is being tracked within a system [100]. For a detailed description of the Birmingham65

Method, refer to Section 3.2.1. A parameter of the Birmingham Method, f , which is used to66

discard LoRs which do not emanate from the tracer, is studied as a surrogate for measuring67

the amount of activity coming from the tracer compared to the amount of activity which68

has been lost to the background. By knowing the initial conditions of the tracer, observing69

the activity loss, and assuming the tracer shape, its size can be estimated.70

In the next Sections, this method of measuring tracer size through the Birmingham71

Method f parameter is investigated through GATE simulations. The GATE simulations72

are designed such that a volumetrically activated tracer of some initial size and activity is73

placed in the centre of a cylinder of water, then, over time, the tracer is decreased in size, its74

activity decreased proportional to the volume of material lost, and the lost activity uniformly75

transferred to the water cylinder. This essentially creates background noise which emulates76

the loss of tracer material to its surroundings through attrition.77
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7.3 Methods78

7.3.1 Extending the Birmingham Method to Measure Tracer Size79

When positrons emitted from a PEPT tracer annihilate, they produce two coincident gamma80

rays near the tracer which can be recorded with a PEPT detector and used to triangulate the81

tracer position [100]. However, only gamma rays which reach the detector without undergo-82

ing scattering can be used, since the line-of-response (LoR) formed by scattered gamma rays83

no longer intersect the tracer location. When PEPT tracers that are volumetrically activated84

lose material through attrition, some of the activity of the tracer is lost and dispersed into85

the system [148]. In addition to scattered LoRs, LoRs which come from fragments of the86

attrited tracer cannot be used to locate the tracer since they also do not intersect the tracer87

location.88

A useful feature of the Birmingham Method PEPT algorithm is the inclusion of a89

user-defined parameter that specifies the fraction of LoRs in a sample to discard such that90

they are not used in locating a tracer [100]. This is included because, in a sample of LoRs,91

some LoRs will have scattered before reaching the PEPT detectors, be formed from two92

unrelated events, or originate in the background. Ideally, this parameter should be set to93

a value corresponding to the fraction of LoRs that only come from the tracer. For static94

tracers, the value of f which minimises the position uncertainty of the tracer is typically95

termed fopt and is approximately the fraction of LoRs in a sample which emanates from the96

tracer [47].97

If a tracer loses some of its activity to the background, this would present as a decrease98

in fopt since the fraction of corrupted events in a sample would increase proportionally to99

the amount of activity lost. By observing changes in the measured fopt of the tracer, it is100

possible this could be used to infer changes in the tracer size due to the loss of material101
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through attrition or another mechanism such as dissolution. To do this, when the tracer is102

first introduced to the system and before it starts to lose material, the initial fopt, termed103

fopt0 , should be measured. This value corresponds to the fraction of LoRs which lead back104

to the tracer when all of the activity is contained within the tracer volume. As the tracer105

loses material, the measured fopt will decrease as a result of more LoRs originating in the106

background. The ratio of the newly calculated fopt compared to its initial fopt0 then reveals107

the fraction of activity left on the tracer. To translate the fractional volume into a tracer size108

measurement, an assumption about the tracer shape must be made. For spherical tracers, the109

volume, V , of a tracer is proportional to the cube of the tracer radius, r, shown in Equation110

7.1. Therefore, if a tracer were to decrease in radius by half, then the volume would decrease111

eight-fold. Therefore, using this relationship, the measured fractional volume of the tracer112

can be converted into a measurement of the tracer radius, which is calculated using Equation113

7.2 and the initial tracer radius, r0.114

V =
4

3
πr3 (7.1)

r = r0

(
fopt
fopt0

) 1
3

(7.2)

While the uncertainty in position is one metric which can be used to find the fopt,115

another that seemingly produces similar results, if not better, is to measure the average116

residual of the LoRs to the PEPT calculated position. The Birmingham Method locates117

tracers by minimising the distance between the estimated location of the tracer, called the118

minimum distance point (MDP), and the closest approach of each LoR to this point. For119

the purposes of this work, the sum total of distances between each LoR used to locate the120

tracer and the MDP is called the residual, R. This metric is calculated by dividing the sum121

of the distance from each LoR used to calculate the position of the tracer, d, by the amount122
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of LoRs used to locate the tracer, which is the sample size, N , multiplied by f . The equation123

used for calculating the average residual per LoRs is Equation 7.3.124

R =
1

Nf

Nf∑

n=1

dn (7.3)

When plotted against the position uncertainty in Figure 7.2, this provides similar and125

smoother results. This is especially clear when the derivative of these plots with respect to126

the change in f is shown in Figure 7.3. For the derivative of mean residual per LoRs, there127

is a maximum in the plot representing the value of f which produces the largest change in128

the residual. This can be interpreted as the value of f which results in using LoRs which129

are most likely corrupted because they are far away from the PEPT reconstructed position.130

Therefore, finding the maximum rate of change of the residual per LoR reveals the fopt.131

Figure 7.2: The position uncertainty and the mean residual of LoRs as a function of f using

the Birmingham Method.
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Figure 7.3: The rate of change in the position uncertainty and rate of change of in the mean

residual of LoRs as a function of f using the Birmingham Method.

7.3.2 GATE Simulation132

To test the method of determining tracer size by measuring changes in fopt, a test data133

set is needed. This data could be collected from real experiments or produced from GATE134

simulations of the PEPT detector system and tracer. GATE simulations are used in this135

case since they provide careful control over the data through user-prescribed parameters.136

The GATE software v9.1 is used in this work for the Monte Carlo simulations [56]. To137

produce the data set, a GATE model of the ADAC Forte PEPT detector system is used [44,138

45]. For full details of this PEPT detector system, please refer to Section 2.3.1. The ADAC139

Forte is comprised of two detector heads, each with a 16 mm thick wide-area sodium iodide140

scintillation crystal with an active area for detecting gamma rays measuring approximately141

380 mm x 510 mm [103]. For the simulated experiment, the detector heads are separated142

by 500 mm and a cylinder of water, measuring 50 mm in radius and 200 mm in height, is143
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placed in the centre of FOV. A diagram of the simulated experiment is shown in Figure 7.4.144

Figure 7.4: A diagram of the GATE simulation for testing the reconstruction of tracer size.

In the centre of the cylinder is a simulated PEPT tracer consisting of a sphere of145

graphite and initially measuring 0.5 mm in radius. Graphite is used for this example because146

it is a mineral which can be volumetrically activated in a cyclotron, yet is soft enough that it147

can be easily sheared during the course of a PEPT experiment, providing a realistic method148

of testing tracer size measurement in the future [149, 124]. The tracer is modelled as being149

volumetrically activated with 10 MBq activity. For the purposes of the simulation, two150

back-to-back gamma rays are produced by the tracer rather than positrons. This will not151

accurately capture the expected positron range from a real tracer. This simplification was152

used to reduce the amount of computation needed and additionally, because the positron153
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range in water is approximately 1 mm and is not expected to significantly affect the results154

[88].155

For the first GATE simulation, all of the activity was contained within the static tracer156

in the centre of the water cylinder. Then, in subsequent GATE simulations, to emulate the157

loss of tracer activity caused by attrition, some of the activity of the tracer is transferred to158

the surrounding water cylinder and the volume and size of the tracer are decreased relative159

to the amount of activity transferred. The volume of the tracer is simulated over an order160

of magnitude, ranging from the initial volume to 0.1 of the initial volume in 10 increments.161

A decrease in the initial tracer volume by an order of magnitude will result in a decrease162

in the tracer radius by a factor of 0.464 to the initial radius. The total amount of activity163

present in the tracer and water cylinder is kept constant at 10 MBq to keep the proportion164

of the contribution from random LoRs relatively constant. The decay of the tracer could165

be simulated, as would be expected in a real experiment, but a correction factor for the166

contribution from random LoRs would be needed.167

For all simulations, approximately two million LoRs are collected and a large sample168

of 2000 LoRs per PEPT-reconstructed location is used. When applying the Birmingham169

Method to this data, approximately 1000 locations are generated. The mean residual per170

LoR is calculated from the 1000 locations for each value of f from 0.04 to 0.8 in increments171

of 0.01. The derivative of the mean residuals per LoRs is then computed over the range of172

f for each of the different amounts of tracer attrition. The value of f corresponding to the173

maximum derivative of the mean residual per LoR is assumed to be the value of fopt for the174

tracer. The fopt values are then compared to the fopt when no activity has been lost from the175

tracer, providing a measure of the volume lost. The attrited tracer size is then calculated176

using Equation 7.2.177
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7.4 Results178

Using the LoRs generated from the GATE simulations, the mean residual per LoR as a179

function of the fraction of LoRs used to locate the tracer as well as the rate of change in the180

mean residual per LoR are plotted in Figure 7.5. Part (a) of this plot shows as the tracer181

decreases in size by losing activity to the water cylinder the rise in the mean residual per LoR182

occurs at lower values of f . This is expanded on in part (b) where the rate of the change in183

the mean residual per LoR is plotted. For each tracer size simulated, there is always a peak184

in the rate of change of the mean residual per LoR. Moreover, these peaks occur at intervals185

seeming to correspond proportionally with the volume lost from the initial tracer volume.186

Figure 7.5: (a) The mean residual per LoR as a function of the fraction of used LoRs in a

sample for different levels of tracer attrition (b) the gradient of the mean residual per LoR

as a function of the fraction of used LoRs in a sample for different levels of tracer attrition.

The gradient plot shows a global peak which corresponds to the fopt associated with each

amount of tracer attrition.

When the tracer is fully intact, meaning all of the activity is contained within the187

tracer, the fopt is measured to be approximately 0.69. After half of the tracer volume has188

been lost, the fopt falls to approximately 0.36, which is nearly half of the previous value.189

221



Measuring Tracer Size with PEPT

By using the extracted values of fopt, the fraction of fopt compared to the fopt0 for the fully190

intact tracer yields the reconstructed tracer volume, shown in Figure 7.6 with the error bars191

representing the ± 0.01 f in the extraction of the peak from Figure 7.5. To compute the192

estimated tracer radii, Equation 7.2 is used, allowing for comparison of the estimated radii to193

the GATE-simulated tracer radii, shown in Figure 7.7 with the uncertainty in the f carried194

through.195

Figure 7.6: The PEPT reconstructed tracer volumes compared to the GATE simulated

volumes.

The results of Figures 7.6 and 7.7 show that both the reconstructed tracer volume196

and radius agree within the uncertainty of the measurement. Figure 7.7 also shows that the197

uncertainty in the reconstructed tracer radius increases as the tracer becomes smaller. This198

is caused by the increment in f becoming a larger fraction of the extracted fopt as the fopt199

for the attrited tracer decreases.200
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Figure 7.7: The PEPT reconstructed tracer radii compared to the GATE simulated radii.

7.5 Discussion201

This Chapter has shown through simulated results that it is possible to infer tracer size202

through PEPT measurements. This type of information has never before been able to be203

generated from PEPT measurements. Additionally, this technique can be used with the204

same PEPT algorithm, the Birmingham Method, which has been used in decades of PEPT205

research [100, 149]. Importantly, this novel measurement of tracer size can be generated206

alongside the time and position of a tracer. If this could be used in real experiments where207

the loss of particle material occurs, then not only could the loss of material over time be208

analysed, but also the areas where it occurs could be identified.209

The results of this work are an important first step towards realising this capability.210

It should be noted that this proof-of-concept was simulated under ideal conditions. For211
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example, the tracer was uniformly activated, is a spherical static tracer, and the activity of212

the tracer disperses to the surrounding system instantaneously and uniformly. Nevertheless,213

now that the measurement of tracer size has been shown to be within the realm of possibility,214

future development of the technique can be carried out which will extend the technique to215

more realistic conditions. Additional GATE simulations could be created in the future that216

test this technique using tracers of different shapes, moving tracers, and non-uniform activity217

distributions within the tracer or the experimental system.218

Ultimately, this technique should be tested using real data in carefully crafted ex-219

periments which allow the size of the tracer and its loss of activity to be validated through220

independent techniques. One such type of experiment where this could be used is in the221

exfoliation of thin layers of graphene from graphite in a high-shear aqueous system [124,222

105]. Graphene is a useful material for a variety of applications, but industrial-scale produc-223

tion remains elusive [154, 126]. However, graphene occurs naturally in graphite and can be224

produced by introducing graphite particles to a high-shear aqueous system and extracting225

thin exfoliated layers of graphene sheets [105]. The natural carbon-12 in a graphite particle226

can be irradiated in a cyclotron beam to produce carbon-11 which decays through positron-227

emission [13]. By using a graphite tracer in a PEPT experiment it could be possible to228

measure tracer size and relate the exfoliation rates of graphene sheets to the hydrodynamic229

conditions the tracer experiences in the system.230
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Chapter Eight1

General Discussion2

8.1 Summary of Work3

Overall, the work contained within this thesis presents a new way of using simulation to4

inform and optimise experiments in the field of positron emission particle tracking (PEPT).5

Monte Carlo simulations of radioactive sources emulating PEPT tracers, the transport of6

radiation through geometries representing experimental systems, and recording interactions7

with models of PEPT detector systems have been shown to capture all of the aspects of8

real experiments [44, 46, 45, 47, 149, 148]. Geant4 Application for Tomographic Emission9

(GATE) v9.1 was used to perform these simulations [56, 55]. The GATE software provides10

the tools to realistically model PEPT experiments, including complex geometries and ma-11

terials, radioactive decay, detector modelling tools, and control over the pulse-processing12

behaviour of detectors [115]. Comparing the GATE-simulated data to experimentally ac-13

quired data shows minimal quantitative differences and no qualitative differences [44, 47].14

Simulations of PEPT experiments using GATE thus provide a powerful way of generating15

synthetic data to better understand the performance and limitations of PEPT algorithms,16

identify optimal experimental parameters or algorithm settings, and developing new PEPT17
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methodologies [149, 47].18

The first step toward realising the utility of GATE simulations in PEPT research,19

discussed in Chapter 2, was to create GATE models of the most commonly used PEPT de-20

tector systems. These PEPT detector systems were the ADAC Forte and the Large Modular21

Array (LaMA) [97]. To create of GATE models of these systems, not only did their geome-22

try need to be recreated in GATE, but also their performance characteristics [90]. This was23

achieved by measuring their spatial resolution and count-rate response [44, 45]. To calibrate24

the GATE model of the Forte, both a manual calibration and a novel autonomous method25

of calibration using an evolutionary algorithm were used [44, 45]. The manual calibration26

method was found to produce a reasonable agreement with the performance characterisa-27

tion experiments but was subjective to the combinations of digitizer parameter values a user28

chose, such as the dead-time and threshold values, and took a considerable amount of time29

to calibrate [44]. By using an evolutionary algorithm to perform the digitizer calibration, it30

was hypothesised that the GATE model’s digitizer parameters could be optimised to best31

match a set of target output values, in this case, the count-rate response. In this way, using32

an evolutionary algorithm to calibrate the digitizer removes user bias in parameter selection,33

speeds up the time to calibrate the digitizer, and improves the resulting calibration beyond34

what a manual calibration could produce [45].35

In order to interface the GATE simulation with an existing evolutionary algorithm,36

CMA-ES, a Python library was developed, called the Autonomous Calibration and Char-37

acterisation via Evolutionary Software (ACCES) v0.2.2 [92]. ACCES uses a Python script38

defining the GATE simulation and populates the user-defined free parameters of the digi-39

tizer with candidate solutions generated by CMA-ES, autonomously launches the simulation,40

analyses the results with a cost function, and then uses CMA-ES to generate improved can-41

didate solutions for the next generation of simulations [92, 42]. When ACCES was applied42

to simultaneously calibrate 6 free parameters of the digitizer, the optimisation took approx-43
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imately 4 days to complete, which was significantly less time than the approximately one44

month of time the manual calibration took [45]. In addition to the improvement in the45

time needed to calibrate the model, the average absolute percent differences for the 25046

mm, 525 mm, and 800 mm head separations were found to be approximately 7.55%, 4.30%,47

and 5.48%, respectively [45]. Compared to the manually calibrated version of the models,48

which produced mean absolute percent difference in the count rate response of approximately49

17.78%, 15.42%, and 21.75% for the 250 mm, 525 mm, and 800 mm head separations, the50

ACCES-calibrated model improves the agreement between simulation and experiment by51

approximately a factor of three [45]. The results show that evolutionary simulation being52

used to calibrate a GATE model’s digitizer is a viable and useful new tool which can provide53

better quantifiable reasons why digitizer parameter values were selected for the model and54

decreases the effort required by the user to calibrate new models.55

Additionally, a GATE model for the LaMA was created and the same performance56

characterisation experiments were conducted and ACCES was used to calibrate its digitizer57

model. For these experiments, a simple configuration of the LaMA was used such that by58

characterising its performance and validating the model on a small scale, the scaled-up be-59

haviour of the system will remain accurate. Creating a GATE model for the LaMA which60

can recreate the experimental data presented several new challenges since it must be easily61

customised to rapidly prototype new geometries and only allow specific coincidences to be62

formed between connected boxes of block detector, features that were not needed in the63

GATE model of ADAC Forte [39]. To solve the issues of creating customised geometries,64

the generic repeater functionality was used to create a single fully detailed module which65

could be copied into user-specified positions in the simulation to create any arbitrary con-66

figuration. Additionally, since the method of forming coincidences could not be specified in67

the simulation, a limitation of the GATE software, a post-processing script was written to68

remove coincidences from the output file which could not be produced in reality between69
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boxes not connected.70

Following a manual calibration of the spatial resolution through tuning the crystal71

blurring, the count rate response experiments were analysed to be used as a comparison72

for the ACCES optimisation. The optimisation took approximately three days to converge.73

When the new set of simulations was conducted with the calibrated digitizer, the results74

match the experiment to a mean absolute difference of 3.4% over all three count-rates with75

the total, true, and corrupted count-rates being 2.3%, 2.2%, and 5.7%, respectively. One of76

the most interesting findings of the ACCES-calibrated digitizer was that the optimised value77

for the time resolution falls within the 12 ns ± 2 ns measured in a previous characterisation of78

the LaMA, providing evidence that the calibrated parameters correspond to physical reality79

and are global solutions, not simply local solutions [71].80

The ACCES-aided calibrations of both the ADAC Forte and LaMA produced GATE81

models which closely match the experimental performance characteristics [45]. From this82

work, the results were two new validated GATE models of PEPT detector systems and83

the creation of a novel method of calibration which could be applied in the future to other84

GATE models. With these GATE models, it is now possible to produce realistic synthetic85

data which could be used to better understand the quality of data produced by proposed86

experiments and, indeed, to optimise experiments.87

In Chapter 3, the use of validated GATE models to compare the performance of PEPT88

algorithms using realistic synthetic data was discussed. Using GATE models to produce test89

data sets for PEPT algorithms is ideal because in simulation the position and movement of90

sources can be precisely prescribed [115]. With this information, the PEPT reconstructed91

locations of the sources can be quantitatively compared, which is not possible through real92

experiments. PEPT algorithms have been produced by different authors, at different institu-93

tions, and their performance was tested through a wide range of different experiments [100,94

228



General Discussion

139, 73, 138, 94, 91, 82]. However, never before has there been an attempt to understand95

their relative strengths and weaknesses using a common suite of test data in which the po-96

sition of the source is known precisely. The work in Chapter 3 presents the first study of97

its kind in which the performance of 7 different PEPT algorithms were compared in terms98

of their spatial, temporal, and spatiotemporal resolution on a simulated data set [149]. The99

algorithms tested include the Birmingham Method, G-Means, Spatiotemporal B-Slice Re-100

construction (SBSR), Feature Point Identification (FPI), Spherical Density Method (SDM),101

PEPT using Machine Learning (PEPT-ML), and PEPT using Expectation Maximisation102

(PEPT-EM) [100, 139, 73, 138, 94, 91, 82].103

The simulated tests in this work were carefully designed to allow a comprehensive,104

quantitative and, fair comparison of PEPT algorithms [149]. In total, 8 individual tests were105

designed, each to evaluate a specific aspect of a PEPT algorithm’s performance. Additionally,106

the tests were split into two groups, one to test single tracer tracking and another to test107

multiple tracer tracking since not all PEPT algorithms are designed for multiple tracer108

tracking. The single tracer tests analysed the accuracy of position reconstruction using109

different numbers of LoRs, the relationship between spatiotemporal resolution and tracer110

velocity, the robustness to noise in the data set, and the ability to track tracers near the111

edge of the FOV. In addition to these four tests, the multiple tracer tracking tests analysed112

the minimum separation distance allowable to resolve two tracers, the ability to distinguish113

false locations from real tracer locations, the robustness of distinguishing distinct trajectories114

of moving tracers, and the ability to track large numbers of tracers within the FOV. Each test115

was performed using two different PEPT detector system geometries, which are the ADAC116

Forte and Siemens ECAT [44, 57]. This was done to ensure that algorithms developed for a117

ring-shaped detector are not unfairly disadvantaged by being tested exclusively on a planar118

detector, and vice-versa. The full results of these tests can be found in Chapter 3.119

The results of the PEPT algorithm tests show that there is no single best algorithm120
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and that each algorithm has its own strengths and weaknesses [149]. Perhaps the best121

approach is to use different algorithms for different goals. The Birmingham Method is122

computationally efficient and good for tracking slow-moving, relatively active single tracers,123

while PEPT-ML, PEPT-EM or FPI are better for tracking large numbers of tracers or124

resolving collisions between tracers. On the other hand, the results suggest that the SBSR125

method is the optimal choice for limited tracer activity or low detected count-rate. Moreover,126

the ability to compare the performance of these algorithms would not have been possible127

without the use of methods for modelling PEPT tracers and detectors developed in this128

thesis. The development and validation of the GATE model for the ADAC Forte and the129

adaptation of the pre-existing model of the Siemens ECAT allowed for the modelling of130

PEPT experiments in detectors that are similar to those used in real PEPT facilities [97].131

The simulated experiments provide a direct comparison between the PEPT reconstructed132

positions of tracers and their prescribed location in the GATE simulation, which makes133

it possible to quantitatively measure the accuracy of PEPT algorithms, which is achieved134

for the first time, without introducing biases or uncertainties that are as significant as the135

measurements.136

The work of Chapters 4, 5, and 6 sought to demonstrate the optimisation of experi-137

mental parameters, length of time for data acquisition or treatment of the trajectory data,138

and use of PEPT algorithm parameters to extract as much useful information from a PEPT139

experiment. When conducting real PEPT experiments, it is not always possible to explore140

a range of conditions to find the optimal conditions for the experiment due to the limited141

time and resources of PEPT facilities [148]. This is further complicated because the exact142

behaviour of the tracers in an experiment is not known. Thus, elucidating the best treat-143

ment of the data with the PEPT algorithms themselves or the post-processing also cannot144

typically be determined because there is no way to compare the data to the ground truth.145

It is in these situations where the simulation of PEPT experiments using validated GATE146
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models which produce realistic synthetic LoRs are demonstrated to be useful.147

The first practical aspect of PEPT experiments that is shown to be capable of being148

optimised through simulation, covered in Chapter 4, is the tracer activity and geometry of149

the detector. The tracer activity and head separation are two factors which can be readily150

customised before a PEPT experiment and the head separation can also be changed during151

the experiment [103]. These aspects of an experiment play a role in the rate at which LoRs152

can be recorded and the quality of the LoRs. Finding the optimal settings is difficult to153

predict due to the non-ideal nature of PEPT detectors, tracers, and experimental geometries,154

but through simulation, a wide variety of combinations for these parameters can be tested155

and analysed. This was demonstrated through a GATE simulation using the ADAC Forte156

PEPT detector system [45]. In this simulation, a trajectory of a tracer moving through a157

continuous blender used in the pharmaceutical industry was prescribed and a range of tracer158

activities and head separations were tested to observe their effect on the quality of the PEPT159

reconstructed trajectory in terms of its spatial, temporal, and spatiotemporal resolution [83].160

The results from these simulations reveal a complex relationship in count-rate versus161

activity curves for each head separation [44]. This leads to lower head separations and higher162

tracer activities not always producing a high LoR count-rate. The count-rates were found to163

be proportional to the temporal resolution of the PEPT reconstructed trajectories. However,164

when the spatial resolution was also taken into account in the spatiotemporal resolution, a165

clear optimal set of conditions was identified, approximately in the range of 300 mm - 350166

mm and 6 MBq - 8 MBq [149]. However, in real experiments, the tracer activity cannot167

be kept constant due to radioactive decay. This means that if the experiment was started168

with these optimal parameters, after only a short amount of time the decay in tracer activity169

would result in non-optimal conditions [96]. Therefore, a method of determining the optimal170

starting parameters was also demonstrated which takes advantage of the expected source171

decay over the length of the experiment by finding parameters which would produce the best172
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average spatiotemporal resolution. In this simulated case, if the experiment were expected173

to take 30 minutes to complete, the optimal starting activity should be set to approximately174

8 MBq. However, if the experiment were expected to take 180 minutes, the optimal starting175

activity would be approximately 13 MBq.176

Ultimately, the research in Chapter 4 demonstrates an effective new tool for PEPT177

users to obtain the most precise trajectories from an experiment by optimising the experi-178

mental parameters which are determined through simulated results. Although the technique179

was shown in one particular PEPT experiment, the methods are presented generally such180

that they could be adapted to any PEPT experiment in which there exists a proper model181

of the PEPT detector system and experimental setup. This method is therefore beneficial as182

it eliminates the need for physical experimentation to determine optimal parameters, saving183

time and resources for PEPT facilities.184

In Chapter 5, a separate type of PEPT experiment optimisation was demonstrated.185

This Chapter used realistic tracer motion from the discrete element method (DEM) simu-186

lation to prescribe the movement of a source and used the occupancy of the flowing media187

to create a voxelised volume to induce realistic gamma-ray scattering [46, 64]. A DEM sim-188

ulation of a system representative of a typical PEPT experiment was created and a single189

DEM particle trajectory was extracted. In this case, the experimental system chosen was190

a small rotating drum, commercially known as the GranuDrum, used for power flow char-191

acterisation [30]. The GranuDrum system was recreated in GATE simulation and placed in192

the centre of the FOV of the ADAC Forte [46]. Then the extracted DEM particle trajectory193

was prescribed as the movement of a source approximating a PEPT tracer. Using the LoRs194

recorded by the simulated PEPT detector system, the tracer trajectory was reconstructed195

using the PEPT-ML algorithm and the two-dimensional velocity, acceleration, occupancy,196

and granular temperature fields were reconstructed along with an analysis of the spatial error197

between the GATE-prescribed and PEPT-reconstructed trajectories [91, 46].198
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This work produced two important results in addition to demonstrating that DEM can199

be combined with GATE simulations for realistic modelling of PEPT experiments and that200

the main driver of spatial error in PEPT measurements is tracer acceleration, rather than201

velocity, as was previously thought [149, 46]. These were the accuracy of PEPT reconstructed202

two-dimensional fields increase logarithmically with measurement time and distortions in203

PEPT measurements derived from fluctuating velocity terms can be predicted in simulation204

and corrected using correlations [143, 46].205

When considering that longer measurement time results in diminishing returns in ac-206

curacy, this can be exploited by a user to determine how long is needed to achieve a desired207

level of consistency with the bulk system’s steady-state behaviour without spending unnec-208

essary time on the measurement. Previous work has attempted to connect the necessary209

experiment duration to key system parameters, finding that system size and mean velocity210

were important considerations [144]. However, these findings were based solely on DEM211

particle trajectories and do not take into account the spatial and temporal limitations of212

the PEPT technique [144]. In particular, it was found that PEPT reconstructed fields take213

longer to reach the same level of agreement with bulk particle behaviour than single DEM214

trajectories. This is due to lower temporal resolution in PEPT trajectories, which smooths215

velocity fluctuations and adds random fluctuations caused by measurement uncertainty [46].216

This did not cause major differences in reconstructed fields except for when the granular217

temperature was compared. Because the calculation of granular temperature relies on fluc-218

tuating velocity terms, it was found to be susceptible to distortions caused by smoothing219

when the tracer velocity was high and random fluctuations induced by PEPT reconstruction220

when the tracer velocity was low. Importantly, when comparing the granular temperature221

calculated directly from the DEM to when it was calculated by from PEPT-reconstructed222

trajectories, a correlation was discovered which could be used to correct the PEPT measure-223

ment. What makes this particularly useful, is that by combining a DEM simulation with a224
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GATE simulated model of the experiments, these correlations may be used to correct real225

PEPT measurements [46].226

Further, in Chapter 6, an investigation into how GATE simulations could be used to227

improve the selection of PEPT algorithm parameters was conducted. While it is known that228

thicker and denser experimental systems generate more scattered LoRs and more active trac-229

ers will cause more random LoRs, little has been done to develop methods to predict PEPT230

algorithm parameters which will maximise the spatial and temporal resolution trajectories.231

However, since GATE simulations can produce realistic data similar to that generated from232

PEPT experiments, it was hypothesised this could be used to identify optimal parameter233

values. To test this, real experiments using the ADAC Forte and the GATE model of the234

Forte were used to generate LoRs from static tracer experiments and a recreated PEPT235

experiment involving an attritor mill [103, 44]. Then, the Birmingham Method was applied236

with different values of the algorithm’s f and NLoRs parameters, and the optimal parame-237

ters selected by comparing the PEPT reconstructed trajectories to the known positions or238

GATE-prescribed trajectories [100]. In both the real experiments and GATE simulations,239

the amount of attenuation was found to be directly correlated with the values of f that240

minimised the position uncertainty [47]. Moreover, the experimental and simulated results241

produced approximately the same values for the optimal value of f . When the fraction of242

true LoRs in the data was measured in the GATE simulation, it was found to correspond243

to the value of f which minimised the uncertainty, providing the first experimental evidence244

that f corresponds to the fraction of true LoRs in a sample [100, 97].245

In the moving tracer experiment, a tracer was fixed to the impeller of a real attritor246

mill and rotated, with the same conditions recreated in the GATE simulation [47]. In this247

experiment, the spatial error was calculated by directly comparing the expected trajectory248

from the real experiment and the prescribed trajectory from the experiment. The optimal249

values for f and NLoRs for the real experiment were determined to be 0.275 and 1400,250
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respectively. Similarly, the optimal parameters for the GATE simulation were determined251

to be 0.25 and 1300, respectively. These results demonstrated the extracted optimal values252

for the experiment and simulation are in reasonable agreement, providing further validation253

of the GATE model. When the GATE simulations were expanded to place the tracer in254

different positions within the attritor mill it was possible to create a fully three-dimensional255

map of the optimal parameters.256

Ultimately this work resulted in the demonstration of a variant of the Birmingham257

Method which can dynamically change its parameter values for f and NLoRs to use the258

optimal parameters determined from GATE simulation. When comparing the mean spatial259

error of the reconstructed trajectories, it was found that dynamic parameter optimisation260

results in mean spatial errors in trajectory reconstruction decreasing by 76.5% over the261

default parameters and by 4.03% over the best constant parameters [47]. This study makes a262

significant contribution to the field of PEPT research by showing that the optimal parameter263

values for the Birmingham Method can be predicted with GATE simulations. Further, the264

Birmingham Method was extended to use locally optimal parameters based on an estimate of265

the tracer position, resulting in the best possible trajectory [100]. This research demonstrates266

that GATE simulations, when conducted in conjunction with PEPT experiments, can be used267

to eliminate the need for expert knowledge in choosing the parameters f and NLoRs, making268

the Birmingham Method PEPT algorithm more rigorous and more accessible.269

The work of Chapter 7 sought to demonstrate how not only can simulations of PEPT270

experiments be used to improve the current focus of PEPT research, but also be used to271

develop entirely new methodologies. To this end, the development and demonstration of a272

novel PEPT technique for measuring tracer size was presented. In many types of systems273

of industrial relevance, it is expected that particles will lose material through attrition,274

dissolution, or other similar mechanisms [130]. Measuring the rate at which material is lost275

and where this loss occurs is crucial to designing better systems to encourage or discourage276
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this happening [22]. Therefore it would be beneficial to use PEPT to not only record the277

trajectory of a tracer but also measure its size.278

It was hypothesised the optimal value for the f parameter of the Birmingham Method279

PEPT algorithm, which has been shown to be directly correlated with the fraction of LoRs280

which originate from the tracer, could be used to measure the amount of positron-emitting281

material contained within the PEPT tracer [47]. As a tracer loses positron-emitting material282

to the experimental system in which it is contained, it was expected that the optimal values283

for f would also decrease. Thus by measuring this change, the loss of tracer volume and284

also its size could possibly be determined. To test this, GATE simulations were designed to285

record LoRs from a spherical, volumetrically activated graphite tracer placed in the centre286

of a water cylinder for which in successive simulations, a fraction of the tracer activity was287

transferred to the water cylinder and the tracer radius decreased.288

The results of the GATE simulation showed a remarkable ability to reconstruct the289

tracer size using the determined values for f . This type of information has never before been290

able to be generated from PEPT measurements. Additionally, this technique can be used291

with the same PEPT algorithm, the Birmingham Method, which has been used in decades of292

PEPT research but was never intended to be used for this purpose [100, 149]. The findings293

of this study represent a crucial initial step towards achieving the proposed capability. It is294

worth noting that this proof-of-concept experiment was conducted under idealised conditions,295

such as uniform tracer activation, a spherical static tracer, and instantaneous and uniform296

dispersion of tracer activity. Despite these simplifications, the demonstration of the feasibility297

of measuring tracer size opens the door for future research to extend the technique to more298

realistic scenarios.299
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8.2 Context of Research300

The PEPT technique is useful for a variety of scientific and engineering fields because it can301

provide fully three-dimensional trajectories of positron-emitting tracers which are contained302

within opaque media and cannot adequately be imaged through conventional optically-based303

techniques [100, 147, 148]. To perform PEPT measurements, three things are required: a304

typically small positron-emitting tracer which matches the properties of the media stud-305

ied, (2) a position-sensitive radiation detector capable of recording the coincident 511 keV306

gamma rays formed by positron annihilation with an electron, and (3) an algorithm which307

can convert samples of coincident gamma rays into an estimate of the location over time308

[96, 97, 149]. These three components of PEPT experiments are called PEPT tracers,309

PEPT detector systems, and PEPT algorithms. Regarding PEPT tracers, a great deal of310

research has been conducted to determine the best methods of producing positron-emitting311

isotopes using cyclotrons and radioisotope generators, finding methods of labelling tracers of312

positron-emitting material, and altering the properties of tracers to match specific aspects313

of the media being studied [98, 96, 32, 107, 17, 18]. Additionally, much work has gone into314

acquiring, maintaining, and building sensitive PEPT detectors which can record lines-of-315

response (LoRs) formed from coincident gamma rays at a high rate and spatial resolution316

[43, 103, 72, 39, 97]. Further, there has been extensive development of PEPT algorithms317

capable of locating PEPT tracers accurately and often [100, 139, 73, 138, 94, 91, 82].318

Using these tools, PEPT has been used successfully to interrogate granular media,319

complex fluid flow, and many types of industrially relevant systems like rotating drums and320

fluidised beds [147, 137, 87, 146]. It is the ability of PEPT to reveal tracer motion inside321

dense systems which makes it so useful and led to the discovery of previously unknown322

phenomena such as the existence of convection rolls in vibro-fluidised beds [141, 143]. How-323

ever, because the motion of tracers inside opaque media cannot often be determined through324
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complementary measurements, the response of PEPT detectors is a complex relationship325

between the source activity, attenuating media, and detector settings, and there has not326

been a method of producing synthetics PEPT data, the ability to fully understand PEPT327

algorithm performance, optimise data acquisition, and investigate the feasibility of current328

of future PEPT experiments has not been possible [45].329

The work presented in this thesis demonstrates a method of simulating all aspects of330

PEPT experiments, introducing several robust tools and methodologies. The GATE v9.1331

simulation software is used to perform Monte Carlo simulations of radiation transport and332

convert the interactions of these particles with a model of a PEPT detector into synthetic333

data identical to that output by a real system [56]. However, the validation of these GATE334

models is crucial to generating realistic detector responses [90, 62, 36]. While there exist335

several validated GATE models of detectors, none of these, with the exception of the Siemens336

Inveon and Siemens ECAT, have been used at PEPT facilities [115, 74, 57].337

Therefore, in this work, two new GATE models of PEPT detector systems were de-338

veloped and validated through industry-standard performance characterisation experiments339

such that realistic synthetic data could be generated using the same systems on which PEPT340

are currently carried out [90, 45, 97]. These validated models have been made available and341

free to use through a GitHub repository (GATE model repository). Additionally, to aid in342

the calibration of the GATE models, a method of using an evolutionary algorithm to per-343

form this task is developed using the Autonomous Characterisation and Calibration using344

Evolutionary Simulation (ACCES) software which eliminates the need for manual tuning345

of GATE models. The new method ultimately resulted in the ability to calibrate GATE346

models to match experimental results which outperform manual tuning in terms of accuracy347

in matching experimental performance characteristics and also in terms of the time needed348

to produce a calibrated model [92, 45]. Similar to before, the software for calibrating GATE349

models is freely available and an example of how to use this method has been provided in a350
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freely available GitHub repository (optimisation example).351

These GATE models are used in this thesis to generate synthetic data through which352

methods of evaluating PEPT algorithm performance, optimising PEPT, and developing new353

PEPT methodologies are conducted [149, 46, 47]. The comparative review of the seven most354

used PEPT algorithms using a GATE simulated data set where the position of the PEPT355

tracer was prescribed produced several interesting and important results [149]. To begin356

with, this was the first comparative review of PEPT algorithms ever conducted, bringing357

together PEPT users from across the globe. Further, while no PEPT algorithm performed358

superior to all others, the relative strengths and weaknesses of each algorithm were able to359

be highlighted. For example, while Birmingham Method is computationally efficient and360

produced the best spatial accuracy when the tracer was static. When the tracer was mov-361

ing the Birmingham Method’s accuracy decreased and was surpassed by newer, but more362

computationally intensive algorithms, like PEPT-ML and PEPT-EM [100, 91, 82]. When363

two tracers separated by a small distance were simulated, it was found that several of the364

algorithms were able to resolve the two tracers up to and including the point-of-contact365

between them [149]. This potentially opens up a new avenue of PEPT research which could366

examine tracer-tracer collisions. Moreover, as a result of this international collaboration, the367

