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Abstract

The uncertainty in infusion durations and non-homogeneous care level needs of patients are the critical factors

that lead to difficulties in chemotherapy scheduling. We study the problem of scheduling patient appointments

and assigning patients to nurses under uncertainty in infusion durations for a given day. We consider instanta-

neous nurse workload, represented in terms of total patient acuity levels, and chair availability while scheduling

patients. We formulate a two-stage stochastic mixed-integer programming model with the objective of minimiz-

ing expected weighted sum of excess patient acuity, waiting time and nurse overtime. We propose a scenario

bundling-based decomposition algorithm to find near-optimal schedules. We use data of a major university

hospital to generate managerial insights related to the impact of acuity consideration, and number of nurses and

chairs on the performance measures. We compare the schedules obtained by the algorithm with the baseline

schedules and those found by applying several relevant scheduling heuristics. Finally, we assess the value of

stochastic solution.

Keywords: OR in health services, chemotherapy scheduling, patient acuity, stochastic programming

1. Introduction

Recent progresses in cancer treatment have resulted in an increase in patient survival rates but escalated

the demand for outpatient chemotherapy (Katayama et al., 2021). The rising demand has made the task of

managing outpatient chemotherapy clinics (OCCs) challenging for the clinic directors.

Premedication and infusion activities, which are performed consecutively, represent the two main steps of

an OCC. During the premedication phase, the patient is set up for infusion by a nurse on a chemotherapy chair,

and given some drugs for protecting them against the side effects of chemotherapy agents. In the infusion phase,

patient is administered the chemotherapy agents through an intravenous bag and a catheter and monitored by

a nurse.

Outpatient chemotherapy appointments are generally created by following a two-step approach. In the

first step, called chemotherapy planning, daily plans are obtained by assigning patient treatments to specific
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days. Then, in the chemotherapy scheduling step, appointment times are set for the patients in a daily plan

to generate daily schedules. In this article, we focus on the second step by assuming that the chemotherapy

planning decisions were already made.

Scheduling outpatient chemotherapy appointments is difficult due to the uncertainty in infusion durations

and the simultaneous need for multiple resources (in particular, nurses and chairs) during each treatment

phase. Furthermore, balancing the trade-off between conflicting performance measures is necessary for the

OCC managers to address patient and provider expectations at the same time. Combined with these issues, the

variation in acuity levels among different patients makes scheduling appointments for OCCs challenging.

Patient acuity is a type of patient classification system and represents the intensity of nursing care needed by

a patient (Jennings, 2008). Using acuity levels while managing operations leads to a balanced nurse workload,

improved nurse and patient satisfaction, and hence higher quality of care. Besides, acuity-based scheduling

enhances the safety of the providers, as the chance of unexpected exposure to hazardous drugs would be

decreased (Rodriguez et al., 2020).

OCC managers must ensure that nurses are not overburdened at any point in time during chemotherapy

treatment. The level of burden can be measured by the total acuity levels of the patients treated by a nurse

at a particular time. Hence, minimizing the excess acuity above the target load of a nurse is critical for the

managers to ensure high-quality care. Moreover, the managers also have to carefully balance the trade-off

between patient waiting time and nurse overtime. Nurse overtime is highly undesired by the providers because

it inflates the operating costs. It also has negative impacts on the job performances and satisfaction levels of

nurses. Experiencing excessive waiting creates stress and frustration for chemotherapy patients. It must be

noted that patient waiting time is found to be the primary reason for patient dissatisfaction with appointments

in oncology services (Kallen et al., 2012).

Data obtained from OCCs exhibits significant uncertainty in infusion durations (Castaing et al., 2016; Demir

et al., 2021). The divergence in infusion durations from anticipated amounts may arise due to several reasons,

such as the premature termination of patient treatments as a result of adverse reaction to chemotherapy agents,

prolonged treatments when complications occur, and compulsory changes in medication plans (Castaing et al.,

2016). Uncertainty in infusion durations is the principal reason behind the difficulty of managing instantaneous

nurse workload. It also makes the allocation of time to patient appointments critical. Overestimation of the

treatment durations may increase nurse overtime while it reduces patient waiting time. On the other hand,

underestimated durations may worsen patient waiting time while positively affecting nurse overtime.

Having a limited number of nurses and chairs in the OCCs has significant impact into the critical performance

measures for the clinics. Hence, resource assignment decisions must be carefully coordinated by considering the

process flow characteristics specific to the OCCs. In the clinics, a patient seizes both resources simultaneously

during the whole treatment. At a given time, a nurse can apply at most one premedication activity, but can

monitor the infusion activities of multiple patients. However, the total workload of a nurse at any given time

should be limited. Therefore, the nurse assignment decisions must be based on patient acuity levels, nurse skill

levels, and instantaneous nurse workload capacity levels.
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In this article, we study the problem of sequencing patient appointments, setting appointment times, and

assigning patients to nurses for an OCC with a limited number of chairs while controlling the instantaneous

workload of nurses under infusion duration uncertainty. We assume that the daily list of patient appointments is

predetermined. We formulate a two-stage stochastic mixed-integer programming (TSMIP) model for the daily

scheduling problem. We minimize the expected weighted sum of excess acuity level over the nurse capacity,

nurse overtime and patient waiting time in the objective function. The expected value of the weighted sum of

performance measures is calculated based on the scenarios that we generate by sampling from infusion duration

distributions. Through exploiting the special structure of the TSMIP model, we propose a scenario bundling-

based decomposition algorithm to solve the model. We determine the appropriate size of scenario bundles

which help find near-optimal chemotherapy schedules within a limited time by conducting a comprehensive set

of computational experiments. The algorithm is tested on several problem instances that are created based

on data from a large university hospital. We compare our algorithm with a commercial solver and several

practically relevant heuristics from the literature. We compare the near-optimal schedules provided by the

algorithm with the schedules generated based on the scheduling policy of the OCC. We estimate the value of

generating a stochastic solution rather than a deterministic one for our problem. We analyze the sensitivity of

the near-optimal solutions to the weights of excess acuity, waiting time and overtime. We assess the impact of

acuity consideration, and the number of chairs and nurses to the performance measure values.