FPI and Birmingham Method algorithms were incorporated into the ‘pept’ Python pack-368

age, joining the existing PEPT-ML algorithms, and advancing community collaboration and369

future development within the PEPT research community. Researchers can now access all370

of these tools by simply installing one package and can easily switch between them. More-371

over, the assessment of the performance of each algorithm was conducted transparently with372

comparison functions, available and free to use through a GitHub repository (comparison373

functions).374

Additionally, included in this thesis are frameworks for optimising experimental tracer375

activity and head separation, a method of using DEM simulated movement of PEPT tracers376
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to determine the optimal length of time for experimental data acquisitions as well as the377

development to correcting factors for PEPT reconstructed field data, and novel method of378

selecting the optimal PEPT algorithm parameters to most accurately reconstruct a trajec-379

tory [46, 47]. The development of the technique would not have been possible without GATE380

simulations allowing the evaluation of more conditions that could be tested in reality and381

the ability to compare a PEPT reconstructed trajectory to its known prescribed position.382

For the first example, optimising tracer activity and PEPT detector system head separation383

is an important development in PEPT research because prior to this work an exhaustive384

set of experiments would be needed to determine these optimal experimental parameters.385

However, by using GATE simulations to produce realistic synthetic LoRs, a range of differ-386

ent parameter combinations can quickly be tested. This creates an opportunity for users to387

identify the set of parameter values which will produce the best PEPT trajectory reconstruc-388

tion in simulation, then use those values when running a real experiment. This represents a389

significant development in tailoring experimental parameters.390

Further, by combining DEM simulation of a proposed PEPT experiment with GATE391

simulation, the relationship between the accuracy of reconstructed system behaviour can be392

determined such as a user can identify the amount of time needed to run an experiment to393

reach a desired level of agreement of the bulk steady-state behaviour [46]. This is important394

because when PEPT experiments are conducted, often a range of experiments testing a range395

of operating conditions of a system are tested [148]. For example, this would be normal if396

the PEPT data was being used to validate a DEM simulation of the same system [63, 145,397

15]. However, the time and resources of PEPT facilities are limited [148]. Therefore, finding398

the amount of time needed to run an experiment to reach a desired level of accuracy is399

beneficial because it results in better use of time and resources. Moreover, the comparison400

between PEPT-reconstructed and GATE-prescribed trajectories has led to the development401

of a new method to correct measurements which rely on fluctuating velocity terms like402
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granular temperature [142]. In this work, the errors between the DEM simulation and PEPT403

reconstruction were plotted through a bin-by-bin comparison, and it was found that at low404

granular temperatures, PEPT over-predicts the values and at high granular temperatures,405

PEPT measurements under-predict the values which was caused by the uncertainty in PEPT406

measurements inducing velocity fluctuations when in reality the tracer velocity was not407

fluctuating and also caused real fluctuations to be smoothed. This work marks the first408

attempt to correlate PEPT-measured quantities to known DEM quantities and shows that409

it is possible to correct PEPT measurements, opening up a new avenue of research [46]. To410

aid the use of the described methods of using DEM simulated results in GATE situations, the411

software tools which made this work possible have been made available and free to download412

through a GitHub repository (DEM2GATE).413

With regard to the optimisation of PEPT algorithm parameter values, this work414

makes significant progress in estimating the optimal parameters and in understanding why415

certain values were selected. Of note, it was found that for the Birmingham Method and416

at least for static tracers, the value of the f parameter which minimises the tracer position417

uncertainty is approximately the fraction of true LoRs in the sample [47]. While this had long418

been assumed there has never before been direct experimental evidence for this [100, 103,419

97]. Further, it was found the optimal values for the f and NLoRs parameters for a moving420

tracer are highly position dependent. By using GATE simulations, it was shown that these421

values could be determined for all tested tracer positions and be used to dynamically update422

the parameter used for reconstructing the tracer using an iterative method which begins by423

using the non-optimal parameters to first estimate the tracer location [47]. This method is424

an important development in PEPT research because it represents the most sophisticated425

method of selecting optimal algorithm parameters currently developed, but for a justifiable426

reason, since it results in an improvement in spatial accuracy of 76.5% over the default427

parameters and by 4.03% over the best constant parameters [47].428
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In addition to these previously mentioned uses of the simulation of PEPT experiments,429

one further remains to be discussed. This is the use of simulated data to develop entirely430

new PEPT methodologies which could be applied to real experiments in the future. This431

work develops a new PEPT methodology which could be used to measure tracer size. Being432

able to measure the size of the tracer and, in particular, changes in the size of the tracer433

is desirable because, in many types of systems used in industry, it is expected that the434

media will lose some of its volume through attrition, dissolution, or other mechanisms [130].435

Therefore, being able to measure the rate of material loss and where this occurs is crucial to436

designing better systems to encourage or discourage this behaviour [22]. Using a simulated437

data set based on a spherical graphite tracer in a water cylinder, as some of its activity was438

transferred to the cylinder and the tracer decreased in size, it was shown that measuring439

changes in the optimal f parameter could reliably be used to infer the tracer size. While440

these simulations were idealised, it is nevertheless a useful development in PEPT research,441

demonstrating this type of capability is within the realm of possibility.442

8.3 Future Outlook443

While the work in this thesis attempted to comprehensively provide an answer to many of444

the research questions involving the simulation of PEPT experiments, there remain many445

open questions and opportunities for further development. For example, the use of ACCES446

to autonomously calibrate GATE models was shown to be a useful method which could be447

applied to any future GATE model of a PEPT detector system [92, 45]. If a user were448

to create a geometric model of a PEPT detector system, the same methodology described449

in Chapter 2 of conducting performance characterisation experiments and defining a cost450

function to compare the results of the simulation could be used to efficiently calibrate free451

parameters of the digitizer model. However, one addition that would make this method452
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even more rigorous and useful would be to improve ACCES such that not only could the453

parameter values of free parameters of the digitizer be optimised, but also the structure of454

the digitizer model itself.455

Additionally, the combination of DEM and GATE simulations presents several op-456

portunities for further use of the technique to better understand distortions in PEPT mea-457

surements and methods of correcting measurements in post-processing. The work presented458

here only examined two-dimensional fields. In the future, this could readily be extended to459

fully three-dimensional fields. Moreover, measurements of other types could be analysed to460

determine if there are correctable systematic errors caused by PEPT.461

Concerning the optimisation of PEPT algorithm parameters in Chapter 6, it should462

be noted that this approach may also apply to other PEPT algorithms with free parameters,463

such as the FPI PEPT algorithm [138]. It is currently unknown if this approach using the464

f and NLoRs parameters of the Birmingham Method only worked as well as it did because465

these parameters are directly tied to physical reality, in this case, the fraction of LoRs which466

emanate from the PEPT tracer and the detection rate of LoRs, or if this approach could467

similarly be extended to the voxel thresholding parameter of the FPI algorithm.468

With respect to the new PEPT methodology discussed in Chapter 7, it was shown469

how PEPT can be extended to infer a tracer’s size. However, the GATE simulations used to470

test these methods were simplistic. This was done intentionally to provide the best chance of471

success. Further developments of these techniques could be made in the future to tackle more472

realistic scenarios. There are several potential avenues for future development, including473

conducting additional GATE simulations that examine the technique’s performance under474

various conditions, such as tracers of different shapes, moving tracers, and non-uniform475

activity distributions. Ultimately, it would be best to test the techniques using a real data476

set to fully validate the methodologies. For the tracer size measurement technique, this data477
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could be generated from a well-designed PEPT experiment in which a graphite tracer is478

blended to exfoliate layers of graphene. The use of graphite in the GATE-simulated example479

was chosen because carbon-11, which decays through positron-emission, can be produced480

from irradiation of the natural carbon-12 in graphite by using a cyclotron [13, 98].481

In summary, there is no shortage of paths for the future development of the techniques482

presented in this work and many of the methods developed here are ready to be used to inform483

PEPT experiments. In fact, identifying the optimal tracer activity and head separation484

for a proposed experiment which would use the ADAC Forte PEPT detector system is485

recommended. This would ensure that the highest spatial accuracy and temporal resolution486

of PEPT trajectories are produced.487
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Appendix Zero

GATE Model of the ADAC Forte

Listing 1: GATE Script for the validated model of the ADAC Forte PEPT detec-

tor. This PEPT detector model is described in Chapter 3. GitHub repository:

https://github.com/uob-positron-imaging-centre/GATE_Models.

# GATE Model o f the ADAC Forte

# Created by Matthew Herald

# Univer i s t y o f Birmingham

# mxh1092@bham . ac . uk

# 2023

#−−−−−−−−−−−−−−−−−−−oooooOOOOO00000OOOOOooooo−−−−−−−−−−−−−−−−−−−−−#

#

# D E F I N E Y O U R S C A N N E R A N D

#

# Y O U R C O M P L E T E S I M U L A T I O N

#

# F O R I M A G I N G A P P L I CA T I O N S

#

#−−−−−−−−−−−−−−−−−−−oooooOOOOO00000OOOOOooooo−−−−−−−−−−−−−−−−−−−−−#

#=====================================================

# VISUALISATION

#=====================================================

#/ v i s / d i s a b l e

#/ v i s /open OGL
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#/ v i s / viewer / r e s e t

#/ v i s / viewer / s e t / viewpointThetaPhi 120 30

#/ v i s / viewer / s e t / viewpointThetaPhi 30 30

#/ v i s / viewer / s e t / viewpointThetaPhi 0 0

#/ v i s / viewer /zoom 1.5

#/ v i s / viewer / s e t / s t y l e sur face

#/ v i s /drawVolume

#/ t rack ing / s to reTra j e c to ry 1

#/ v i s / scene/add/ t r a j e c t o r i e s

#/ v i s / scene/endOfEventAction accumulate

#/ v i s / scene/add/axes

#/ v i s / viewer /update

#=====================================================

# GEOMETRY

#=====================================================

/ gate /geometry/ setMater ia lDatabase data/GateMater ia l s . db

/ gate /world/geometry/ setXLength 300 . cm

/ gate /world/geometry/ setYLength 300 . cm

/ gate /world/geometry/ setZLength 300 . cm

/ gate /world/ s e tMat e r i a l Air

#/gate /world/ v i s / se tCo lor whi te

#/ gate /world/ v i s / forceWireframe

#/ gate /world/ v i s / s e tV i s i b l e 1

#−−−−−−−−−−−−−−−−−−−oooooOOOOO00000OOOOOooooo−−−−−−−−−−−−−−−−−−−−−#

# #

# D E F I N I T I O N A N D D E S C R I T I O N #

# O F Y O U R P E T D E V I C E #

# #

#−−−−−−−−−−−−−−−−−−−oooooOOOOO00000OOOOOooooo−−−−−−−−−−−−−−−−−−−−−#

# ADAC_Forte

/ gate /world/ daughters /name ADAC

/gate /world/ daughters /systemType cy l indr ica lPET

/ gate /world/ daughters / i n s e r t box

/ gate /ADAC/placement / s e tTran s l a t i on 0 .0 0 .0 0 .0 cm

/ gate /ADAC/geometry/ setXLength 200 . cm
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/ gate /ADAC/geometry/ setYLength 200 . cm

/ gate /ADAC/geometry/ setZLength 200 . cm

/ gate /ADAC/placement / setRotat ionAxi s 0 0 1

/ gate /ADAC/placement / setRotat ionAngle 0 deg

/ gate /ADAC/ se tMat e r i a l Air

#/gate /ADAC/ v i s / se tCo lor whi te

#/ gate /ADAC/ v i s / forceWireframe

#/ gate /ADAC/ v i s / s e tV i s i b l e 1

# RING

/ gate /world/ daughters /name r ing

/ gate /world/ daughters / i n s e r t t e s s e l l a t e d

/ gate / r ing /placement / s e tTran s l a t i on 0 .0 0 .0 −750.0 mm

/gate / r ing /geometry/ setPathToSTLFile data/ r ing . s t l

/ gate / r ing / s e tMat e r i a l Aluminium

#/gate / r ing / v i s / forceWireframe

#/ gate / r ing / v i s / se tCo lor gray

#/ gate / r ing / v i s / s e tV i s i b l e 1

# RING COVER

/ gate /world/ daughters /name p l a s t i cR ing

/ gate /world/ daughters / i n s e r t c y l i nd e r

/ gate / p l a s t i cR ing /placement/ s e tTran s l a t i on 0 .0 0 .0 −350.0 mm

/gate / p l a s t i cR ing /geometry/setRmax 800 mm

/gate / p l a s t i cR ing /geometry/setRmin 350 mm

/gate / p l a s t i cR ing /geometry/ se tHe ight 5 .0 mm

/gate / p l a s t i cR ing /placement/ setRotat ionAngle 90 deg

/ gate / p l a s t i cR ing / s e tMat e r i a l P l a s t i c

#/gate / p l a s t i cR ing / v i s / forceWireframe

#/ gate / p l a s t i cR ing / v i s / se tCo lor gray

#/ gate / p l a s t i cR ing / v i s / s e tV i s i b l e 1

# HEAD (Move t h i s volume to con t ro l the head separa t ion )

/ gate /ADAC/daughters /name head

/ gate /ADAC/daughters / i n s e r t box

/ gate /head/placement / s e tTran s l a t i on 337 .0 0 .0 0 .0 mm

# Head d i s t ance from centre o f system . User must add 87 mm to t h i s va lue .

/ gate /head/placement / setRotat ionAxi s 0 1 0

/ gate /head/placement / setRotat ionAngle 90 deg

/ gate /head/geometry/ setXLength 600 mm
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/ gate /head/geometry/ setYLength 700 mm

/gate /head/geometry/ setZLength 255 mm

/gate /head/ s e tMate r i a l Air

#/gate /head/ v i s / se tCo lor red

#/ gate /head/ v i s / forceWireframe

#/ gate /head/ v i s / s e tV i s i b l e 1

/ gate /head/ daughters /name l i g h t gu i d e

/ gate /head/ daughters / i n s e r t t e s s e l l a t e d

/ gate / l i g h t gu i d e /placement/ s e tTran s l a t i on −190 −255 −95 mm

/gate / l i g h t gu i d e /geometry/ setPathToSTLFile data/ l i g h t gu i d e . s t l

/ gate / l i g h t gu i d e / s e tMat e r i a l Glass

#/gate / l i g h t g u i d e / v i s / f o r c eSo l i d

#/ gate / l i g h t g u i d e / v i s / se tCo lor b lue

#/ gate / l i g h t g u i d e / v i s / s e tV i s i b l e 1

/ gate /head/ daughters /name PMTs

/ gate /head/ daughters / i n s e r t t e s s e l l a t e d

/ gate /PMTs/placement / s e tTran s l a t i on −190 −255 −95 mm

/gate /PMTs/geometry/ setPathToSTLFile data/PMTs. s t l

/ gate /PMTs/ s e tMat e r i a l PMT

#/gate /PMTs/ v i s / f o r c eSo l i d

#/ gate /PMTs/ v i s / se tCo lor ye l l ow

#/ gate /PMTs/ v i s / s e tV i s i b l e 1

/ gate /head/ daughters /name e l e c t r o n i c s

/ gate /head/ daughters / i n s e r t t e s s e l l a t e d

/ gate / e l e c t r o n i c s /placement / s e tTran s l a t i on −190 −255 −95 mm

/gate / e l e c t r o n i c s /geometry/ setPathToSTLFile data/ e l e c t r o n i c s . s t l

/ gate / e l e c t r o n i c s / s e tMate r i a l Elec

#/gate / e l e c t r o n i c s / v i s / f o r c eSo l i d

#/ gate / e l e c t r o n i c s / v i s / se tCo lor grey

#/ gate / e l e c t r o n i c s / v i s / s e tV i s i b l e 0

/ gate /head/ daughters /name s h i e l d i n g

/ gate /head/ daughters / i n s e r t t e s s e l l a t e d

/ gate / s h i e l d i n g /placement/ s e tTran s l a t i on −190 −255 −95 mm

/gate / s h i e l d i n g /geometry/ setPathToSTLFile data/ s h i e l d i n g . s t l

/ gate / s h i e l d i n g / s e tMat e r i a l Lead

#/gate / s h i e l d i n g / v i s / forceWireframe
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#/gate / s h i e l d i n g / v i s / se tCo lor gray

#/ gate / s h i e l d i n g / v i s / s e tV i s i b l e 0

/ gate /head/ daughters /name cas ing

/ gate /head/ daughters / i n s e r t t e s s e l l a t e d

/ gate / ca s ing /placement / s e tTran s l a t i on −190 −255 −95 mm

/gate / ca s ing /geometry/ setPathToSTLFile data/ ca s ing . s t l

/ gate / ca s ing / s e tMat e r i a l Aluminium

#/gate / cas ing / v i s / forceWireframe

#/ gate / cas ing / v i s / se tCo lor gray

#/ gate / cas ing / v i s / s e tV i s i b l e 0

/ gate /head/ daughters /name f rontAl

/ gate /head/ daughters / i n s e r t box

/ gate / f rontAl /placement / s e tTran s l a t i on 0 . 0 . 0 −96 mm

/gate / f rontAl /geometry/ setXLength 500 mm

/gate / f rontAl /geometry/ setYLength 600 mm

/gate / f rontAl /geometry/ setZLength 1 .5 mm

/gate / f rontAl / s e tMate r i a l Aluminium

#/gate / f ron tA l / v i s / forceWireframe

#/ gate / f ron tA l / v i s / se tCo lor whi te

#/ gate / f ron tA l / v i s / s e tV i s i b l e 1

/ gate /head/ daughters /name f r o n tP l a s t i c

/ gate /head/ daughters / i n s e r t box

/ gate / f r o n tP l a s t i c /placement/ s e tTran s l a t i on 0 . 0 . 0 −100 mm

/gate / f r o n tP l a s t i c /geometry/ setXLength 500 mm

/gate / f r o n tP l a s t i c /geometry/ setYLength 600 mm

/gate / f r o n tP l a s t i c /geometry/ setZLength 10 mm

/gate / f r o n tP l a s t i c / s e tMat e r i a l Perspex

#/gate / f r o n tP l a s t i c / v i s / forceWireframe

#/ gate / f r o n tP l a s t i c / v i s / se tCo lor whi te

#/ gate / f r o n tP l a s t i c / v i s / s e tV i s i b l e 1

/ gate /head/ daughters /name c r y s t a l

/ gate /head/ daughters / i n s e r t box

/ gate / c r y s t a l /placement/ s e tTran s l a t i on 0 .0 0 .0 −87 mm

# Crys ta l center i s 13 mm from the f r on t o f the de t e c t o r head

/ gate / c r y s t a l /geometry/ setXLength 16 .5 cm

/ gate / c r y s t a l /geometry/ setYLength 19 .5 cm
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/ gate / c r y s t a l /geometry/ setZLength 1 .6 cm

/ gate / c r y s t a l / s e tMat e r i a l NaI

#/gate / c r y s t a l / v i s / forceWireframe

#/ gate / c r y s t a l / v i s / se tCo lor red

#/ gate / c r y s t a l / v i s / s e tV i s i b l e 1

/ gate / c r y s t a l / r ep ea t e r s / i n s e r t cubicArray

/ gate / c r y s t a l / cubicArray /setRepeatNumberX 3

/ gate / c r y s t a l / cubicArray /setRepeatNumberY 3

/ gate / c r y s t a l / cubicArray /setRepeatNumberZ 1

/ gate / c r y s t a l / cubicArray / setRepeatVector 16 .5 19 .5 0 cm

### M O D U L E ###

/ gate / c r y s t a l / daughters /name ac t i v e

/ gate / c r y s t a l / daughters / i n s e r t box

/ gate / a c t i v e /placement / s e tTran s l a t i on 0 .0 0 .0 0 .0 cm

/ gate / a c t i v e /geometry/ setXLength 16 .5 cm

/ gate / a c t i v e /geometry/ setYLength 19 .5 cm

/ gate / a c t i v e /geometry/ setZLength 1 .6 cm

/ gate / a c t i v e / s e tMate r i a l NaI

#/gate / a c t i v e / v i s / f o r c eSo l i d

#/ gate / a c t i v e / v i s / se tCo lor green

#/ gate / a c t i v e / v i s / s e tV i s i b l e 1

### R E P E A T H E A D ###

/ gate /head/ r ep ea t e r s / i n s e r t r i ng

/ gate /head/ r ing / se tPo int1 0 . 1 . 0 . mm

/gate /head/ r ing / se tPo int2 0 . 0 . 0 . mm

/gate /head/ r ing /setRepeatNumber 2

/ gate /geometry/ r ebu i l d

#/ v i s / viewer /update

/ gate / systems / l i s t

# A T T A C H S Y S T E M

/ gate / systems /ADAC/ r s e c t o r / attach head

/ gate / systems /ADAC/module/ attach c r y s t a l
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/ gate / systems /ADAC/ c r y s t a l / attach a c t i v e

# A T T A C H C R Y S T A L SD

/ gate / systems / l i s t

/ gate / a c t i v e / attachCrystalSD

# A T T A C H P H A N T O M SD

#/gate /world/attachPhantomSD

#/ gate / p l a s t i cR ing /attachPhantomSD

#/ gate / r ing /attachPhantomSD

#/ gate / l i g h t g u i d e /attachPhantomSD

#/ gate /PMTs/attachPhantomSD

#/ gate / e l e c t r o n i c s /attachPhantomSD

#/ gate / f r o n tP l a s t i c /attachPhantomSD

#/ gate / f ron tA l /attachPhantomSD

#/ gate / s h i e l d i n g /attachPhantomSD

#/ gate / cas ing /attachPhantomSD

#/ gate / c r y s t a l /attachPhantomSD

/ gate / phys i c s / addPhys ic sL i s t emstandard

#−−−−−−−−−−−−−−−−−−−oooooOOOOO00000OOOOOooooo−−−−−−−−−−−−−−−−−−−−−#

# #

# D E F I N I T I O N O F Y O U R A C Q U I S I T I O N #

# D I G I T I Z E R & C O I N C I D E N C E S H O R T E R #

# #

#−−−−−−−−−−−−−−−−−−−oooooOOOOO00000OOOOOooooo−−−−−−−−−−−−−−−−−−−−−#

# A D D E R

/ gate / d i g i t i z e r / S i n g l e s / i n s e r t adder

# E N E R G Y B L U R R I N G

/ gate / d i g i t i z e r / S i n g l e s / i n s e r t b l u r r i n g

/ gate / d i g i t i z e r / S i n g l e s / b l u r r i n g / s e tRe so lu t i on 0 .15

/ gate / d i g i t i z e r / S i n g l e s / b l u r r i n g / setEnergyOfReference 511 . keV

# P I L E − U P

/ gate / d i g i t i z e r / S i n g l e s / i n s e r t p i l eup

/ gate / d i g i t i z e r / S i n g l e s / p i l eup / setDepth 4
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/ gate / d i g i t i z e r / S i n g l e s / p i l eup / s e tP i l eup 498 ns #300 ns

# T I M E R E S O L U T I O N

/ gate / d i g i t i z e r / S i n g l e s / i n s e r t t imeReso lut ion

/ gate / d i g i t i z e r / S i n g l e s / t imeReso lut ion / setTimeResolut ion 17 ns

# S P A T I A L B L U R R I N G

/ gate / d i g i t i z e r / S i n g l e s / i n s e r t spb lu r r i ng

/ gate / d i g i t i z e r / S i n g l e s / spb lu r r i ng / s e t Sp r e s o l u t i o n 5 .0 mm

#/gate / d i g i t i z e r / S in g l e s / s p b l u r r i n g / verbose 1

# E N E R G Y C U T

/ gate / d i g i t i z e r / S i n g l e s / i n s e r t th r e sho l d e r

/ gate / d i g i t i z e r / S i n g l e s / th r e sho l d e r / setThresho ld 285 keV #200 keV

/ gate / d i g i t i z e r / S i n g l e s / i n s e r t upholder

/ gate / d i g i t i z e r / S i n g l e s / upholder / setUphold 1020 keV #1200 keV

# D E A D T I M E

/ gate / d i g i t i z e r / S i n g l e s / i n s e r t deadtime

/ gate / d i g i t i z e r / S i n g l e s /deadtime/setDeadTime 1 .07 us # 1.2 us

/ gate / d i g i t i z e r / S i n g l e s /deadtime/setMode pa ra l y s ab l e

/ gate / d i g i t i z e r / S i n g l e s /deadtime/chooseDTVolume c r y s t a l

# E N E R G Y W I N D O W

/ gate / d i g i t i z e r /name EWindow

/ gate / d i g i t i z e r / i n s e r t s ing l eCha in

/ gate / d i g i t i z e r /EWindow/setInputName S i n g l e s

/ gate / d i g i t i z e r /EWindow/ i n s e r t th r e sho l d e r

# 50 % energy window

/ gate / d i g i t i z e r /EWindow/ th r e sho l d e r / setThresho ld 360 keV

/ gate / d i g i t i z e r /EWindow/ i n s e r t upholder

/ gate / d i g i t i z e r /EWindow/upholder / setUphold 640 keV

# C O I N C I D E N C E S O RT E R

/ gate / d i g i t i z e r / Coinc idences / setInputName EWindow

/ gate / d i g i t i z e r / Coinc idences /setWindow 15 ns

/ gate / d i g i t i z e r / Coinc idences / minSec to rD i f f e r ence 1

/ gate / d i g i t i z e r / Coinc idences / d e s c r i b e

/ gate / d i g i t i z e r / Coinc idences / Mu l t i p l e sPo l i cy takeAllGoods
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### P H A N T O M S ###

/ gate /world/ daughters /name phantom

/ gate /world/ daughters / i n s e r t sphere

/ gate /phantom/ se tMate r i a l P l a s t i c

#/gate /phantom/ v i s / forceWireframe

#/ gate /phantom/ v i s / se tCo lor whi te

#/ gate /phantom/ v i s / s e tV i s i b l e 0

/ gate /phantom/geometry/setRmin 0 mm

/gate /phantom/geometry/setRmax 10 mm

/gate /phantom/geometry/ s e tPh iS ta r t 0 deg

/ gate /phantom/geometry/ setDe l taPhi 360 deg

/ gate /phantom/geometry/ setThetaStar t 0 deg

/ gate /phantom/geometry/ setDeltaTheta 360 deg

/ gate /phantom/placement / s e tTran s l a t i on 0 0 0 mm

/gate /phantom/moves/ i n s e r t t r a n s l a t i o n

/ gate /phantom/ t r a n s l a t i o n / setSpeed 0 0 0 mm/s

#/gate /phantom/attachPhantomSD

/ gate /geometry/ r ebu i l d

#/ v i s / viewer /update

### S O U R C E D E F I N I T I O N ###

/ gate /phantom/daughters /name Source1

/ gate /phantom/daughters / i n s e r t sphere

/ gate /Source1 / s e tMate r i a l P l a s t i c

#/gate /Source1/ v i s / forceWireframe

#/ gate /Source1/ v i s / se tCo lor whi te

#/ gate /Source1/ v i s / s e tV i s i b l e 1

/ gate /Source1 /geometry/setRmin 0 mm

/gate /Source1 /geometry/setRmax 0 .1 mm

/gate /Source1 /geometry/ s e tPh iS ta r t 0 deg

/ gate /Source1 /geometry/ setDe l taPhi 360 deg

/ gate /Source1 /geometry/ setThetaStar t 0 deg

/ gate /Source1 /geometry/ setDeltaTheta 360 deg

/ gate /Source1 /placement / s e tTran s l a t i on 0 0 0 mm

#/gate /Source1/attachPhantomSD

/ gate /geometry/ r ebu i l d
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#/ v i s / viewer /update

#=====================================================

# INITIALISATION

#=====================================================

/ gate /run/ i n i t i a l i z e

### S O U R C E D E F I N I T I O N ###

# S O U R C E

/ gate /source/addSource twogamma

/ gate /source/twogamma/ s e tAc t i v i t y 10 MBq

/ gate /source/twogamma/setType backtoback

# POSITION

/ gate /source/twogamma/gps/ cent r e 0 . 0 . 0 . mm

# PARTICLE

/ gate /source/twogamma/gps/ p a r t i c l e gamma

/ gate /source/twogamma/gps/ energytype Mono

/ gate /source/twogamma/gps/monoenergy 0 .511 MeV

# TYPE = Volume or Surface or Point

/ gate /source/twogamma/gps/type Volume

/ gate /source/twogamma/gps/ shape Sphere

/ gate /source/twogamma/gps/ rad iu s 0 .1 mm

/gate /source/twogamma/gps/ cent r e 0 .0 0 .0 0 .0 mm

# SET THE ANGULAR DISTRIBUTION OF EMISSION

/ gate /source/twogamma/gps/angtype i s o

# SET MIN AND MAX EMISSION ANGLES

/ gate /source/twogamma/gps/mintheta 0 . deg

/ gate /source/twogamma/gps/maxtheta 180 . deg

/ gate /source/twogamma/gps/minphi 0 . deg

/ gate /source/twogamma/gps/maxphi 360 . deg

/ gate /source/twogamma/attachTo Source1
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/ gate /source/ l i s t

#−−−−−−−−−−−−−−−−−−−oooooOOOOO00000OOOOOooooo−−−−−−−−−−−−−−−−−−−−−#

# #

# D E F I N I T I O N O F #

# Y O U R O U T P U T F I L E #

# #

#−−−−−−−−−−−−−−−−−−−oooooOOOOO00000OOOOOooooo−−−−−−−−−−−−−−−−−−−−−#

#=====================================================

# D A T A O U T P U T

#=====================================================

/ gate /random/ setEngineSeed auto

#/gate / output / root / enab le

#/ gate / output / root / setFileName output / test_

#/ gate / output / root / setRootNtup leFlag 0

#/ gate / output / root / se tRootHi tF lag 0

#/ gate / output / root / se tRoo tS ing l e sF lag 0

#/ gate / output / root / setRootCoincidencesFlag 1

#/ gate / output / root / se tRootde layF lag 0

/ gate /output / a s c i i /enable

/ gate /output / a s c i i / setFileName output/ test_

/ gate /output / a s c i i / s e tOutF i l eH i t sF lag 0

/ gate /output / a s c i i / s e tOutF i l eS ing l e sF l ag 0

/ gate /output / a s c i i / setOutFileEWindowFlag 0

/ gate /output / a s c i i / s e tOutF i l eCo inc idencesF lag 1

/ gate /output / a s c i i / setCoincidenceMask 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

#====================================================

# M E A S U R E M E N T S E T T I N G S

#=====================================================

#/gate / app l i c a t i on /setTotalNumberOfPrimaries 50

/ gate / app l i c a t i o n / se tT imeS l i c e 0 .01 s

/ gate / app l i c a t i o n / setTimeStart 0 .0 s
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/ gate / app l i c a t i o n / setTimeStop 0 .01 s

/ gate / app l i c a t i o n /startDAQ

exit
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GATE Model of Large Modular Array

Listing 2: GATE Script for the validated model of the Large Modular Array PEPT

detector. This PEPT detector model is described in Chapter 3. GitHub repository:

https://github.com/uob-positron-imaging-centre/GATE_Models.

# GATE Model o f the Large Modular Array

# Created by Matthew Herald

# Univer i s t y o f Birmingham

# mxh1092@bham . ac . uk

# 2023

#−−−−−−−−−−−−−−−−−−−oooooOOOOO00000OOOOOooooo−−−−−−−−−−−−−−−−−−−−−#

#

# D E F I N E Y O U R S C A N N E R A N D

#

# Y O U R C O M P L E T E S I M U L A T I O N

#

# F O R I M A G I N G A P P L I CA T I O N S

#

#−−−−−−−−−−−−−−−−−−−oooooOOOOO00000OOOOOooooo−−−−−−−−−−−−−−−−−−−−−#

#=====================================================

# VISUALISATION

#=====================================================

#/ v i s / d i s a b l e

#/ v i s /open OGL
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#/ v i s / viewer / r e s e t

#/ v i s / viewer / s e t / viewpointThetaPhi 120 30

#/ v i s / viewer / s e t / viewpointThetaPhi 30 30

#/ v i s / viewer / s e t / viewpointThetaPhi 0 0

#/ v i s / viewer /zoom 1

#/ v i s / viewer / s e t / s t y l e sur face

#/ v i s /drawVolume

#/ t rack ing / s to reTra j e c to ry 1

#/ v i s / scene/add/ t r a j e c t o r i e s

#/ v i s / scene/endOfEventAction accumulate

#/ v i s / scene/add/axes

#/ v i s / viewer /update

#=====================================================

# GEOMETRY

#=====================================================

/ gate /geometry/ setMater ia lDatabase data/GateMater ia l s . db

#

# W O R L D

#

/ gate /world/geometry/ setXLength 200 . cm

/ gate /world/geometry/ setYLength 200 . cm

/ gate /world/geometry/ setZLength 200 . cm

/ gate /world/ s e tMat e r i a l Air

#/gate /world/ v i s / se tCo lor whi te

#/ gate /world/ v i s / forceWireframe

#/ gate /world/ v i s / s e tV i s i b l e 0

# L A R G E M O D U L A R A R R A Y

/ gate /world/ daughters /name Camera

/ gate /world/ daughters /systemType cy l indr ica lPET

/ gate /world/ daughters / i n s e r t box

/ gate /Camera/placement/ s e tTran s l a t i on 0 .0 0 .0 0 .0 cm

/ gate /Camera/geometry/ setXLength 200 . cm

/ gate /Camera/geometry/ setYLength 200 . cm

/ gate /Camera/geometry/ setZLength 200 . cm

/ gate /Camera/ s e tMat e r i a l Air

#/gate /Camera/ v i s / se tCo lor whi te

#/ gate /Camera/ v i s / forceWireframe
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#/gate /Camera/ v i s / se tCo lor whi te

#/ gate /Camera/ v i s / s e tV i s i b l e 0

# M O D U L E

/ gate /Camera/ daughters /name module

/ gate /Camera/ daughters / i n s e r t box

/ gate /module/ s e tMat e r i a l Air

/ gate /module/geometry/ setXLength 355 mm

/gate /module/geometry/ setYLength 80 mm

/gate /module/geometry/ setZLength 450 mm

/gate /module/placement/ s e tTran s l a t i on 0 . 0 . 0 . mm # 475 mm = 250 mm separa t ion

#/ gate /module/ v i s / forceWireframe

#/ gate /module/ v i s / se tCo lor red

#/ gate /module/ v i s / s e tV i s i b l e 1

# F R A M E T O P

/ gate /module/ daughters /name frametop

/ gate /module/ daughters / i n s e r t box

/ gate / frametop/placement/ s e tTran s l a t i on 0 39 0 mm

/gate / frametop/geometry/ setXLength 355 mm

/gate / frametop/geometry/ setYLength 2 mm

/gate / frametop/geometry/ setZLength 450 mm

/gate / frametop/ s e tMat e r i a l Aluminium

#/gate / frametop/ v i s / forceWireframe

#/ gate / frametop/ v i s / se tCo lor grey

#/ gate / frametop/ v i s / s e tV i s i b l e 1

# F R A M E B O T T O M

/ gate /module/ daughters /name framebottom

/ gate /module/ daughters / i n s e r t box

/ gate / framebottom/placement / s e tTran s l a t i on 0 −39 0 mm

/gate / framebottom/geometry/ setXLength 355 mm

/gate / framebottom/geometry/ setYLength 2 mm

/gate / framebottom/geometry/ setZLength 450 mm

/gate / framebottom/ s e tMat e r i a l Aluminium

#/gate / framebottom/ v i s / forceWireframe

#/ gate / framebottom/ v i s / se tCo lor grey

#/ gate / framebottom/ v i s / s e tV i s i b l e 1

# F R A M E S I D E 1
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/ gate /module/ daughters /name f rames ide1

/ gate /module/ daughters / i n s e r t box

/ gate / f rames ide1 /placement / s e tTran s l a t i on 176 .5 0 0 mm

/gate / f rames ide1 /geometry/ setXLength 2 mm

/gate / f rames ide1 /geometry/ setYLength 74 mm

/gate / f rames ide1 /geometry/ setZLength 450 mm

/gate / f rames ide1 / s e tMat e r i a l Aluminium

#/gate / frameside1 / v i s / forceWireframe

#/ gate / frameside1 / v i s / se tCo lor grey

#/ gate / frameside1 / v i s / s e tV i s i b l e 1

# F R A M E S I D E 2

/ gate /module/ daughters /name f rames ide2

/ gate /module/ daughters / i n s e r t box

/ gate / f rames ide2 /placement / s e tTran s l a t i on −176.5 0 0 mm

/gate / f rames ide2 /geometry/ setXLength 2 mm

/gate / f rames ide2 /geometry/ setYLength 74 mm

/gate / f rames ide2 /geometry/ setZLength 450 mm

/gate / f rames ide2 / s e tMat e r i a l Aluminium

#/gate / frameside2 / v i s / forceWireframe

#/ gate / frameside2 / v i s / se tCo lor grey

#/ gate / frameside2 / v i s / s e tV i s i b l e 1

# F R A M E B A C K

/ gate /module/ daughters /name frameback

/ gate /module/ daughters / i n s e r t box

/ gate / frameback/placement/ s e tTran s l a t i on 0 0 −224 mm

/gate / frameback/geometry/ setXLength 351 mm

/gate / frameback/geometry/ setYLength 74 mm

/gate / frameback/geometry/ setZLength 2 mm

/gate / frameback/ s e tMat e r i a l Aluminium

#/gate / frameback/ v i s / forceWireframe

#/ gate / frameback/ v i s / se tCo lor grey

#/ gate / frameback/ v i s / s e tV i s i b l e 1

# F R A M E F R O N T

/ gate /module/ daughters /name f ramef ront

/ gate /module/ daughters / i n s e r t box

/ gate / f ramef ront /placement / s e tTran s l a t i on 0 0 224 mm

/gate / f ramef ront /geometry/ setXLength 351 mm
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/ gate / f ramef ront /geometry/ setYLength 74 mm

/gate / f ramef ront /geometry/ setZLength 2 mm

/gate / f ramef ront / s e tMat e r i a l Aluminium

#/gate / framefront / v i s / forceWireframe

#/ gate / framefront / v i s / se tCo lor grey

#/ gate / framefront / v i s / s e tV i s i b l e 1

# W I N D O W

/ gate / f ramef ront / daughters /name window

/ gate / f ramef ront / daughters / i n s e r t box

/ gate /window/placement/ s e tTran s l a t i on −136.5 0 . 0 mm

/gate /window/geometry/ setXLength 47 mm

/gate /window/geometry/ setYLength 56 mm

/gate /window/geometry/ setZLength 2 mm

/gate /window/ s e tMat e r i a l Air

#/gate /window/ v i s / se tCo lor whi te

#/ gate /window/ v i s / forceWireframe

#/ gate /window/ v i s / s e tV i s i b l e 1

# B L O C K

/ gate /module/ daughters /name block

/ gate /module/ daughters / i n s e r t box

/ gate / block /placement / s e tTran s l a t i on −136.5 0 .0 147 .5 mm

/gate / block /geometry/ setXLength 55 mm

/gate / block /geometry/ setYLength 60 mm

/gate / block /geometry/ setZLength 155 .0 mm

/gate / block / s e tMate r i a l Air

#/gate / b l o c k / v i s / se tCo lor b lue

#/ gate / b l o c k / v i s / forceWireframe

#/ gate / b l o c k / v i s / s e tV i s i b l e 1

# E L E C T R O N I C S

/ gate /module/ daughters /name e l e c t r o n i c s

/ gate /module/ daughters / i n s e r t box

/ gate / e l e c t r o n i c s /placement / s e tTran s l a t i on 0 0 −50 mm

/gate / e l e c t r o n i c s /geometry/ setXLength 300 mm

/gate / e l e c t r o n i c s /geometry/ setYLength 40 mm

/gate / e l e c t r o n i c s /geometry/ setZLength 150 mm

/gate / e l e c t r o n i c s / s e tMate r i a l Elec

#/gate / e l e c t r o n i c s / v i s / se tCo lor ye l l ow
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#/gate / e l e c t r o n i c s / v i s / forceWireframe

#/ gate / e l e c t r o n i c s / v i s / s e tV i s i b l e 1

# L I G H T G U I D E

/ gate / block / daughters /name l i g h t gu i d e

/ gate / block / daughters / i n s e r t box

/ gate / l i g h t gu i d e /placement/ s e tTran s l a t i on 0 0 41 mm

/gate / l i g h t gu i d e /geometry/ setXLength 50 mm

/gate / l i g h t gu i d e /geometry/ setYLength 54 mm

/gate / l i g h t gu i d e /geometry/ setZLength 5 mm

/gate / l i g h t gu i d e / s e tMat e r i a l Glass

#/gate / l i g h t g u i d e / v i s / se tCo lor whi te

#/ gate / l i g h t g u i d e / v i s / forceWireframe

#/ gate / l i g h t g u i d e / v i s / s e tV i s i b l e 1

# P M T

/ gate / block / daughters /name PMTs

/ gate / block / daughters / i n s e r t box

/ gate /PMTs/placement / s e tTran s l a t i on 0 0 −11.5 mm

/gate /PMTs/geometry/ setXLength 50 mm

/gate /PMTs/geometry/ setYLength 54 mm

/gate /PMTs/geometry/ setZLength 100 mm

/gate /PMTs/ s e tMat e r i a l PMT

#/gate /PMTs/ v i s / se tCo lor green

#/ gate /PMTs/ v i s / forceWireframe

#/ gate /PMTs/ v i s / s e tV i s i b l e 1

# C R Y S T A L

/ gate / block / daughters /name c r y s t a l

/ gate / block / daughters / i n s e r t box

/ gate / c r y s t a l /placement/ s e tTran s l a t i on 0 0 58 .5 mm

/gate / c r y s t a l /geometry/ setXLength 6 .25 mm

/gate / c r y s t a l /geometry/ setYLength 6 .75 mm

/gate / c r y s t a l /geometry/ setZLength 30 .0 mm

/gate / c r y s t a l / s e tMat e r i a l BGO

#/gate / c r y s t a l / v i s / se tCo lor ye l l ow

#/ gate / c r y s t a l / v i s / s e tV i s i b l e 1

# B G O

/ gate / c r y s t a l / daughters /name BGO

287



GATE Model of Large Modular Array

/ gate / c r y s t a l / daughters / i n s e r t box

/ gate /BGO/geometry/ setXLength 6 .25 mm

/gate /BGO/geometry/ setYLength 6 .75 mm

/gate /BGO/geometry/ setZLength 30 .0 mm

/gate /BGO/ se tMate r i a l BGO

#/gate /BGO/ v i s / se tCo lor ye l l ow

#/ gate /BGO/ v i s / s e tV i s i b l e

# R E P E A T C R Y S T A L

/ gate / c r y s t a l / r ep ea t e r s / i n s e r t cubicArray

/ gate / c r y s t a l / cubicArray /setRepeatNumberX 8

/ gate / c r y s t a l / cubicArray /setRepeatNumberY 8

/ gate / c r y s t a l / cubicArray /setRepeatNumberZ 1

/ gate / c r y s t a l / cubicArray / setRepeatVector 6 .25 6 .75 0 mm

# R E P E A T BLOCK

/ gate / block / r ep ea t e r s / i n s e r t l i n e a r

/ gate / block / l i n e a r /setRepeatNumber 4

/ gate / block / l i n e a r / setRepeatVector 91 . 0 . 0 . mm

/gate / block / l i n e a r / autoCenter fa l se

# R E P E A T W I N D O W

/ gate /window/ r ep ea t e r s / i n s e r t l i n e a r

/ gate /window/ l i n e a r /setRepeatNumber 4

/ gate /window/ l i n e a r / setRepeatVector 91 . 0 . 0 . mm

/gate /window/ l i n e a r / autoCenter fa l se

# R E P E A T M O D U L E

/ gate /module/ r ep ea t e r s / i n s e r t gener i cRepeate r

#/gate /module/ gener icRepeater / useRe la t i v eTrans l a t i on 1

/ gate /module/ gener i cRepeate r / setPlacementsFi lename data/count−rate−c a l i b r a t i o n . placements

# A T T A C H C R Y S T A L SD

/ gate /BGO/attachCrystalSD

/ gate / systems / l i s t

# M A K E A S Y S T E M

/ gate / systems /Camera/ r s e c t o r / attach module

/ gate / systems /Camera/module/ attach block
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/ gate / systems /Camera/ c r y s t a l / attach c r y s t a l

/ gate / systems /Camera/ l aye r0 / attach BGO

/gate /geometry/ r ebu i l d

#/ v i s / viewer /update

/ gate / phys i c s / addPhys ic sL i s t emstandard

#−−−−−−−−−−−−−−−−−−−oooooOOOOO00000OOOOOooooo−−−−−−−−−−−−−−−−−−−−−#

# #

# D E F I N I T I O N O F Y O U R A C Q U I S I T I O N #

# D I G I T I Z E R & C O I N C I D E N C E S H O R T E R #

# #

#−−−−−−−−−−−−−−−−−−−oooooOOOOO00000OOOOOooooo−−−−−−−−−−−−−−−−−−−−−#

# A D D E R

/ gate / d i g i t i z e r / S i n g l e s / i n s e r t adder

/ gate / d i s t r i b u t i o n s /name energy_di s t r ib

/ gate / d i s t r i b u t i o n s / i n s e r t Gaussian

/ gate / d i s t r i b u t i o n s / energy_di s t r ib /setMean 511 keV

/ gate / d i s t r i b u t i o n s / energy_di s t r ib / setSigma 1 keV

/ gate / d i s t r i b u t i o n s /name dt_d i s t r ib

/ gate / d i s t r i b u t i o n s / i n s e r t Exponent ia l

/ gate / d i s t r i b u t i o n s / dt_d i s t r ib /setLambda 1 .97 us

/ gate / d i g i t i z e r / S i n g l e s / i n s e r t no i s e

/ gate / d i g i t i z e r / S i n g l e s / no i s e / s e tDe l taTDi s t r i bu t i on dt_d i s t r ib

/ gate / d i g i t i z e r / S i n g l e s / no i s e / s e tEne rgyDi s t r ibu t i on energy_di s t r ib

# R E A D O U T

#/gate / d i g i t i z e r / S in g l e s / i n s e r t readout

#/ gate / d i g i t i z e r / S in g l e s / readout / setDepth 2

/ gate / d i g i t i z e r / S i n g l e s / i n s e r t readout

/ gate / d i g i t i z e r / S i n g l e s / readout / s e tPo l i c y TakeEnergyCentroid

/ gate / d i g i t i z e r / S i n g l e s / readout / setDepth 4

# T I M E R E S O L U T I O N

/ gate / d i g i t i z e r / S i n g l e s / i n s e r t t imeReso lut ion
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/ gate / d i g i t i z e r / S i n g l e s / t imeReso lut ion / setTimeResolut ion 13 .72 ns

# P I L E U P

/ gate / d i g i t i z e r / S i n g l e s / i n s e r t p i l eup

/ gate / d i g i t i z e r / S i n g l e s / p i l eup / setDepth 2

/ gate / d i g i t i z e r / S i n g l e s / p i l eup / s e tP i l eup 637 .4 ns

# E N E R G Y B L U R R I N G

/ gate / d i g i t i z e r / S i n g l e s / i n s e r t b l u r r i n g

/ gate / d i g i t i z e r / S i n g l e s / b l u r r i n g / s e tRe so lu t i on 0 .5

/ gate / d i g i t i z e r / S i n g l e s / b l u r r i n g / setEnergyOfReference 511 . keV

# E N E R G Y C U T

/ gate / d i g i t i z e r / S i n g l e s / i n s e r t th r e sho l d e r

/ gate / d i g i t i z e r / S i n g l e s / th r e sho l d e r / setThresho ld 324 keV

/ gate / d i g i t i z e r / S i n g l e s / i n s e r t upholder

/ gate / d i g i t i z e r / S i n g l e s / upholder / setUphold 2000 keV

# D E A D T I M E

/ gate / d i g i t i z e r / S i n g l e s / i n s e r t deadtime

/ gate / d i g i t i z e r / S i n g l e s /deadtime/setDeadTime 6 .63 us

/ gate / d i g i t i z e r / S i n g l e s /deadtime/setMode nonpara lysab le

/ gate / d i g i t i z e r / S i n g l e s /deadtime/chooseDTVolume block

# E N E R G Y W I N D O W

/ gate / d i g i t i z e r /name EWindow

/ gate / d i g i t i z e r / i n s e r t s ing l eCha in

/ gate / d i g i t i z e r /EWindow/setInputName S i n g l e s

# 50 % energy window

/ gate / d i g i t i z e r /EWindow/ i n s e r t th r e sho l d e r

/ gate / d i g i t i z e r /EWindow/ th r e sho l d e r / setThresho ld 400 keV

/ gate / d i g i t i z e r /EWindow/ i n s e r t upholder

/ gate / d i g i t i z e r /EWindow/upholder / setUphold 700 keV

# C O I N C I D E N C E S O R T E R

/ gate / d i g i t i z e r / Coinc idences / setInputName EWindow

/ gate / d i g i t i z e r / Coinc idences /setWindow 12 ns

/ gate / d i g i t i z e r / Coinc idences / Mu l t i p l e sPo l i cy takeAllGoods

/ gate / d i g i t i z e r / Coinc idences / minSec to rD i f f e r ence 1

/ gate / d i g i t i z e r / Coinc idences / d e s c r i b e
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/ gate / d i g i t i z e r /name delayed

/ gate / d i g i t i z e r / i n s e r t c o i n c i d en c eSo r t e r

/ gate / d i g i t i z e r / delayed /setInputName EWindow

/ gate / d i g i t i z e r / delayed / s e tO f f s e t 256 ns

/ gate / d i g i t i z e r / delayed /setWindow 12 ns

/ gate / d i g i t i z e r / delayed / Mu l t i p l e sPo l i c y takeAllGoods

/ gate / d i g i t i z e r / delayed / minSec to rD i f f e r ence 1

/ gate / d i g i t i z e r / delayed / de s c r i b e

/ gate / d i g i t i z e r /name f i n a lCo i n c

/ gate / d i g i t i z e r / i n s e r t co inc idenceChain

/ gate / d i g i t i z e r / f i n a lCo i n c /addInputName delayed

/ gate / d i g i t i z e r / f i n a lCo i n c /addInputName Coinc idences

#/gate / d i g i t i z e r / f ina lCo inc / us ePr i o r i t y False

/ gate / d i g i t i z e r / f i n a lCo i n c / de s c r i b e

### P H A N T O M S ###

/ gate /world/ daughters /name phantom

/ gate /world/ daughters / i n s e r t sphere

/ gate /phantom/ se tMate r i a l P l a s t i c

#/gate /phantom/ v i s / forceWireframe

#/ gate /phantom/ v i s / se tCo lor whi te

#/ gate /phantom/ v i s / s e tV i s i b l e 0

/ gate /phantom/geometry/setRmin 0 mm

/gate /phantom/geometry/setRmax 10 mm

/gate /phantom/geometry/ s e tPh iS ta r t 0 deg

/ gate /phantom/geometry/ setDe l taPhi 360 deg

/ gate /phantom/geometry/ setThetaStar t 0 deg

/ gate /phantom/geometry/ setDeltaTheta 360 deg

/ gate /phantom/placement / s e tTran s l a t i on 0 0 0 mm

/gate /phantom/moves/ i n s e r t t r a n s l a t i o n

/ gate /phantom/ t r a n s l a t i o n / setSpeed 0 0 0 mm/s

#/gate /phantom/attachPhantomSD

/ gate /geometry/ r ebu i l d

#/ v i s / viewer /update

### S O U R C E D E F I N I T I O N ###

/ gate /phantom/daughters /name Source1
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/ gate /phantom/daughters / i n s e r t sphere

/ gate /Source1 / s e tMate r i a l P l a s t i c

#/gate /Source1/ v i s / forceWireframe

#/ gate /Source1/ v i s / se tCo lor whi te

#/ gate /Source1/ v i s / s e tV i s i b l e 1

/ gate /Source1 /geometry/setRmin 0 mm

/gate /Source1 /geometry/setRmax 0 .1 mm

/gate /Source1 /geometry/ s e tPh iS ta r t 0 deg

/ gate /Source1 /geometry/ setDe l taPhi 360 deg

/ gate /Source1 /geometry/ setThetaStar t 0 deg

/ gate /Source1 /geometry/ setDeltaTheta 360 deg

/ gate /Source1 /placement / s e tTran s l a t i on 0 0 0 mm

#/gate /Source1/attachPhantomSD

/ gate /geometry/ r ebu i l d

#/ v i s / viewer /update

#=====================================================

# INITIALISATION

#=====================================================

/ gate /run/ i n i t i a l i z e

### S O U R C E D E F I N I T I O N ###

# S O U R C E

/ gate /source/addSource twogamma

/ gate /source/twogamma/ s e tAc t i v i t y 10 MBq

/ gate /source/twogamma/setType backtoback

# POSITION

/ gate /source/twogamma/gps/ cent r e 0 . 0 . 0 . mm

# PARTICLE

/ gate /source/twogamma/gps/ p a r t i c l e gamma

/ gate /source/twogamma/gps/ energytype Mono

/ gate /source/twogamma/gps/monoenergy 0 .511 MeV

# TYPE = Volume or Surface or Point

292



GATE Model of Large Modular Array

/ gate /source/twogamma/gps/type Volume

/ gate /source/twogamma/gps/ shape Sphere

/ gate /source/twogamma/gps/ rad iu s 0 .1 mm

/gate /source/twogamma/gps/ cent r e 0 .0 0 .0 0 .0 mm

# SET THE ANGULAR DISTRIBUTION OF EMISSION

/ gate /source/twogamma/gps/angtype i s o

# SET MIN AND MAX EMISSION ANGLES

/ gate /source/twogamma/gps/mintheta 0 . deg

/ gate /source/twogamma/gps/maxtheta 180 . deg

/ gate /source/twogamma/gps/minphi 0 . deg

/ gate /source/twogamma/gps/maxphi 360 . deg

/ gate /source/twogamma/attachTo Source1

/ gate /source/ l i s t

#−−−−−−−−−−−−−−−−−−−oooooOOOOO00000OOOOOooooo−−−−−−−−−−−−−−−−−−−−−#

# #

# D E F I N I T I O N O F #

# Y O U R O U T P U T F I L E #

# #

#−−−−−−−−−−−−−−−−−−−oooooOOOOO00000OOOOOooooo−−−−−−−−−−−−−−−−−−−−−#

#=====================================================

# D A T A O U T P U T

#=====================================================

/ gate /random/ setEngineSeed auto

#/gate / output / root / enab le

#/ gate / output / root / setFileName output / test_

#/ gate / output / root / setRootNtup leFlag 0

#/ gate / output / root / se tRootHi tF lag 0

#/ gate / output / root / se tRoo tS ing l e sF lag 0

#/ gate / output / root / setRootCoincidencesFlag 1

#/ gate / output / root / se tRootde layF lag 0

/ gate /output / a s c i i /enable
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/ gate /output / a s c i i / setFileName output/ test_

/ gate /output / a s c i i / s e tOutF i l eH i t sF lag 0

/ gate /output / a s c i i / s e tOutF i l eS ing l e sF l ag 0

/ gate /output / a s c i i / setOutFileEWindowFlag 0

/ gate /output / a s c i i / s e tOutF i l eCo inc idencesF lag 1

/ gate /output / a s c i i / setCoincidenceMask 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

#====================================================

# M E A S U R E M E N T S E T T I N G S

#=====================================================

#/gate / app l i c a t i on /setTotalNumberOfPrimaries 50

/ gate / app l i c a t i o n / se tT imeS l i c e 0 .01 s

/ gate / app l i c a t i o n / setTimeStart 0 .0 s

/ gate / app l i c a t i o n / setTimeStop 0 .01 s

/ gate / app l i c a t i o n /startDAQ

exit
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Appendix Zero

Functions for Comparing GATE

Prescribed and PEPT Reconstructed

Tracer Locations

Listing 3: Comparsison functions written in Python to compare trajectories between GATE

prescribed locations and PEPT reconstructed locations. These functions are used in Chapter

4 to benchmark the performance of PEPT algorithms on a GATE-simulated data set. GitHub

repository: https://github.com/mxh1092/RoPP-Comparison-Functions.

import numpy as np

from s c ipy import i n t e r p o l a t e

def checkDims ( exp ) :

i f exp . ndim < 2 :

exp = exp

else :

xmean = np . mean( exp [ : , 0 ] )

ymean = np . mean( exp [ : , 1 ] )

zmean = np . mean( exp [ : , 2 ] )

exp = np . array ( [ xmean , ymean , zmean ] )
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return exp

def stationaryCompare ( exp ) :

"""

Compares the po s i t i o n s returned by PEPT

algor i thms from a s i n g l e p a r t i c l e t r a c k ing

t e s t . A s i n g l e s t a t i ona ry

t race r i s p laced in the f i e l d −of−view . Exp i s

an (N, 3) np . array o f x , y , z , p o s i t i o n s . The

po s i t i on o f the r e a l

p o s i t i on fo r comparison may be l e f t as i s ,

e d i t e d to a new pos i t i on , or changed to read

in a new po s i t i on from a

f i l e .

"""

#rea l = np . l o a d t x t ( ’ Keys/Key_Stationary . csv ’ )

# Real po s i t i on o f the t race r

x_real = 0

y_real = 10

z_real = 0

# I f mu l t i p l e p o s i t i o n s are given , compute the mean

exp = checkDims ( exp )

# Break exp in to i n d i v i d u a l p o s i t i o n a l components

x_exp = exp [ 0 ]

y_exp = exp [ 1 ]

z_exp = exp [ 2 ]

# Compute i n d i v i d u a l error components

x_error = abs ( x_real − x_exp)

y_error = abs ( y_real − y_exp)

z_error = abs ( z_real − z_exp )

# Compute 3D error

e r r o r = np . sq r t ( x_error ∗∗ 2 + y_error ∗∗ 2 + z_error ∗∗ 2)
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return e r r o r

def scatterCompare ( exp ) :

"""

Compares the po s i t i o n s returned by PEPT

algor i thms from a s i n g l e p a r t i c l e t r a c k ing

t e s t . A s i n g l e s t a t i ona ry

t race r i s p laced in the f i e l d −of−view and

p laced i n s i d e a sphere o f mater ia l to induce

s c a t t e r i n g . Exp i s a (N, 3)

np . array o f x , y , z , p o s i t i o n s . The po s i t i on

o f the r e a l p o s i t i on fo r comparison may be

l e f t as i s , e d i t e d to a new

pos i t i ons , or changed to read in a new

po s i t i on from a f i l e .

"""

#rea l = np . l o a d t x t ( ’ Keys/Key_Scatter . csv ’ )

# Real p a r t i c l e p o s i t i on

x_real = 0

y_real = 20

z_real = 0

# I f mu l t i p l e p o s i t i o n s are given , compute the mean

exp = checkDims ( exp )

# Break exp in to i n d i v i d u a l p o s i t i o n a l components

x_exp = exp [ 0 ]

y_exp = exp [ 1 ]

z_exp = exp [ 2 ]

# Compute i n d i v i d u a l error components

x_error = abs ( x_real − x_exp)

y_error = abs ( y_real − y_exp)

z_error = abs ( z_real − z_exp )
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# Compute 3D error

e r r o r = np . sq r t ( x_error ∗∗ 2 + y_error ∗∗ 2 + z_error ∗∗ 2)

return e r r o r

def f ieldOfViewCompare ( exp ) :

"""

Compares the po s i t i o n s returned by PEPT

algor i thms from a s i n g l e p a r t i c l e t r a c k ing

t e s t . A s i n g l e t r ace r en te r s one

s i d e o f the f i e l d −of−view then e x i t s out the

o ther . Exp i s an (N, 4) np . array o f t , x , y , z ,

p o s i t i o n s . The po s i t i on

o f the r e a l t r a ce r i s de s c r i b ed by an equat ion

as a func t i on o f time . The po s i t i on to compare

i s computed f o r the

t imes tep a s soc i a t ed with the PEPT de t e c t i on .

"""

# Read in PEPT de t e c t ed t r a j e c t o r y

t_exp = exp [ : , 0 ]

x_exp = exp [ : , 1 ]

y_exp = exp [ : , 2 ]

z_exp = exp [ : , 3 ]

# A trace r moves in a s t r a i g h t l i n e at a v e l o c i t y o f 250 mm/s in the z d i r e c t i on

v = 250 # mm/s

x_real = 0

y_real = 0

z_real = −250 + ( t_exp / 1000) ∗ v

# Computer i n d i v i d u a l error components

x_error = abs ( x_real − x_exp)

y_error = abs ( y_real − y_exp)

z_error = abs ( z_real − z_exp )

# Compute ins tantaneous er ror s

e r r o r s = np . sq r t ( x_error∗∗2+y_error∗∗2+z_error ∗∗2)
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# Compute mean error

e r r o r = np . mean( e r r o r s )

# Compute standard dev i a t i on o f the i n d i v i d u a l error components

x_std = np . std ( x_error )

y_std = np . std ( y_error )

z_std = np . std ( z_error )

# Compute o v e r a l l s tandard dev i a t i on o f the 3D p a r t i c l e po s i t i on error

std = np . mean(np . s q r t ( x_std ∗∗ 2 + y_std ∗∗ 2 + z_std ∗∗ 2) )

return e r ror , std , e r r o r s

def velocityCompare ( exp , r e a l ) :

"""

Compares the po s i t i o n s returned by PEPT

algor i thms from a s i n g l e p a r t i c l e t r a c k ing

t e s t . A s i n g l e t r ace r moves

between two po s i t i o n s at constant v e l o c i t y .

Exp i s a (N, 4) np . array o f t , x , y , z ,

p o s i t i o n s . The po s i t i on o f the

r e a l t r a ce r i s read in from a f i l e and passed

to t h i s func t i on fo r each o f the d i f f e r e n t

t e s t s . The f i l e conta ins a

s e r i e s o f t imes t eps and po s i t i o n s f o r the

p r e s c r i b ed movements . To compare to the

a s soc i a t ed PEPT de tec t i ons , the

PEPT de t e c t ed t imes tep i s used as the b a s i s

f o r l i n e a r l y i n t e r p o l a t i n g to the expec ted

r e a l p o s i t i on .

"""

# Break up exp in to time and po s i t i on components

t_exp = exp [ : , 0 ]

x_exp = exp [ : , 1 ]

y_exp = exp [ : , 2 ]

z_exp = exp [ : , 3 ]
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# Break o f r e a l in to i n d i v i d u a l time an po s i t i on components

t_rea l = r e a l [ : , 0 ]

x_real = r e a l [ : , 1 ]

y_real = r e a l [ : , 2 ]

z_real = r e a l [ : , 3 ]

# Create l i n e a r i n t e r p o l a t i o n func t i ons

fx = i n t e r p o l a t e . in te rp1d ( t_real , x_real )

fy = i n t e r p o l a t e . in te rp1d ( t_real , y_real )

f z = i n t e r p o l a t e . in te rp1d ( t_real , z_real )

# Use the PEPT de t e c t ed t imes t eps to c a l c u l a t e the r e a l p a r t i c l e p o s i t i on

x_real = fx ( t_exp )

y_real = fy ( t_exp )

z_real = f z ( t_exp )

# Compute ins tantaneous error f o r the i n d i v i d u a l p o s i t i on components

x_error = abs ( x_real − x_exp)

y_error = abs ( y_real − y_exp)

z_error = abs ( z_real − z_exp )

# Compute the mean 3D error

e r r o r = np . mean(np . s q r t ( x_error ∗∗ 2 + y_error ∗∗ 2 + z_error ∗∗ 2) )

# Compute the 1D standard dev i a t i on

x_std = np . std ( x_error )

y_std = np . std ( y_error )

z_std = np . std ( z_error )

# Compute the 3D standard dev i a t i on

std = np . mean(np . s q r t ( x_std ∗∗ 2 + y_std ∗∗ 2 + z_std ∗∗ 2) )

return e r ror , s td

def seperationCompare ( exp1 , exp2 , r e a l ) :

"""

Compares the po s i t i o n s returned by PEPT
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a l gor i thms from a two−p a r t i c l e t r a ck ing t e s t .

Two t r a c e r s are separated by

smal l d i s tances , t e s t i n g the a b i l i t y to

d i f f e r e n t i a t e inc rea s ing smal l t r a ce r

separa t i ons . Exp i s a (N, 3) np . array

x , y , z , p o s i t i o n s . The po s i t i on o f the r e a l

t r a ce r i s passed to t h i s func t i on fo r each o f

the d i f f e r e n t t e s t s . The

centre−to−centre separa t i ons used in t h i s t e s t

are 2 , 3 , 4 , 6 , 8 , 10 , 12 , 16 , 20 , and 30 mm.

Tests are conducted in

both the t r an s a x i a l ( x ) and a x i a l ( z )

o r i en t a t i on s o f the de tec tor , wi th the o ther

po s i t i on components l e f t as 0 mm.

"""

# Par t i c l e 1 po s i t i on components

x1_exp = exp1 [ : , 0 ]

y1_exp = exp1 [ : , 1 ]

z1_exp = exp1 [ : , 2 ]

# Par t i c l e 2 po s i t i on components

x2_exp = exp2 [ : , 0 ]

y2_exp = exp2 [ : , 1 ]

z2_exp = exp2 [ : , 2 ]

# Real p a r t i c l e 1 po s i t i on components

x1_real = −r e a l [ 0 ]

y1_real = −r e a l [ 1 ]

z1_real = −r e a l [ 2 ]

# Real p a r t i c l e 2 po s i t i on components

x2_real = r e a l [ 0 ]

y2_real = r e a l [ 1 ]

z2_real = r e a l [ 2 ]

# Compute the ins tantaneous 1D error f o r p a r t i c l e 1

x1_error = abs ( x1_real − x1_exp )

y1_error = abs ( y1_real − y1_exp )

z1_error = abs ( z1_real − z1_exp )
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# Compute mean 3D error f o r p a r t i c l e 1

e r r o r 1 = np . mean(np . s q r t ( x1_error ∗∗ 2 + y1_error ∗∗ 2 + z1_error ∗∗ 2) )

# Compute 1D standard dev i a t i on fo r p a r t i c l e 1 p o s i t i o n s

x1_std = np . std ( x1_error )

y1_std = np . std ( y1_error )

z1_std = np . std ( z1_error )

# Compute 3D standard dev i a t i on fo r p a r t i c l e 1

std1 = np . sq r t ( x1_std ∗∗ 2 + y1_std ∗∗ 2 + z1_std ∗∗ 2)

# Compute the ins tantaneous 1D error f o r p a r t i c l e 2

x2_error = abs ( x2_real − x2_exp )

y2_error = abs ( y2_real − y2_exp )

z2_error = abs ( z2_real − z2_exp )

# Compute mean 3D error f o r p a r t i c l e 2

e r r o r 2 = np . mean(np . s q r t ( x2_error ∗∗ 2 + y2_error ∗∗ 2 + z2_error ∗∗ 2) )

# Compute 1D standard dev i a t i on fo r p a r t i c l e 2 p o s i t i o n s

x2_std = np . std ( x2_error )

y2_std = np . std ( y2_error )

z2_std = np . std ( z2_error )

# Compute 3D standard dev i a t i on fo r p a r t i c l e 2

std2 = np . mean(np . s q r t ( x2_std ∗∗ 2 + y2_std ∗∗ 2 + z2_std ∗∗ 2) )

# Mean error f o r both p a r t i c l e s

e r r o r = ( e r r o r 1 + e r r o r 2 ) / 2

# Mean standard dev i a t i on fo r both p a r t i c l e s

std = ( std1 + std2 ) / 2

return e r ror , s td

def l inkingCompare ( exp , r e a l ) :

"""

Compares the po s i t i o n s returned by PEPT
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a l gor i thms from a three−p a r t i c l e t r a ck ing

t e s t . Three t r a c e r s are separated

by a constant separa t ion and cont inuous l y

t racked as they move about the sur face o f the

sphere , t e s t i n g the a b i l i t y

l i n k p o s i t i o n s in to t r a j e c t o r i e s f o r mu l t i p l e

p a r t i c l e s s imu l taneous l y . Exp i s a (N, 4)

np . array t , x , y , z ,

p o s i t i o n s . The po s i t i on o f the r e a l t r ace r i s

passed to t h i s func t i on fo r each o f the

d i f f e r e n t t e s t s . The PEPT

t r a j e c t o r i e s must be c o r r e c t l y a s soc i a t ed with

the r i g h t r e a l t r a j e c t o r y be f o r e pass ing to

t h i s func t i on .

"""

# Break up exp in to i n d i v i d u a l time and po s i t i on components

t_exp = exp [ : , 0 ]

x_exp = exp [ : , 1 ]

y_exp = exp [ : , 2 ]

z_exp = exp [ : , 3 ]

# Break up the r e a l t r a j e c t o r y in to i n d i v i d u a l time and po s i t i on components

t_rea l = r e a l [ : , 0 ]

x_real = r e a l [ : , 1 ]

y_real = r e a l [ : , 2 ]

z_real = r e a l [ : , 3 ]

# Create i n t e r p o l a t i o n func t i ons f o r the r e a l t r a j e c t o r y

fx = i n t e r p o l a t e . in te rp1d ( t_real , x_real )

fy = i n t e r p o l a t e . in te rp1d ( t_real , y_real )

f z = i n t e r p o l a t e . in te rp1d ( t_real , z_real )

# Calcu la t e the expec ted r e a l t r a ce r po s i t i on fo r each de t e c t ed time

x_real = fx ( t_exp )

y_real = fy ( t_exp )

z_real = f z ( t_exp )

# Compute the ins tantaneous 1D error s

x_error = abs ( x_real − x_exp)
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y_error = abs ( y_real − y_exp)

z_error = abs ( z_real − z_exp )

# Compute the mean 3D error

e r r o r = np . mean(np . s q r t ( x_error ∗∗ 2 + y_error ∗∗ 2 + z_error ∗∗ 2) )

# Compute the 1D standard dev i a t i on

x_std = np . std ( x_error )

y_std = np . std ( y_error )

z_std = np . std ( z_error )

# Compute the 3D standard dev i a t i on

std = np . sq r t ( x_std ∗∗ 2 + y_std ∗∗ 2 + z_std ∗∗ 2)

# Record how many t imes t eps are g iven fo r the PEPT de t e c t ed t r a j e c t o r i e s

time = len ( t_exp )

return e r ror , std , time

def multipleCompare ( exp , r e a l ) :

"""

Compares the po s i t i o n s returned by PEPT

algor i thms from a mu l t i p l e p a r t i c l e t r a ck ing

t e s t . A random number o f

s t a t i c t r a c e r s are p laced with the de t e c t i on

volume of the d e t e c t o r s . An array o f the PEPT−de t e c t ed po s i t i o n s f o r

each t e s t are compared to the r e a l p o s i t i on . A

t race r i s cons idered found i f i t i s the

neares t t r ace r to the PEPT

returned po s i t i o n s . A l i s t o f the found

t r a c e r s i s scanned fo r unique IDs and returned

as the number o f p a r t i c l e s

found . Add i t i ona l l y , the mean 3D error and the

3D standard dev i a t i on i s re turned . This i s

meant to t e s t the

a b i l i t y to t rack high numbers o f p a r t i c l e s

s imu l taneous l y . Exp i s an (N, 3) np . array x , y ,

z , p o s i t i o n s . The po s i t i on
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o f the r e a l t r a c e r s i s passed to t h i s func t i on

fo r each o f the d i f f e r e n t t e s t s .

"""

# Break exp in to po s i t i on components

x_exp = exp [ : , 0 ]

y_exp = exp [ : , 1 ]

z_exp = exp [ : , 2 ]

# Break up r ea l in to po s i t i on components

x_real = r e a l [ : , 0 ]

y_real = r e a l [ : , 1 ]

z_real = r e a l [ : , 2 ]

# Create mean 3D error array

errors_mean = [ ]

# Al l oca t e space f o r ins tantaneous 3D error s

e r r o r s = np . z e r o s ( len (x_exp ) )

# Create a 3D standard dev i a t i on array

s td s = [ ]

# Al l oca t e space f o r the neares t p a r t i c l e IDs

IDs = np . z e r o s ( len (x_exp ) )

# Loop over a l l d e t e c t ed po s i t i o n s

for j in range ( len (x_exp ) ) :

# Al l oca t e space f o r instananeous er ror s over a l l r e a l p a r t i c l e s

errors_ind = np . z e r o s ( len ( x_real ) )

# Loop over a l l r e a l p a r t i c l e s

for k in range ( len ( x_real ) ) :

# Compute 1D error between exp and a l l r e a l p a r t i c l e s

x_error = abs (x_exp [ j ] − x_real [ k ] )

y_error = abs (y_exp [ j ] − y_real [ k ] )

z_error = abs ( z_exp [ j ] − z_real [ k ] )

# Compute 3D error between exp and a l l r e a l p a r t i c l e s

e r r o r = np . sq r t ( x_error ∗∗ 2 + y_error ∗∗ 2 + z_error ∗∗ 2)
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# F i l l in in s tan t eous error array

errors_ind [ k ] = e r r o r

# Find the c l o s e s t r e a l p a r t i c l e and record the error

IDs [ j ] = np . argmin ( errors_ind )

e r r o r s [ j ] = np .min( er rors_ind )

# The l eng t h o f unique p a r t i c l e IDs i s the number o f p a r t i c l e s found

N_unique = len (np . unique ( IDs ) )

# Record mean p a r i t c l e 3D error

errors_mean . append (np . mean( e r r o r s ) )

# Record the 3D standard dev i a t i on

s td s . append (np . std ( e r r o r s ) )

return errors_mean , stds , N_unique

def closepackedCompare ( exp , r e a l ) :

"""

Compares the po s i t i o n s returned by PEPT

algor i thms from a mu l t i p l e p a r t i c l e t r a ck ing

t e s t . Arrangements o f s t a t i c

t r a c e r s are p laced with the de t e c t i on volume

of the d e t e c t o r s . An array o f the PEPT−

de t e c t ed po s i t i o n s f o r

each t e s t are compared to the r e a l p o s i t i on . A

t race r i s cons idered found i f i t i s the

neares t t r ace r to the PEPT

returned po s i t i o n s . A l i s t o f the found

t r a c e r s i s scanned fo r unique IDs and returned

as the number o f p a r t i c l e s

found . Add i t i ona l l y , the mean 3D error and the

3D standard dev i a t i on i s re turned . This i s

meant to t e s t the

a b i l i t y to t rack high numbers o f p a r t i c l e s in

c l o s e prox imi ty to each other with high

degrees o f symmetry
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s imu l taneous l y . Exp i s a (N, 3) np . array x , y ,

z , p o s i t i o n s . The po s i t i on o f the r e a l t r a c e r s

i s passed to t h i s

func t i on fo r each o f the d i f f e r e n t t e s t s .