The TSMIP model we solve is an extension of the model formulated in Demir et al. (2021) with the differences

summarized next. Demir et al. (2021) assume that nurses have identical skill levels and hence consider nurse

assignment decisions in the second stage of the formulation. They also do not consider acuity levels of the

patients and not prevent excessive instantaneous workload of nurses in their model. They assume that patient-

to-nurse assignments would be balanced without imposing explicit restrictions. On the other hand, we model

varying skill levels among nurses and penalize excess instantaneous nurse workload. Furthermore, we make nurse

assignment decisions in the first stage. Besides, we assign patients to time slots while determining appointment

times, which could be set to any integer values in Demir et al. (2021). We solve the TSMIP model using

a scenario-bundling based decomposition method, while the model in Demir et al. (2021) is solved using a

progressive hedging algorithm.

We organize the remaining parts of the article as follows: In Section 2, we review the literature on outpatient

chemotherapy scheduling studies, and position our study within the literature. In Section 3, we provide the

detailed problem description and formulate the TSMIP model. In Section 4, we discuss the scenario bundling-

based decomposition algorithm we propose. In Section 5, we demonstrate a comprehensive computational study.

Finally, in Section 6, we share concluding remarks and point to further research directions.

2. Literature Review

We review the outpatient chemotherapy scheduling literature under two categories. The first category in-

cludes the studies on deterministic scheduling, while the latter includes the articles that consider uncertainty
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in infusion durations. The related stream of research is comprehensively reviewed in Lamè et al. (2016). Fur-

thermore, scheduling of operations in other types of outpatient clinics is reviewed in Cayirli & Veral (2003),

Gupta & Denton (2008), and Ahmadi-Javid et al. (2017). In the literature on general outpatient clinics, the

articles that study a multi-resource setting are the most similar ones to the studies on outpatient chemotherapy

scheduling. The differences between these two streams of research are discussed in detail in Demir et al. (2021).

We start our review with deterministic outpatient chemotherapy scheduling studies. As opposed to the

study in this article, these ignore the uncertainty in infusion durations. Among the articles in the first category,

Turkcan et al. (2012), Benzaid et al. (2020), and Hooshangi-Tabrizi et al. (2020) study both planning and

scheduling problems. On the other hand, Heshmat et al. (2018), Hesaraki et al. (2019, 2020), and Liang &

Turkcan (2016) focus only on the scheduling phase, as is the case also in our article. Below, we discuss the

most recently published deterministic scheduling studies. The remaining studies of this category are presented

in detail in Demir et al. (2021).

Benzaid et al. (2020) propose three IP models which must be solved consecutively to determine the day,

starting slot and nurse for a patient appointment. They also consider acuity levels in their models. Hooshangi-

Tabrizi et al. (2020) solve planning and scheduling problems using a single IP model. They assign patient

treatments to days, chairs and time slots over a planning horizon by assuming that nurses are preassigned to

chairs. In the objective function, they consider the number of patients assigned to floating nurses, unfavored

patient-to-slot assignments, non-scheduled appointment requests, and nurse overtime. Using another IP model,

they solve a rescheduling problem at each day by updating the start times of appointments scheduled to that

day. They do not consider acuity levels in their models. In other words, they assume that each patient requires

the same level of attention from a nurse.

Hesaraki et al. (2020) propose a mixed integer program (MIP) to assign patients to time slots and nurses.

They allow multiple nurses to monitor a single patient consecutively throughout the treatment, but they favor

fewer nurse changes to provide a safer process and reduce confusion of patients and nurses. Furthermore, they

balance workload among nurses, minimize nursing full-time equivalent and the time between patient ready time

and appointment time. They do not consider acuity levels in the model, but discuss how their model can be

generalized by modeling revised nursing capacity and workload constraints that include acuity levels.

Our study belongs to the second category of articles, as the uncertainty is explicitly considered in our

model. In this category, Castaing et al. (2016) set the appointment times of patients by preserving the original

appointment sequence. They solve the problem for a single nurse, and therefore assign patients only to chairs.

They minimize the expected patient waiting time and total length of operations. As opposed to Castaing et al.

(2016), we sequence patients and formulate the model for multiple nurse case. Furthermore, we assign patients

to nurses while considering the acuity levels of patients and skill levels of nurses. The objective function of our

model includes excess workload in addition to waiting time and nurse overtime.

Gul (2021) extend the model in Castaing et al. (2016) by considering patient-to-nurse assignment decisions.

Furthermore, they group patients according to their treatment durations and restrict the number of patients that

can be assigned from each patient group to each nurse on a given day. Hence, they balance total daily workload
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among nurses. In this study, different from Gul (2021), we consider prevention of excess nurse workload at any

moment in time during the day. Also, we take into account patient acuity levels and differentiate nurses from

each other based on their skill levels. Finally, we allow changes in the sequence of patients.

Mandelbaum et al. (2020) use a data-driven approach to schedule appointments of an infusion unit under

uncertainty in both infusion durations and patient punctuality. However, their model is more appropriate for

general outpatient clinics, as nurses are not considered. The servers in their infinite-servers relaxation-based

approach represent only chairs. On the other hand, we thoroughly include complexities related to patient-to-

nurse assignment decisions in our model. Slocum et al. (2020) test simple deterministic scheduling heuristics

using a discrete-event simulation model. The heuristics group patients according to the expected infusion

durations and assign patients to fixed time blocks in a daily schedule. The number of time blocks in a daily

schedule can be only 2 or 3 according to their approach. Our study is quite different from this study, as they

do not propose any stochastic optimization approach to set appointment times. Alvarado & Ntaimo (2018)

propose three mean-risk stochastic programming (SP) models to assign patient treatments to days, slots, chairs

and nurses. However, the model can be used to schedule only a single patient. Therefore no patient sequencing

or simultaneous assignment decisions are given in the model. On the other hand, our model considers all those

complexities and can provide a full daily schedule once it is solved.

3. Problem Description

We study the problem of sequencing patient appointments, setting appointment times, and assigning patients

to nurses under uncertainty in infusion durations for a given day. We consider instantaneous nurse workload,

which is represented in terms of total patient acuity levels at any given time, and chair availability while schedul-

ing patients. We formulate a two-stage stochastic mixed-integer programming (TSMIP) model to represent the

problem.