"""

# Break exp in to components

x_exp = exp [ : , 0 ]

y_exp = exp [ : , 1 ]

z_exp = exp [ : , 2 ]

# Break r e a l in to components

x_real = r e a l [ : , 0 ]

y_real = r e a l [ : , 1 ]

z_real = r e a l [ : , 2 ]

# Create l i s t s f o r the o v e r a l l mean 3D error s and 3D standard de v i a t i on s f o r each t e s t

e r r o r s = [ ]

s td s = [ ]

# Loop over a l l r e a l p o s i t i o n s

for k in range ( len ( x_real ) ) :

# Compute the 1D error compared to each r ea l p o s i t i on

x_error = abs (x_exp − x_real [ k ] )

y_error = abs (y_exp − y_real [ k ] )

z_error = abs ( z_exp − z_real [ k ] )

# Compute the 3D error

e r r o r = np . mean(np . s q r t ( x_error ∗∗ 2 + y_error ∗∗ 2 + z_error ∗∗ 2) )

# Compute the 1D standard de v i a t i on s

x_std = np . std ( x_error )

y_std = np . std ( y_error )

z_std = np . std ( z_error )

# Compute the 3D standard dev i a t i on

std = np . mean(np . s q r t ( x_std ∗∗ 2 + y_std ∗∗ 2 + z_std ∗∗ 2) )

# Append to prev ious arrays
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e r r o r s . append ( e r r o r )

s td s . append ( std )

# Find the c l o s e s t r e a l p a r t i c l e

e r r o r = np .min( e r r o r s )

std = stds [ np . where ( e r r o r s==np .min( e r r o r s ) ) [ 0 ] [ 0 ] ]

return e r ror , s td
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Appendix Zero

LIGGGHTS Script for DEM Simulation

of the GranuTools GranuDrum

Listing 4: LIGGGHTS script for the DEM simulation of the GranuTools GranuDrum rotat-

ing at 45 RPM and with monodisperse spheres of microcrystalline cellulose. The results of

this simulation are described in Chapter 5.

# LIGGGHTS s imu la t ion o f the GranuDrum ro t a t i n g at 45 RPM f i l l e d with monodisperse MCC spheres

p ro c e s s o r s ∗ 2 ∗

va r i ab l e t imestep equal 1e−5

va r i ab l e r o ta t i onPe r i od equal 60/45 #s per r e vo l u t i on

va r i ab l e N equal 10000 #Par t i c l e number

va r i ab l e fricPW equal 0 .319687387 # f r i c t i o n p a r t i c l e wa l l

va r i ab l e fricPSW equal 0 .319687387 # f r i c t i o n p a r t i c l e s i d ewa l l

va r i ab l e cohPW equal 0

va r i ab l e f r i c equal 1 . 0 # f r i c t i o n value , does not matter i t d e f i n e s the wal l−wa l l f r i c t i o n

va r i ab l e corPP equal 0 . 3 #Coef f o f r e s t i t u t i o n Pa r t i c l e p a r t i c l e

va r i ab l e f r i cPP equal 0 .319687387 # f r i c t i o n p a r t i c l e p a r t i c l e

va r i ab l e f r i c R o l l equal 0 .00247952321 #Rol l i ng f r i c t i o n

va r i ab l e youngmodP equal 5 e6

va r i ab l e poissP equal 0 . 3

v a r i ab l e dens equal 1580 .0

v a r i ab l e cohPP equal 0
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#Radii f o r the Pa r t i c l e s

va r i ab l e r1 equal 0 .0018/2

#MAIN CODE ro t a t i n g drum

atom_style granu lar

atom_modify map array

boundary f f f #non−pe r i od i c

newton o f f

#Sets newtons 3rd law on or o f f ( E f f e c t on computation time due to l e s s computation but h i gher communication ) needs to be o f f

communicate s i n g l e v e l yes

un i t s s i

r eg i on domain block −0.048 0 .048 −0.002 0 .0221 −0.048 0 .048 un i t s box #crea t e s a reg ion

create_box 3 domain

#read_res tar t base . s t a r t

# crea t e s the neighbor− l i s t ( due to only contac t models t h i s i s very shor t

neighbor 0 .0018 bin

neigh_modify de lay 0

##############Par t i c l e /Wall p r op e r t i e s#################

f i x m1 a l l property / g l oba l youngsModulus peratomtype ${youngmodP} ${youngmodP} ${youngmodP}

f i x m2 a l l property / g l oba l po i s sonsRat io peratomtype ${ poissP } ${ poissP } ${ poissP }

f i x m3 a l l property / g l oba l c o e f f i c i e n t R e s t i t u t i o n peratomtypepair 3 &

${corPP} ${corPP} ${corPP} &

${corPP} ${corPP} ${corPP} &

${corPP} ${corPP} ${corPP} &

f i x m4 a l l property / g l oba l c o e f f i c i e n t F r i c t i o n peratomtypepair 3 &

${ fr icPP } ${fricPW} ${fricPSW} &

${fricPW} ${ f r i c } ${ f r i c } &

${fricPSW} ${ f r i c } ${ f r i c } &

f i x m6 a l l property / g l oba l cohes ionEnergyDens ity peratomtypepair 3 &

${cohPP} ${cohPW} ${cohPW} &

${cohPW} ${cohPW} ${cohPW} &

${cohPW} ${cohPW} ${cohPW} &
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f i x m7 a l l property / g l oba l c o e f f i c i e n t R o l l i n g F r i c t i o n peratomtypepair 3 &

${ f r i c R o l l } ${ f r i c R o l l } ${ f r i c R o l l } &

${ f r i c R o l l } ${ f r i c R o l l } ${ f r i c R o l l } &

${ f r i c R o l l } ${ f r i c R o l l } ${ f r i c R o l l } &

f i x m5 a l l property / g l oba l k_f inn ie peratomtypepair 3 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0 1 .0

#New pair s t y l e

pa i r_s ty l e gran model he r t z t ang en t i a l history r o l l i n g _ f r i c t i o n cdt

pa i r_coe f f ∗ ∗

t imestep ${ t imestep }

f i x g rav i a l l g r av i ty 9 .81 vec to r 0 . 0 0 .0 −1.0

#the Drum/ face s

f i x cad a l l mesh/ su r f a c e / s t r e s s f i l e mesh/rotating_drum_mm . s t l type 2 s c a l e 0 .001 wear f i n n i e

f i x s i d e a l l mesh/ su r f a c e / s t r e s s f i l e mesh/rotating_drum_side_mm . s t l type 3 s c a l e 0 .001

f i x i n f a c e a l l mesh/ su r f a c e f i l e mesh/inface_mm . s t l type 3 s c a l e 0 .001

f i x granwa l l s a l l wa l l / gran model he r t z t ang en t i a l history r o l l i n g _ f r i c t i o n cdt mesh &

n_meshes 2 meshes cad s i d e

#d i s t r i b u t i o n s f o r i n s e r t i on

f i x pts1 a l l p a r t i c l e t emp l a t e / sphere 15485863 atom_type 1 dens i ty constant ${dens} rad iu s &

constant ${ r1 }

f i x pdd1 a l l p a r t i c l e d i s t r i b u t i o n / d i s c r e t e /numberbased 32452843 1 pts1 1 .0

#no need fo r p a r t i c l e i n s e r t i on as the system i s read in by r e s t a r t f i l e

#p a r t i c l e i n s e r t i on

f i x i n s a l l i n s e r t / stream seed 32452867 d i s t r i bu t i on t emp l a t e pdd1 &

npa r t i c l e s ${N} p a r t i c l e r a t e 1000000 over lapcheck yes a l l_ in no ve l constant &

0 .0 0 .0 −0.1 i n s e r t i on_ fa c e i n f a c e extrude_length 0 .03

#apply nve i n t e g r a t i on to a l l p a r t i c l e s t ha t are i n s e r t e d as s i n g l e p a r t i c l e s

f i x i n t e g r a l l nve/ sphere

#output s e t t i n g s , inc lude t o t a l thermal energy
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thermo 1000

thermo_style custom step atoms ke vo l time

thermo_modify l o s t i gno r e norm no

#in s e r t the f i r s t p a r t i c l e s so t ha t dump i s not empty

run 1000

dump dmp a l l custom/vtk 1000 post /drum_∗ . vtk id type type x y z ix iy i z vx vy vz fx fy &

f z omegax omegay omegaz rad iu s

# save every mi l i second

modify_timing on

f i x move a l l move/mesh mesh cad ro t a t e o r i g i n 0 . 0 . 0 . ax i s 0 . 1 . 0 . per iod ${ ro ta t i onPe r i od }

reset_t imestep 0

r e s t a r t 100000 r e s t a r t . drum r e s t a r t . drum

run 180000000 # 30 minutes
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A B S T R A C T

The spatiotemporal resolution of Lagrangian particle trajectories captured using Positron Emission Particle
Tracking (PEPT) is difficult to predict prior to experimentation, since this relies on the detector systems, source
activity distribution, and experimental apparatus. However, understanding the limitations of an experiment
is crucial to quantifying error and ensuring that the captured trajectories reveal phenomena of interest in
enough detail for meaningful analysis. These factors are especially important in PEPT experiments since
this technique is applied to image opaque systems lacking optical access for complementary measurement
techniques, such as Particle Image Velocimetry. Using the Monte Carlo simulator Geant4 Application for
Tomographic Emission (GATE), a computational model of the ADAC/Phillips Forte, a detector system used
at the Positron Imaging Centre (PIC) for PEPT studies, is created and validated against experiments testing
the spatial resolution, sensitivity, scatter fraction, and count-rates following National Electronic Manufactures
Association standards. In this work, fluorine-18 sources and experimental geometries are recreated, generating
synthetic data analogous to experimentally acquired data. Over all experiments and activities tested, this GATE
model reports agreement to within 1%–10% of experiments. In the future, this model is expected to be used by
the PIC to conduct feasibility studies of potential experiments. Further, optimization of experiments can now
be conducted without expending the considerable time and resources required for physical experimentation,
representing a major improvement of the PIC’s PEPT modeling capabilities.

1. Introduction

Positron Emission Particle Tracking (PEPT) is a technique similar
to Positron Emission Tomography (PET) that has been developed to
study opaque systems such as rotating drums, fluidized beds, and other
industrial equipment without optical access [1]. A positron-emitting
substance is bound chemically or physically to a discrete particle, then
tracked as a Lagrangian tracer as it moves within a system [2,3]. This
technique relies on detecting pairs of annihilation photons emitted by
the tracer particle, using these Lines-of-Response (LORs) to successively
calculate the position of the tracer [4]. Analysis of trajectories reveals
the velocity flow fields, particle residence times, recirculation peri-
ods and other time-averaged behavior used in engineering analysis of
industrial equipment [5–8] (see Fig. 1).

Using Monte Carlo simulators such as Geant4 Application for To-
mographic Emission (GATE), it is possible to model the PET systems
on which PEPT experiments are conducted, generating synthetic data
analogous to real LORs [9,10] [11]. GATE modeled PET systems such as
the Siemens Inveon, Philips Allegro, and the General Electric Discovery

∗ Corresponding author.
E-mail address: mxh1092@student.bham.ac.uk (M. Herald).

report agreement with validation experiments to within 1%–10% in
spatial resolution, sensitivity, count-rates, and scatter fraction [12–14].
Additionally, several single-head gamma-cameras such as the Philips
AXIS, GEMS DST Xli, and Millennium VG Hawk-Eye have been modeled
and validated using GATE [15,16]. These models are useful for iterating
through variations of experiments for optimization or testing image
reconstruction algorithms without expending the considerable time and
resources required for physical experimentation.

In this work, GATE is used to model the ADAC/Phillps Forte, a
PET system used for PEPT research at the University of Birmingham
Positron Imaging Centre (PIC). The Monte Carlo model is then validated
by experiments. While this is an older PET system, no validated GATE
models exist to the authors knowledge. Previous to this work, the
performance of real experiments has been difficult to predict since there
is often a complex experimental geometry, a moving source within the
FOV, and a nonlinear response of the detector to the source activity and
energy. For future PEPT experiments at the PIC, this model is expected
to be used for feasibility studies of proposed PEPT experiments by
providing an estimate of the Forte output. Recently, an approach for

https://doi.org/10.1016/j.nima.2021.165073
Received 4 May 2020; Received in revised form 4 January 2021; Accepted 16 January 2021
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Fig. 1. PEPT locates a positron-emitting tracer in a dense granular system by calculating the intersection of LORs, generated by detecting pairs of annihilation photons.

Fig. 2. The Forte can accommodate large experiments for investigation with PEPT due
to its dual-headed geometry. The coordinate system in this work begins in the center
of the FOV.

creating virtual PEPT experiments in GATE has been used which inte-
grates tracer trajectory data from simulations with pre-existing GATE
models of PET systems [17]. GATE simulations coupled to simulated
trajectories produced by multiphysics modeling such as Computational
Fluid Dynamics (CFD) or the Discrete Element Method (DEM) may
prove especially useful, representing a major improvement in the PIC’s
PEPT modeling capabilities. The development of an accurate simulation
model of the ADAC Forte camera will also provide an invaluable testing
ground for the development of new PEPT algorithms (see Fig. 2).

2. Methods

For validating GATE models, a number of approaches have been
used in the past, generally relying on standards published by the Na-
tional Electronics Manufacturers Association (NEMA) [18]. The NEMA
standards describe methods for calculating the true, scattered, and
random coincidences count-rates, as well as the spatial resolution and
sensitivity of PET systems using standard procedures and phantoms.
The performance of PET systems following NEMA standards are usu-
ally provided by the manufacturer, providing a way for customers to
compare the performance of systems in such a way as to not bias one
system over the other, providing a guaranteed level of performance.

In this work, experiments testing the spatial resolution, sensitivity,
scatter fraction, and count-rates of the Forte are conducted following

Table 1
Positions of the spatial resolution tracer in the Forte FOV.

X-Position (mm) Y-Position (mm) Z-Position (mm)

0 0 0
0 127.5 0
0 0 95
150 0 0
150 127.5 0
150 0 95

the NEMA standards for data analysis. All experimental phantoms
are replicated in GATE simulations to provide a basis for validation.
The Forte has also been characterized in other work to demonstrate
improved capabilities, replacing a predecessor system used for PEPT
studies at the PIC [19]. This previous characterization provides an
important comparison for the results of this work.

2.1. Spatial resolution

Spatial resolution is the ability to distinguish the position of a
source within the system field of view (FOV). It is reported as the
full-width half-maximum (FWHM) of a source projection created by a
back-projection of LORs taken at the source’s position. In this work, the
axial and transaxial spatial resolution is reported for a small spherical
source in air measured in the FOV at locations prescribed by the NEMA
protocol. For a coordinate system starting at the central point between
the two detector heads separated by 600 mm, the positions of the
source used in this experiment are recorded in Table 1.

When calculating the FWHM, 1,000,000 LORs are used to reduce
statistical uncertainty. The FWHM of each acquisition is determined
by linear interpolation of the projection profile created by single-slice
rebinning of the LORs using 1 mm bins.

𝑅𝑒𝑠𝑇 𝑟𝑎𝑛𝑠𝑎𝑥𝑖𝑎𝑙𝐶𝑒𝑛𝑡𝑒𝑟
= (𝑅𝑒𝑠𝑦𝑥=0,𝑦=0,𝑧=0 + 𝑅𝑒𝑠𝑧𝑥=0,𝑦=0,𝑧=0

+𝑅𝑒𝑠𝑦𝑥=0,𝑦=0,𝑧=95 + 𝑅𝑒𝑠𝑧𝑥=0,𝑦=0,𝑧=95 )∕4 (1)
𝑅𝑒𝑠𝑇 𝑟𝑎𝑛𝑠𝑎𝑥𝑖𝑎𝑙1∕2𝐹𝑂𝑉

= (𝑅𝑒𝑠𝑦𝑥=150,𝑦=127.5,𝑧=0 + 𝑅𝑒𝑠𝑧𝑥=150,𝑦=127.5,𝑧=0

+𝑅𝑒𝑠𝑦𝑥=0,𝑦=127.5,𝑧=0 + 𝑅𝑒𝑠𝑧𝑥=0,𝑦=127.5,𝑧=0 )∕4 (2)

𝑅𝑒𝑠𝐴𝑥𝑖𝑎𝑙𝐶𝑒𝑛𝑡𝑒𝑟
= (𝑅𝑒𝑠𝑥𝑥=0,𝑦=0,𝑧=0 + 𝑅𝑒𝑠𝑥𝑥=0,𝑦=0,𝑧=95 )∕2 (3)

𝑅𝑒𝑠𝐴𝑥𝑖𝑎𝑙1∕2𝐹𝑂𝑉
= (𝑅𝑒𝑠𝑥𝑥=150,𝑦=0,𝑧=0 + 𝑅𝑒𝑠𝑥𝑥=150,𝑦=0,𝑧=95 )∕2 (4)

The phantom and source used in this experiment is a 0.2 mm diam-
eter anionic exchange resin bead. Anionic exchange beads selectively
absorb fluorine-18 ions from a solution of water and fluorine-18, volu-
metrically activating the bead with a high activity concentration [20].
After soaking in the solution for approximately 30 min, a resin bead
was extracted and its activity measured with a well-counter to be
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Fig. 3. Locations of the spatial resolution phantom positions, with exaggerated
phantom size.

approximately 27.8 MBq ± 0.1. The resin bead was attached to the end
of a 1.5 mm diameter stainless-steel syringe using a UV activated epoxy.
The syringe was taped to a 200 mm long and 5 mm diameter wooden
dowel, then placed in the FOV of the detectors.

A GATE model of the spatial resolution phantom and source has
been designed to recreate the experimental geometry. The exact com-
position of the resin bead is unknown but was modeled as a 0.2 mm
diameter spherical plastic source, encapsulated in a spherical plastic
phantom 2 mm in diameter. This outer sphere represents the UV
activated epoxy and provides material for positrons to annihilate near
the source. By the end of the experiments, the source activity decayed
to approximately 19 MBq (see Fig. 3).

The source projections are created using the ‘Voxels’ base-class of
the PEPT Library, an open-source Python library of functions useful
for analyzing PEPT data [21]. Voxels are the 3D equivalent of 2D
pixels. Similar to an image, voxels can be arranged into 3D arrays.
In the context of PEPT experiment, the detected LORs are converted
into voxel images by finding and increasing the scalar value of the
voxels which are crossed by the line. This process can be repeated with
successive LORs, creating a array corresponding to the density of LORs
and can be visualized by looking at a 2D slice of the 3D voxel array. The
line-density is the back-projected image of the source used to fit the
FWHM (see Fig. 4).

2.2. Sensitivity

Sensitivity is the rate of detected coincidences compared to the rate
of positron-annihilation produced by a source. Geometric and intrinsic
factors such as the detector and source positions as well the scintillation
crystal material determine the sensitivity of PET systems, however, at
high count-rates, the dead-time from electronic pulse processing can re-
strict the number of events able to be recorded. For low activity sources
the rate of detected coincidences, R, is approximately the source activ-
ity, A, multiplied by the geometric efficiency, 𝜀𝑔 , and multiplied by the
square of the intrinsic efficiency, 𝜀𝑖, since both coincident photons must
be detected. The intrinsic efficiency should remain relatively constant
for these experiments but has some dependency on the head separation
and source position due to the depth of photon interaction [22].

𝑅 = 𝐴𝜀𝑔𝜀
2
𝑖 (5)

For a centrally located point source in between the two detector
heads separated by a distance S, the geometric efficiency can be de-
fined as the solid angle between the point source and limits of the

detector, length L and height H. The geometric efficiency of the Forte
was studied in previous work and an analytical expression derived to
calculate the geometric efficiency for an ideal point source anywhere
in the FOV [23]. This expression transforms the Cartesian coordinates
into spherical coordinates and integrates across the zenith, 𝜙, and
azimuth, 𝜃. Using trigonometric identities, the geometric efficiency can
be expressed solely by integrating the azimuth angle.

𝑑𝜀𝑔 = sin𝜙𝑑𝜃𝑑𝜙
2𝜋

(6)

𝜃𝑚𝑖𝑛 = arctan
(
max

{𝑆 − 2𝑥
𝐿 − 2𝑧

; 𝑆 + 2𝑥
𝐿 + 2𝑧

})
(7)

𝜃𝑚𝑎𝑥 = 𝜋 − arctan
(
max

{𝑆 − 2𝑥
𝐿 + 2𝑧

; 𝑆 + 2𝑥
𝐿 − 2𝑧

})
(8)

𝜀𝑔 = 1
2𝜋

2∑
𝑞=1

∫
𝜃𝑚𝑎𝑥

𝜃𝑚𝑖𝑛
(max

{ 𝑆 − 2𝑥
𝐻 + (−1)𝑞2𝑦

; 𝑆 + 2𝑥
𝐻 − (−1)𝑞2𝑦

}2
csc2 𝜃 + 1)−

1
2 𝑑𝜃

(9)

For the Forte, the detector area is 380 mm in length and 510 mm
in height, resulting in a geometric efficiency of approximately 12% for
a head separation of 600 mm. Sensitivity is highest in the center of
the field of view and decreases rapidly as the source moves off-axis.
Additionally, by sampling the geometric efficiency at several points
within the FOV and multiplying by the square of the intrinsic efficiency,
a sensitivity field can be created and visualized (see Fig. 5).

In this work, a directly activated 2 mm glass bead attached to the
end of a long stainless-steel syringe is placed in the center of the FOV
with a detector separation of 600 mm. Since positrons emitted from
fluorine-18 can have a considerable range in air, the peak sensitivity
is found by removing successive layers of shielding from the point
source. The shielding provides material for positrons to annihilate with
an electron, then the expected counts for a bare source in air are found
by extrapolating the shielded count-rates. The parameters 𝐶1 and 𝐶2 are
fitted, so as long as the shielding is of uniform material the attenuation
coefficient is not needed.

𝑅 = 𝐶1𝑒
−𝐶2𝑡 (10)

The activity of the source in these experiments is measured by a
well-counter to be 10.5 MBq ± 0.1, decaying to approximately 8 MBq
when the last shield is placed over the source. The shields are four
150 mm long, 0.75 mm thick stainless-steel tubes of increasing diam-
eter placed over the point source. For each measurement 1,000,000
LORs are used to reduce statistical uncertainty. Using a value of 24% for
the intrinsic efficiency the expected sensitivity of the Forte at 600 mm
is 6.49 kHz/MBq.

2.3. Scatter fraction and count-rates

All LORs acquired by PET systems are either true, scattered or
random. The scatter fraction is the fraction of detected coincidences
in which one or both rays undergo scattering. This corrupts the LORs,
since they no longer pass through the point of positron-annihilation.
As the experimental system of interest becomes denser, more rays
are scattered, reducing the maximum achievable true LOR count-rate.
In addition to scattered coincidences, two unrelated events can be
detected and associated as a coincidence if they occur within the
coincidence window. At high count-rates, random LORs can constitute
a large fraction of the total LORs since they scale with the square of
the singles rate, S [24].

𝑅𝑇 𝑜𝑡𝑎𝑙 = 𝑅𝑇 𝑟𝑢𝑒 + 𝑅𝑆𝑐𝑎𝑡𝑡𝑒𝑟𝑒𝑑 + 𝑅𝑅𝑎𝑛𝑑𝑜𝑚 (11)

𝑅𝑅𝑎𝑛𝑑𝑜𝑚 = 2𝜏𝑆2 (12)

To measure the scatter fraction, the scattered LORs must be ex-
tracted from the true and random LORs. NEMA describes an experiment
using a line source inserted into a high-density polyethylene (HDPE)
phantom as the basis for calculating the scatter fraction and count-rates.
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Fig. 4. Left: 2D slice of the 3D voxel array for a source near the center of the FOV. Both the Axial and Transaxial spatial resolutions are visible. Each voxel edge is 1 mm. Right:
1D back-projection of the experimental and GATE simulated spatial resolution phantom at the central position of the Forte FOV.

Fig. 5. 3D Total Sensitivity field of the Forte at a head separation of 600 mm.

However, due to the unavailability of specialized NEMA compliant
phantoms, other phantoms are used in their place. As reported by
others, the non-standard phantoms can be used in place of NEMA
phantoms with little effect on the overall results [25,26]. For the
purposes of this work, any phantom could be used, since the objective
is to create a validated GATE model, as opposed to a performing quality
assessment of the Forte. A smaller cylindrical HDPE phantom is used in
this work and the NEMA methods applied. This phantom has an outside
diameter of 50 mm and length 120 mm, with an internal cylindrical
cavity of diameter 10 mm and length 100 mm. The phantom is filled
with approximately 100 MBq of fluorine-18 well-mixed with water at
the start of the experiment then imaged over several half-lives. The
head separation is set to 445 mm.

When imaging this source using single-slice rebinning, the true,
scattered, and random LORs can be isolated by following the NEMA
protocol. The true LORs are all contained within the 40 mm strip
centered on the maximum pixel with all other counts outside this strip
being scattered or random. To remove scattered and random counts
within the 40 mm strip, the pixel intensities on the edges of this strip
are linearly interpolated and subtracted, leaving only the true LORs.
The random LORs can be further extracted using a random coincidence
estimate, however, for simplicity, the scatter fraction in this work is
reported as the ratio of scattered and random LORs acquired during the
lowest activity run. In this way, the random contribution is minimal.

𝑅𝑆𝑐𝑎𝑡𝑡𝑒𝑟 = 𝑅𝑇 𝑜𝑡𝑎𝑙 − 𝑅𝑇 𝑟𝑢𝑒 (13)

𝑆𝐹 = 𝑅𝑆𝑐𝑎𝑡𝑡𝑒𝑟∕𝑅𝑇 𝑜𝑡𝑎𝑙 (14)

In addition to the true, scattered, and random count-rates, the
Noise Equivalent count-rate (NEC) is computed as the square of the
true counts divided by the total number of counts. The NEC has
little relationship to actual noise, but rather provides a measure of
relative count-rate contributions from true, scattered, and random co-
incidences. It is commonly used as a figure of merit for comparing PET
systems [27].

𝑁𝐸𝐶 = 𝑅2
𝑇 𝑟𝑢𝑒∕𝑅𝑇 𝑜𝑡𝑎𝑙 (15)

2.4. GATE model

GATE is a Monte Carlo simulator based on Geant4 libraries, de-
signed for the simulation of PET scanners and other medical imaging
devices [28]. The geometry of detectors and experiments can be created
using simple shapes or geometries imported from mesh files, meaning
a wide range of systems can be modeled. Further, the affects of
signal-processing can be emulated using GATE, including the energy
resolution of scintillation crystals, energy windows for accepting
events, coincidence timing windows, time-resolution of recorded
events, and dead-time of the PMTs. Accurate modeling of signal-
processing is crucial for replicating realistic detector response over a
wide-range of activities since the energy response and count-rates in
real systems are greatly affected by these processes [29].

In this work, the geometric model of the Forte is informed by
design drawings provided by the manufacturer, measurements taken
at the PIC. The Forte possesses a wide-area NaI scintillation crys-
tal of dimensions 590 x 470 x 16 mm, optically coupled to a glass
light-guide. This component is considered the sensitive detector in
the GATE simulation, the volume in which events are detected. Ad-
ditionally, an aluminum gantry ring, aluminum casing around the
detector heads, and lead shielding are added since these components
will contribute significantly to the overall scatter. Further add to the
geometric model, a generalized back-compartment corresponding to
the ‘intermediate complexity’ back-compartment described by Rault
et al. is added to account for scattering within the PMTs and inter-
nal electronics [30]. An accurate back-compartment is needed when
modeling photons over 300 keV since these rays can pass through the
relatively thin scintillation crystal and back-scatter, contaminating the
energy spectrum (see Fig. 6)

The signal-processing of the Forte, referred to as the digitizer, is
informed by previously published work using the Forte and experiments
conducted in this work [19]. The energy resolution is reported to be
approximately 14% at 511 keV for moderate count-rates. When used for
PEPT, a 50% energy window of 350–650 keV is applied to discard the
majority of scattered rays, while maintaining high coincidence rates.
The detector is operated in coincidence with a window of 15 ns and
reported time resolution of 15 ns. Additionally, only pulses from the
central 510 x 380 mm area of the detector crystal are accepted. When
the pulses falling outside this range are rejected for a central point
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Fig. 6. GATE model of the Forte. NaI crystal (green, red outline), glass lightguide
(blue), PMTs (yellow), electronics (gray), Al casing and Pb shielding (gray box outline),
Al ring (gray ring outline), plastic front cover (white outline). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

source, the count-rate is reduced by 20%–30%, determined by the
geometric efficiency. This effect is added in post-processing of the GATE
generated LORs by rejecting LORs falling outside the active area.

Another consideration for the GATE model is the amount of spatial
blurring to apply to the detected LORs. This blurring refers to an
applied random movement in each position component of the detected
LOR. The fluctuation in position follows a normal distribution with
an FWHM set by the user. GATE simulation results will generally
report a better spatial resolution than experimental measurements if
spatial blurring is not simulated [31]. To investigate this effect, an
additional series of simulations are conducted with the spatial blurring
module activated in the digitizer. It is unknown how much additional
spatial blurring is needed to recreate experimental results, so 3, 5, and
7 mm blurring are investigated and the best fit to experimental data is
selected.

Additionally, the digitizer settings are crucial for accurate
dead-time emulation. When a photon interaction triggers detector to
convert the light generated by the scintillation crystal into an elec-
tronic pulse, dead-time occurs during which the detector is unable
to accept a new pulse and other pulses may ‘pile-up’, being detected
as a single pulse or simply lost [32]. A wide range of models have
been proposed to account for this effect in PET systems including
paralyzable, non-paralyzable, and hybrid models [33]. These models
refer to the behavior of the dead-time, describing whether new pulses
occurring during the dead-time extend the dead-time (paralyzable), do
not extend the dead-time (non-paralyzable), or cause some mixture of
the two behaviors (hybrid). The dead-time of the Forte is considered to
have a hybrid dead-time, since each pixel is paralyzable, however, the
recording of LORs is a non-paralyzable process.

Complicating the addition of dead-time in this GATE model is the
need to account for the pseudo-independent zones of the scintillation
crystal. When a scintillation event occurs, approximately only 6–7
individual photomultiplier tubes are activated out of an array of 55
on each head. The position of photon interaction is then calculated
as the energy-centroid of the light collected by these PMTs, referred
to as Anger logic [34]. To model these pseudo-independent zones, in

Table 2
Forte geometry description.

Geometric Model Values

Detector dimensions 590 × 470 × 16 mm
Useful detector area 510 × 380 mm
Dual-Head separation 250–800 mm
Detector crystal Sodium Iodide
Number of pixels 9

Table 3
Forte digitizer description.

Digitizer model Values

Coincidence window 15 ns
Time resolution 15 ns
Paralyzable Dead-Time per pixel 1.15 μs
Non-Paralyzable Dead-Time 1.15 μs
Energy resolution at 511 keV 14%
Energy window 350–650 keV (50% Photopeak)
Intrinsic efficiency 24%

Table 4
Experimental and simulated phantom characteristics.

Characteristic Spatial Sensitivity Scatter and
resolution Count-Rates

Material Resin, Plastic,
Stainless-steel,
Wood

Glass, Stainless-steel HDPE, Water

Dimensions 0.2 mm diameter
resin bead,
1.5 mm diameter
syringe, dowel
200 mm length

2 mm diameter bead,
0.75 mm thickness
shield, 150 mm length

120 mm height,
50 mm diameter,
12 mm inner
diameter, 100 mm
inner height

Head Separation 600 mm 600 mm 445 mm

Initial Activity 27.8 MBq 10 MBq 100 MBq

lieu of not applying Anger logic directly, 9 pixels are used, arranged
in a 3 × 3 array, since this the closest approximation of the area
covering 6–7 PMTs. The dead-time per pixel is determined to be 1.15
μs by fitting the GATE produced count-rate curves to previously pub-
lished data and an independent count-rate experiment conducted in this
work [19]. This value disagrees with the published value of 170 ns for
the non-paralyzable model described by Parker et al. but is closer to
the manufacturer specification 1.3 μs, though it is not known how the
manufacturer’s value was derived. The non-paralyzable dead-time is
also set to 1.15 μs (see Tables 2 and 3).

Next, the phantom and source geometries must be described. Three
geometries are used for these experiments: an activated resin bead,
coated in epoxy on the end of a hollow stainless-steel syringe,
stainless steel cylinders placed over the point source, and a
high-density polyethylene (HDPE) cylinder filled with water well-mixed
with fluorine-18. These are the spatial resolution phantom, sensitivity
phantom, and scatter fraction phantom, respectively. These phantoms
are described in detail in the sections above (see Fig. 7, Table 4).

3. Results

3.1. Spatial resolution

The experimental spatial resolution phantom in the center of the
FOV of the Forte produces a central axial FWHM of 16.28 mm and
transaxial FWHM of 5.39 mm. The spatial resolution was also measured
at 1/2 FOV. The 1/2 FOV axial and transaxial FWHM are measured
to be 19.62 mm and 5.13, respectively. Compared to the experiment,
the GATE simulation without spatial blurring underpredicts the FWHM
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Fig. 7. The side view of the spatial resolution phantom (left), top down view of the sensitivity phantom (center), and cut-away view of the scatter fraction and count-rates phantom
(right).

Fig. 8. The amount of spatial blurring applied to the GATE simulated LORs was varied
and compared to the experimentally determined spatial resolution of the Forte.

in both the axial and axial directions, indicating that spatial blurring
is required. The 2.5, 5, and 7.5 mm spatial blurring simulations were
compared, with the 5 mm blurring GATE simulation agreeing best with
the experiment, though still under-predicting the transaxial FWHM. In
previous work, the Forte was measured to have an transaxial spatial
resolution of approximately 6 mm by fitting 1D a Gaussian function to
a point source profile in air [19]. The measurements in this work vary,
but are consistent with this value (see Fig. 8, Table 5).

3.2. Sensitivity

Comparing the results of the sensitivity experiment, the experimen-
tal sensitivity of the Forte is measured to be approximately 6.76 kHz/
MBq, whereas the simulated sensitivity is reported to be 6.42 kHz/MBq.
This translates into a −5.03% error between the experiment and sim-
ulation. The predicted theoretical sensitivity based on the geometric
and intrinsic efficiencies, is approximately 6.49 kHz/MBq, showing
agreement between theory, experiment, and simulation (see Fig. 9).

Further, the linear attenuation coefficient of the shielding in the
experiment, calculated by fitting the count-rates, is 0.105 mm-1 com-
pared to simulated value of 0.097 mm-1, representing a −7.62% error.
When the shielding is present the experiment and simulation agree
well, however, when the source is imaged without shielding, the count-
rates between the experiment and simulate vary significantly. This
discrepancy is addressed in the discussion section.

Fig. 9. Measured and extrapolated counts of the sensitivity experiment, showing close
agreement when shielding is present and poor agreement for a bare source.

Table 5
Experimental and simulated spatial resolution results.

Spatial resolution Experiment 0 mm 5 mm
Blurring Blurring

Central axial (mm) 14.680 10.965 13.294
Central transaxial (mm) 5.567 3.159 5.675
1/2 FOV axial (mm) 17.217 13.368 16.904
1/2 FOV transaxial (mm) 4.941 2.871 5.477

3.3. Scatter fraction and count-rates

The scatter fraction of the experiment and simulation in the lowest
activity acquisition show relatively good agreement, however the ex-
periment reports a slightly higher scatter fraction than the simulation.
The experimental measured scatter fraction is approximately 0.167,
compared to the simulated value of approximately 0.155, representing
a −7.19% error. Over 1–100 MBq, simulated scatter and random frac-
tion continue to agree, though at high source activities the scattered
plus random and true fraction begin to diverge, with a maximum error
of −14.21% at 100 MBq, possible reasons for this are covered in the
discussion (see Fig. 10).

Further, the results of the count-rate experiment and simulation
are in good agreement, with the total, true, scattered plus random,
and NEC count-rates differing by less than 10% over the range of 1–
100 MBq. The total and true count-rates perform particularly well, with
an average error of 2.87% and 6.04%, respectively over the range of
tested activities. The peak true coincidence rate of the experiment is
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Fig. 10. The true LORs and scattered plus random LORs for the simulation and
experiments.

Fig. 11. Results of the count-rate experiment with the total (black), true (blue),
scattered plus random (orange), and NEC (green) rates for both the experiment and
simulation. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

50.3 kHz at 21.4 MBq compared to the simulated values of 48.5 kHz at
21.4 MBq. Additionally, the peak experimental NEC rate of 32.1 kHz
occurs at 13.2 MBq compared to the simulated values of 29.6 kHz at
14.2 MBq, showing close agreement (see Fig. 11).

4. Discussion

The spatial resolution of the GATE simulation without added spa-
tial blurring is considerably higher than what was measured in the
experiment, demonstrating that the spatial blurring module is needed
to degrade the resolution of detected LORs in order to match the exper-
imental data. Accurate replication of the spatial resolution is important
for simulating PEPT experiments since it will affect the fidelity of
reconstructed trajectories, distorting the tracked position of source and
can introduce spurious tracer velocities. For the Forte, approximately
5 mm of spatial blurring is required at activities around 20 MBq. It is
expected that at lower activities the amount of spatial blurring can be
decreased, but more experiments are needed to confirm this.

The sensitivity simulation agrees with experiment in both the over-
all sensitivity of Forte, as well as the calculated linear attenuation

Table 6
Results from the validation experiments conducted in this work.

Validation
characteristic

Percent error (%) Count-Rate Absolute percent
error (%)

Central axial 9.44 – –
Central transaxial −1.90 – –
1/2 FOV axial 1.82 Total 2.87
1/2 FOV transaxial −9.79 True 4.59
Sensitivity −5.03 Corrupted 8.08
Scatter fraction −7.19 NEC 10.18

coefficient of the stainless-steel shielding. In previous work using the
Forte, intrinsic efficiency is reported to be 23%, though a value of 24%
appears to match this work better. While the theoretical, experimental,
and simulated sensitivity are in good agreement, the counts for the
unshielded source in the simulation do not agree, introducing a dis-
crepancy. One reason for this could be differences in the air definition
of the simulation compared to the actual conditions on the day of
the experiment. The range of positrons emitted in diffuse media, such
as air, can travel considerable distances before annihilating with an
electron [35]. The density of air in GATE is 1.29 kg/m3, however,
the density of air is sensitive to both temperature and humidity which
can affect the positron range. This is likely the source of error for this
case, but differences between the source geometry or activity in the
simulation could also be responsible.