At the first stage of the model, three main decisions are given: (i) patient appointment sequencing, (ii)

appointment time setting by assigning each patient to a time slot, and (iii) patient-to-nurse assignment. Each

time slot in the model represents a small and fixed time interval (e.g., a 15-minute block). Assigning a patient

to a single slot at the first stage does not imply that the treatment of the patient will require only one slot. The

slot assignment only determines the appointment time of the patient. As we assume that patients arrive on

time, the assigned slot also represents the time of patient arrival to the clinic. Some nurses cannot be assigned

to some patients, because the skill level of a nurse may be insufficient for successful treatment of the patient,

due to a high acuity level. A nurse is considered to be capable of treating a patient only if the acuity level of the

patient is not larger than the limit on the individual acuity level that the nurse can manage. This hard limit

on individual acuity level is different from the soft limit on the total acuity level that the nurse is expected to

handle at any time.

Supported with data from a major oncology hospital (as will be discussed in Section 5), we assume that the

pre-medication activity duration can be known in advance and requires constant amount of time for each patient.

On the other hand, the same data set exhibits significant uncertainty in infusion durations. Therefore, infusion
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Nurse 1 (Desirable maximum total acuity (mn) = 5, highest manageable acuity (rn) = 4)

Chair 1 P1 (3) P3 (4) P5 (3)

Chair 2 5P2 (2) P4 (1)

60 120 180 240

Figure 1: A sample half-shift realization for a single nurse and two chairs, respectively. The darker bars represent premedication,
whereas numbers in brackets reflect the acuity level for each patient.

durations are assumed to be unknown before making first-stage decisions. After the duration uncertainty is

resolved, the second-stage decisions are given to determine the actual treatment start time for each patient and

calculate performance measure values for each scenario realization. The performance measures of the study are

all related to the second-stage formulation, and they include patient waiting time, nurse overtime, and excess

of total acuity levels over the nurse capacity. We assume that patient waiting time mainly measures patient

satisfaction, nurse overtime measures provider related costs and satisfaction, and excess acuity measures quality

of patient care. Patient waiting time measures the difference between the actual treatment start time and

patient arrival time. Delays in patient treatments may be observed due to longer than expected durations of

preceding treatments. Such deviations in the schedules may lead to unavailability of nurses and chairs, which

in turn results in patient waiting. Nurse overtime refers to the time spent by a nurse beyond the shift finish

time. Overtime may be observed due two main reasons. First, the daily patient mix might be overloaded due

to the decisions made during the chemotherapy planning phase, which is beyond the scope of this study. In

that case, an overtime would be observed no matter how the manager schedules the patients in the daily list.

Second, unnecessary idleness of chairs and nurses may lead to nurse overtime. It is evident that managing the

simultaneous usage of chairs and nurses is critical for improving both patient waiting time and nurse overtime.

Simultaneous treatment of excessive number of patients by a single nurse is also penalized in the model.

Each nurse has a capacity limit which determines the desired level of the sum of acuity values of the patients

that could be treated by this nurse at any point in time. Excess of acuity levels over the nurse capacity is

allowed at any time period, but incurs a penalty in the model. We also note that the violation level of the nurse

capacity is checked independently at each scenario.

At the beginning of the treatment (i.e. during premedication), patients need special care by their assigned

nurses. Therefore, a nurse cannot start the treatment of multiple patients at a given time slot. However,

proctoring the infusion of other patients while performing the premedication of a patient is allowed. Besides

the nurse capacity, the number of chairs is also a limiting factor on the number of patients that can be served

simultaneously. The treatment of a patient starts immediately when a chair is assigned to the patient. However,

to reduce model complexity, we do not represent chair assignment decisions explicitly in our formulation as chairs

are identical. Chair assignments are implicitly considered in capacity restrictions and while making patient

treatment start decisions.

To exemplify the operations in the OCC and understand the performance measures involved, a simplified
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half-shift (240-minute) realization focusing on a single nurse, two chairs, and five patients is provided in Figure

1. The arrival times of the five patients P1 through P5 at 0, 30, 105, 120, and 150 minutes, respectively. Each

premedication takes 15 minutes and the infusion times are 47, 80, 40, 70, and 80 minutes. As can be observed,

patient P1 arrives immediately, sits on Chair 1, and begins premedication. While the treatment of Patient P1 is

ongoing, patient P2 arrives at the 30th minute, finds the nurse and Chair 2 available, and starts premedication

immediately. The process continues until patient P5 vacates Chair 1 in the 260th minute once the infusion ends.

There are two cases of patients waiting in Figure 1. Patient P4 arrives at the 120th minute and finds no

available chair. Patient P2 leaves Chair 2 at the 125th minute, but P4 needs to wait until the beginning of the

next slot at the 135th minute to start premedication. Similarly, P5 arrives at the 150th minute, but needs to

wait for 15 minutes due to unavailability of chairs. Hence, the total waiting time is 30 minutes. As the last

patient leaves the OCC at the 260th minute, total nurse overtime is 260 − 240 = 20 minutes. It can also be

inferred that the desirable acuity level of 5 units is only exceeded between the start of premedication for P3 and

the departure of P2, which yields an excess acuity of 1 unit for a total of 20 minutes.

We assume that a particular chair assignment policy is imposed by the clinic for arriving patients, which may

sometimes result in a patient treatment sequence different from the patient appointment sequence. The policy,

which consists of two rules to be checked consecutively, is practically relevant as it is based on our observations

in practice. We next discuss each rule associated with the policy along with the motivation behind these rules.

• Rule 1 - Assign the first available chair to a patient whose nurse is available. Suppose that there are two

patients waiting for treatment, and the nurse of only one patient is ready when a chair becomes available.

If the chair is assigned to the patient whose nurse is busy with another patient, then both chair and nurse

idleness would be induced. Even though we do not explicitly consider it in the objective function, idle time

is an important measure for clinic managers. Furthermore, reducing idle time would lead to reduction in

overtime if overtime is observed in a clinic. Therefore, when the patients arrive at the clinic for treatment,

the clinics give priority to the ones whose nurses are available.

• Rule 2 - Assign the first available chair to the patient who arrived the earliest, if nurses of multiple

patients are ready for treatment. This rule implies that the appointment sequence would not change in

the treatment phase, as all patients are assumed to arrive on time. Allowing a patient to move ahead of

a patient who arrived earlier while their nurses are both available would not be possible in practice, as

the urgency levels of all patients are the same in outpatient clinics. Such reordering practice would be a

source of grievance to the patients who arrived earlier.

Rules 1 and 2 define a complete chair allocation policy. If a patient arrives to find both their allocated nurse

and at least one of the chairs available, Rule 1 allows one of the available chairs to be assigned to this patient

and treatment starts. If the assigned nurse is performing another premedication and/or no chair is available,

the patient needs to wait. If there is at least one available chair and the assigned nurse of a patient becomes

available (due to finishing an ongoing premedication), Rule 1 stipulates the assignment of an available chair to

this patient and start of the treatment. If a chair becomes available and there is exactly one patient with an
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available nurse, the treatment of this patient starts on the available chair, due to Rule 1. If there are multiple

waiting patients with available nurses, Rule 2 leads to the treatment of the earliest arriving patient to start.

Hence, the policy defined by Rules 1 and 2 is complete and independent of the treatment durations as well as

the objective of the problem.

In chemotherapy clinics, treatment start time decisions for patients are given dynamically before the uncer-

tainties in all infusion durations are resolved. In the corresponding multi-stage SP model, the time points at

which a chair becomes available would represent decision stages after the first stage. However, the chair assign-

ment policy we enforce allows one to avoid formulating the problem as a multi-stage SP model. All treatment

start time decisions can be made in the second stage after observing each scenario realization, as the policy

is myopic, in the sense that it depends only on the patient appointment sequence and availability of nurses

at the time that a chair becomes available. Therefore, under the conditions dictated by the chair assignment

policy, the optimal appointment schedule found by the two-stage SP model would be the same as that of the

multi-stage SP formulation version of our problem.

Assuming that a finite set of scenarios would sufficiently capture the uncertainty in infusion durations, we

formulate the following two-stage stochastic mixed-integer programming (TSMIP) model based on the notation

explained in Table 1.

min Q(u,x, t) (1)

s.t. uij + uji = 1 ∀i, j ∈ P : j > i (2)∑
n∈Ni

xin = 1 ∀i ∈ P (3)

∑
s∈S

tis = 1 ∀i ∈ P (4)

∑
s∈S

qstjs ≥
∑
s∈S

qstis −M(1− uij) ∀i, j ∈ P : j ̸= i (5)

uij ∈ {0, 1} ∀i, j ∈ P : j ̸= i (6)

xin ∈ {0, 1} ∀i ∈ P, n ∈ Ni (7)

tis ∈ {0, 1} ∀i ∈ P, s ∈ S (8)

where Q(u,x, t) = Eξ [Q (u,x, t, ξ (ω))], and Q(u,x, t, ξ(ω))) is given by:

min λ
∑
i∈P

wi(ω) + (1− λ)
∑
n∈N

on(ω) + β
∑
n∈N

en(ω) (9)

s.t.
∑
n∈Ni

∑
s∈S

zsin(ω) = 1 ∀i ∈ P (10)

zsin(ω) ≤ xin ∀i ∈ P, n ∈ Ni, s ∈ S (11)∑
i∈Pn

zsin(ω) ≤ 1 ∀s ∈ S, n ∈ N (12)
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Table 1: Notation for the TSMIP model

Index sets
P Patients
Pd Patients including the dummy patient, i.e., Pd = P ∪ {0}
Pn Patients that can be treated by nurse n ∈ N
N Nurses
Ni Nurses that can treat patient i ∈ P , i.e., Ni = {n ∈ N : ai ≤ rn}
C Chairs
S Time slots
Ω Scenarios

Parameters
σ Duration of a time slot
qs = (s− 1)σ , beginning time of slot s ∈ S
h Shift length of the chemotherapy clinic
ai Acuity level of patient i ∈ P
rn Highest level of individual patient acuity that nurse n ∈ N can manage
mn Desirable upper limit on the sum of acuity levels of the patients who are

simultaneously treated by nurse n ∈ N
b Premedication duration in minutes
gis = max

{
1, s−

⌈
b
σ

⌉
+ 1

}
, earliest slot that the treatment of patient i ∈ P can start if

premedication proceeds at slot s ∈ S
ci(ω) Infusion duration for patient i ∈ P under scenario ω ∈ Ω
ξ(ω) Vector of infusion durations under scenario ω ∈ Ω

pi(ω) =
⌈
b+ci(ω)

σ

⌉
, number of time slots required to complete the treatment of patient i ∈ P under

scenario ω ∈ Ω
fis(ω) = max{1, s− pi(ω) + 1}, earliest slot that the treatment of patient i ∈ P can start if treatment

proceeds at slot s ∈ S under scenario ω ∈ Ω
λ Penalty parameter for waiting time (Sum of penalty parameters for waiting time and overtime

is 1)
β Penalty parameter for the excess of total acuity levels

First-stage decision variables

uij =

{
1 if patient i ∈ P precedes patient j ∈ P (general precedence) in appointment sequence

0 otherwise

xin =

{
1 if patient i ∈ P is assigned to nurse n ∈ Ni

0 otherwise

tis =

{
1 if patient i ∈ P is assigned to time slot s ∈ S

0 otherwise

Second-stage decision variables

zsin(ω) =

1 if the treatment of patient i ∈ P , carried out by nurse n ∈ Ni, starts in time slot s ∈ S
under scenario ω ∈ Ω

0 otherwise

Auxiliary decision variables
wi(ω) Waiting time of patient i ∈ P under scenario ω ∈ Ω
en(ω) Excess of total acuity level over the desirable upper limit of nurse n ∈ N under scenario ω ∈ Ω
on(ω) Overtime for nurse n ∈ N under scenario ω ∈ Ω
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wi(ω) =
∑
n∈Ni

∑
s∈S

qsz
s
in(ω)−

∑
s∈S

qstis ∀i ∈ P (13)

∑
i∈P

∑
n∈Ni

s∑
u=fis(ω)

zuin(ω) ≤ |C| ∀s ∈ S (14)

∑
s∈S

qsz
s
jn(ω) +M(3− uij − xin − xjn) ≥

∑
s∈S

qsz
s
in(ω) + b ∀i, j ∈ P : j ̸= i, n ∈ Ni (15)

s∑
u=1

tiu + uij + xin −
max{1,s−1}∑

u=1

zuin(ω)−
∑
k∈P
k ̸=i,j

s∑
u=gis

zukn(ω)

− 1

|C|
∑
k∈P
k ̸=i,j

∑
v∈Nk

s∑
u=fis(ω)

zukv(ω) ≤ zsin(ω) + 2 ∀i ∈ P, j ∈ Pd : j ̸= i, n ∈ Ni, s ∈ S (16)

∑
i∈Pn

s∑
u=fis(ω)

aiz
u
in(ω) ≤ mn + en(ω) ∀n ∈ N, s ∈ S (17)

on(ω) ≥
∑
s∈S

qsz
s
in(ω) + b+ ci(ω)− h−M(1− xin) ∀i ∈ P , n ∈ Ni (18)

zsin(ω) ∈ {0, 1} ∀i ∈ P, n ∈ Ni, s ∈ S (19)

wi(ω) ≥ 0 ∀i ∈ P (20)

on(ω), en(ω) ≥ 0 ∀n ∈ N (21)

The objective function (1) minimizes only the expected second-stage function, as no penalty is incurred related

to the first-stage decisions. In particular, the function minimizes expected weighted sum of patient waiting time,

nurse overtime and excess of total acuity levels over the nurse capacity.