The scatter fraction and count-rate experiment and simulation at
low count-rates are at low and moderate activities are in good agree-
ment, demonstrating that the source and geometric definitions are
accurate since these are main contributors to the count-rates in these
cases. At high activities the scattered and random counts diverge,
with a maximum error of −14.21% at 100 MBq, which could indicate
inaccuracies in the digitizer model or the pixelated detector crystal.
Since crosstalk between the crystals or afterglow caused by defective
crystals are not explicitly simulated, at high count rates these effects
may introduce excessive error in positioning the point of interaction
of photons [36]. This could explain why the total count-rate remains
accurate, while the scatter and random count-rate is higher in the
experiment than the simulation. However, this discrepancy is not signif-
icant since PEPT experiments using the Forte rarely use source activities
where this would become an issue.

5. Conclusions

In this work, three experiments were conducted to validate a GATE
model of the Forte, testing the spatial resolution, sensitivity, the scatter
fraction, and count-rates. Overall, this GATE model agrees with experi-
ment to within approximately 10% over all experiments and activities,
consistent with values reported of other systems modeled using GATE
(see Table 6).

Spatial resolution, sensitivity, scatter fraction, and count-rates are
characteristics of interest in predicting the performance of PEPT ex-
periments. By using realistic phantoms descriptions, this model has
been shown to generate synthetic LORs from replicated experimental
conditions. This is useful since a balance between the quantity and
quality of LORs is desired in PEPT experiments. High count-rates are
needed to create sufficient temporal resolution or tracers along their
trajectory, however, increasing the source activity can result in poor
count-rates due to excessive dead-time. Additionally, the fraction of
corrupted events also increases at high count-rates, degrading spatial
resolution of reconstructed trajectories.

Combined with the DEM simulation capabilities of the PIC, this
GATE model has the potential to resolve several outstanding ques-
tions pertaining to the optimization of PEPT experiments. What is the
source activity for a given experiment that will return the highest
true LOR count-rates? How much material can annihilation photons
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penetrate without being excessively corrupted by scattering? Can the
spatiotemporal resolution of trajectories be improved by changing the
detector geometry or digitizer settings? These questions can now be
systematically investigated using Monte Carlo simulations without ex-
pending considerable time using the Forte, which is often constantly
in use by researchers and companies conducting PEPT experiments.
For proposed experiments, this model can also be used for feasibility
studies, ensuring that the expected tracer velocities can be tracked or
that the experimental apparatus will not introduce excessive scattering,
representing a major improvement in PEPT modeling by the PIC.
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Positron Emission Particle Tracking (PEPT) is a Lagrangian particle tracking technique useful for imaging flow in
opaque granularmedia. The scientific and industrial systems studied using PEPT and the PEPT technique can also
be simulated: Discrete Element Method (DEM) for granular systems and Monte Carlo for PEPT. Using the open-
source DEM2GATE library,we quantify the reconstruction of particle trajectories and overall systembehaviour by
integrating particle trajectories from a rotating drum simulation with a PEPT detector simulation. The results
show the main drivers of PEPT spatial error are particle acceleration and gamma-ray scattering. The accuracy
of reconstructed flow fields increases logarithmically with measurement time. Measurements of higher-order,
derived quantities require more time to reach a desired level of accuracy. Surprisingly, our results imply PEPT
measurements relying on fluctuating velocity deviate substantially from the system's true behaviour. However,
using DEM2GATE, these errors are predictable and can be corrected.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).

Keywords:
DEM
PEPT
GATE
Validation
Simulation

1. Introduction

1.1. Background and motivation

Granular materials are used in a wide range of contexts in industry,
but are often dense and opaque, making them difficult to study using
optically-based particle tracking techniques like Particle Tracking
Velocimetry (PTV) or Particle Image Velocimetry (PIV) [1]. In response
to this, more penetrating imaging methods like x-ray tomography and
refractive index matching tomography have been developed [2,3]. Pos-
itron Emission Particle Tracking (PEPT) is a widely used Lagrangian par-
ticle tracking technique that relies on the detection of coincident
511 keV gamma-rays to locate a positron-emitting source [4–6]. Even
through dense optically inaccessible vessels, PEPT can be used to study
granular systems [7].

However, it is necessary to establish that the PEPT result is a faithful
representation of real trajectories and that the behaviour of the particle
is representative of all particles in the system. There are a number of
ways that Lagrangian trajectories can misrepresent the real behaviour
of a system, such as not having enough temporal resolution to capture
high-frequency motions of the tracer or introducing noise to a slow-
moving particle [8]. In the first case when a trajectory does not have

enough resolution to resolve rapid fluctuations in velocity, the tracer
will appear to be moving more slowly than it actually is, since this mo-
tionwill be smoothed out. On the other hand, if a particle ismoving very
slowly, the noise in the position of the tracer will make it appear to be
‘jiggling’ in place. Further, segregation caused by differences in particle
size or density can lead to particles having very different behaviour
[9]. This will necessarily distort the PEPT measurement as these parti-
cles may not explore all areas or phase states of the system.

To validate PEPT measurements, complementary particle tracking
experiments such as Particle Image Velocimetry (PIV) can be conducted
simultaneously, but particles must be imaged in optically transparent
systems [10]. In general, these experiments have shown that PEPT lo-
cates the tracer accurately, but complementary experiments cannot be
carried out for all cases due to the opaque nature of many granular sys-
tems. Furthermore, PIV cannot guarantee that the true data are
completely representative of the real particle motion either. This neces-
sitates a study of the extent towhich PEPT trajectories represent particle
motion in a system where the true trajectories and system behaviour
are known a priori.

In order to fulfill the above stated, in this work, we introduce a new
method of using highly-detailed Lagrangian trajectories of particles
from a DEM simulation as the basis for virtual PEPT experiments
allowing, for the first time, a meaningful and direct comparison be-
tween PEPT and DEM data. The prescribed particle position provides a
means of direct comparison between a known and highly specified (vir-
tual) trajectory and its (virtual) measurement using PEPT. First, a DEM
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simulation of a system representative of a typical PEPT experiment is
created and a single particle trajectory extracted. Then this trajectory
is prescribed as the motion of a positron-emitting tracer in a virtual
PEPT experiment using calibrated Monte Carlo simulations. The virtual
PEPT experiment which reproduces the behaviour of the full PEPT cam-
era system, produces outputs quantitatively similar to that of real detec-
tors and can be processed using a PEPT algorithm to locate the tracer. To
assess the difference between the DEM trajectory and the PEPT recon-
structed trajectory, the trajectories are first compared point-by-point
to compute an average 2-dimensional spatial error. Then, both trajecto-
ries are post-processed to reconstruct Eulerian fields and scalar indica-
tors which describe the system behaviour. Since values generated
from DEM are the model data, PEPT reconstructed values can be com-
pared to assess to what extent the modelled system's behaviour is cap-
tured - and crucially to what extent, and in what manner, the PEPT-
reconstructed trajectories differ from the model DEM.

This work sets out to describe how to take a DEM simulation of a
granular system and use extracted particle trajectories to create a real-
istic virtual PEPT experiment, introducing a publicly available repository
of useful functions for this task called ‘DEM2GATE’. Along with this
workflow, methods to compare the DEM trajectories with the PEPT tra-
jectories are demonstrated, providing a quantifiable and reproducible
comparison. To aid the reader, an overview of the paper's structure
and where to find key information is included below:

• Rotating drum DEM simulation (Section 2.1)
- Mono-disperse GranuDrum (Section 2.1.1)
- Poly-Disperse GranuDrum (Section 2.1.2)

• DEM2GATE Data Extraction (Section 2.2)
- Tracer trajectory (Section 2.2.1)
- Packing-density voxel array (Section 2.2.2)

• PEPT detector simulation (Section 2.3)
• Post-Processing DEM and PEPT data (Section 2.5)
- Eulerian Fields (Section 2.5.1)
- Scalar Indicators (Section 2.5.3)

• Results and Key Findings (Section 3)
- Eulerian field accuracy increases logarithmically with measurement
time (Fig. 17)

- Higher-order derived quantities require longer measurement times
(Fig. 17)

- Particles of mean diameter best recreate occupancy (Fig. 22)
- PEPT spatial error is caused by particle acceleration and gamma-ray
scattering (Fig. 27)

- PEPT measurements of fluctuating velocity can deviate substantially
from the prescribed behaviour (Fig. 28)

- Errors in PEPT are predictable and can be corrected (Fig. 29)

1.2. Positron emission particle tracking

PEPT is a fully 3-dimensional Lagrangian particle tracking technique
capable of capturing high spatial and temporal resolution trajectories of
a single particle in a granular system [4]. To conduct a PEPT experiment,
a particle from a granular system is labelled with a positron-emitting
isotope, usually fluorine-18, then placed back into the system [11].
The annihilation photons of a positron-electron pair are recorded by a
radiation detector and used to reconstruct the position of the tracer
over time [4]. Positrons annihilate with electrons close to their point-
of-emission producing coincident, back-to-back 511 keV gamma-rays.
The gamma-rays can be detected using gamma cameras operated in co-
incidence mode. The line between the coincident 511 keV gamma-rays
intersects the tracer location and is called a line-of-response (LoR). In

principle, two LoRs define the position of the tracer by triangulation.
In practice, to account for scattering and other uncertainties, a larger
sample of LoRs is used. In a typical PEPT experiment, approximately
50–500 LoRs are used [6,12], with the optimal number of LoRs being a
complex function of the scattering environment, tracer velocity, and
source activity. Higher event count rates of LoRs are needed to locate
the tracer accurately in environments with a high degree of scattering
orwhen the tracer ismoving quickly, but the source activity is a limiting
factor in the rate at which LoRs are detected. 200 LoRs has been shown
to give a satisfactory compromise between spatial and temporal resolu-
tion in a number of systems, andwas recently used in an extensive com-
parative study of the performance of PEPT algorithms byWindows-Yule
et al. 2021, RoPP [12]. A sample of LoRs and segment of a trajectory from
a PEPT tracer are shown in Fig. 1. The LoRs which do not intersect the
tracer position are scattered or random LoRs.

PEPT trajectories are post-processed to calculate properties of gran-
ular systems. In other work, PEPT has been used to study properties of
industrial relevance in systems such as rotating drums, fluidised beds,
and pipe flows, among others [4,13–18].

While the Birmingham PEPT algorithm is themost widely used PEPT
algorithm, newermethods such as the Positron Emission Particle Track-
ing using Machine Learning (PEPT-ML) algorithm have been developed
which provide more robust tools for locating, identifying, and tracking
particles [6,19]. PEPT-ML is used in this work; however, other algo-
rithms such as the voxel-based Feature Point Identification (FPI)
method or the Stanford B-Spline Reconstruction (SBSR) method
[20,21] could be used. The FPImethod offers advantages inmultiple par-
ticle tracking capabilities whereas the SBSR method is capable of using
fewer LoRs [12].

1.3. Simulating granular media

The Discrete Element Method (DEM) is a simulation technique for
numerical modelling granular systems by solving Newton's equations
of motion in discrete time-steps. Developed by Cundall in 1971 [22],
this method resolves the Lagrangian motion of the particles, detects
contacts, and calculates contact forces between particles. DEM is there-
fore a powerful tool to predict granular behaviour [23]. However, often
when modelling granular materials consisting of very small particles,
like fine powders, a larger ‘coarse-grained’ DEM particle is used. This
is done to reduce the amount of computation needed in the simulation
since fine powder may consist of billions or trillions of individual parti-
cles. When this is done, some forces whichmay be particularly relevant
to small particles, for example, the fluid drag force and Van Der Waals
forces, are not modelled, thus the particle behaviour is determined
only by inertial and contact forces.

Trajectories of a single particle can be derived from DEM calcula-
tions; however, DEM simulations may produce unrealistic results if
not correctly calibrated [24]. This is where PEPT proves itself as a useful
method for calibrating and validating DEM [25] and can be made more
rigorous and effective by using the DEM2GATE methods proposed in
this paper, as DEM2GATE can be used to determine the degree to
which if the particle motion captured by PEPT accurately represents
the model particle trajectory, and use this information to map the
PEPT data so as to provide more precise model DEM data for validation.

In this work, the DEM software LAMMPS Improved for General
Granular and Granular Heat Transfer Simulations (LIGGGHTS) is used
to simulate a granular system which is then used as the basis for a vir-
tual PEPT experiment. LIGGGHTS is an open-source DEM software
used in industry and academia to model granular systems [26]. A
small rotating drum, based on the commercially available powder test
apparatus GranuDrum (GranuTools, Awans, Belgium) is chosen as the
model system [27]. The GranuDrum is a systemwith rich phenomenol-
ogy whose measurements are sensitive to the cohesive and frictional
properties of particles. In practice, the GranuDrum is used to character-
ise powder flow, which can then be used to model the flowability of
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materials in larger industrial systems [28,29]. Trajectories extracted
from this simulation are the model basis on which to compare the
PEPT reconstructed trajectories (see Section 3.2). The GranuDrum is
shown in Fig. 2.

Previouswork has shown that the timeneeded to run an experiment
largely depends on the characteristic length of the vessel and tracer ve-
locity [30]. In this case, a 30-min long trajectory ensures that the tracer
explores all areas of the rotating drum and goes to these areas often
enough such that accurate statistics of the calculated Eulerian fields
and scalar indicators can be ensured. Other systems may require longer
or shorter trajectory times to acquire adequate statistics, but 30 min is
suitable in this instance, as will be seen in Section 3.1.1.

1.4. Creating virtual PEPT experiments

Virtual PEPT experiments are Monte Carlo simulations of positron-
emitting sources (or back-to-back 511 keV gamma-rays) inside vali-
datedmodels of radiation detectors designed to replicate the conditions
of a real PEPT experiment. The virtual experiments in this work are
made using the Geant4 Application for Tomographic Emission (GATE).
GATE is an open-source software that models the transport of radioac-
tive particles throughmatter and is designed specifically for imaging ap-
plications such as Positron Emission Tomography, Single Photon
Emission Computed Tomography, and PEPT [31,32]. Using GATE,
complex scattering from objects in the field-of-view (FOV) and the
behaviour of multi-stage pulse-processing chains in detectors can be
recreated [33].

Prior to thiswork, GATEhas been used to estimate the uncertainty of
PEPT trajectories extracted from CFD simulations of pipe flow using a
model of the Siemens Inveon at the University of Tennessee [34,35]. Re-
cently, a GATEmodel of the ADAC Forte, a detector systemused for PEPT
experiments at the University of Birmingham (shown in Fig. 3) has been
developed and validated against experimental measurements [36]. The
model of the ADAC Forte includes the energy-resolution, time-
resolution, and a pulse-processing stage that mimics the data rates re-
corded by the real detector, replicating experimental data to within
10% error. However, some aspects of the real detector are not included
in this model such as an Anger logic algorithm used to determine the
position of a gamma detection in the crystal [37]. Instead, the exact po-
sition of interaction is recorded in GATE and then blurred using a Gauss-
ian filter which has been calibrated to yield the closest approximation to
the spatial resolution of the detector. This creates an opportunity to de-
velop virtual PEPT experiments which can be used prior to, and to opti-
mise real PEPT experiments.

In this work, the DEM simulation of the GranuDrum, detailed in
Section 2.1.1, is combined with a virtual PEPT experiment by using ex-
tracted DEM trajectories to move a virtual 10 MBq positron-emitting
tracer. Two versions of the virtual PEPT experiment are created, one to
examine a PEPT experiment without the influence of LoRs scattering
within the GranuDrum and then another to include this scattering. In
the first virtual experiment, the tracer is placed only in a volume of air
in the centre of the FOV, minimising the scattering of LoRs, thereby cre-
ating an idealised experiment. Then in the second experiment, the
tracer is placed inside a structural model of the GranuDrum which

Fig. 1. A sample of 200 LoRs from a PEPT tracer (left) and a trajectory from clustered samples of LoRs, coloured by time (right).

Fig. 2. A picture of the GranuDrum in between the ADAC Forte (left) and a close-up of the drum with micro-crystalline cellulose spheres (right).
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includes the 3-dimensional packing density of the powder flow, a real-
istic representation of a PEPT experiment. From these virtual experi-
ments, LoRs are recorded in the same manner as they would be in a
real experiment,with the trajectories extracted using the PEPT-ML algo-
rithm. The trajectories are post-processed to generate a series of 2-
dimensional Eulerian fields and scalar indicators which are compared
to the model DEM data to assess PEPT reconstruction accuracy based
on the methods outlined in Section 2.5.

2. Methods

2.1. GranuDrum DEM simulation

2.1.1. Mono-disperse GranuDrum
The GranuDrum is a type of rheometer, or flow characterisation

equipment, for measuring properties of granular media [29]. It consists
of a small, thin, rotating drum inside a boxwith a camera tomeasure the
dynamic free surface which allows for the calculation of the angle-of-
repose [38]. For our work, a LIGGGHTS simulation is created with a hol-
low rotating cylinder of the same dimensions as the GranuDrum and
filled with simulated mono-disperse spheres of microcrystalline cellu-
lose (MCC). MCC is a common material in pharmaceutical industries
which has been used in PEPT experiments in previous work [39]. A geo-
metric description of the GranuDrum can be found in Table 1 and the
simulated GranuDrum is shown in Fig. 4.

The drum is filled with 10,000mono-disperseMCC spheres of diam-
eter 1.8mmand rotated at 45 rotations perminute (RPM) for 30min. At
this RPM, the MCC particles are within the cascading flow regime,
where mixing is expected to be strong. Higher regimes such as
cataracting and centrifuging can result in the crushing of particles or
particles centrifuging around the edge of the drum, whereas lower
speed regimes such as slipping and slumping result in the particles slid-
ing over each other rather than properlymixing [40,41]. The positions of
all particles are recorded and used to extract trajectories for comparison

with PEPT detected trajectories of a single tracer. At the end of the sim-
ulation, the trajectories of all 10,000 particles have been recorded at a
frequency of 1ms, as this keeps the distance travelled by the fastest par-
ticles (moving at approximately 1 ms−1) between successive locations
smaller than the radius of the MCC sphere itself. This frequency is also
representative of the achievable time resolution of the ADAC we are
modelling.

The material properties of the DEM particles used in the simulation
are shown in Table 2. The first four parameter values in the table were
determined using the Autonomous Characterisation and Calibration
using Evolutionary Simulation Software, ACCES [42] (see ACCES GitHub
and ACCES Conference Talk). The remaining values were obtained from
prior work as given in the references.

2.1.2. Poly-disperse GranuDrum
In addition to the mono-disperse simulation of the GranuDrum, an-

other DEM simulation is generated with a poly-disperse particle size
distribution. These particles have the same properties as the mono-
disperse particles described previously, with only their diameter chang-
ing. The size distribution chosen is determined by a particle size distri-
bution measurement performed on MCC particles using a Canty Lab
Solidsizer [43]. Themeanparticle diameter of themeasurementwas ap-
proximately 1.2mm. For the purpose of this simulation and tomake the
mean particle size equal to that of the mono-disperse system, the parti-
cle sizes were scaled to make the mean particle diameter 1.8 mm. Ten
evenly spaced particle sizes were extracted from the data using a log-
normal fit of the particle sizes. The particle size distribution and the ex-
tracted sizes are shown in Fig. 5.

As demonstrated in other work, particle size and density in a poly-
disperse system are drivers of segregation [9]. PEPT measurements,
due to tracking only one particle at a time, could be distorted if the

Fig. 3. ADAC Forte GATE geometry.

Table 1
GranuDrum description.

Characteristic Values

Drum Diameter 84 mm
Drum Thickness 20 mm
Glass Wall Thickness 3 mm
Box Length 560 mm
Box Height 360 mm
Box Depth 410 mm

Fig. 4. The LIGGGHTS simulation of the GranuDrum viewed in ParaView and particles
coloured by velocity.

Table 2
Material properties of MCC particles in the LIGGGHTS simulation.

Simulated property Values

Particle-Wall Friction 0.32
Particle-Particle Friction 0.32
Coefficient of Restitution 0.3
Rolling Friction 0.0025
Young's Modulus 5 × 106 Nm−2 [57]
Poisson's Ratio 0.3 [58]
Density of MCC 1580 kgm−3 [59]
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particle being tracked is segregated. The evidence of segregation would
bemost pronounced in the occupancy distribution, thus in Section 3 the
occupancy distribution for the whole poly-disperse system and the par-
ticles representing each size fraction are compared in Section 3.1.2.

2.2. DEM2GATE data extraction

Following the simulation of the DEMmodel, the rawDEM data were
converted into a format that can be used in a GATE simulation. Two
things are desired from this data: 1) individual trajectories of particles,
and 2) a 3-dimensional array representing the packing density of the
flowing MCC powder which can be used to approximate the scattering
of gamma-rays in the drum. To perform both of these tasks, a Python li-
brary - DEM2GATE - was created. GATE already has capabilities to read
fromfiles containing trajectory information and can import complex ge-
ometries from 3-dimensional image data. The novel work described
here is the process of extracting this information from a LIGGGHTS sim-
ulation and converting it to a GATE readable format. The workflow for
this task is as follows:

1. Tracer Trajectories
(a) Extract particle position from LIGGGHTS;
(b) Convert trajectories to GATE Placements Format;
(c) Prescribe trajectory to GATE source.

2. Voxel Array
(a) Calculate a 3-dimensional array of packing density;
(b) Export array as a MetaImage;
(c) Define GATE material definitions;
(d) Create a GATE range translator;
(e) Place voxel array in GATE simulation.

The software developed for this paper is free and open-sources, and
so can be used by the reader at will. The software can be found in the
Positron Imaging Centre's DEM2GATE GitHub Repository.

2.2.1. Tracer trajectories
The DEM simulation of the GranuDrum tracks the position of all

10,000 simulated particles simultaneously. For every time-step, the po-
sitions are updated based on the current forces acting on the particles.
At regular intervals of 1 ms, the positions of all tracers are written to
the VTK file. To extract a DEM trajectory, the VTK files are read into

Python using a VTK reader, allowing us to view and select the data we
want. Next, the time and x, y, z positions for a specified particle are ex-
tracted and written into the GATE placements file format. The Place-
ments file is a text file consisting of a header describing the format of
the data accompanied by the data columns. GATE uses this file to iden-
tify where a source should be placed inside the simulation during a par-
ticular time-step by selecting the time and corresponding positions that
are closest to the current GATE time-step. Finally, the particle trajectory
is prescribed in the GATE simulation by declaring that the source posi-
tion should be read from this placement file via the Generic Move func-
tion.

2.2.2. Packing density voxel array
The second set of data to extract from the simulated rotating drum is

a 3-dimensional array of the packing density, i.e. a voxel array. In this
representation of the GranuDrum, each voxel has a value corresponding
to the number of particles it contains; when all voxels are the same size,
this provides a measure of packing density. To generate a voxel array of
the flowing particles in the GranuDrum, an empty array is first created
which breaks up the drumvolume into a 50× 50× 50 grid over the sim-
ulation space of the LIGGGHTS simulation, −0.048 to 0.048 m in the x
and z, then−0.002 to 0.0221 m in the y-direction. This array is created
in Python using NumPy arrays binning the VTK particle data. Then, for
each time-step, the number of particles in each voxel is summed, creat-
ing a time-averaged packing density. This voxel array is normalised and
stored in a GATE-readable MetaImage format.

To map the normalised voxel value to the real corresponding bulk
density, the maximum bulk density of theMCC particles must be calcu-
lated by multiplying the particle density, ρ=1580 kgm−3, with a loose
random packing fraction of 0.6, yielding a bulk density of ρ = 948
kgm−3 [44]. This is then equated to the maximum voxel value. All
other voxels are mapped to 50 discrete combinations in between the
bulk density and the density of air, e.g. 20% of the bulk particle density
and 80% air density would lead to ρ20/80 = 189.9 kgm−3. This is
accomplished using a GATE range translator which uses the voxel
value to choose amaterial from the list of predefinedmaterial mixtures.

Now that the voxel array - shown in Fig. 6 - has been created, this
must be converted to a GATE readable format. This is accomplished by
saving the voxel image as the medical imaging format (MetaImage)
which GATE can read, followed by creating a range translator to map
the voxel values to predefined materials in the GATEmaterial database.
The 3-dimensional NumPy array of packing density is converted to a
MetaImage by using the SimpleITK Python package and specifically

Fig. 5. The scaled particle size distribution for the poly-disperse simulation of the
GranuDrumwith amean particle size of 1.8mm. The data are fitted to a log-normal distri-
bution and ten particle sizes are extracted.

Fig. 6. The packing density of the GranuDrum from a slice of the 3-dimensional voxel
array.
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the GetImageFromArray function. Finally, a way for GATE to map the
voxel values to the predefinedmaterials is needed. A GATE range trans-
lator is applied which uses the voxel value to choose a material ranging
from all solid to no solid. To ensure that a smooth transition from all
bulk particles to all air occurs, 50 material combinations between bulk
particles and air are generated and given the appropriate fractions of
materials and density.

2.3. GATE simulation

A GATE simulation emulating a virtual PEPT experiment is created
by starting with a validated model of the ADAC Forte detector [36].
This model has been validated against experiments following the Na-
tional Electronics Manufacturers Association (NEMA) protocol for
assessing the performance of Positron Emission Tomographs [5,45].
Thus, this model can reliably be used to generate synthetic LoRs for vir-
tual PEPT experiments as previous work on other GATE modelled PEPT
experiments have demonstrated [12,35]. The geometricmodel is shown
in Fig. 7. Two scenarios are simulated with the data extracted from
DEM2GATE: a single DEM trajectory in air and a single DEM trajectory
in the GranuDrum geometry. These represent a best-case (minimal
scattering) and a realistic case (considerable scattering) for a PEPT ex-
periment, respectively. It is worth noting that the velocity of the tracer
in both cases remains the same, and the tracer follows the same trajec-
tory.

The geometric model of the GranuDrum follows the description
given in Section 2.1.1. To be consistentwith the real GranuDrum, the ro-
tating drum inside the GranuDrum structure is translated 145 mm
closer to one side of the ADAC Forte detector. This has the effect of re-
ducing the count-rate detected from the tracer due to the lower geo-
metric efficiency. The trajectory is co-registered with the voxel array
such that the DEM trajectory is fully within the voxels at all times.
This case will have considerably more scattered LoRs due to the added
material between the tracer and detector. In turn, it will result in both
a lower detection rate for the tracer and less accurate detection, caused
by the incorporation of scattered LoRs in PEPT algorithms, thus provid-
ing a full, true-to-life representation of a real PEPT experiment.

Once the detector model is applied and set to a detector separation
of 600 mm, the next step is to define the source. The DEM particle is a
solid 1.8 mm diameter sphere of MCC with density ρ = 1580 kgm−3.
This material definition is added to GATE and modelled as a

volumetrically activated, positron-emitting source of 10 MBq activity.
A 10 MBq tracer has been shown to result in count-rate near the peak
true LoR count-rate for theADAC Forte at 600mmseparation as demon-
strated in Herald et al. 2021, NIMA [36]. The positrons are prescribed an
energy spectrum corresponding to that of fluorine-18. The GATE
modelled tracer and a positron-emission are shown in Fig. 8 (see
Section 1.2 for positron-emission and annihilation photons explana-
tion). Then, using the Generic Move function, the DEM trajectory
which has been converted to a GATE placements file is prescribed as
the successive positions of the source. This allows the GATE modelled
tracer to take the same path as the DEM tracer, with the addition of
emitting positrons in the GATE simulation and the annihilation photons
detected by the ADAC Forte detector model.

To run GATE simulations efficiently, the inherent parallelisation of
GATE is leveraged by splitting the simulation into smaller jobs, then
recombining the results of these simulations later. The simulations are
run on BlueBEAR, the University of Birmingham's High-Performance
Computer [46]. The 30-min simulation is broken into 200 smaller jobs,
each running for 9 s of the simulation. The output of the simulation is
a file containing detected coincidences which can be processed with a
PEPT algorithm to extract a trajectory of the tracer.

2.4. PEPT-ML clustering

Several PEPT algorithms exist, as has beenmentioned in Section 1.2,
and their performance has been assessed in other work [12]. The PEPT-
ML algorithmused in this work and implemented in the PEPT Python li-
brary is described in the following steps [19]. The LoRs collected during
a PEPT experiment are split into samples containing NLoRs. For every
possible pair of LoRs in the sample, the point that minimises the
distance between pairs of lines is calculated, called a ‘cutpoint’.
Cutpoints that fall within a user-defined distance from the LoR pairs
are recorded, then clustered using a hierarchical, density-based cluster-
ing algorithm [47]. For a sample of LoRs, producing a number of
cutpoints, one cluster centre is calculated. Additionally, samples of clus-
ter centres can be re-clustered in a process called ‘second-pass cluster-
ing’, resulting in a smoothed trajectory [19]. This process can be seen
visually in Fig. 9.

Fig. 7. The GATEmodelled GranuDrum in the ADAC Forte Geometrywith a positron-emit-
ting source. Fig. 8. GATE modelled MCC sphere with a positron-emission and annihilation present.
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In this work, PEPT 0.4.1 (PEPT-GitHub) is installed on the University
of Birmingham's BlueBEAR High-Performance Computing facility [46]
and is used to calculate tracer trajectories from GATE data. Each 9-s
GATE simulation is initially clustered using only one round of clustering.
Then these points are combined into a single file and second-pass clus-
tered using tighter parameters. This process results in a continuously
tracked particle, with outlier points removed by second-pass clustering.
The tracer trajectory can then be directly compared to the prescribed
DEM trajectory or used to compute Eulerian fields or scalar indicators.

The sample size of LoRs is prescribed as NLoRs = 200; the choice of
number was discussed earlier in Section 1.2. A moving window of
LoRs is used to provide more samples of LoRs, with the latter 50% of
LoRs in a given sample used in the next sample. All cutpoints falling
within 0.15mmof the LoR pair are saved for clustering. For each sample
of cutpoints, the densest 15% of points are considered core points of the
cluster and their centroid is calculated. The result is the 1st-pass posi-
tion of the tracer. After this is completed, the 1st-pass positions are re-
clusteredwith a sample size of 30 points, with 70% of the densest points
being the core points and their centroid calculated. To produce nearly as
many 2nd-pass cluster centres as the 1st-pass method, a moving win-
dow of 1 minus the sample size of centres is applied, in this case a sam-
ple size of 29.

2.5. Post-processing

Once a PEPT trajectory has been produced, there are twoways to as-
sess the accuracy of the PEPT detected trajectory. The first method is to
compare the point data of the trajectories, averaging themean error be-
tween their recorded positions at the same time-step. This has been
used in previous work with static tracers and those moving in simple
trajectories to compare PEPT algorithm performance [12].

εy ¼ yPEPT−yDEM ð1Þ

ε2D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2x þ ε2y

q
ð2Þ

However, while looking at the point data of a trajectory is useful for
characterising the uncertainty in the position of an individual tracer, an
individual tracer does not necessarily explore the whole phase-space of
particles within the system, particularly if it has not been exploring the
system for a long enough time [4]. The decision to run the simulations
for 30 min overcomes this issue for this specific system, but with
DEM2GATE a second, more robust, method of comparison becomes
available, which is comparing a reconstructed field of the system. For
example, an Eulerian flow field generated from virtual PEPT measure-
ment, such as the velocity field, can be compared to the field recon-
structed using the model DEM data. Comparison of macroscopic fields
shows not only to what extent PEPT trajectories follow an individual
tracer but also how well the bulk behaviour of the system is recon-
structed from a single tracer. This type of comparison ismore significant
for PEPT users because it is a measure of how the uncertainty in PEPT
trajectories actually affects the measurement of a bulk system behav-
iour.

In this work, both the overall spatial error of the PEPT trajectory and
the effect of this on themeasurement of bulk systembehaviour is exam-
ined. The generation of PEPT reconstructedfields also offers an opportu-
nity to take advantage of the recent developments in the PEPT-ML
library which uses time-step interpolation and polynomial fitting of po-
sitions in a Savitzky-Golayfilter to derive tracer velocity [48]. The recon-
structed Eulerian fields for the PEPT trajectory in air and PEPT trajectory
inside the model of the GranuDrum are compared against fields gener-
ated by averaging all DEM trajectories.

All Eulerian fields are generated using the same procedure,
whereby for each time-step of a trajectory, a value corresponding
to an instantaneous measurement of a system field can be assigned
to bins spanning the drum volume. For simplicity and because the
GranuDrum has a small drum thickness in comparison to its diame-
ter, only 2-dimensional fields are computed in this work. To perform
the binning over the trajectory history, the SciPy function scipy.stats.
binned_statistic_dd is used. The number of bins in each dimension as
well as the value range over which the function is applied is provided
by the user, then the mean, standard deviation, or counting is per-
formed on the values falling within each bin. The fields calculated
in this work are velocity components, velocity magnitude, accelera-
tion components, acceleration magnitude, velocity relative standard
deviation (RSD), granular temperature, and occupancy.

In addition to Eulerian fields, scalar indicators of the system behav-
iour are calculated. For a rotating drum, four scalar indicators that are
important for characterising the behaviour of the drum are the locations
of the so-called bulk ‘shoulder’ and bulk ‘toe’ regions, the centre-of-
circulation (CoC), and also the dynamic angle-of-repose (AoR) [13]. A
full description of these indicators and how they are calculated is de-
scribed in Section 2.5.3.

2.5.1. Generating Eulerian fields
All fields are computed on the same 30 × 30 grid spanning±45mm

in the x and y directions centred on the centre of the GranuDrum, pro-
ducing a field with 3 × 3 mm resolution. Velocity is calculated using a
Savitzky-Golay filter with a window size of y points as a step within
the PEPT-ML algorithmand iswritten into the trajectory as an appended
column of data, thus the velocity components and magnitude are pre-
computed and only need to be binned. The velocity fields are calculated
byfinding themeanvalueswithin each bin. Acceleration is calculated by
numerically differentiating the velocity by time according to Eqs. 3 and
4, then binning. The acceleration fields are calculated by finding the
mean values within each bin.

ax ¼ Δvx=Δt ð3Þ

Fig. 9. (Top left) A sample of 200 LoRs is transformed into cutpoints and clustered using a
hierarchical density-based algorithm (top right). Blue points represent the cutpoints cal-
culated from the LoRs, with the red points being the cluster centre of these cutpoints. (Bot-
tom left) The 1st pass cluster centres for a segment of the trajectory are coloured by time
then the second pass of clustering tightens these points (bottom right).
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a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2x þ a2y

q
ð4Þ

The velocity RSD and granular temperature are two statistics that
use fluctuations from the mean velocity to measure the bulk behaviour
of the system. Velocity RSD is ameasurement of how the standard devi-
ation in velocity of an area of the system differs from the mean velocity
in that area, measured as a percent difference. Higher velocity RSD
values show the tracer trajectory is deviating more substantially from
the mean flow behaviour. To compute the velocity RSD, first, the stan-
dard deviation in all velocity components within a bin are calculated,
then the magnitude of the velocity standard deviation is divided by
the mean velocity in the bin. The velocity standard deviation and RSD
are shown in Eqs. (5) and (6).

σvx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σ vxi−vxð Þ2

N

s
ð5Þ

σRSD ¼ 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2

vx þ σ2
vy

q
v

ð6Þ

On the other hand, the granular temperature is a measure of the
squared velocity fluctuations and is not scaled by the mean velocity
[49]. Thus, larger magnitude velocity fluctuations will always produce
higher granular temperatures. This is shown in Eqs. (7) and (8), through
which the 1-dimensional and 2-dimensional granular temperatures are

calculated. To compute the granular temperature field, first, the x and y
velocity fields are calculated and the bin number for each instantaneous
velocity is recorded. Using this information, the mean velocities are
subtracted from the instantaneous velocity to produce the fluctuating
velocity according to the tracer location within the system. Then the
granular temperature can be calculated using the squared velocity fluc-
tuations and multiplying by the mass of the particle [49].

Tx ¼ m vxi−vxð Þ2 ð7Þ

T ¼ 1
2

Tx þ Ty
� � ð8Þ

The occupancymeasures how long a particle spends within a region
of the system. This is useful since occupancy is an indirectmeasurement
of particle density in different areas of the systems, which can be used to
infer particle dynamics in industrial systems as has recently been
demonstrated in a coffee-roaster [50]. In this work, the DEM and PEPT
trajectory positions are recorded in constant intervals of time and con-
tinuously tracked, thus the occupancy percentage for a bin can be calcu-
lated by counting howmany times a particle has been found in that bin,
multiplying by the time-step, then dividing by the difference in time be-
tween the last andfirst particle position in the trajectory. The occupancy

Fig. 10. The cumulative probability of occupancy is used to determine which bins to con-
sider for comparison.

Fig. 11. (Left) Apply a threshold to removes bins which the tracer explores only a few times. (Right) Bins subject to the threshold are the only bins used for comparison in later analysis.

Fig. 12. Diagram of the bulk shoulder, bulk toe, and centre-of-circulation extracted from
the equilibrium surface.
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is calculated using Eq. 9. The calculation of most of these fields is de-
scribed in greater detail in ‘Positron Emission Particle Tracking: A Com-
prehensive Guide’ by Windows-Yule et al. 2022, IOP [51].

O ¼ 100
Npointststep
tf−t0

ð9Þ

2.5.2. Comparing Eulerian fields
All Eulerian fields for DEM and PEPT are binned in 3 × 3 mm bins,

computed over the same range, and using the same number of bins.
To compare the fields, the mean bin percent difference is calculated.
The percent difference is calculated by finding the absolute difference
between the PEPT reconstructed fields and baseline DEM model fields,

Fig. 13. (Top left) x-velocity and y-velocity (top right) of the full DEM data. (Bottom) x- and y-velocity fields combined to form the magnitude velocity field of the full DEM data.

Fig. 14. The acceleration magnitude field using all DEM data.
Fig. 15. The velocity RSD field is generated from all model DEM trajectories in the mono-
disperse GranuDrum.
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then dividing by the DEM model value and multiplying by 100. The in-
dividual bin percent differences are then averaged as shown in Eq. (10).