First-stage constraints are formulated by (2)-(8). Constraints (2) ensure that either patient i ∈ P precedes

patient j ∈ P in the appointment sequence, or vice versa. Constraints (3) enforce each patient to be assigned

to a nurse who has appropriate skills to treat the patient. More formally, nurse n ∈ N can treat patient i ∈ P

only if the acuity level of patient i ∈ P is within the limit that nurse n ∈ N can manage. Therefore, the set

Ni for patient i ∈ P includes all nurses for whom the condition of ai ≤ rn is satisfied. Constraints (4) impose

each patient to be assigned to a time slot, which represents the appointment time of patient. Constraints (5)

stipulates that if patient i ∈ P precedes patient j ∈ P in the appointment sequence, then the appointment time

of patient i ∈ P cannot be later than that of patient j ∈ P . Constraints (6)-(8) represent the binary restrictions

on the first-stage variables.

For a given set of first-stage decision variable values and a particular scenario realization, the expression in

(9) determines the second-stage objective function value. Note that λ parameter controls the trade-off between

waiting time and overtime, while β penalizes the excess of total acuity levels over the nurse capacity.

The constraint set for the second-stage scenario subproblem is represented by (10)-(20). Constraints (10)

ensure that the treatment of a patient can be started by a single nurse and at a single slot. Constraints (11)

guarantee that the nurse assigned to a patient at the first stage performs the treatment of the patient. Con-

straints (12) impose a nurse to start the treatment of at most one patient in any slot. Constraints (13) calculate
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the waiting time of a patient by finding out the difference between treatment start time and appointment time.

Through identifying the patients whose treatment proceeds at slot s ∈ S, constraints (14) ensure that the

number of simultaneously treated patients in the slot cannot exceed the number of chairs. Constraints (15)

enforce a restriction valid for only the patients {i, j} ∈ P who are assigned to the same nurse by maintaining

that the treatment of patient j ∈ P can start only after the premedication of patient i ∈ P ends, if patient

i ∈ P precedes patient j ∈ P in the appointment sequence.

Constraints (16) represent the particular chair assignment policy employed in the study while determining

the treatment start time of arriving patients. Suppose that the following three conditions hold for patient i ∈ P :

(a) the patient arrives before or at slot s ∈ S, (b) the treatment of this patient has not started before slot s ∈ S,

and (c) the nurse assigned to the patient is not busy with premedication at slot s ∈ S. Assume that these three

conditions also hold for patient j ∈ P , where patient i ∈ P precedes j ∈ P in the appointment sequence. If

there is a single available chair at slot s ∈ S, then the treatment priority is given to patient i ∈ P . Under such

circumstances, due to constraints (14) and (16), only the treatment for patient i ∈ P must start at slot s ∈ S.

This represents Rule 1 of the chair assignment policy. On the other hand, if (a) and (b) hold for both patients,

but (c) holds only for patient j ∈ P , and there is an available chair, then the treatment for patient j ∈ P must

start at slot s ∈ S. This is enforced due to Rule 2 of the chair assignment policy.

Note that if constraints (16) are defined for {i, j} ∈ P , then uij never becomes 1 for patient i ∈ P when

i represents the last patient in the appointment sequence. As a result, the last patient cannot be enforced to

start at slot s ∈ S even when the sufficient conditions are maintained. Therefore, we make use of a dummy

patient j ∈ Pd (i.e., j = 0), and preset uij = 1 for all patients i ∈ P when j = 0 in constraints (16).

Constraints (17) calculate the sum of acuity levels of the patients treated by a nurse at any time slot. The

resulting value is compared with the nurse capacity to determine the excess of total acuity levels for each slot.

Constraints (18) compute overtime for each nurse by finding the discharge time of the last patient treated by the

nurse. If the discharge time is smaller than the shift length, nurse overtime is set to zero. Constraints (19)-(21)

are the binary and sign restrictions associated with the second-stage variables.

Rules 1 and 2 are imposed by Constraints (12) and (16) in the TSMIP model. Once the first-stage decisions

are made, the second-stage chair assignments and the treatment start times in each scenario can be determined

in a dynamic way following Rules 1 and 2. Hence, the optimal solution of the second stage is independent of

the ongoing or future treatment durations at any given time, and regardless of the penalty parameter values.

4. Solution Methodology

As will become evident in Section 5, the TSMIP model defined by (1)-(21) can be solved to optimality for

only small instances with a limited number of patients, nurses, chairs, and scenarios. On the other hand, our

preliminary experiments showed that when the patient sequence is fixed, the remaining part of the model can

be solved in reasonable time for much larger instances. Motivated by this observation, we propose a heuristic

approach that decomposes the original problem into scenario bundles, solves these bundles as subproblems, and

finds a feasible patient sequence based on the bundle subproblem that yields the best solution. This sequence
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is then improved by means of a search procedure in the improvement phase. Our computational experiments

show that while the scenario bundle decomposition approach requires the bulk of computational time for the

heuristic, it generates high-quality initial solutions. The subsequent improvement step requires much shorter

computational times, as the patient sequence is fixed in this step.

The scenario bundling approach is generally used to solve SP models by integrating it within the classical

decomposition algorithms. For example, it is integrated within the progressive hedging algorithm (Escudero

et al., 2013; Crainic et al., 2014; Gade et al., 2016; Jiang et al., 2021), alternative Lagrangian decomposition

algorithms (Escudero et al., 2013), and L-shaped algorithm (Oliveira et al., 2011). To the best of our knowledge,

this is the first study using scenario bundling to obtain promising initial solutions and integrating it with an

improvement heuristic that consists of local search and diversification steps.