εMean ¼ 100
Nbins

X
N¼1

Nbins
j XExperiment−XModel j

XModel
ð10Þ

However, to avoid outlier bin errors distorting themean percent dif-
ference due to a low number of tracer passes, a threshold is set using the
occupancy so that only bins which have an occupancy higher than
0.00225% are considered. This valuewas chosen by looking at the cumu-
lative probability distribution of the bin occupancy, as shown in Fig. 10.
An occupancy of 0.00225% immediately precedes a sharp rise in theplot,
thereby excluding only the bins which are not adequately explored and
do not contribute significantly to the overall system behaviour. The re-
sults of this threshold applied to the occupancy are shown in Fig. 11.

2.5.3. Scalar indicators
Scalar indicators such as the bulk shoulder, bulk toe, CoC, and the

AoR can be used to characterise the behaviour of a rotating drum by
classifying the flow regime [13]. All of these values can be derived by
calculating the equilibrium surface which is created by combining the
horizontal (x-velocity) and vertical (y-velocity) equilibrium surfaces.
These are the surfaces where the net flow in each respective direction
equals zero and are computed in Section 2.5.1 [52]. The point where
the two surfaces intersect is the CoC. The points where the equilibrium
surface intersects the drumwall are the bulk shoulder and bulk toe; the
shoulder is theupper intersection and the toe is the lower one. The equi-
librium surface is the continuous surface that connects these three
points. The AoR is defined as the angle between the tangent to the equi-
librium surface at the CoC and the downward direction. These scalar in-
dicators including the equilibrium surface are shown in Fig. 12.

3. Results and discussion

Our results can be summarised according to the three main compo-
nents of this work: 1) Analysis of the DEM simulations, 2) Comparison
of the PEPT reconstruction with the DEMmodel, and 3) Demonstration
of a new method to correct PEPT reconstructed values based on the
model DEM.

3.1. Analysis of DEM simulations

3.1.1. Mono-disperse analysis
Using the full 30-min trajectories extracted from the DEM simula-

tion of themono-disperse GranuDrum, the Eulerian fields and scalar in-
dicators described in Sections 2.5.1 and 2.5.3 were generated. In Fig. 13,
the velocitymagnitude field is shown, revealing an active, fast region on
the free surface whilst having a passive and slow-moving region in the
bulk; both are well-known features of rotating drums operating at the
Froude number of 0.1 [53].

Numerically differentiating the tracer's velocity with respect to time
yields the acceleration. The acceleration magnitude field is produced
and shown in Fig. 14. The shoulders and toes experience the highest ac-
celerations since particles in the shoulder falling down the cascade are
accelerated by gravity and particles in the toe are abruptly decelerated
by crashing into the drum wall.

The velocity RSDfield is shown in Fig. 15. A bandof high velocity RSD
values reaches from the shoulder to the toe of the drum. These are likely
caused by cascade fluctuations which cause velocity to change drasti-
cally in both magnitude and direction, leading to a large standard devi-
ation in velocity. The measurement of cascade fluctuations is an
important part of the GranuDrum, however, in PEPT measurements
only a single (or small handful of) particle's behaviour can be seen.
Thus PEPT lends itself better to quantifying the time-averaged behav-
iour of the system, yet this shows that single particle measurements
can indirectly capture cascade fluctuations, at least in this system.

The granular temperature is shown in Fig. 16. The granular temper-
ature is highest in the active region of the drumand especially in the toe.
This is because collisions in this area are frequent and energetic, leading
to large fluctuations in velocity [54].

These fields were then generated for everyminute of the simulation
time for individual DEM particles. These are compared to the previously
shown fields produced after 30min using all of the particles which rep-
resent the steady-state behaviour of the drum. This is done to investi-
gate how the measured system behaviour reconstructed from a single
particle begins to break down as the measurement is reduced. The re-
sults of this comparison are shown in Fig. 17.

Across all measured fields, the differences from steady-state fields
are found to logarithmically decrease with the measurement time. De-
rived measurements of lower-order than acceleration, such as velocity,
are found to reach a high level of accuracy relatively quickly; 1% mean
difference after 10 min of measurement time. Higher-order derived
measurements like acceleration, which rely on the velocity measure-
ment, take longer to reach the same level of accuracy. For all fields,
the mean percent differences are under 10% by 30 min. These results

Fig. 16. Granular Temperature in the mono-disperse GranuDrum DEM simulation.

Fig. 17. Estimating the time needed to ensure adequate statistics using results from mul-
tiple DEM tracers for different Eulerian fields. Error bars are the standard deviation of
the percent differences.
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show for this particular systemnot only can systembehaviour be recon-
structed from single particles, but also the length of measurement time
needed to reach a desired level of accuracy can be estimated.

In addition to the Eulerianfields, scalar indicators are calculated after
30 min. These indicators are the bulk shoulder, bulk toe, CoC, and the
AoR shown in Fig. 18. Each scalar indicator is extracted at every minute
for each trajectory, then compared to the value produced after 30 min.
The bulk shoulder, bulk toe, and CoC are compared by the location of
the indicator while the AoR is compared by the difference in degrees.
The results are shown in Fig. 19, revealing these values converge con-
stant values within 5min for the bulk shoulder and bulk toe and within
20 min for the CoC and AoR. Scalar indicators are thus found to need
shorter times to get accurate measurements than 2-dimensional
Eulerian fields. This further supports the argument that measurements
that rely on higher-order, derived values (e.g. velocity derived from

position, and acceleration derived from velocity) the uncertainty in
the original measurement propagates upward.

An unexpected result is the equilibrium surface, and thus the bulk
shoulder, bulk toe, and CoC, intersect the bins with the high velocity
RSD. The equilibrium surface is overlaid onto the velocity RSD field in
Fig. 20to demonstrate this. While the relationship between velocity
RSD and equilibrium surface is not explored in this work, nevertheless
Fig. 20 suggests velocity RSD is ameasurement that can reveal useful in-
formation about rotating drums.

3.1.2. Poly-disperse analysis
In a poly-disperse system, the assumption that a single particle is

representative of all the particles of the system no longer holds. When
particles have different sizes or densities, segregation can occur, leading
to different particle behaviours depending on the species being tracked.
This has been demonstrated numerous times using the PEPT technique
across a wide range of systems [4,13,25,55,56]. Fig. 21 shows the occu-
pancy distribution for the largest, smallest, and all the DEM particles
in the poly-disperse GranuDrum simulation described in Section 2.1.2.
A PEPT measurement conducted with a tracer taken from the extremes
of the particle distribution would not be reflective of the occupancy of
all particles. When the mean percent differences in the occupancy are
plotted against the particle size in Fig. 22, this shows, as might be ex-
pected, that particles most similar to the mean particle diameter best
replicate the system occupancy. However, while occupancy, in this
case, is best reconstructed with the mean particle size, this does
not guarantee other types of measurements will also be reconstructed
to the same degree. Therefore, when conducting a PEPT experiment
attention should be paid to whether the particle being tracked actually
mimics the bulk system behaviour. Using the tools provided with
DEM2GATE, a poly-disperse simulation can help users determine
which particles are good candidates as a PEPT tracer prior to experimen-
tation.

3.2. PEPT reconstruction

After running the GATE simulations of a particle in air and of a parti-
cle in the simulated GranuDrum, the reconstructed PEPT trajectories are
compared to the prescribed DEM trajectory. For a 2 s segment of the
simulation, the positions for the DEM tracer and the two PEPT recon-
structed trajectories are plotted in Fig. 23, then compared point-by-
point to compute a mean spatial error. Further, the instantaneous

Fig. 18. A diagram showing the equilibrium surface and extracted scalar indicators using
all mono-disperse DEM trajectories.

Fig. 19. The difference in location and angle of the four scalar indicators in the mono-dis-
perse GranuDrum simulation over time compared to their location using all the trajecto-
ries after 30 min. The error bars represent the standard deviation of the individual
trajectories.

Fig. 20. The equilibrium surface intersects the highest velocity RSD values and the binwith
the high velocity RSD contains the CoC.

M.T. Herald, J.A. Sykes, D. Werner et al. Powder Technology 401 (2022) 117302

11



spatial errors are plotted according to the tracer's positions in Fig. 24.
The tracer in air and tracer in the GranuDrum voxels over their 30 min
trajectory are tracked to a mean spatial accuracy of 0.175 mm and
0.412 mm, respectively. Additionally, the detection rates of the two
tracers are 889 Hz and 355 Hz, respectively. This demonstrates that
DEM2GATE can be used to reconstruct particle behaviour and then
quantify the spatial and temporal resolution of the reconstruction. It
is worth noting that, in PEPT, spatial accuracy is always in terms of
length and this spatial accuracy does not directly depend on the size
of the system, though larger systems typically cause more scattering
to occur.

The spatial errors can be broken down further into the mean spatial
error in each bin. The spatial errors for the two GATE simulations are
shown in Fig. 25. These plots show a more complete story about what
is happening in Fig. 24, showing higher errors when the tracer is falling
from the shoulder of the drum or crashing into the toe region. These are
the two areas that experience the highest acceleration, as can be seen in
Fig. 26. When a bin-by-bin comparison between the spatial error in
PEPT measurement and the model DEM particle acceleration is plotted
in Fig. 27, the relationship between the two is linearly increasing spatial
errorwith increasing tracer acceleration.When a straight line is fitted to
the data, the y-intercept is the mean error that is to be expected for a

Fig. 21. Poly-dispersed occupancy shows large particle size segregation (top left), small particle size segregation (top right) and the occupancy for all particles (bottom).

Fig. 22. The mean bin error in the occupancy across all particle sizes in the poly-disperse
DEM simulation.

Fig. 23. Comparison of a DEM trajectory to the PEPT detected trajectory of the tracer in air
and tracer in the GranuDrum.
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tracer at rest or at constant velocity. The y-intercept value is higher for
the tracer in the GranuDrum voxels, most likely due to the increase in
scattered LoRs as this has been shown to increase PEPT error in other
work and thus demonstrates that this is an important relation with
real physical significance [12].

Additional analysis of the PEPT trajectories is performed by
reconstructing the Eulerian fields and scalar indicators. These are calcu-
lated in the samemanner as the DEM fields. These values are calculated

every minute and compared to the DEM values calculated using all the
model DEM trajectories after 30 min of the simulation. The results of
comparing the Eulerian fields are shown in Fig. 28. Fig. 28 shows that
for the velocity, acceleration, and occupancy fields the PEPT reconstruc-
tion alignswith themodel DEM fields, but for velocity RSD and granular
temperature, the fields do not align and do not get more accurate with
longer measurement times. The reason for this is explained in
Section 3.3 and a novel method to correct these errors demonstrated.

Fig. 24. Errors in the vertical y-axis for tracer in air and tracer in GranuDrum over a 1-s
time-step.

Fig. 25. (Left) Error field for the PEPT tracer in air. (Right) Error field for the PEPT tracer in the GranuDrum.

Fig. 26. (Left) Acceleration field using all DEM data and (right) error in the PEPT data with the tracer in the GranuDrum.

Fig. 27. The PEPT spatial error increases linearly with acceleration, with the y-intercept
being the mean error for a constant velocity tracer; the y-intercept is higher for the
PEPT tracer in voxels because of the increased scattering of LoRs.
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The scalar indicators can be analysed in a similar fashion. As before,
the bulk shoulder, bulk toe, and CoC are compared by the location of the
indicator while the AoR is compared by their difference in degrees. The
results for the tracer in air and the tracer in the GranuDrum voxels re-
sulted in nearly constant reconstructed values which agree with the
model DEM values throughout the 30 min of the measurement time.
The values reconstructed after 30 min are given in Table 3. However,
for the tracer in the GranuDrum GATE simulation, the values of the
CoC and AoR are consistently different by approximately 0.5 mm and
1.5°, respectively. This shows that as more scattering occurs and the
quality of the PEPT trajectory is degraded this also degrades other
PEPT reconstructed quantities as well.

3.3. Using DEM2GATE to correct PEPT measurements

As described in Section 3.2 the PEPT reconstructed velocity RSD and
granular temperature fields (see Fig. 28) did not agree with the model

DEMfields. These two fields rely on thefluctuating velocity components
and, as such, they are particularly prone to errors caused by both low
temporal resolution and the inherent uncertainty in PEPT measure-
ments. The low temporal resolution of a PEPT measurement in compar-
ison with the behaviour of the DEM tracer smooths out fluctuations in
velocity while uncertainty in the PEPT measurement induces fluctua-
tions in velocity. These two factors come together to produce large er-
rors in the PEPT reconstructed fields.

However, when the PEPT and model DEM fields are compared bin-
by-bin there exists a correlation between them, shown in Fig. 29.
When the velocity RSD and square root of the granular temperature
(square root since this is calculated using a squared velocity term) for
PEPT reconstructed and model DEM are compared, a straight line can
befitted to the data. The fitted equations show that binswith low veloc-
ity RSD and granular temperature in the model DEM fields are over-
predicted by PEPT, as evidenced by a positive y-intercept. Further, at
high velocity RSD and granular temperatures in the model DEM, PEPT

Fig. 28. Estimating the time needed to ensure adequate statistics using results from a PEPT tracer in air (left) and in the GranuDrum (right). Notice the velocity RSD and Granular Tem-
perature are not improving for either case.

Table 3
Scalar indicators of themono-disperse GranuDrumDEM simulation and from the reconstructed virtual PEPT experiments of the tracer in air and the tracer in the GranuDrum voxels after
30 min of measurement time.

Scalar indicator Model DEM Tracer in air Tracer in GranuDrum voxels

Bulk Shoulder (x and y) −25.01, 23.71 mm −25.01 23.71 mm −25.45, 23.71 mm
Bulk Toe (x and y) 29.80, −25.45 mm 29.80–25.45 mm 29.80, −25.45 mm
Centre-of-Circulation (x and y) −7.18, −10.22 −7.18 -10.22 −6.96, −10.44 mm
Angle-of-Repose 38.47° 38.87 40.15°

Fig. 29. Linear correlations between the PEPT reconstructed and model DEM fields can be used to correct the PEPT velocity RSD and granular temperature.
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measurements under-predict the values, as evidenced by a slope gradi-
ent less the 1.

Not only does this result provide insight into a possible source of
error when comparing PEPT measurements with DEM models, but
also shows that the PEPT measurements have predictable errors which
can be corrected. To correct the PEPTmeasurement, the terms of the lin-
ear model can be rearranged and applied to the PEPT reconstructed
fields.When this is done, themean bin percent difference over themea-
surement time aligns more closely to what is expected from the model
DEM simulation, as shown in Fig. 30. This correction method is robust
because it is not dependent on the overall behaviour of the particle
within the system, only its velocity fluctuations. Thus, in order to pro-
duce a correlation between the PEPT reconstructed values and model
DEM values, a fully calibrated DEM model is not required, only a
model which produces velocity fluctuations across the range which
might be expected in the experiment.

4. Conclusion

In this work, we demonstrate the use of novel tools in the open-
source DEM2GATE library to combine DEM simulation with virtual
PEPT experiments. A LIGGGHTS DEM simulation of mono-disperse and
poly-disperse MCC particles in a model of the GranuTools GranuDrum
was simulated and the mono-disperse simulation was used as the
basis of a virtual PEPT experiment. From this DEM simulation, Lagrang-
ian trajectories of individual particles were extracted at regular time
steps of 1 ms. Along with these trajectories, a volume representing the
time-averaged particle density throughout the rotating drum was pro-
duced.

A GATE simulationwas created using the extracted DEM trajectories
to move a 10MBq positron-emitting source. In a separate GATE simula-
tion, the volume of particle density and a structural model of the
GranuDrum was added to replicate gamma-ray scattering. The syn-
thetic LoRs collected over the 30 min-long trajectory were processed
using the PEPT-ML algorithm, yielding a PEPT tracked version of the tra-
jectory in both virtual experiments. The reconstructed trajectories were
compared with the prescribedmodel DEM trajectories through a point-
by-point comparison, as well as through 2-dimensional Eulerian fields
and scalar indicators. This analysis showed that the PEPT reconstructed
trajectories were found to have a mean 2-dimensional spatial error of
0.175mmand 0.412mm for the tracer in air and tracer in the simulated
GranuDrum, respectively. Importantly, two drivers of spatial error were
found and quantified for the PEPT measurement, particle acceleration
and gamma-ray scattering.

Further, the accuracy of reconstructed fields and scalar indicators are
shown to depend on the length of measurement time. The DEM data
show that accuracy improves logarithmically for the reconstructed

fields and that higher-order derivedmeasurements such as acceleration
take longer to reach a desired level of accuracy compared to lower-order
derived measurements like velocity. After 30-min of a single-particle
virtual PEPT measurement velocity, acceleration, and occupancy fields
were reconstructed to within 10%. However, the velocity RSD and gran-
ular temperature PEPT measurements produced mean bin percent er-
rors of approximately 50% and above. A correction for the PEPT data
was developed by comparing the PEPT and DEM values for these two
measurements on a bin-by-bin basis, finding they were linearly corre-
lated. Low model DEM values in these fields were over-predicted in
the PEPT measurement, then under-predicted for higher values. When
the PEPT measurement correction was applied, the velocity RSD and
granular temperature for both virtual PEPT experiments after 30 min
of measurement time reached approximately a 10% mean bin error.

This work shows, to the extent that DEM simulations replicate the
real behaviour of particles in granular media, that virtual PEPT experi-
ments faithfully reproduce the PEPT measured Lagrangian particle tra-
jectories with high spatio-temporal resolution. The Eulerian fields and
scalar indicators reconstructed from the single-particle virtual PEPT ex-
periments are capturing the dynamics produced from full-field DEM
data, thus suggesting that the PEPT experiments are capturing real sys-
tem behaviour. The methods introduced in this work can be similarly
applied to any DEM simulated granular system, provided that the
DEM output has been verified to represent realistic flow behaviour of
the system. A trajectory extracted from the DEM simulation can be
used to assesswhether the expected trajectories froma real PEPT exper-
iment are of good enough resolution to track the real granular motion,
and thus would be sufficient to calibrate a DEM model.
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of a Monte Carlo detector model 
through evolutionary simulation
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Christopher Windows‑Yule1,3

Simulating the response of a radiation detector is a modelling challenge due to the stochastic nature 
of radiation, often complex geometries, and multi‑stage signal processing. While sophisticated tools 
for Monte Carlo simulation have been developed for radiation transport, emulating signal processing 
and data loss must be accomplished using a simplified model of the electronics called the digitizer. 
Due to a large number of free parameters, calibrating a digitizer quickly becomes an optimisation 
problem. To address this, we propose a novel technique by which evolutionary algorithms calibrate 
a digitizer autonomously. We demonstrate this by calibrating six free parameters in a digitizer 
model for the ADAC Forte. The accuracy of solutions is quantified via a cost function measuring the 
absolute percent difference between simulated and experimental coincidence count rates across 
a robust characterisation data set, including three detector configurations and a range of source 
activities. Ultimately, this calibration produces a count rate response with 5.8% mean difference to 
the experiment, improving from 18.3% difference when manually calibrated. Using evolutionary 
algorithms for model calibration is a notable advancement because this method is novel, autonomous, 
fault‑tolerant, and achieved through a direct comparison of simulation to reality. The software used in 
this work has been made freely available through a GitHub repository.

Simulating the response of detectors to radiation is an important aspect in a variety of physics and medical 
fields because this allows users to test imaging algorithms, optimise experiments, and design new  detectors1–3. 
This is typically achieved by using Monte Carlo radiation transport codes to simulate the interactions of a radia-
tion field with a geometric model of the detector and then applying a pulse-processing chain to the recorded 
events to emulate the detector’s  response4. Software such as the Geant4 Application for Tomographic Emission 
(GATE) has been developed specifically for the purpose of running Monte Carlo simulations and emulating 
detector  responses5,6. In GATE, the ‘digitizer’ determines how the timing, energy, and position of interactions 
with the detector geometry are recorded, how events are grouped and implements the pulse-processing logic 
of the  system7. However, digitizer models must be precisely tuned to replicate the behaviour of a real detector.

Several detectors have been modelled using GATE and validated against experimental measurements such as 
the ADAC Forte, Siemens Inveon, and Phillips Vereos Positron Emission Tomography (PET)  scanners8–10. For 
PET systems, performance characterisation experiments are described by the National Electronics Manufacturers 
Associated (NEMA) which test the spatial resolution, sensitivity, and count-rate  response11. The GATE model’s 
digitizer is then calibrated to achieve the closest agreement with these experiments. GATE models which do not 
have well-calibrated digitizers may produce an unrealistic simulated detector response.

State‑of‑the‑art. Current methods of calibrating GATE models, as demonstrated in other work, are 
achieved by using known properties of the detector or by fitting models to count-rate  experiments7,10,12,13. Many 
steps in the digitizer model correspond directly to measurable properties of the detector, such as the energy 
resolution, dead-time, or time  resolution10. Values for these properties are often provided by the manufacturer 
and this can serve as a reliable starting point, but manual tuning is still needed to match the simulated and 
experimental response of the detector due to variation between each  detector8. Conversely, with a model-fitting 
approach, manual tuning can be avoided, but other challenges arise. For example, when fitting a dead-time 
model to the count rates or fitting a Gaussian function to the 511 keV photo-peak to determine the energy reso-
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lution, this relies on having both the singles and coincidence count rates, which may not both be available, and 
also involves fitting simplified models to the detector response, which may not capture the complexity of a real 
 system14. In summary, manual tuning of GATE models can produce a good agreement between simulation and 
experiment, but at the expense of time, resources, and objectivity, whereas fitting simplified models to determine 
the digitizer parameter values is a quicker, more objective, method but the information is not always available 
and can still produce inaccurate simulations.

Proposed methodology. In this work, we propose a new procedure which leverages recent advances in 
metaheuristics to perform an efficient optimisation of parameter values in a detector digitizer model created 
using GATE v9.1. The goal of the optimisation is to produce a set of parameters which can replicate the count-
rate response of the detector across varied source activities and detector separations.

To do this we use an evolutionary algorithm to modify the free parameters of the digitizer , resembling Dar-
winian evolution, and directly compare the simulated results of candidate solutions to the experimental data. 
The evolutionary algorithm chosen for this approach is the Covariance Matrix Adaptation Evolutionary Strategy 
(CMA-ES), which is a stochastic optimiser for robust non-linear non-convex numerical  optimisation15,16. Param-
eter combinations are generated following a multivariate normal distribution; in our case, finding the optimum 
digitizer parameters is equivalent to “evolving” the mean and covariance matrix of this distribution. A particular 
advantage of this setup is that the underlying optimisation function – i.e. the digitizer response – does not need 
to have a continuous response. The addition of stochastic “mutations” to the inputs tried, so as to mimic the 
injection of new genetic material in the biological population, allows CMA-ES to escape local, false minima, 
which gradient-based optimisers are prone to falling  into17. We demonstrate this procedure by calibrating the 
GATE digitizer model of the ADAC Forte, a dual-headed positron camera operated in coincidence  mode8. 
The Forte and its digital-twin GATE model are shown in Fig. 1. Six free parameters in the model are calibrated 
simultaneously by CMA-ES.

In order to interface with the existing CMA-ES optimiser and extend the types of problems it can be used with, 
we have developed a Python library called the Autonomous Calibration and Characterisation via Evolutionary 
Software (ACCES) v0.2.2. The purpose of ACCES is to use meta-programming in conjunction with an arbitrary 
Python script defining the simulation to populate the user-defined free parameters with candidate solutions 
generated by CMA-ES, then autonomously re-launch the simulation, analyse the results, and use CMA-ES to 
generate candidate solutions in a cycle until a termination criterion is  met16,18. The absolute percent difference 
between the total, true, and scattered plus random coincidence count rates are optimised using a multi-objective 
cost function to combine their differences into a single value. This method offers improvements over previous 
calibration procedures since the optimal parameters are chosen by directly comparing the performance of the 
optimised digitizer to count-rate experiments and multiple experiments are optimised simultaneously.

Methods
Count rate experiment. Characterisation experiments are conducted that measure the coincidence count 
rates of the Forte as a function of source activity. The experimental coincidence count rates are chosen to be 
compared to the simulated count rates to assess the optimisation of the model since this is the observable output 
from the detector in experiments and simulations. Additionally, the coincidence count rates have a complex 
relationship to the digitizer parameters, source activity, and detector configuration making this an ideal metric 
for comparison. Three detector separations representing the closest, median, and furthest separations possible 
for the detector are tested. The initial source activities for each separation are selected to test both the high-
activity range where the effect of detector dead-time induces count-losses and, as the source decays over several 
half-lives, testing the low-activity range where count-rates are linearly proportional to the source activity. The 
optimisation of the digitizer seeks to find a common set of parameter values to replicate the behaviour of the 

Figure 1.  The ADAC Forte at the Positron Imaging Centre during the count-rate experiment (a) and the GATE 
model of the detector and replicated experiment (b).
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detector across all of these conditions. Since there are six free parameters and 45 individual data points for each 
parameter combination (three detector separations, five activities per separation, and three coincidence count 
rates per activity), the optimisation problem is considered to be well-constrained.

For these experiments, the source consists of a high-density polyethene (HDPE) cylindrical phantom filled 
with a solution of water and fluorine-18. The phantom measures 120 mm long and 50 mm in diameter. The inner 
cylinder in which the water and fluorine-18 solution is filled measures 100 mm long and 12 mm in diameter. The 
phantom is filled with an initial activity, then placed in the centre of the field-of-view of the Forte and imaged 
over several half-lives until the activity is below 1 MBq. The three head separations and initial activities for each 
experiment are found in Table 1.

For each experiment, the total, true, and scattered plus random (corrupted) count rates are extracted as a func-
tion of the source activity. This is achieved by applying the NEMA protocol to projection images of the  source11. 
A demonstration of the workflow for extracting count rates from the acquisition is shown in Fig. 2. First, samples 
of a minimum of 500,000 lines-of-response (LoRs) are used to create a three-dimensional voxelised representa-
tion of the FOV with a 1 mm voxel size. At this stage, the source activity is calculated using exponential decay 
equations. From the voxels, a two-dimensional slice is extracted which is both parallel with the detector face and 
contains the voxel with the maximum number of LoRs. The slice is then collapsed into a line profile of the pixel 
intensities. All points within ± 20 mm of the maximum pixel are summed. To subtract the background counts, 
the values at both ends of the ± 20 mm are averaged, multiplied by the size of the window, and subtracted from 
the counts under the peak leaving only the true counts. The total counts are the sum of all LoRs passing through 

Table 1.  Head separations and initial activities for each calibration experiment.

Experiment Head separation (mm) Initial activity (MBq)

Experiment 1 800 75

Experiment 2 525 60

Experiment 3 250 40

Figure 2.  A demonstration of the protocol for extracting count rates from a sample of LoRs: (a) a sample of 
LoRs collected during the experiment is converted into voxels, (b) the slice containing the maximum number 
of LoRs is extracted, (c) the slice is collapsed into a line profile and the counts in the central 40 mm strip are 
summed and background counts subtracted to yield a total, true, and scattered + random count-rate (d). Steps 
a-c are repeated for multiple samples to generate the count-rate response as a function of activity.
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the slice and the scattered plus random coincidence count rate is the total counts subtracted by the true counts. 
The extracted coincidence count rates are shown in Fig. 3.

GATE model. GATE v9.1 is an extension of Geant4 v10.7.3 designed for the simulation of radiation detec-
tors used in physics, medicine, and engineering  applications5,6. GATE uses Geant4 to run Monte Carlo radiation 
transport simulations, generating a history of interactions of the detector with a radiation field, and then mim-
icking how the detector would  respond19. Using GATE consists of 6 steps: defining the geometries (detector and 
experiment), adding radioactive sources, describing the detector pulse processing chain (digitizer), including 
physics processes, specifying data output format, and prescribing acquisition settings (run time and time slice)5.

In this work, we use a detector geometry and GATE model for the ADAC Forte previously developed by 
the authors. The ADAC Forte is a dual-headed positron camera used at the Positron Imaging  Centre8. A full 
description of this model and its original calibration can be found in Herald et al.8. The experiment geometry is 
the same HDPE cylindrical phantom as described in “Count rate experiment” section. The radioactive source 
is a solution of water and fluorine-18 prescribed as emitting back-to-back 511 keV gamma rays. Since the mean 
positron range in water and HDPE it can be assumed that all positrons annihilate before leaving the phantom, 
thus making a back-to-back gamma source a reasonable approximation that decreases the time needed to run 
the simulations. The detector model’s digitizer structure follows the same as described in Herald et al., (2021). 
Six key parameters of the digitizer will be calibrated. These are the singles dead-time, coincidence dead-time, 
pileup, lower energy discriminator, upper energy discriminator, and the time resolutions as will be discussed is 
2.2. Physics processes are imported through the GATE’s ‘emstandard’ physics list, which includes the Livermore 
model for photon interactions and is based on the Evaluated Photon Data Library, 1997 (EPDL1997)20. The 
output format is coincidence data saved as a text file. The acquisition was prescribed as a 10 second simulation 
with the time slice saving data every 10 ms of simulated time.

Once the simulation begins the source activity determines the decay rate and individual decays are modelled 
on a Poisson distribution. Each event (two back-to-back 511 keV gamma rays) is initialised randomly within 
the source volume and prescribed a direction isotropically. As the gamma rays pass through the geometry, they 
have a stochastic chance of interacting with the materials following Beer-Lambert’s Law and using attenuation 
coefficients generated from material composition, density, and cross-sections from EPDL1997. Interactions 
which occur within the ‘Sensitive Detector’, in this case, the scintillation crystals, are termed ‘hits’. From the list 
of hits, which contains information about the type of interaction, time, position, and energy, the GATE digitizer 
converts hits into ‘pulses’. A pulse is the response of the detector element that is analogous to a signal which can 
be processed, eventually producing an output of what a real detector would record. The digitizer model for the 
ADAC Forte is shown in Fig. 4.

In this work, we demonstrate a novel application of evolutionary algorithms to calibrate the digitizer for a 
GATE model of the ADAC Forte, a dual-headed positron camera used at the Positron Imaging  Centre8. The 

Figure 3.  The total, true, and scatter + random coincidence count rates as a function of source activity for (a) 
250 mm, (b) 525 mm, and (c) 800 mm head separation.
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primary use of this GATE model is to emulate experiments using positron emission particle tracking, a radio-
imaging technique, in order to estimate the spatial and temporal resolution of tracer trajectories and to optimise 
experiment  design21,22. The detector consists of two wide-area sodium-iodide crystals measuring 590 mm × 470 
mm and 16 mm  thick23. The active area for recording coincidences measures 510 mm × 380 mm. Additionally, 
the two detector heads can be moved between 250 mm and 800 mm of separation which can accommodate a 
variety of  experiments24,25. The Forte and the GATE model of the Forte are shown in Fig. 1.

The six digitizer parameters chosen to be optimised are the singles dead-time, coincidence dead-time, pileup, 
lower energy discriminator, upper energy discriminator, and the time resolutions which are explained below. 
These parameters were chosen because they have not been measured directly through a characterisation experi-
ment meaning there is uncertainty in the optimal values. The singles dead-time is a paralysable dead-time which 
affects each pulse, rendering the detector unable to record another pulse until the dead-time has  ended14. If 
another gamma ray enters the detector before the singles dead-time is completed, the dead-time is reset and 
the gamma-ray is not recorded. Paralysable dead-time results in count losses and at high source activities can 
cause the count rate to decrease. Coincidence dead-time is a separate, non-paralysable dead-time affecting the 
recording of a  coincidence26. Unlike a paralysable model, a non-paralysable dead-time does not get reset with 
additional events. Pile-up time is the time between the detection of a single gamma-ray triggering the record-
ing of the pulse and the time at which other events can ‘pile-up‘ onto the same  pulse14. Pile-up has the effect of 
creating count-losses at high source activities. The lower and upper energy discriminators are the minimum and 
maximum energies of events which can trigger the singles dead-time27. The time resolution is the uncertainty in 
the timing of precision of the detector, defined by a Gaussian blurring with a full-width half-maximum28. If two 
gamma rays interact with the detector within the coincidence window of 15 ns, they are not guaranteed to be 
detected in coincidence due to the timing uncertainty. This has the effect of disregarding some real coincidences 
and accepting more random coincidences.

ACCES. When trying to calibrate a simulation’s free parameters so that an experimental measurement can be 
replicated, it is often useful to test a range of conditions and assess how the tested parameter values replicate the 
measurement. In the simplest case with only one free parameter, the value that minimises the error to the meas-
urement can be easily found and visualised by plotting parameter values and the error as a two-dimensional plot. 
This can also be extended to two free parameters by plotting the error as a third dimension on the plot. Beyond 
three dimensions, the number of parameter values needed to explore the solution space increases exponentially 
and the relationship between the parameters becomes non-intuitive. For these problems, an optimiser is needed 
to efficiently test a range of parameter values and converge to a set of optimal parameter values. However, in sim-
ulations and experiments, there often exist noisy measurements, thus a function defining the difference between 
experiment and simulation will be non-smooth and potentially have many false local minima. This means that 
gradient-based optimisers are ill-suited for calibrating simulations.

In these difficult optimisations, evolutionary algorithms  excel29. Evolutionary algorithms are a type of bio-
inspired computing which mimics natural selection. For example, in a population where individuals have a ran-
domised set of genes and selective pressure is exerted, only the individuals which have genes that enable them to 
survive will reproduce. Due to this, the next generation of individuals will be more adapted to selective pressure. 
Similarly, when an evolutionary algorithm is applied to a model function with quantitative free parameters which 
can be tuned, the parameter values act as genes, a model with a specific set of parameters is an individual, and a 
group of individual simulations is a  generation29. For each generation, a cost function determines an individual’s 
fitness and acts as a selective pressure. Using this method, parameter value combinations which result in a low 
cost function are prioritised until the solutions converge to a set of optimal values. A flow diagram of how an 
evolutionary algorithm can be applied to digitizer calibration is shown in Fig. 5.

Figure 4.  The digitizer model of the ADAC Forte.
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While there exist several types of evolutionary algorithms the CMA-ES algorithm is used in this work since 
it performed well in a comparative review of optimisation algorithms and there is a well-documented Python 
implementation CMA v3.0.316,30. To use CMA-ES, the ACCES Python library v0.2.2 is employed to interface 
with CMA-ES and edit an arbitrary script for updating free parameter values in the  simulation18. Using code 
inspection and meta-programming, simulation scripts are parallelised by ACCES allowing them to be launched 
locally or on a high-performance computer. The difference between the simulated system and experimental 
reality can then be quantified by a cost function so that CMA-ES can determine the next generation of solu-
tions. ACCES offers improvements over other interfaces to optimisers in that it is fault-tolerant and designed 
for high-performance computing.

ACCES needs only the bounds of the search parameters, and the number of individuals in a population, and 
stores the results after each generation, or ‘epoch’, so that the optimisation state can be restored at any point. The 
default implementation of CMA-ES requires the use of a single initial standard deviation for all parameters - i.e. 
assuming that all parameters have comparable value ranges and sensitivities. ACCES scales the parameter val-
ues by 40 % of each parameter’s allowed range, such that parameters of vastly different scales can be optimised 
together - e.g. singles dead times in the range [0, 2] and pile up between [0, 600]. As parameter combinations 
are drawn from normal distributions, an initial standard deviation of 40 % naturally covers the entire parameter 
range.

In order to allow the use of complex, potentially thread-unsafe simulations written in different programming 
languages, ACCES launches each simulation as a completely separate OS process, which is either scheduled by 
the kernel to be run locally on a shared-memory machine (e.g. a laptop) or using an external workload manager 
to launch jobs on multi-node clusters; in this study, ACCES automatically sets up and launches batch jobs for 
each parameter combination to be evaluated using GATE. To summarise, the two critical CMA-ES configura-
tion parameters are automatically determined by the computing resources available and the possible parameter 
ranges, such that no manual adjustments of optimiser settings for a given problem is necessary.

Digitizer calibration. We use ACCES in this work to optimise the six free parameters within the digitizer 
of the Forte GATE model described in “GATE model” section. The experiments described in “Count rate experi-
ment” section are used to determine the fitness of parameter combinations. Specifically, a cost function is applied 
which measures the percent difference between the experimentally observed and simulated count rates for the 
total, true, and scatter plus random count-rates across all three head separations and activities. The sum for each 
of these percent differences is denoted as εR , εT , and εSR respectively and computed using Eq. (1). Each type of 
count rate is treated as an objective to optimise and combined into a multi-objective optimisation by multiplying 
them together using Eq. (2). In this case, each type of count rate is treated as equally important; this could be 
changed by adding weights to each percent difference.

To run ACCES, three things must be prescribed: the number of simulations per epoch, the bounds of the 
parameter guesses, and the terminating criterion. The number of simulations per epoch should be large enough 
that sufficient learning can occur and the bounds of parameters must be set so as to keep guesses within a real-
istic range. We have tested ACCES using a simple analytical cost function, the Ackley function, which is widely 
used for testing optimization  algorithms31. This function, described in Eq. (3), has many local minima and one 
global minimum. The number of epochs needed to find the global minimum as well as the total number of cost 
functions evaluated can be studied as a function of the number of solutions per epoch. The results from this 
study are shown in Fig. 6. We used a two-dimensional ( d = 2 ) Ackley function with the parameters a = 20 , 
b = 0.2 and c = 2π.

(1)εR =
∑

100
|Rexp − RGATE|

Rexp

(2)ε = εRεTεSR

Figure 5.  The flow diagram for ACCES is applied to optimising free parameters in a digitizer of a GATE 
detector model.
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The results from this show that larger numbers of solutions optimise the parameters in fewer epochs, but at a 
cost of increasing the number of cost function evaluations. When optimising the Monte Carlo model’s digitizer, 
in order to be computationally efficient, the lowest reasonable number of simulations per epoch should be run. 
The number of simulations is set to 150 so that a wide range of different parameter combinations can be tried 
and the simulations can all be launched in parallel while not affecting the shared usage of the BlueBEAR high-
performance computing (HPC) system. In this work, each set of simulations with a common set of parameter 
solutions is run on a single Intel Icelake core of the BlueBEAR HPC with 8 GB of memory allocated. The maxi-
mum run-time is set to 4 hours and 30 minutes, which is approximately twice as long as the mean run-time 
expected. In the event that a set of simulations takes longer than 4 hours and 30 minutes, the job is terminated 
and the results are not in the solution space for the next generation of parameter solutions.