In what follows, we discuss the details of the scenario bundling-based decomposition (SBBD) algorithm and

the improvements used to increase the efficiency of the algorithm, as well as that of the model given by (1)-(21).

4.1. Scenario Bundling-Based Decomposition Algorithm

The SBBD algorithm is a two-phase approach. An initial solution is found during the construction phase,

followed by the improvement of this solution by means of a search algorithm in the improvement phase.

The construction phase starts by dividing the independently sampled scenario set into nb scenario bundles,

each of which except the last one consists of |Ωb| scenarios. Each scenario in a scenario set is randomly assigned

to one of the nb scenario bundles. The methodology to determine nb, and thus |Ωb|, is discussed in Section

5.2. The TSMIP model defined by (1)-(21) is then solved for each of the nb bundle subproblems, yielding the

optimal first-stage decisions of patient sequences, patient appointment times, and patient-nurse assignments for

each subproblem. Each of these nb first-stage variables are then used in the original model defined by (1)-(21)

with the complete set of |Ω| scenarios (called the master problem), resulting in an objective value of zb. The

initial solution returned by the construction phase is the patient sequences of bundle b that yields the minimum

objective value, i.e., argminb=1,2,...,nb{zb}.

The construction phase provides a feasible initial patient sequence, and hence an upper bound on the optimal

objective value of the original TSMIP model. The details of the construction phase are given in Algorithm 1.

The improvement phase mainly uses two operators. The first of these is a local search operator, denoted by

pi, which swaps the ith and (i− 1)st patients in the sequence. The second is a diversification operator, denoted

as dkp, where the randomly chosen pth patient is swapped with the (p − k)th patient in the sequence. Here,

k ≥ 1 determines the distance between the patients to be swapped in the sequence, whose value depends on the

iteration of last improvement. In general, more iterations without improvement implies a larger value of k.

Following the initialization of the upper bound, best sequence, and iteration counters, the improvement

phase solves the master problem by fixing the best sequence obtained from the construction phase, possibly

yielding a better upper bound, as the nurse-patient assignments and/or patient appointment times may be

different from those in the resulting solution of the construction phase.

The next step is to apply the local search operator, starting from the (|N |+1)st patient. We note here that
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Algorithm 1 Scenario Bundling-Based Decomposition Algorithm: Construction Phase

1: Step 1: Initialization
2: Set nb and |Ωb|
3: Set the initial best objective best obj =∞ and the initial best solution best solution = ∅
4: Step 2: Obtain the first-stage decisions of bundle subproblems
5: for b = 1, 2, . . . , nb do
6: Solve bundle sub-problems, obtain the first-stage variables: ub, tb,xb

7: end for
8: Step 3 Obtain the initial solution for the master problem
9: for b = 1, 2, . . . , nb do

10: Solve the master problem with fixed ub, tb,xb and obtain zb
11: if zb < best obj then
12: best obj ← zb, best solution← ub

13: end if
14: end for

for the first |N | patients, swapping appointment times does not lead to any change in the sequence, as all of these

patients are assigned to t = 0. The main reason behind enforcing the appointments of the first |N | patients at

t = 0 is that this helps with eliminating part of the variables and speeds up the solution process. Furthermore,

this procedure complies with the actual practice in the OCC. In case the swap operator leads to a sequence

that has been encountered before or the first |N | patients cannot be assigned to t = 0 simultaneously (the

latter occurs when the simultaneous assignment of these patients to nurses is infeasible), the solution is repaired

or adjusted by an appropriate procedure explained in Section 4.2. If no repair or adjustment is needed, the

master problem is solved with the new sequence, and the upper bound is updated whenever an improvement is

encountered. Once the swaps of all adjacent patient pairs are considered in order, the algorithm checks whether

there has been an improvement in the upper bound throughout the iteration. If an improvement has been made

during local search, the best sequence is updated and the local search restarts with the updated solution. If no

improvement has been found, then the diversification procedure is initiated.

The diversification step starts by determining the k and p parameters of the dkp operator. If the current

diversification iteration counter exceeds a threshold value inversely proportional to the value of k, we reset

this counter and increase the value of k by one. Otherwise, we continue with the current value of k. This

is to encourage exploitation of the search space in the earlier diversification iterations, and to avoid excessive

iterations in the later stages. The p parameter is generated randomly, depending on the current value of k, the

number of patients, and the number of nurses. Once these two parameters are determined, the diversification

operator is applied on the best sequence. If the new sequence has been encountered before, the algorithm moves

back to the start of local search with the current k. Otherwise, the master problem is solved with the current

sequence and if any improvement is found, the objective value is updated, followed by a move back to the local

search process with the current solution. Once local search is completed, the algorithm moves on to the next

iteration of the diversification step.

A summary of the improvement phase is presented in Algorithm 2. The improvement algorithm may ter-

minate when (i) the iteration number limit is reached, (ii) the time limit is reached, or (iii) if k = |P | during
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the diversification step and the local search operator operates until the last patient. In the latter case, since

k = p = |P |, there is no possibility of diversifying the sequence any more.

4.2. Performance Improvements for the SBBD Algorithm

The running time of the algorithm can be improved by (i) repairing the sequence of patients when a previously

tested sequence has been obtained by the local search or diversification operator, and (ii) adjusting the sequence

when the appointment time of at least one of the first |N | patients cannot be set at t = 0.

To avoid running the master problem with a previously encountered sequence, the sequence is repaired.

If the sequence is obtained after the local search operator pi, then the value of i is incremented by 1 until

a new sequence is found. When i = |P | and no new sequence is found, then the algorithm proceeds to the

diversification step. If the repeat sequence is obtained after the diversification operator dkp, the local search

operator pi is called to find a new sequence. If no new sequence can be obtained by pi until i = |P |, then in the

diversification a different random patient p is selected. If all possible patients are attempted for swap under the

fixed k, then the value of k is increased by 1 and the diversification step is repeated. A summary of the repair

procedure is presented in Algorithm 3 in Appendix A of the Supplementary Material.

As we assume that the appointment times of the first |N | patients in the sequence should be at t = 0,

we adjust the sequence if, at any part of the algorithm, this condition cannot be maintained. To do so, the

diversification operator dkp is called with k = 1 and p = |N |+ 1, so that patients |N | and |N |+ 1 are swapped

in the sequence. If the new sequence also does not satisfy the condition, we repeatedly call the diversification

operator by increasing p and k by 1 and performing the swap accordingly until the condition is satisfied. By

doing so, the adjustment process attempts to change the order of the |N |th patient in the sequence with the

nearest one with whom the swap would lead to the condition being satisfied. When such a sequence is found,

k is reset to its original value before the adjustment step. A summary of this process is provided in Algorithm

4 in Appendix A of the Supplementary Material.

4.3. Improvements on the TSMIP Model

In addition to improvements in the algorithm, we also discuss the improvements we implement on the TSMIP

model to decrease its running time, by means of setting tight big-M values and elimination of constraints and

variables.

4.3.1. Setting the M values

Constraints (5), (15) and (18) in the TSMIP model involve big-M values, which can be tightened using

problem-specific information.

Constraints (5) only apply if uij = 1, i.e., patient i ∈ P precedes patient j ∈ P . Otherwise, the difference

between the appointment times of the two patients can be at most h − b. Consequently, the M value for this

constraint is set at h− b.

Constraints (15) become redundant if either patient i ∈ P does not precede patient j ∈ P (uij = 0) and/or

patients i ∈ P and j ∈ P are not assigned to the same nurse n ∈ N (xin + xjn < 2). When M = h, the
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Algorithm 2 Scenario Bundling-Based Decomposition Algorithm-Improvement Phase

1: Step 1: Initialization
2: UB = best obj, best seq = {sequence : best obj}, div seq = best seq
3: Set the tested sequence set: TS = ∅
4: iter = 1, diver iter = 1, k = 1, improved = false
5: Set improvement iteration limit AlgIterNum
6: while (iter ≤AlgIterNum) do
7: Step 2: Start improvement phase
8: Solve the master problem with best seq
9: TS ← TS ∪ {best seq}
10: if obj(iter) < best obj then
11: best obj ← obj(iter), UB ← best obj
12: end if
13: Step 3: Start local search
14: for i = |N |+ 1 to |P | do
15: iter ← iter + 1
16: Apply swap operator pi on div seq to obtain new seq
17: if new seq ∈ TS then
18: Repair the sequence (See Algorithm 3)
19: else if the first |N | patients of new seq cannot be assigned to t = 0 simultaneously then
20: Adjust the sequence (See Algorithm 4)
21: else
22: TS ← TS ∪ {new seq}
23: Solve the master problem with new seq to obtain obj(iter)
24: if obj(iter) < best obj then
25: improved← true
26: best obj ← obj(iter), UB ← best obj
27: end if
28: end if
29: end for
30: if improved = true then
31: best seq ← {sequence : best obj}
32: div seq ← best seq
33: if k ̸= |P | then
34: k ← 1, diver iter ← 1, improved← false
35: Restart the local search process
36: else
37: Terminate with best seq as the sequence and best obj as the objective value
38: end if
39: else if k = |P | then
40: Terminate with best seq as the sequence and best obj as the objective value
41: else
42: Step 4: Diversify the best sequence
43: iter ← iter + 1

44: if diver iter >
⌊

|P |
max{2,k}

⌋
then

45: diver iter ← 1
46: k ← k + 1
47: end if
48: p = U(max{k, |N |+ 1}, |P |)
49: Apply diversification operator dkp on best seq to obtain div seq
50: diver iter ← diver iter + 1
51: if div seq ∈ TS then
52: Restart the local search process
53: else if the first |N | patients of div seq cannot be assigned to t = 0 simultaneously then
54: Adjust the sequence (See Algorithm 4)
55: else
56: TS ← TS ∪ {div seq}
57: Solve the master problem to obtain obj(iter)
58: if (obj(iter) < best obj) then
59: best obj ← obj(iter), UB = best obj
60: improved← true
61: end if
62: Restart the local search process
63: end if
64: end if
65: end while
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constraint is still valid, as in the tightest case the treatment of patient j ∈ P starts in the first slot and that of

patient i ∈ P starts at the last slot. This leads to the right-hand side value of h, which is still exceeded by the

left-hand side.

Constraints (18) are redundant when patient i ∈ P is not assigned to nurse n ∈ N , and the tightest case

is when the pre-medication of i ∈ P starts in the last slot, leading to a right-hand side value of ci(ω) −M .

Applying a scenario-dependent M (denoted by M(ω)) and setting it as M(ω) = maxk∈P {ck(ω)} ensures the

validity of the constraints.

4.3.2. Elimination of Constraints and Variables

The performance of the TSMIP model, when called from the decomposition algorithm, can be further

improved by elimination of variables and constraints.

Each iteration of the heuristic algorithm uses a fixed patient sequence. The information gathered from the

sequence may be used to eliminate some of the variables from the formulation. This in turn decreases the

computation time.

As discussed in Section 4.2, the appointments of the first |N | patients in the sequence are assigned to t = 0,

and therefore s = 1. Since the sequence is fixed and the first |N | patients in the sequence are known, we set

ti1 = 1 for patients i in this sequence and ti1 = 0 for all other patients. Similarly, we also set the zsin(ω) = 0 for

these patients for all s > 1. As the waiting time for these patients is zero, we eliminate the wi(ω) variables.

For the (|N |+1)st patient in the sequence, we use the information gathered from the acuity levels of the first

|N | + 1 patients and the maximum nurse acuity levels rn. As the (|N | + 1)st is the second patient of a nurse,

we check whether this nurse can treat the two patients simultaneously or not. As the nurse-patient assignments

are not known a priori, we perform this check for each possible nurse-patient assignment. If the nurse is able

to treat the two patients simultaneously, the pre-medication of the (|N | + 1)st patient can start immediately

after the pre-medication of the previous patient. Since all pre-medication durations are constant and equal to a

single slot, we set the tis and zsin(ω) to zero for this patient-nurse pair and s > 2. If, on the other hand, the rn

level for this nurse is not sufficient to handle both patients simultaneously, we set the tis and zsin(ω) variables

for this patient-nurse pair to zero for s = 1 through s = min{|S|,max{⌈(ci(ω) + b)/σ⌉ : i = 1, 2, . . . , N}}. In

cases where nurses are more likely able to treat two patients simultaneously, as is the case in our experiments,

this procedure can eliminate a significant number of variables.