Additionally, the bounds of the parameter guesses are set to only explore solutions which make physical 
sense, excluding options like a negative dead-time or upper energy level being below the upper energy window. 
The bounds are also limited where needed such that the solution space is finite, yet spanning a range likely to 
contain the optimal value based on an estimate from a previously calibrated  system8. A list of the bounds and 
the initial guesses are shown in Table 2.

The termination criterion for the optimisation is the standard deviation for each parameter reaching 10% of 
the initial standard deviation. This range is chosen such that variation in the parameter values will not signifi-
cantly affect the accuracy of the model. The initial standard deviation is equal to the range of the bounds at the 
beginning of the optimisation and the scaled standard deviation is defined as unity. Once the optimal values are 
identified, they are input to the digitizer model and a coincidence count-rate response is generated to compare 
with the experimental data. These simulations are run at 2 MBq intervals starting at 1 MBq and reaching into the 
upper activities for each experiment. A study of the accuracy of extracted count-rates for the simulation with the 
highest separation and lowest activity (800 mm and 2 MBq) at different numbers of LoRs used to produce projec-
tion images showed that at least 10,000 events are needed to ensure that variance in the extracted count-rates is 
well below 10%. The results of this study are shown in Fig. 7. The lowest count rate that would be expected in an 
experiment is approximately 1 kHz. As a result, we determined that simulations should be run for 10 seconds of 
simulated time at each activity in order to ensure that 10,000 events are captured. As more events are recorded, 
the covariance of the extracted count rates decreases exponentially.

(3)ε(xi) = −a exp
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Figure 6.  (a) The two-dimensional Ackley function with the with evaluation as the third dimension. (b) 
The behaviour of the number of epochs needed to find the global minimum as well the total number of cost 
functions evaluated as function of the number of solutions per epoch.

Table 2.  Digitizer parameter bounds and initial guesses.

Parameter Lower bound Upper bound Initial guess

Singles dead-time (ns) 0 2 1

Coincidence dead-time (ns) 0 2 1

Pile-up (ns) 0 600 300

Lower energy discriminator (keV) 0 360 180

Upper energy discriminator (keV) 640 1200 920

Time resolution (ns) 10 20 15
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In order to contextualise the proposed for calibrating Monte Carlo detector models through evolutionary 
simulation to the existing methods, the ACCES-calibrated model is compared to the existing model described 
in Herald et al., (2021) through the ability to reproduce the real count-rate response of the ADAC Forte. This 
previous model was calibrated by using parameter values for the digitizer which were determined from the 
manufacturer’s characterisation and by manual calibration, taking a considerable amount of time and computa-
tional resources to achieve. The main advantage of using evolutionary simulation is the ability to achieve similar 
or, in this case, better results than manual calibration without spending the time and resources needed to run 
simulations, compare results, and update parameter values through iteration.

Results and discussion
In total, the ACCES optimisation took 56 epochs, 8400 cost function evaluations, and approximately 4 days to 
complete. At the beginning of the ACCES optimisation, the guesses for the six free parameters are broad so as 
to explore the solution space. After this initial period, the guesses begin to converge to their optimal values as 
shown in Fig. 8 where the mean solution values and their standard deviations are plotted for the parameters 

Figure 7.  The covariance of the total, true, and scattered plus random count rates for the 800 mm and 2 MBq 
simulation as a function of the number of LoRs used to generate a projection image.

Figure 8.  The mean parameter value guesses for each of the six free parameters with the standard deviation of 
the guesses are plotted as error bars. After 56 epochs all parameters are below 10% standard deviation and the 
optimisation is completed.



9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:19535  | https://doi.org/10.1038/s41598-022-24022-x

www.nature.com/scientificreports/

over the optimisation. The scaled standard deviations are also shown in Fig. 9 to depict how the uncertainty in 
the optimisation decreases as the optimisation progresses.

Once the optimisation reached 10% uncertainty for each parameter, 0.1 scaled standard deviation, the param-
eters are considered calibrated. The final calibrated values are presented in Table 3. For all parameters except 
for the coincidence dead-time, the optimal solutions are well within their bounds, suggesting an optimal cali-
bration that would not change with different bounds. However, the optimal coincidence dead-time is found to 
be approximately 0 ns. While this could be due to the bounds being ill-suited to the problem, in this case, we 
believe this demonstrates that coincidence dead-time is insignificant to the digitizer model. Further, support 
for this is that the model under-predicts the peak count rates. The opposite would be expected if coincidence 
dead-time was important.

To assess the ability of the ACCES-calibrated digitizer model to replicate the experimental data, a new set of 
simulations is run for each head separation using the optimised values. After the simulations are finished, the 
results were plotted against the experimental data in Fig. 10. Visually, the count-rate response of the GATE model 
matches the general form of the real experiment. To quantify the accuracy, a mean absolute percent difference 
is calculated for each head separation and each type of count rate and presented in Table 4. Additionally, the 
results for the manually calibrated digitizer model are presented in Table 5.

The average mean absolute percent differences for the 250 mm, 525 mm, and 800 mm are 7.55%, 4.30%, and 
5.48%, respectively. The separation which was closest to the phantom experienced the highest error between the 
simulation and experiment. This could be caused by the closer separation amplifying differences between the 
phantom’s position in the simulation versus the experiment. In addition to this, the ACCES-calibrated model 
improves the match between simulation and experiment compared to a manually calibrated digitizer model 
which produced a mean absolute percent difference in the count rate response of 17.78%, 15.42%, and 21.75%. 
This represents ACCES producing a calibration which achieves a nearly three times better agreement with the 
experiments. This is a significant improvement and one accomplished without guiding the optimiser to these 
solutions. Overall, this calibration represents an agreement with the experiment that would be sufficient for the 
GATE model to be used as a predictive tool to generate data representative of real experiments.

To assist users in developing their own optimisations using ACCES, we have included an example within the 
GitHub repository found here. This example uses a simulated count-rate response of the ADAC Forte GATE 
model with prescribed parameter values in the digitizer as the ground truth response, then uses ACCES to 
calibrate two parameters, the singles dead-time and time resolution, to match the ground truth response. Two 
parameters were chosen because this is a more complex optimisation than a single parameter, yet easier to 

Figure 9.  The standard deviation of the parameter value guesses tried by ACCES. A lower standard deviation 
represents lower uncertainty in discovering the optimal parameter values.

Table 3.  Calibrated digitizer parameter values.

Parameter Calibrated value Uncertainty

Singles dead-time (ns) 1070 ± 16.7

Coincidence dead-time (ns) 10 ± 54.7

Pile-up (ns) 498 ± 9.31

Lower energy discriminator (keV) 284 ± 10.1

Upper energy discriminator (keV) 1020 ± 30.2

Time resolution (ns) 17 ± 0.347
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visualise than an optimisation with three or more parameters. The prescribed values for the singles dead-time 
and the time resolution are 1000 ns and 15 ns, respectively. The methodology in this simple example follows the 
same as that described in “Digitizer calibration” section. The results from this optimisation in Fig. 11 show the 
optimal parameter was determined to be 995.016 ns for the singles dead-time and 15.022 ns for the time resolu-
tion, which matches the prescribed parameters.

Conclusions
In this work, we have demonstrated the calibration of a GATE digitizer model using an evolutionary algorithm. 
The model’s accuracy was quantified by a direct comparison of the ability of different parameter value combina-
tions to replicate the count rate response of the detector across a diverse set of experiments. Importantly, the 

Figure 10.  The optimised GATE model count rates are plotted against the experimental data for the (a) 250 
mm experiment, (b) 525 mm experiment, (c) and the 800 mm experiment.

Table 4.  Mean absolute percent differences in the count rate of the ACCES-calibrated digitizer model.

ACCES-calibrated results

 Head separation 250 mm 525 mm 800 mm

Total count-rate 4.76% 1.71% 2.43%

True count-rate 4.55% 2.85% 2.25%

Scatter + random 13.33% 8.33% 11.77%

Average error 7.55% 4.30% 5.48%

Table 5.  Mean absolute percent differences in the count rate of the manually calibrated digitizer model.

Manually calibrated results

 Head separation 250 mm 525 mm 800 mm

Total count-rate 11.50% 4.48% 6.25%

True count-rate 17.86% 15.68% 10.85%

Scatter + random 23.98% 26.10% 48.15%

Average error 17.78% 15.42% 21.75%
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calibration was completed autonomously, needing only the number of simulations desired, the bounds of the 
search parameters, and the user-defined stopping criterion. This represents an advancement which brings simula-
tions closer to reality. By employing the ACCES software available from our GitHub repository to perform this 
calibration, the need for users to perform a calibration through trial-and-error is eliminated. Even though this 
method needs a relatively long time and a large number of computational resources, the ability for ACCES to 
run on a high-performance computing system and periodically save the optimisation state makes this method 
useful and practical for users who have these resources at their disposal. While this workflow was demonstrated 
through the calibration of a specific detector model following the NEMA protocol, this same type of method can 
be applied to other models and also expanded to cover other types of measurements such as spatial resolution 
and sensitivity. Additionally, this method of optimisation can be improved in the future by including a strategy 
for calibrating the structure of the digitizer by including or excluding pulse-processing stages and by adjusting 
parameters which are categorical instead of quantitative, such as the type of dead-time model (paralyzable or 
non-paralyzable) or the policy for recording multi-coincidences.

Data availability
All data generated or analyzed during this study are included in this published article. Additionally, the ACCES 
software used for optimisation and the calibrated GATE model of the ADAC Forte have been made avail-
able through the University of Birmingham Positron Imaging Centre’s GitHub Repository: https:// github. com/ 
uob- posit ron- imagi ng- centre/ ACCES- CoExS iST and https:// github. com/ uob- posit ron- imagi ng- centre/ GATE_ 
Models.
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Positron emission particle tracking (PEPT) is used to study a wide range of scientific, industrial, and biomedical
systems, typically those inaccessible through conventional optical particle tracking techniques. However, in
dense or thick-walled systems a fraction of the coincident gamma-rays emitted from a PEPT tracer, called
Lines-of-Response (LoRs), are attenuated via Compton scattering. Additionally, at high source activity, random
LoRs may be formed by two unrelated events. The incorporation of scattered or random LoRs decreases PEPT
spatial accuracy and can distort the trajectory. In this work, we use validation experiments and simulations to
investigate the spatial accuracy of the Birmingham Method (BM) PEPT algorithm when two key free parameters
are changed: the total number of LoRs in the sample and the fraction of LoRs in the sample used to locate the
tracer. Our results show that the default algorithm parameters are not suitable for all cases, however, Monte
Carlo simulations of PEPT experiments can be used to estimate the optimal parameter values. Ultimately a
variant of the BM, called Dynamic-BM, is demonstrated in a virtual PEPT experiment. Dynamic-BM uses the
optimal parameters on a sample-by-sample basis improving PEPT accuracy in this case by 4.03% over the best
constant parameters and 76.5% over the default parameters. These improvements make PEPT a more accurate
and thus more useful tool.

1. Introduction

Many types of systems used in scientific, industrial, and biomedical
applications pose a challenge for those who study them since the
internal dynamics of fluids and solids are often difficult to observe
directly. This is because the materials themselves are opaque, they are
inaccessible behind the system’s opaque walls or both. To better under-
stand what is happening inside these systems, a fully three-dimensional,
Lagrangian particle tracking technique called positron emission particle
tracking (PEPT) was developed [1]. The PEPT technique locates a
quasi-point, positron-emitting tracer by detecting coincident 511 keV
gamma-rays generated from positron-annihilation [2]. Using samples
on the order of 100 of these rays, which are termed lines-of-response
(LoRs), the location where the LoRs converge is determined to be
the tracer’s position. Tracers are tracked over time using subsequent
samples of LoRs to develop a trajectory. The PEPT technique is similar
to positron emission tomography (PET), in so far as it uses the same
types of tracers and detectors, but where PET produces images of
the 3-dimensional radio-nuclide concentration throughout the imaging
volume at a low temporal resolution (<1 Hz), PEPT assumes a quasi-
point tracer and returns the 3-dimensional centre of the discrete tracer’s

∗ Corresponding author.
E-mail address: mxh1092@student.bham.ac.uk (M. Herald).

radio-nuclide distribution at a comparatively high temporal resolution
(>100 Hz) [3]. This allows PEPT to extract information from systems
such as the velocities of individual tracers, granular temperature, and
flow dynamics in engineering systems that PET cannot provide. In
the decades of research since PEPT was first introduced, PEPT has
been shown to capture tracer trajectories with high spatiotemporal
resolution and used to study a wide range of systems [4]. For example,
PEPT has been used to characterise flow regimes in gas-fluidised and
vibro-fluidised beds, analyse the shape and behaviour of granular beds
in rotating drums, and measure the Reynolds stress and turbulent
kinetic energy budget in pipe-flow [5–8]. The basic principle of PEPT
is shown in Fig. 1.

Ideally, all of the LoRs should lead back to a single point which
is the tracer location and these are termed ‘true’ LoRs [9]. However,
LoRs may also be ‘scattered’ or ‘random’. Scattered LoRs are formed
when one or both gamma rays in an LoR undergo scattering before
reaching the detector. The most common type of scattering for 511
keV gamma-rays is Compton scattering, which is an inelastic scattering
process that occurs when a photon interacts with an electron, lowering

https://doi.org/10.1016/j.nima.2022.167831
Received 29 April 2022; Received in revised form 9 November 2022; Accepted 15 November 2022
Available online 22 November 2022
0168-9002/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. 511 keV gamma-rays are collected using two opposing radiation detectors and form an LoR (left). When processed with a PEPT algorithm, the LoRs reveal the tracer
location (right).

Fig. 2. A scattered LoR is formed when one or both gamma rays undergo Compton scatter (left). A random LoR is formed when two unrelated gamma rays are detected within
the coincidence window (right).

the energy of the photon and changing its direction [10,11]. A scattered
LoR, shown in Fig. 2, does not intersect the source location and is
therefore corrupted for PEPT. While 511 keV gamma-rays are much
more penetrating than visible light and X-rays, like all forms of elec-
tromagnetic radiation, they exponentially attenuate. For a beam of 511
keV gamma-rays with initial intensity 𝐼0, the amount that penetrates
without attenuating is dependent only on the material thickness, 𝛥𝑥,
and the linear attenuation coefficient, 𝜇, as shown in Eq. (1) [12].

𝐼 = 𝐼0 exp (−𝜇𝛥𝑥) (1)

A ‘random’ LoR may also be formed between two unrelated events
within the energy window. Since the two gamma rays in a random
LoR originate from separate positron annihilations, the LoR is corrupt
and will not intersect the source location. The rate of random LoRs
is predictable and determined by the count-rate of individual ‘singles’
events between two detectors, 𝑆, and the coincidence window, 𝜏,
shown in Eq. (2) [13]. Since the rate of random LoRs squares with the
singles rate, at high count-rates random LoRs may form a large fraction
of the LoRs in a sample. A diagram of a scattered and random LoR is
shown in Fig. 2.

𝑅 = 2𝜏𝑆1𝑆2 (2)

The Birmingham Method (BM) PEPT algorithm was designed with
the fact in mind that many LoRs in a sample may be corrupted, thus
only a fraction of the LoRs in a sample should be used to find the tracer
position [2]. The BM works by minimising the sum of the distances
of an estimated tracer position to each LoR in the sample, described

by Eq. (3), where 𝐷(𝑁) is the sum of all the distances in the sample
of LoRs, 𝑁 , and 𝛿𝐿𝑜𝑅(𝑚) being the three-dimensional distance of an
individual LoR to the estimated tracer location, 𝑚 [8]. Once the tracer
position is estimated and the distances of LoRs to the position known,
the LoR furthest from this point is removed and the remaining LoRs
are recycled to update the estimated position. This iterates until only
a user-specified fraction of the LoRs remain, 𝑓 . This process is shown
in Fig. 3. The BM has two free parameters: the fraction of the LoRs
remaining in the initial sample, 𝑓 , and the total number of LoRs in a
sample, 𝑁𝐿𝑜𝑅𝑠. The default parameters of the BM are 0.05 and 250 for
𝑓 and 𝑁𝐿𝑜𝑅𝑠, respectively. These parameters are conservative so that
they can be applied to many different systems and produce reasonable
trajectories.

𝐷(𝑁) =
∑
𝑁

𝛿𝐿𝑜𝑅(𝑚) (3)

It is known that thicker and denser systems will cause more scat-
tered LoRs and that more active tracers will cause more random LoRs.
However, little has been done to develop ways to understand how this
affects PEPT measurements and, further, predict the values for 𝑓 and
𝑁𝐿𝑜𝑅𝑠 which will maximise the spatial accuracy of the BM. In recent
work, a method to find the optimal 𝑁𝐿𝑜𝑅𝑠 has been proposed [14]. This
method relies on using a large enough sample to give adequate statistics
but is limited such that the tracer does not move significantly compared
to the measurement uncertainty during the time used to locate the
tracer. This can be summarised in Eq. (4), where 𝑤 is a detector-specific
parameter for spatial resolution, 𝑅 is the detection rate of LoRs, and 𝑣 is

2



M. Herald, J. Sykes, D. Parker et al. Nuclear Inst. and Methods in Physics Research, A 1047 (2023) 167831

Fig. 3. A sample of LoRs and the initial guess for the tracer position (left). After a fraction of the LoRs furthest away from the initial guess are removed, the remaining LoRs are
re-clustered for a more accurate position (right).

the tracer velocity. However, this approach can only be used accurately
if the tracer velocity and 𝑓 are known, which is often not the case.

𝑁 = 𝑓
−1
3
[𝑅𝑤

𝑣

] 2
3 (4)

In this work, we use PEPT measurements and simulations to inves-
tigate how the spatial accuracy of the BM is affected by the parameters
𝑓 and 𝑁𝐿𝑜𝑅𝑠 under a range of experimental conditions, including both
stationary and moving tracers. In addition to real experiments, a Geant4
Application for Tomographic Emission (GATE) v 9.1 model of the
ADAC Forte, validated to within 10% of experimental measurements,
is used to recreate the experiments [15,16]. These serve as further
validation for the model and are later expanded to test a range of
conditions not explicitly considered during the experiment. The values
for 𝑓 and 𝑁𝐿𝑜𝑅𝑠 which maximise the spatial accuracy for each PEPT
trajectory are extracted as a function of the tracer position. To utilise
this information, a new version of the BM, called the Dynamic-BM
(DBM), is developed which dynamically changes the fraction of LoRs
remaining in the sample and the sample size of LoRs based on an es-
timate of the tracer position found using non-optimal parameters. This
new method is expected to provide both higher spatial and temporal
resolution than the original BM algorithm since it can use the optimal
parameter combination on a sample-by-sample basis. Moreover, this
removes the necessity for trial and error optimisation as well as the cost
this engenders and provides a justifiable reason why certain parameters
were chosen.

2. Methods

Two experiments are created to investigate how 𝑁𝐿𝑜𝑅𝑠 and 𝑓 vary
under different conditions. The first experiment consists of low-activity,
static tracers placed in the centre of the ADAC Forte dual-headed
positron camera. This system is depicted in Fig. 4. The tracer is sur-
rounded by a cylinder of material to induce Compton scattering. The
experiment is repeated with six materials detailed in Table 1; this shows
how the fraction of corrupted LoRs affects the optimal 𝑓 parameter. The
second experiment is a moderately high-activity tracer fixed to the end
of an impeller rotating at 100 RPM in an attritor mill. The BM is used
with a range of 𝑓 and 𝑁𝐿𝑜𝑅𝑠 to track the tracer, and then the PEPT
trajectories are compared to the predicted tracer position based on the
known rotation rate and initial position to calculate the mean spatial
error. The combination of parameters that maximises the mean spatial
accuracy of the trajectory is found. This shows how the optimal 𝑁𝐿𝑜𝑅𝑠
is affected by tracer motion.

Both the static tracer experiments and the attritor mill experiment
are recreated in GATE to serve as validation of the model. Subse-
quently, the GATE model of the attritor mill is then used again to place

the tracer in a range of possible initial positions which will result in
different fractions of corrupted LoRs and a range of tracer velocities.
Each trajectory is analysed using the BM and the optimal parameter
combination is extracted as a function of the tracer position. Ultimately,
these virtual PEPT experiments are used to observe how 𝑓 and 𝑁𝐿𝑜𝑅𝑠
change throughout the attritor mill system and are used to develop the
DBM algorithm. The performance of the DBM will be compared to the
best constant parameters and also the default algorithm parameters.

2.1. Static tracer experiment

A small tracer, on the order of the range of positrons in the material
and PEPT uncertainty, should be used to ensure the detected LoRs form
a tight cluster near the tracer. The tracer chosen for this experiment
is a 1 mm diameter sphere of anion exchange resin labelled with
fluorine-18 (F-18). F-18 is an ideal positron-emitting isotope for PEPT
because it has one of the lowest energy spectra for positrons and thus
a low range [17]. The anion exchange resin adsorbs F-18 ions from a
solution of radioactive water produced on-site at the Positron Imaging
Centre [18]. On the day of the experiment, the tracer was activated
with an initial activity of 2.8 MBq and placed inside a 0.5 ml plastic
vial for handling. According to a recent characterisation of the ADAC
Forte, a tracer of 2.8 MBq will produce less than 5% random LoRs,
meaning nearly all LoRs not intersecting the tracer location will most
likely have undergone Compton scattering before being detected [15].

To attenuate the 511 keV gamma-rays, the vial is placed in the
centre of an 800 ml cylindrical glass beaker filled to 500 ml with
bulk density attenuating material. The inner diameter of the beaker is
100 mm and filled to the height of 65 mm, confirming that a volume
of material of approximately 500 ml is used. The wall thickness of
the beaker is 5 mm. Once filled, the beaker’s mass was measured. The
initial mass of the beaker was subtracted to find the total mass of the
attenuating material. The density of the materials, 𝜌, is calculated by
dividing the mass by the volume. The materials and their properties
are listed in Table 1. Materials like air and high-density polyethene
(HDPE) have low linear attenuation coefficients, 𝜇, while steel and
copper have larger coefficients, meaning they will attenuate a larger
fraction of the gamma rays [11]. A small sample of some of these
materials and the filled beaker is shown in Fig. 4. The fact that materials
are bulk and porous is not expected to have an effect in this experiment
since the diameters of the materials are much smaller than the diameter
of the beaker. The attenuation of gamma rays in this experiment will
approximate those of a perfectly continuous attenuation medium.

During the experiment, the beaker is placed in the centre of the field
of view (FOV) of the ADAC Forte. The Forte is a dual-headed positron
camera used for PEPT at the Positron Imaging Centre and is the most
extensively used detector system for performing PEPT experiments [8,
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Fig. 4. A small sample of four of the materials used to induce attenuation (left). From left to right: steel, copper, glass, and MCC. The beaker is filled with steel balls and the
source is placed in the centre of the field-of-view (FOV) of the Forte (right).

Table 1
List of the bulk materials and their attenuating properties [11].

Material 𝜌𝑏𝑢𝑙𝑘 (g∕cm3) 𝜇∕𝜌𝑏𝑢𝑙𝑘 (cm2∕g) 𝜇 (cm−1) Attenuation (%)

Air 0.00129 0.0806 0.000111 19.4
HDPE 0.890 0.0931 0.0828 64.8
MCC 1.421 0.0915 0.130 78.0
Glass 1.661 0.0858 0.143 80.7
Steel 4.425 0.0832 0.368 98.0
Copper 5.025 0.0827 0.415 98.7

19,20]. It is comprised of two opposing large-area sodium iodide crys-
tals, 16 mm thick, each with an active area of 380 × 510 mm [15].
The intrinsic efficiency of the Forte is reported to be approximately
23% and it has an energy resolution of 14% [15]. Ideally, an energy
window should be set as narrowly as possible around 511 keV, to
exclude photons that have Compton scattered [21], but broad enough
not to exclude valid annihilation pairs. The energy window is set to
50% to capture all true LoRs, yet inevitably recording some scattered
LoRs which can later be discarded by the Birmingham algorithm. The
two heads of the Forte have an adjustable separation and for this
experiment are set to their maximum separation of 800 mm to achieve
the most uniform illumination. Each material is imaged until more
than 1,000,000 LoRs have been collected, which is enough to locate
the tracer several times using the BM across a range of 𝑁𝐿𝑜𝑅𝑠 in the
sample size. Since the position of the tracer is not known exactly, the
standard deviation of the PEPT detected position, the PEPT precision, 𝜎,
is used to quantify the performance of different 𝑓 and 𝑁𝐿𝑜𝑅𝑠 parameter
combinations. This is calculated using Eqs. (5) and (6), which is the
three-dimensional standard deviation of the detected positions.

𝜎𝑥 =

√
𝛴(𝑥𝑖 − �̄�)2

𝑁
(5)

𝜎 =
√

𝜎2𝑥 + 𝜎2𝑦 + 𝜎2𝑧 (6)

2.2. Moving tracer experiment

In previous work, the spatial accuracy for static tracers has been
shown to improve when more LoRs are used per sample [22]. However,
in real PEPT experiments, the tracer typically moves throughout the
system. This movement limits the 𝑁𝐿𝑜𝑅𝑠 per sample if the tracer moves
more than a few millimetres between the detection of the first and last
LoRs in the sample. If the tracer moves more than this, particularly

if the tracer is changing direction or accelerating, the PEPT-detected
position will incur higher spatial errors [2,23]. Thus there should
always exist an optimum 𝑁𝐿𝑜𝑅𝑠 per sample for a given system at a given
point in time.

To investigate this in a system representative of a PEPT experiment,
an attritor mill is placed near the centre of FOV and a tracer is fixed
to the end of the impeller as it rotates in the mill at 100 RPM. Mills of
this type are used across a wide range of industrial and pharmaceutical
applications and have been studied in the past using PEPT [24,25]. Due
to the thick steel walls and predictable circular rotation of a particle
fixed to the impeller, this system is an ideal candidate to investigate the
effect of 𝑁𝐿𝑜𝑅𝑠 on the spatial accuracy of the BM. In other work, similar
rotating systems have been used to better understand how changing the
parameters 𝑓 and 𝑁𝐿𝑜𝑅𝑠 affects PEPT measurements [2,26]. The attritor
mill and a schematic of the mill dimensions are shown in Fig. 5.

The tracer used for this experiment is a 1.2 mm diameter MCC bead
activated with a solution of F-18 and water to an initial activity of 22
MBq. A tracer of this activity is ideal for PEPT experiments in the Forte
since this is approximately the activity which will produce the highest
true LoR count-rate before dead-time and random LoRs degrade the
measurement [15]. This tracer is taped to the end of the upper impeller
in the attritor mill at a radius of 63 mm. At 100 RPM the tracer will
rotate at a constant velocity of 660 mm/s. The mill is then placed near
the centre of the FOV of ADAC Forte at a head separation of 510 mm.
The mill is imaged over approximately 1 min (i.e. 100 rotations) to be
able to develop good statistics of the tracer locations as it rotates.

To assess the performance of different 𝑓 and 𝑁𝐿𝑜𝑅𝑠 combinations
using the BM, first, each directional component of the PEPT trajectory
is fitted to a sinusoidal equation as a function of time, 𝑡, as shown
in Eq. (7). The amplitude, 𝐴, in the 𝑥 and z components should be
approximately 63 mm and in the 𝑦 component, 0 if the mill is perfectly
oriented with respect to the detector axes. Since the mill is likely
not perfectly level a sinusoidal equation is fit to the y-component as
well. The rotation rate, 𝜔, is approximately 100 RPM, and 𝜙 is the
phase shift which depends on the initial position of the tracer. The
PEPT deviation from this motion is calculated by comparing each PEPT
detected position to the predicted position using the fitted equations.
In this way, the mean spatial error of the trajectory is calculated using
Eqs. (8) and (9).

𝑥𝐹 𝑖𝑡(𝑡) = 𝐴 sin(𝜔𝑡 + 𝜙) + 𝑐 (7)

𝜀𝑥𝑖 = |𝑥𝑃𝐸𝑃𝑇𝑖 − 𝑥𝐹 𝑖𝑡𝑖 | (8)
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Fig. 5. The attritor mill near the centre of the FOV of ADAC Forte (left). A schematic of the dimensions of the mill and the tracer fixed to the impeller (right).

𝜀 = 1
𝑁

𝑁∑
𝑖

√
𝜀2𝑥𝑖 + 𝜀2𝑦𝑖 + 𝜀2𝑧𝑖 (9)

2.3. Monte Carlo model

GATE v 9.1 is a powerful tool used to simulate radioactive sources,
detectors, and geometries commonly found in medical imaging and
radiotherapy applications [27]. PEPT relies on the same equipment as
in medical imaging, thus GATE can reliably be used to create virtual
PEPT experiments without having to extend the existing toolkit [22,
28]. The GATE model of the ADAC Forte used in this work has been
validated using a characterisation of the detector when it was installed
at the Positron Imaging Centre and calibration experiments following
an industry-standard protocol, showing agreement between simulation
and experiment to within 10% across all tested metrics [15]. The model
includes all of the major structural components of the ADAC Forte
such as the sodium-iodide scintillation crystal, back compartment, and
cover around the detector heads. The model also includes the ‘digitizer’
which is based on the pulse-processing stages of the detector, crucial for
replicating the spatial resolution, sensitivity, and count-rate response of
the detector [29].

The ADAC Forte’s digitizer is responsible for converting the inter-
actions of the simulated gamma-rays with the scintillation crystals,
termed ‘hits’, into a ‘pulse’ which is analogous to what would be
produced by the real detector by passing the time, position, and energy
of the hit through blurring filters. This is needed because the simulation
produces exact values, but in reality, some characteristic imprecision is
present. A flow diagram of the ADAC Forte’s digitizer is shown in Fig. 6.
Once the hit is registered, the information from the interaction such
as the time, position, and energy absorbed by the crystal is recorded
as a GATE pulse. Next, a series of blurring filters are added to match
the time resolution, spatial resolution, and energy resolution of the
detector. In the simulation, the values for these pulse properties are
known absolutely and must be blurred to mimic the imprecision of
real detectors. Next, the pulses which fall near to each other in a short
time window of 400 ns are allowed to pile-up on one another forming
a combined signal. After this step, energy thresholds for recording
the pulse are added which ensures that only pulses falling within the
threshold will trigger a detector response, excluding pulses below 250
keV and 950 keV. Pulses falling within this range trigger the detector to
record them and this creates a period where no pulses can be recorded
called dead-time. The dead-time model used for the single pulses is a
paralysable model with a dead-time of approximately 1.2 μs which can
be restarted by another pulse [30]. Of the recorded singles pulses, only
those falling within a 50% energy window of the 511 keV photo-peak,
which is 360 keV to 640 keV, are considered for forming a coincidence

Fig. 6. The ADAC Forte’s digitizer is represented as a flow diagram of the
pulse-processing stages.

if another pulse on the opposite head of the detector records a single
within the coincidence window of 15 ns. Finally, from the coincidences
that are formed, an additional non-paralysable coincidence dead-time
of 1.2 μs is used to filter the data following the data write speed
limitation of the detector, which forms the final coincidences. These
final coincidences are what are ultimately considered the LoRs which
are used for PEPT [15].

This GATE model of the ADAC Forte is first used to repeat the
experiments described in Sections 2.1 and 2.2 for comparison and
further validation. After this, the GATE model and recreated attritor
mill are used to expand the tested conditions to observe how the
optimal combination of 𝑓 and 𝑁𝐿𝑜𝑅𝑠 changes throughout the system.
These optimal parameters are used in Section 2.4 to develop the DBM
algorithm.

2.3.1. Static tracer simulation
Following the previously described experiments, the tracer, ge-

ometry, and detector for the static tracer experiments are replicated
in GATE. This starts by creating a radioactive tracer defined as a
1 mm diameter resin sphere, emitting positrons with an F-18 energy
spectrum. The tracer is placed inside a geometric model of the glass
beaker which has been filled with 500 ml of bulk-density material. A
cross-section of the beaker and source geometry is shown in Fig. 7. To
replicate the attenuation of each material, new material definitions are
added to the GATE material database which is described in Table 1.
The tracer is prescribed an activity equal to that of the tracer’s activity
at the beginning of each data acquisition. Initially, the tracer was
approximately 2.8 MBq at 11:48 am, but by the end of all experiments
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Fig. 7. The ADAC Forte dual-headed positron camera at the Positron Imaging Centre (left). GATE model of the Forte with a cutaway of the experimental geometry and source in
the centre of the FOV (right).

decayed to approximately 1.3 MBq. For each simulation, the activity is
adjusted accordingly to compensate for decay. Finally, the tracer and
beaker are placed in the centre of the FOV of the GATE model of the
ADAC Forte. The detector separation is set to 800 mm. While the exact
positions of the tracers simulated in GATE are known, Eq. (6) is still
used to calculate the PEPT precision to compare the real experiment
and simulations directly.

2.3.2. Moving tracer simulation
In a similar manner as before, the moving tracer experiment is

recreated in GATE. The model of the ADAC Forte is the same as the
model used for the static tracer experiment and the head separation is
set to 510 mm, which is as close to the system as the detectors could
be set. A lower head separation results in higher geometric efficiency,
meaning LoRs can be collected at a higher rate. At the time of the
experiment, the tracer was measured to approximately 20 MBq. This
is modelled in GATE as a 1.2 mm diameter sphere emitting positrons
with an F-18 energy spectrum.

The mill dimensions can be found on the right-hand side of Fig. 5
and the GATE model of the mill is shown in Fig. 8. It consists primarily
of a 70 mm diameter vessel lined with polyethylene and a stainless-steel
impeller with 4 pins. The polyethylene liner is 10 mm thick and the
outer stainless-steel wall is 5 mm thick. The inside of the vessel is filled
with air to match the experimental conditions. In a real experiment,
the mill will be filled with grinding material. To recreate this in GATE,
the model could be filled with a volume of the bulk density material,
or a Discrete Element Method simulation can be used to calculate the
three-dimensional density distribution and this can be imported into
the simulation using a voxel array [23] (see Fig. 8).

The whole mill is rotated about the 𝑦-axis at 100 RPM to induce
particle motion. This is achieved through discrete rotations of every
simulation time-step of 0.0005 s. For the tracer fixed at a 63 mm
radius, this results in a change in position of approximately 0.33 mm
per time-step. This is smaller than the tracer diameter and can thus be
safely used to mimic continuous tracer motion. The GATE simulation
produces LoRs which are processed in the same way as real PEPT data.
A range of different 𝑓 and 𝑁𝐿𝑜𝑅𝑠 are used to locate the tracer. The
PEPT trajectory is then compared back to the GATE-prescribed tracer
positions using Eqs. (7)–(9). The GATE simulated tracer’s position is
known exactly and there is no variability in its rotation rate or system
vibration present. As such, the spatial accuracy of the GATE simulated
tracer is expected to be somewhat higher than in the real experiment.

2.4. Dynamic Birmingham Method

In PEPT experiments, the scattering environment and detector sen-
sitivity change as a function of the tracer position. The amount of
corrupted LoRs in a sample affects the optimal 𝑓 while the sensitivity
affects the optimal 𝑁𝐿𝑜𝑅𝑠. However, the BM uses constant parameter
values. This means users must choose a conservative parameter com-
bination that will work over the whole data set. Inevitably, this will
return trajectories with lower spatial accuracy than is theoretically
possible. To solve this problem, a variant of BM is developed called
Dynamic-BM (DBM), ‘Dynamic’ because it can dynamically change
𝑓 and 𝑁𝐿𝑜𝑅𝑠 to the optimal values determined by a Monte Carlo
simulation of the experiment as the tracer moves through the system.

Initially, the DBM uses constant values of 𝑓 and 𝑁𝐿𝑜𝑅𝑠 to estimate
the position of the tracer. Then, for each initially-estimated tracer
position, the optimal parameter values are looked up from a table
produced by Monte Carlo simulation. To use this table, the predicted
3-dimensional location of the tracer and other optional information
is input, then the closest simulated position is found and the optimal
parameters are output. This approach relies on the user simulating a
sufficiently high number of possible tracer positions within the system
such that the change in parameter values between adjacent simulated
positions is smooth. The Monte Carlo simulations must be analysed
before using the DBM to generate the optimal parameter look-up table.

To test the DBM, the attritor mill is simulated using GATE with the
tracer placed in a range of initial positions. This is done to investigate
the whole system’s behaviour rather than only a single region. To match
the experimental conditions, the mill is rotated at 100 RPM and the
tracer activity is set to 22 MBq. Each tracer position is a new GATE
simulation. The initial tracer positions are seeded in one quadrant of
the mill to take advantage of the symmetry of the system. The positions
are created in regular intervals in the 𝑥 and z direction from 0–60 mm
in 20 mm steps and the 𝑦-direction from −50–50 mm in 12.5 mm
steps. The positions falling outside of the system or intersecting the
impeller are removed, leaving a total of 84 positions. Since the impeller
is rotating the position of the tracer is important for the optimal 𝑓
and 𝑁𝐿𝑜𝑅𝑠 values since it will cause different amounts of scattering
depending on its rotated angle. In the simulation, the rotation of the
impeller is prescribed so it is known, but during a PEPT experiment, this
can be more difficult to ascertain. However, the ADAC Forte can record
readings from an optical switch directly into the data file, allowing the
impeller rotation angle to be recorded throughout an experiment [31].
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Fig. 8. The GATE model of the ADAC Forte dual-headed positron camera (left) and a cut-away of the attritor mill (right). In the cut-away, the major components are labelled.

The 360◦ is divided into 30◦ increments and the optimal 𝑓 and 𝑁𝐿𝑜𝑅𝑠
are calculated over this range.

To use the look-up tables, first, the amount the mill is rotated must
be determined. This is done by multiplying the time by 360◦ and divid-
ing by the rotation period, 0.6 s. Since all rotations beyond 360◦ are
duplicates of previous rotations, a modulo operation is performed. Then
all the simulated positions within the nearest rotation are compiled and
the values of 𝑓 or 𝑁𝐿𝑜𝑅𝑠 for the position closest to the PEPT estimated
position are extracted. Using this method, the optimal 𝑓 and 𝑁𝐿𝑜𝑅𝑠
of any point within the system can be determined. Due to the change
in 𝑁𝐿𝑜𝑅𝑠 per sample, the number of detected positions in a trajectory
processed using the BM and the DBM may vary. To ensure the changing
parameters are used at the appropriate position within the data set, the
𝑓 and 𝑁𝐿𝑜𝑅𝑠 are linearly interpolated as a function of time and the
average time of the LoRs in each sample is used to compute the exact
parameter values.

To assess the performance of the DBM, it is compared to both the
default BM parameter values of 0.05 𝑓 and 250 𝑁𝐿𝑜𝑅𝑠 as well as the
best constant parameter values. This represents the default and the
best possible BM performance, showing how dynamically changing the
parameter values improves PEPT algorithms. The method of compar-
ison between the PEPT-detected trajectories and the GATE-prescribed
trajectory is the same as in Section 2.3.2.

3. Results and discussion

3.1. Model validation results

Each of the static tracer experiments described in Sections 2.1 and
2.2 produce a unique amount of attenuation. Some of the coincident
511 keV gamma-rays attenuated via Compton scattering are inadver-
tently passed to the PEPT algorithm as corrupted LoRs. When the
attenuating medium is air, the amount of corrupted LoRs is relatively
low, but as the medium becomes more attenuating, a larger fraction of
LoRs are corrupted. This is clearly shown in Fig. 9 where the LoRs from
the air, glass, and copper attenuation experiments are plotted.

Since these materials produce different fractions of corrupted LoRs,
the optimal 𝑓 for each experiment should be a unique value. The
LoRs from the real experiment and simulations were both processed
using the BM under a range of 𝑓 and 𝑁𝐿𝑜𝑅𝑠 and the variation of the
standard deviation in position for different combinations of the two
parameters is plotted as colour variation in Fig. 10. These plots show
that for static tracers the optimal value of 𝑓 is decreased when more
corrupted LoRs are present and the standard deviation in the position
decreases as more 𝑁𝐿𝑜𝑅𝑠 per sample are used. The experiment and
GATE simulations closely agree across all the parameter combinations,
both in the optimal values for 𝑓 and in the standard deviation in the

Table 2
Comparisons of the experiment and simulation in the optimal parameters
for the moving tracer experiment.

Method Optimal 𝑓 Optimal 𝑁𝐿𝑜𝑅𝑠

Experiment 0.275 1400
Simulation 0.25 1300
Percent error (%) −9.09 −7.14

tracer position. For a static tracer, the optimal value for 𝑓 remains
constant and the standard deviation in position will always decrease
with greater 𝑁𝐿𝑜𝑅𝑠. The optimal values for 𝑓 across all the materials
tested for both the experiment and the simulation are shown in Fig. 11.
Additionally, the values for 𝑓 which minimise the uncertainty are
plotted against the fraction of true LoRs in Fig. 12 demonstrating that
𝑓 must lower when more attenuation occurs. Moreover, this shows that
the values for 𝑓 which minimise position uncertainty are approximately
equivalent to the fraction of true LoRs in the sample. This, until now,
has been an assumption of the BM, but this provides the first direct
evidence that this assumption is true. The experiment and simulation
provide similar values in both the overall PEPT precision across all the
parameter combinations tested and also the values of 𝑓 which minimise
the uncertainty for a given 𝑁𝐿𝑜𝑅𝑠.

A similar analysis was conducted for the moving tracer experiment.
A 22 MBq tracer was fixed to the impeller of an attritor mill and rotated
at 100 RPM. In this case, a position error was calculated using Eq. (7)
for the experiment and simulation. A range of constant 𝑓 and 𝑁𝐿𝑜𝑅𝑠
values are used with the BM to assess the spatial errors produced under
different parameter combinations. Trajectories of the experiment and
simulation are presented in Fig. 13 showing that the rates of detection
are approximately the same. In Fig. 14, the parameter values for 𝑓
and 𝑁𝐿𝑜𝑅𝑠 are varied to assess their effect on the spatial error of the
reconstructed PEPT trajectory and to find the optimal combination of
parameters. The experimental plot has a generally higher error be-
cause the error was calculated using fitted functions, assuming perfect
circular motion, whereas the GATE simulations benefit from having
analytical functions describing the tracer motion. From Fig. 14, the
optimal values for 𝑓 and 𝑁𝐿𝑜𝑅𝑠 for the real experiment are determined
to be 0.275 and 1400, respectively. Similarly, the optimal parameters
for the simulation are determined to be 0.25 and 1300, respectively.
The optimal parameters and their percent errors are shown in Table 2.

3.2. Applying the Dynamic Birmingham Method to an attritor mill

The GATE simulations of the attritor mill are expanded to test a
range of initial particle positions. In a real PEPT experiment on this
mill, tracers near the centre of the mill will move slower than tracers

7



M. Herald, J. Sykes, D. Parker et al. Nuclear Inst. and Methods in Physics Research, A 1047 (2023) 167831

Fig. 9. Three samples of 200 experimentally acquired LoRs from the static tracer experiment for air (left), glass (middle), and copper (right) show that the amount of corrupted
LoRs in the sample increases with more attenuation.

Fig. 10. Position uncertainty in the static tracer experiments and simulations for air (left), glass (middle), and copper (right), and the absolute difference between the simulation
and experiment (bottom).

Fig. 11. A comparison of the optimal values for 𝑓 across all the materials tested. Fig. 12. A comparison of the optimal values for 𝑓 across all the materials as a function
of the fraction of true LoRs in the sample.
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Fig. 13. Trajectories for the experimental tracer in the attritor mill under a constant 𝑓 of 0.25 and 𝑁𝐿𝑜𝑅𝑠 of 1500 (left) compared to the simulated tracer trajectory under the
same parameters (right).

Fig. 14. The parameter values for 𝑓 and 𝑁𝐿𝑜𝑅𝑠 are varied for the real experiment (left) and GATE simulation (middle) of the moving source, affecting the spatial error of the
reconstructed PEPT trajectory, and the difference between the two is shown (right).

Fig. 15. Panel (a) shows the results of a parameter sweep when the tracer is beside the impeller shaft where the least amount of LoRs have been attenuated while panel (b)
shows the effects of the tracer passing behind the impeller shaft where a larger fraction of LoRs are attenuated.

near the tip of the impeller blade, which is where the maximum veloci-
ties are recorded [25]. Therefore, the GATE simulated movement of the
tracers in this work is similar to that of a real experiment. For each of
the tested positions, the optimal values for 𝑓 and 𝑁𝐿𝑜𝑅𝑠 were recorded
as the tracer moves through the system. These optimal parameters were
calculated for every 30◦ rotation to update their values continuously.
Fig. 15 shows the change of optimal parameters at two different degrees
of rotation, one where the least amount of attenuation occurs and
another where the tracer is behind the impeller shaft, with respect to
the detectors, where the most attenuation occurs. As the mill rotates,
the optimal parameters fluctuate, becoming more or less conservative
when more corrupted events are recorded or the count-rate decreases,
such as when the tracer passes in front or behind the impeller shaft.

After the optimal parameters have been extracted, these are used
to inform the DBM algorithm. Each simulated trajectory is reprocessed

with an estimate of the optimal parameters and the mean spatial error
is calculated over the trajectory. These are compared to the trajectories
extracted using the default and the best constant parameters. The
results of this comparison are in Table 3. The mean spatial error of
the default BM parameters, best constant parameters, and the DBM are
2.20 mm, 0.544 mm, and 0.517 mm, respectively. While the default
parameters can reconstruct the trajectory, when tailored parameters
extracted from Monte Carlo simulation are used, in this case at least,
the errors decrease to nearly a quarter of their original values. When
dynamic parameters are used, the errors decrease by 76.5% over the
default parameters and by 4.03% over the best constant parameters. A
histogram of the percent changes in spatial error between the trajecto-
ries produced with the best constant parameter and the DBM is shown
in Fig. 16. This plot shows the DBM increases the accuracy of nearly
all trajectories average and also that some individual trajectories are
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Table 3
Mean trajectory comparisons using different algorithm parameter methods.

Parameters Spatial error (mm) STD (mm) Locations (N)

Default 2.20 1.48 1337
Best constant 0.544 0.372 223
Dynamic 0.517 0.3481 236

Fig. 16. The change in spatial accuracy for each trajectory. The mean improvement
is 4.03% over the best constant parameters.

improved by over 10%. The trajectories which are the most improved
are from areas of the system around the impeller blades where the local
optimal parameters deviate the most from the best constant parameters.

This work is significant because it demonstrates that the optimal
parameter values for the BM can be predicted and that using these
improves spatial accuracy over default parameter values. Moreover,
not only can the best constant parameter values be estimated, but also
the BM can be extended to use the local optimal parameters based
on an estimate of the tracer’s position, producing the best possible
trajectory. In the future, using the methods presented here, Monte
Carlo simulations conducted in conjunction with PEPT experiments
can be used to remove the guesswork of choosing 𝑓 and 𝑁𝐿𝑜𝑅𝑠. This
means users of PEPT algorithms do not need to be experts to produce
good trajectories, making the Birmingham Method PEPT algorithm
more rigorous and more accessible. While producing simulations of the
systems being imaged with PEPT increases the amount of work being
done, this work shows that it is worth doing this additional step because
of the improvement in trajectories. Additionally, while this work was
conducted using the BM PEPT algorithm and the Forte detector system,
a similar workflow could be applied to other PEPT algorithms which
have free parameters, such as the Feature Point Identification PEPT
algorithm, and other detector systems for which a validated Monte
Carlo model exists, such as the Phillips Vereos digital photon counting
system [32,33].

4. Conclusions

This work shows that the Monte Carlo simulation of PEPT experi-
ments can be used to predict the parameter values of the Birmingham
Method PEPT algorithm which provide the best trajectory spatial accu-
racy. This is demonstrated through experiments and simulations which
show that the values for the two key free parameters, 𝑓 and 𝑁𝐿𝑜𝑅𝑠,
can be found by comparing the known positions to the reconstructed
position and identifying the parameter combination which minimises
the spatial error. Further, the values for these parameters are found to
be sensitive to the amount of corrupted LoRs in a sample of LoRs and
also the velocity and activity of the tracer. For static tracers, the optimal
value for 𝑓 is a balance between removing as many corrupted LoRs as
possible while still preserving as many true LoRs and for 𝑁𝐿𝑜𝑅𝑠 larger

values always decrease the spatial error. If too many LoRs are removed
(i.e. setting 𝑓 too low) the spatial error increases due to the statistical
uncertainty. Other work has shown uncertainty is proportional to the
inverse square root of the number of LoRs remaining in the sample.
However, if the tracer is moving, a global optimal combination of 𝑓
and 𝑁𝐿𝑜𝑅𝑠 exists. The value for these two parameters is a complex
relationship between the amount of corrupted LoRs, tracer velocity,
and tracer activity. However, the optimum combination can be found
through Monte Carlo simulation of the system and trying a range of
parameter value combinations then selecting the one which minimises
the spatial error.

Ultimately, the Birmingham Method is extended to update the algo-
rithm parameters on a sample-by-sample basis using the local optimal
parameter values. This is demonstrated using a simulation of an attritor
mill, representative of a typical PEPT experiment. PEPT trajectories are
reconstructed using the Birmingham Method with dynamically updated
parameters and compared to trajectories produced with the default
and also the best constant parameter combination. In this system,
the PEPT trajectory spatial errors are decreased by 76.5% compared
to the default parameter and 4.03% compared to the best constant
parameters. In light of these results, we suggest that Monte Carlo simu-
lations be used in conjunction with PEPT experiments to determine the
algorithm parameters for the Birmingham Method. Doing this removes
the guesswork for PEPT users, making the technique more rigorous.
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ABSTRACT Positron emission particle tracking (PEPT) is a non-invasive technique used to study fluid,
granular, and multi-phase systems of interest to academia and industry. PEPT employs position-sensitive
radiation detectors to record gamma rays in coincidence and track the movement of discrete sources.
A modular detector array, the Large Modular Array (LaMA), has been constructed at the University of
Birmingham’s Positron Imaging Centre (PIC) to enable custom detector geometries. To estimate the LaMA’s
performance characteristics prior to experimentation, assist in developing optimised camera geometries, and
determine ideal PEPT tracer characteristics a Monte Carlo model of LaMA is created and subsequently
validated with experimental measurements. Validation is achieved through comparisons of the spatial
resolution and count-rate response following the National Electrical Manufacturers Association (NEMA)
industry standard protocol. Notably, the model’s pulse-processing chain is autonomously calibrated to match
experimental measurements using a recently developed technique which applies an evolutionary algorithm.
The results show the simulated spatial resolution of the validatedmodelmatches the experiment to within 5%.
Additionally, the total, true, and corrupted count-rates are reproduced to a mean error of 3.41%. This
calibrated detector model strengthens the PIC’s modelling capabilities. To facilitate future research, this
model has been made publicly available through the PIC’s GitHub repository.

INDEX TERMS Digital twin, GATE, Monte Carlo, positron emission particle tracking.

I. INTRODUCTION
Positron emission particle tracking (PEPT) is an imag-
ing technique used to study opaque engineering and sci-
entific systems using flow-following tracers labelled with
positron-emitting radionuclides [1]. Positrons annihilate with
electrons in close proximity to the labelled tracer, pro-
ducing back-to-back 511 keV gamma-rays which can be
detected with position-sensitive radiation detectors such as
gamma cameras or positron emission tomography (PET)
scanners [2]. Reconstruction of the labelled tracer position
requires detecting both annihilation photons in coincidence
to form a line-of-response (LoR) and applying a PEPT

The associate editor coordinating the review of this manuscript and

approving it for publication was Giovanni Merlino .

algorithm on a sample of LoRs to find the most likely annihi-
lation point [3]. By detecting the tracer successively, a time-
dependent trajectory is developed which can be analysed
to determine system properties such fully three-dimensional
velocity fields, tracer re-circulation times, and diffusivity [1].
PEPT has been used extensively over the last 30 years to study
a variety of equipment ranging from coffee roasters, washing
machines, and liquid metal castings [4], [5], [6].

To perform a PEPT measurement, equipment must first
be moved to a lab and placed in the field-of-view (FOV)
of a position-sensitive detector. At the University of Birm-
ingham’s Positron Imaging Centre (PIC), detectors like
the ADAC Forte and SuperPEPT have been acquired or
built specifically for PEPT measurements [7]. The Forte
dual-headed positron camera was acquired because the two
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detector heads can be separated up to between 250 mm and
800 mm, which enables the accommodation of a variety of
equipment while optimising detector sensitivity. This system
can record LoRs up to approximately 100 kHz [8]. Addition-
ally, SuperPEPT, which has recently been constructed using
components from CTI/Siemens ECAT EXACT 31, ART, and
EXACT HR+ scanners has a cylindrical geometry of about
400 mm in diameter and 544 mm in length. The diameter
can be separated up to 600 mm to place an experiment in the
FOV, but must be closed again to record data. SuperPEPT
records LoRs up to 2500 kHz, a factor of 20 higher than the
Forte, enabling improved spatiotemporal resolution of PEPT
trajectories [9].

However, there are instances where experimental equip-
ment is too large or consists of awkward geometries which
cannot be easily fit into the FOV of existing systems.
To address this, a modular detector array, named the Large
Modular Array (LaMA), has been designed to be assem-
bled around experimental systems in custom geometries [10].
LaMA consists of building block, called ‘boxes’, which
contain four ECAT951 block detectors. These boxes can
be placed in nearly any configuration and connected to a
coincidence processor, allowing flexible geometries to be
designed for imaging large-scale industrial equipment [11].
Since the LaMA is reconfigured in a different geometry
for each experiment, the performance characteristics of the
camera are difficult to predict. As such, estimating the spa-
tiotemporal resolution of the expected trajectories, designing
an optimised geometry, and selecting an appropriate tracer
activity for a given experiment can be challenging.

In this work we describe and validate a Monte Carlo model
of the LaMAwhich will be used to help optimise experiments
in the future. This model is created using the Geant4 Applica-
tion for Tomographic Emission (GATE), a Monte Carlo radi-
ation transport software which emulates the detector geom-
etry, radioactive sources, and electronic pulse-processing
of particles interacting with the detector [12], [13]. The
performance of the camera in a simple geometry is char-
acterised following the industry-standard National Elec-
trical Manufacturers Association (NEMA) protocol [14].
Notably, the pulse-processing model is calibrated by through
a recently developed method which compares the simu-
lated and real performance characteristics and tunes param-
eters of the pulse-processing model using an evolutionary
algorithm [15], [16], [17].

A. THE LARGE MODULAR ARRAY (LaMA)
The idea for the LaMA was developed at the PIC in the early
2000s, growing out of the need to have a detector system
which could image large or awkward industrial systems and
potentially be able to be transported to equipment which
could not be moved. One feature that was identified as being
key to this future system was being modular so that custom
geometries could be tailored to each experiment. To this
end, initially, three CTI/Siemens ECAT ring scanners were

acquired and dismantled to retrieve the block detectors which
could then be reassembled into a new geometries [10].

Each block detector consists of an 8 × 8 bismuth ger-
manate (BGO) crystal array, with each crystal measuring
6.25mm inwidth, 6.75mm in height, and 30mm in thickness.
The BGO crystals are optically coupled to a 5 mm thick glass
light guide and four photo-multiplier tubes (PMTs), each
100 mm in length. Using the 192 block detectors extracted
from the PET scanners, a modular unit consisting of four
blocks was designed. Each of these units are termed a ‘box’
and 48 boxes were constructed in total. Each box is approx-
imately 360 mm in width, 95 mm in height (including spac-
ers), and 460 mm in thickness with each of the four block
detectors spaced 90 mm apart from centre-to-centre. A single
box is shown on the left side of Fig. 1 and a stack of four
boxes is shown on the right. These modular units are the fun-
damental building blocks of LaMA. Currently, up to 32 boxes
can be connected to a single coincidence processor unit to
form a detector array. By using more than one coincidence
processor and merging the data streams in post-processing,
all 48 boxes can be used simultaneously, but coincidences
can only be formed between boxes connected to a shared
coincidence processor.

FIGURE 1. (a) A view inside a single box where four block detectors are
mounted. (b) A stack of four boxes. The geometry used in this work is two
stacks of four boxes separated by 500 mm.

B. Geant4 APPLICATION FOR TOMOGRAPHIC
EMISSION (GATE)
GATE is a Monte Carlo radiation transport and detector
simulation software designed for emulating the geometries,
sources, and pulse-processing chain of imaging systems [12].
Many different types of detectors and imaging modalities
have been modelled using GATE, including other detector
systems used for PEPT such as the ADAC Forte and Siemens
Inveon [13], [18], [19]. GATE is a useful tool for modelling
PEPT experiments because it provides output comparable to
real detectors and serves as ‘sandbox’ through which changes
in the detector or source properties can be assessed, synthetic
data can be processed to verify imaging techniques, or limits
of techniques can be investigated without expending the con-
siderable time and resources required for physical experimen-
tation. Of special importance for the model presented in this
work, a GATE model of a PEPT detector and experimental
geometry can be used to the assess impact of changes in the
geometry to the sensitivity of the system and affect this has on
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tracer trajectories quantified through estimates of their spatial
and temporal resolution [20], [21], [22].

One useful feature of GATE is the ‘parameterisation’ of
the simulation scripts which allows users to quickly change
aspects of the simulation through the command line. Using
this, the source activity, placement of LaMA’s boxes, and
the values for parameters of the digitizer can be edited
without having to manually change the file. In this work,
we use GATE to first replicate the geometry of the LaMA
and the source, then calibrate the digitizer through evolu-
tionary an evolutionary algorithm which is able to edit the
pulse-processing settings of the detector through parame-
terised simulation scripts. The fitness of a set of candidate
solutions with tune-able digitizer parameters is then com-
pared through the ability of the GATE model to replicate the
experimentally measured performance characteristics.

C. EVOLUTIONARY ALGORITHMS
When calibrating simulated models to experimental mea-
surements, the complex relationship between variables, noisy
measurements, and the large number of solutions that need
to be tried to explore the solution space leads to a difficult
optimisation problem with many false local minima [23].
When there are several parameters which need to be opti-
mised, such as encountered in a digitizer model, traditional
approaches like design-of-experiments become too unwieldy
and gradient-based optimisers struggle to overcome local
minima in a multi-dimensional and noisy solution space. This
has led most GATE models to be calibrated manually using
estimates of the optimal parameters provided by manufactur-
ers of the detectors [24], [25]. This type of manual tuning
is both subjective and also not guaranteed to produce the
optimal calibration.

However, a type of optimisation algorithm that has been
shown to excels in these cases are evolutionary algo-
rithms [15], [26]. Evolutionary algorithms emulate biological
evolution by using a group of simulations to act as a popula-
tion with varied features. In this way, the fitness of individual
simulations against a selective pressure can be quantified.
To improve the fitness of the next generation of simulations,
the fittest simulations are allowed to reproduce which allows
their features to be transferred and some random mutations
added to increase diversity, potentially introducing beneficial
features.

In this work, the Covariance Matrix Adaptation using
Evolutionary Strategy (CMA-ES), which is a stochastic opti-
miser for robust non-linear non-convex numerical optimisa-
tion, is used to perform the model calibration [16]. While
CMA-ES generates, assesses, and updates solutions to
parameters of the digitizer, an additional software is used to
couple CMA-ES to the GATE simulation. This software is
the Autonomous Characterisation and Calibration via Evolu-
tionary Simulation (ACCES) which is a Python interface to
the CMA-ES algorithm specifically designed for general cali-
bration simulations and has been previously used to calibrate
a GATE model of the ADAC Forte [15], [17]. More details

about our use of this software to calibrate the LaMA digitizer
are provided in Section II-C.

II. METHODS
A. CHARACTERISATION EXPERIMENTS
Two sets of characterisation experiments are conducted to
measure the spatial resolution and count-rate response of
the LaMA in a simple geometry. These two characteristics
are the most important detector characteristics in regard to
PEPT experiments because spatial resolution predominately
influences the ability to resolve a point-like source and the
digitizer model controls the count-rate response curve. Thus,
these two characteristics ultimately determine the spatial and
temporal resolution of a PEPT tracer, which are the charac-
teristics of interest for users of PEPT algorithms [7].

In order to characterise LaMA’s performance characteris-
tics, a single, simple geometry was chosen. This geometry is
a dual-headed stack of four boxes on either side of a source.
The two stacks are separated by 500 mm. This configuration
is used because of the low number of boxes required and also
because of the large solid angle it creates with the source,
allowing three-dimensional tracking of a point source, which
is important for PEPT algorithms. Additionally, by choosing
a simple geometry and achieving a calibration with the GATE
model, it is expected that when the system is scaled up for
future experiments the GATE model will remain accurate.
The LoRs collected from these experiments are processed
according to the NEMA protocol and in all cases the centre
of the FOV is defined as 0, 0, 0 mm.

1) SPATIAL RESOLUTION
The spatial resolution of the detector is defined as the full-
width half-maximum (FWHM) of the point-spread-function
(PSF) for a small point-like source in the detector’s FOV. The
source used for this experiment is a 1 mm sphere of anionic
exchange resin, volumetrically activated with fluorine-18 in a
solution of water produced by the University of Birmingham
MC40 cyclotron [27]. For imaging, the source was placed
in a small plastic sample holder and fixed to a block of
polystyrene foam at six locations ranging from the centre of
the FOV and locations at 1/4th of the FOV. These locations
and the source activities at the time of the experiment are
listed in Table 1. The source and the LaMA geometry are
shown in Fig. 2.

TABLE 1. Spatial resolution test parameters.

To produce projection images, the LoRs collected from
the experiment were first voxelised into a three-dimensional
array with a 1 mm voxel size using the voxelisation method
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FIGURE 2. The spatial resolution tests are conducted using a 1 mm
diameter resin bead placed inside a plastic sample holder and taped to a
piece of polystyrene foam.

implemented in the pept Python package [28]. Two-
dimensional slices from this array were extracted which con-
tain the voxel with the maximum number of LoR crossings.
From these slices. A one-dimensional profile was drawn
through the maximum voxel and the FWHM was extracted
from each position. Following the NEMA protocol, the spa-
tial resolution is calculated using (1-4).

ResTransCenter = (Resyx=0,y=0,z=0 + Resxx=0,y=0,z=0

+ Resyx=1/4,y=0,z=0 + Resxx=1/4,y=0,z=0)/4 (1)

ResTrans1/4 = (Resyx=0,y=1/4,z=1/4 + Resxx=0,y=1/4,z=1/4

+ Resyx=0,y=1/4,z=0 + Resxx=0,y=1/4,z=0)/4 (2)

ResAxialCenter = (Reszx=0,y=0,z=0 + Reszx=1/4,y=0,z=0)/2 (3)

ResAxial1/4 = (Reszx=0,y=0,z=1/4 + Reszx=1/4,y=0,z=1/4)/2 (4)

2) COUNT-RATE RESPONSE
The count-rate experiment measures the LoR count-rate of
the detector in response to a central source which is imaged
over several half-lives. The total, true, and scattered plus
random LoRs count-rates are extracted using the NEMA pro-
tocol and recorded at regular intervals as a function of source
activity. The scattered plus random count-rate is termed the
corrupted count-rate since the LoRs do not pass through the
positron annihilation point due to scattering or originating
from separate annihilation events and thus are treated as noise
in a PEPT experiment.

The phantom is a hollow, high-density polyethylene cylin-
der measuring 120 mm in height and 50 mm in diame-
ter with an inner cavity measuring 100 mm in height by
12 mm in diameter. This cavity is filled with a well-mixed

solution of fluorine-18 and water. Initially, the activity of
the phantom was approximately 80 MBq. This activity was
chosen such that the expected count-rate will exceed the
maximum rate at which LoRs can be recorded by the detector,
then, as the source decays, the count-rate response curves
can be developed. The phantom was imaged over several
half-lives until the activity reached near that of the back-
ground. The phantom and detector geometry are shown
in Fig. 3.

FIGURE 3. (a) The count-rate experiment is conducted with the
high-density polyethylene phantom placed in the centre of FOV and
imaged over several half-lives. (b) A GATE model of the same experiment
is conducted.

Similarly to Section II-A1, projection images are produced
by voxelising LoRs into a three-dimensional array with a
1 mm voxel size. Two-dimensional slices are extracted in
the plane parallel to the detector face (XY plane) which
contains the maximum voxel. The slice is then transformed
into a one-dimensional profile by summing the voxels in
the Y-axis which are along the cylinder’s axis. The average
source activity, Ā, for each projection image is determined
by (5) which calculates the average activity by using the
initial activity, A0, the initial and final time of the acquisition,
t0 and tf , as well as the decay constant for fluorine-18, λ. The
true counts are considered to be the LoRs ± 20 mm from the
peak of the profile from which the background on either side
of the 40 mm window is averaged and subtracted from the
counts in the window. The remaining counts outside the win-
dow and including the background are considered corrupted
counts.

Ā =
A0

tf − t0

∫ tf

t0
exp (−λt) dt (5)

B. GATE MODEL
The design of a GATE model for the LaMA presents several
challenges since it must be easily customised to rapidly pro-
totype new geometries, only allow specific coincidences to be
formed between boxes connected to a single coincidence pro-
cessor, and be able to emulate the noise, data buffer, and spa-
tial blurring inherent in the system. Achieving these goals is
accomplished using the tools available in the GATE software
in addition to custom data post-processing. The geometry,
digitizer, and post-processing are described in the following
sections. A downloadable version of the LaMA GATE model
and post-processing software is provided through a GitHub
repository: LaMA Model.
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1) GEOMETRY MODEL
Since any LaMA geometry is built using boxes, to build a
model of the LaMA, only a single box needs to be described
which can later be copied, translated, and rotated to any posi-
tion and orientation using GATE’s generic repeater function.
The dimensions for each box are found in Section I-A and
these are replicated in GATE. Material definitions for BGO,
aluminium frame, and glass light guide are already included
in the GATE materials database and definitions for the PMTs
and electronics are added. Importantly, the four ECAT951
block detectors are included in each box and the 8 × 8 BGO
crystal array in each block is defined as the ‘Sensitive Detec-
tor’ (SD) through which GATE records the interactions of
particles. The model of a single box is shown in Fig. 4 from
various viewpoints. The order in which the repeated boxes are
listed determines their volume number, which will become
important later when defining which pairs of boxes are valid
for recording coincidences.

FIGURE 4. A model of a box for the LaMA consisting of four ECAT951
block detectors each with an 8 × 8 array of BGO crystals. The box is
shown from various viewpoints and has major components labelled.

2) DIGITIZER MODEL
While a geometric model ensures the interactions of the
source’s radiation field with the detector are accurately
recorded, the system’s pulse-processing chain must also be
properlymodelled in order to emulate the detector’s response.
In GATE, implementing a linear pulse-processing chain to
particle interactions is the role of the digitizer. The digitizer
is a series of steps and filters which transform the observable
information (time, energy, position) of a particle interaction
with the SD into a form similar or identical to the real detector
output [29]. This includes grouping interactions, flow-logic,
and data-loss to mimic the real behaviour of the imaging
system [30]. The digitizer for the LaMA is shown in Fig. 5.

For the LaMA, we apply a typical digitizer model for
a PET system, but also implement a post-processing stage
to implement aspects of the detector not directly possible
through GATE [19]. This is needed to force the detector to
only record coincidences between pairs of boxes which are
associated with each other in the real coincidence processor,
implement a random spatial-blurring of LoRs to match the
experimentally observed spatial resolution, and implement a
bandwidth limitation to cap the rate at which LoRs are written
to file. The post-processing steps for the LaMAGATEmodel

digitizer are the final three steps before the final simulated
detector response is produced, as shown in Fig. 5.

FIGURE 5. The pulse-processing digitizer of the LaMA GATE model.

C. DIGITIZER OPTIMISATION
Even if every detail of the LaMA were known, there are
differences between simulation and experiment which require
aspects of the digitizer to be calibrated [10], [31]. While this
could be achieved through manual calibration, for this we
work we use a recently developed method which applies an
evolutionary algorithm to achieve a calibration to experimen-
tal performance characteristics autonomously [15].

Six stages of the digitizer are chosen to be calibrated
because of the effect they have on replicating the count-
rate response. These are the noise frequency, pile-up time,
time resolution, lower-level energy discriminator, upper-level
energy discriminator, and the non-paralysable singles dead-
time. The noise frequency is the rate at which random events
are generated simply by having the detectors running and is a
combination of the background activity and electronic noise.
The pile-up time is the time after an event is detected when
other events in close succession can be added to the signal.
The time resolution is the probability of precision by which
two events can be distinguished in time, as defined by an
FWHM. The lower and upper energy discriminators are the
thresholds between which an event can trigger the dead-time
and be recorded. The singles dead-time is a non-paralysable
dead-time model, described by (6) which limits the rate of
recording single events [32].

λout

λin
=

1
(1 + λinτ )

(6)

In order to use an evolutionary algorithm to calibrate a
GATE model, there must a metric through which the fitness
of candidate solutions to the parameters of the digitizer can
be assessed. This is achieved through a cost function, shown
in (7), which is the product of the percent differences between
the experiment and simulation’s total, true, and corrupted
count-rate response over a range of source activities, calcu-
lated using (8-10). Using this metric reduces the agreement
between the experiment and simulation down to a single value
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which can be optimised through minimisation of (7).

ε = εTotεTrueεCorrupt (7)

εTot =

∑
|(RTotexp − RTotsim )/RTotexp | (8)

εTrue =

∑
|(RTrueexp − RTruesim )/RTrueexp | (9)

εCorrupt =

∑
|(RCorruptexp − RCorruptsim )/RCorruptexp | (10)

Parameter combinations are generated following a multi-
variate normal distribution with the initial uncertainty defined
as the range between the upper and lower bounds of the
solution space for each parameter. To stop the optimisation,
the user must provide either the number of generations, called
epochs, of simulations desired or provide a target uncertainty
in the calibrated parameters. In this optimisation, we used
100 epochs with 100 parameter value combinations per epoch
as the terminating criteria because this provides greater than
10 times the factorial of the number of free-parameters in the
optimisation, sufficiently constraining the problem.

Each combination is simulated over 10 different activities,
ranging from 2 MBq to 80 MBq, until 5 million LoRs are
recorded at each activity. This number of LoRs provides
sufficient counts such that an accurate measurement of each
respective count-rate can be extracted from the projection
images. The bounds of the parameters and their initial guesses
are provided in Table 2. The optimisation is conducted on
the University of Birmingham’s high-performance comput-
ing system, BlueBEAR, on Icelake cores with 16GB ofmem-
ory each. After the optimisation is finished, the calibrated
parameters are extracted and a new set of simulations are
conducted with 20 activities over the same activity range
until 30 million LoRs are recorded, reducing statistical error
even further. These simulations are presented and compared
in Section III.

TABLE 2. Digitizer parameter bounds and initial guesses for calibration.

III. RESULTS AND DISCUSSION
In this section, we present the results of the characterisation
experiments as well as the results of the digitizer calibra-
tion. For spatial resolution, six tracer positions were imaged
over several minutes then the FWHM of the 1-dimensional
PSF is extracted. The FWHM at these positions are used
to compute the transaxial and axial spatial resolutions in
the centre of the FOV and at 1/4th of the FOV. Next, the
experiments are reproduced in simulation and the crystal blur-
ring is adjusted until the best match between the experiment
and simulation was achieved. The crystal blurring that best
agrees with the experiment 2 times the crystal dimensions

FIGURE 6. The spatial blurring is calibrated by finding the crystal blurring
that minimises the absolute percent error.

TABLE 3. Results and comparisons of the spatial resolution tests for the
experiment and simulation.

(6.25 mm by 6.75 mm), as evidenced in Fig. 6. The exper-
imental and simulated results are presented in Table 3 and
compared through their respective percent differences.

Following the spatial resolution characterisation and crys-
tal blurring calibration, the count-rate response experiments
were analysed to be used as a comparison for the ACCES
optimisation. The optimisation takes place over 100 epochs
with 100 parameter value combinations tried every epoch.
This results in 10,000 cost function evaluations which took
approximately three days to complete running the BlueBEAR
high-performance computing system. At the end of the opti-
misation, the finalmean parameter values were extracted. The
value for these parameters and their uncertainty are provided
in Table 4. Additionally, the history of these parameters
during the optimisation (uncertainties and mean values) is
presented in Fig. 7, demonstrating that before the end of the
optimisation, each parameter reaches a stable value, meaning
that the parameters have been calibrated.

All parameters produced reasonable calibrations within the
upper and lower bounds given to the optimiser. Interestingly,
the optimised value for the time resolution falls within the
12 ns ± 2 ns measured in a previous characterisation of
the LaMA [31]. This provides additional evidence that the
calibrated parameters correspond to physical reality and are
global solutions, not simply local solutions.

The parameter with the highest uncertainty is the upper
level energy discriminator. We believe this is due to the
relatively small impact of this parameter on the calibration.
To illustrate this, take for example the the singles dead-time
which has the lowest uncertainty. The singles dead time has
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a strong pressure to be calibrated because this is applied to
nearly all events which are detected. meaning small changes
in the calibrated values will causes large differences in the
simulated count-rate response. On the other hand, the upper
energy discriminator acts on a much smaller set of events
and can only be applied to events that have piled up on
one another. Since the upper energy discriminator is set
to 1990 keV, this means that at least four 511 keV events must
be grouped together and this happens only a limited number
of times in a simulation. As a result, there is not a strong
pressure to calibrate this value. While this results in a higher
uncertainty, because of the lower effect of this parameter on
the overall response of the model this value is considered
adequately calibrated.

TABLE 4. Digitizer calibration results and uncertainty.

When the new set of simulations is conducted with the
calibrated digitizer, the results match the experiment to a
mean absolute difference of 3.41% over all three count-rates

FIGURE 7. Subplots showing the mean values of calibrated parameters
with the error bars as the standard deviation of solutions.

with the total, true, and corrupted count-rates being 2.31%,
2.18%, and 5.72%, respectively. The experimental and sim-
ulated count-rate response is shown in Fig. 8. To quantify
the calibration further, it is also important to observe how the
fraction of true and corrupted counts behave as a function of
source activity. These results are presented in Fig. 9, showing
that their behaviour is approximately the same overall activi-
ties with the true and corrupted count fractions reconstructed
to 1.91% and 3.72% error, respectively.

FIGURE 8. Results of the count-rate experiment and comparison of the
ACCES calibrated GATE model.

FIGURE 9. Results of the count-rate experiment in terms of the true and
corrupt count fractions and comparison with the ACCES calibrated GATE
model.

In summary, the GATE model of the LaMA has been
characterised by experiments testing the spatial resolution
and count-rate response and the digitizer pulse-pulse process-
ing model has been calibrated using an evolutionary algo-
rithm. In addition to calibrating the amount of crystal spatial
blurring, six free-parameters of the pulse-processing digi-
tizer model were calibrated using evolutionary simulation,
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ultimately producing simulated results which match the
observed real behaviour of the detector system. The
ACCES software was used to perform this optimisation
autonomously, needing only the number of solutions to try
for each epoch, the bounds of the solution space for each
parameter, and a terminating criterion.

IV. CONCLUSION
In this work, we have introduced a Monte Carlo model
of the Positron Imaging Centre’s LaMA and validated the
model against experimental measurements. This model will
bolster the modelling capabilities of the Positron Imaging
Centre, complementing the existing Monte Carlo model of
the ADAC Forte. A model of LaMA is particularly useful
because the camera is typically configured into new geome-
tries for every experiment in order to capture the relevant
system behaviour. Prior to this model, it was not possible to
quantitatively estimate the spatial resolution and count-rate
response because these characteristics depend on a com-
plex relationship between source activity, detector geometry,
and gamma-ray scattering. Using this model, not only can
the spatial resolution and count rate response be estimated,
but moreover the tracer activity which maximises the true
count-rate and the detector geometry which maximises the
camera sensitivity for a given experiment can be identified.
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