The sequence information can also be used to eliminate the redundant constraints arising from the fixed

sequencing (uij) variables. When uij = 0, constraints (5),(15) and (16) become redundant, and thus are

eliminated from the model. The knowledge of the uij variables also eliminates the need to write constraints

(5) for each patient pair. Instead, it is sufficient to consider two consecutive patients in the sequence for these

constraints. Constraints (16) do not need to be written for the first patient in the sequence, as this patient

will definitely start the treatment at the first slot and there will always be an available chair for this patient.

These constraints also need not be written for the cases dummy patient is part of the pair (except when paired

with patient |P |). Lastly, we do not need to write constraints (16) for patient pairs that are among the first |C|
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Table 2: Actual infusion duration intervals observed for each patient group and group occurrence probabilities

Patient group Probability of occurrence Infusion duration (mins)
1 26.96% [16,44]
2 7.85% [29,80]
3 33.33% [74,132]
4 31.86% [125,217]

patients in the sequence, as these patients will always find an available chair upon arrival. Furthermore, if their

assigned nurse is available, these patients can also start their treatment directly upon their arrival.

5. Experimental Study

We conduct numerical experiments using a data set of planned and actual treatment durations collected from

an OCC at Hacettepe University Oncology Hospital in Ankara, Turkey, during the years 2017 and 2018 (Demir

et al., 2021). Based on extensive experiments, we first determine the appropriate size of scenario bundles for the

implementation of our algorithm. After fixing the size of scenario bundles, we assess the average optimality gap

considering the solutions of our algorithm and those found by CPLEX. Next, we compare the algorithm with

commonly used scheduling heuristics in the literature. We also compare the schedules found by the algorithm

with the baseline schedules. We then assess the benefit of considering uncertainty in infusion durations in the

model. Finally, we perform sensitivity analysis on various model parameters to generate managerial insights

related to chemotherapy scheduling.

Our algorithm is implemented by Microsoft Visual C++ 2019 using CPLEX 12.9 Concert Technology. The

experiments are performed on an AMD Ryzen 7 Pro 2700X computer with eight-core processor running at 3.60

GHz and 64GB RAM. We set the upper limit on the run time as 3 hours and the number of SBBD algorithm

iterations as 100 in each experiment.

5.1. Generating Problem Instances

For each computational experiment, we create an instance set consisting of 10 instances. We generate different

instances for each instance set by sampling different infusion duration values from our data set. Unless otherwise

stated, the number of scenarios, |Ω|, is equal to 100. In other words, we sample 100 infusion duration values

for a patient from our data set. Patients are categorized into four groups according to the length of treatment

durations estimated by the head nurse of the OCC. The probability that a patient belongs to each particular

group and the actual infusion duration ranges for each group are shown in Table 2. Further details of the data

set are explained in Demir et al. (2021).

We sample an infusion duration for a patient for a given scenario realization based on the following approach:

We first generate the patient group based on the group occurrence probabilities given in Table 2. Then, we

randomly generate an infusion duration from the interval associated with the selected patient group. The use

of the uniform distribution to generate the infusion durations is justified in Demir et al. (2021). This infusion

duration sampling procedure is applied for all patients independently in each scenario realization. Then, the steps
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Table 3: Characteristics of the patients in the instance set selected

Patient Index 1 2 3 4 5 6 7
Patient Group 4 1 4 3 1 3 3
Acuity Level 2 3 1 1 2 1 1

for scenario generation are conducted repeatedly to produce all scenarios in a problem instance. The instances

in an instance set differ from each other based on the set of infusion duration scenarios. The remaining model

parameter values are kept the same in all instances in a given instance set.

The relevant literature shows that the acuity scales developed for infusion clinics differ significantly among

each other (Fesler & Toms, 2020).The number of levels used in an acuity scale is generally set to either 3 or

5 (Liang & Turkcan, 2016; Alvarado & Ntaimo, 2018). Higher values imply greater level of nurse attention

needed. Following the approach by Alvarado & Ntaimo (2018), we choose an acuity scale from three possible

levels. The acuity level of a patient (ai, i ∈ P ) can take a value of 1, 2, or 3 based on probabilities of 0.7, 0.2,

and 0.1, respectively. A higher acuity level does not always imply longer treatment durations. The treatment of

a patient may require close attention of a nurse, but may also take a small amount of time. Therefore, as also is

the case in Liang & Turkcan (2016) and Alvarado & Ntaimo (2018), our infusion duration sampling procedure

is independent from the acuity levels of patients. We set the highest level of patient acuity that a nurse can

manage (rn, where n ∈ N) as 2 or 3 with equal probabilities. Furthermore, we ensure that the desirable upper

limit on the total acuity levels of the patients who are simultaneously treated by a nurse (mn, where n ∈ N) is

related to the skill levels of nurses. In particular, the following relationship is maintained in our experiments:

mn = rn + 2, where n ∈ N (i.e., mn can be 4 or 5).

We create half-day schedules in line with the practice in the OCC we study. This means the morning and

afternoon shift schedules are created independently. We set the planned shift length (h) as 240 minutes, as the

OCC is open for 8 hours a day. Each slot length (σ) is equal to 15 minutes, which implies that there are in

total |S| = 16 slots in a shift schedule.

The data collected from the OCC shows that a 95% confidence interval for premedication duration for

all patients is [14.61, 16.09] (Demir et al., 2021). Due to the narrow width of this interval, we assume that

premedication duration for any patient is constant and equal to 1 slot (i.e. b = 15).

We consider the setting where sets of chairs are created in the clinic and each set is located at a separate

room. Since a nurse can monitor multiple patients simultaneously only if they are treated in the same room,

nurses are pre-assigned to the rooms by the management. We focus on the scheduling for a specific room. In

particular, we create instances for the case where there are |P |=7 patients, |C|=4 chairs, and |N |=2 nurses.

Table 3 shows the acuity and group values of the patients in the instance set. We consider this set as a

typical set (except in Section 5.6), as the distribution of patient group and acuity level values are consistent

with the given frequencies. We set rn as 2 and 3, and mn as 4 and 5 for the first and second nurse, respectively.

In the OCC considered, nurse overtime was given higher importance, so we set λ = 0.4. Finally, we set β = 0.5

based on our preliminary experiments.
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Table 4: The individual and average run times (in seconds) spent to find the initial solution for each value of |Ωb|, with lower and
upper bounds on the 95% confidence interval for the average

|Ωb|
Instance # 2 3 4 5 6

1 937.04 1209.44 2303.97 5876.17 10977.00
2 833.80 1188.91 1866.92 4922.86 7703.63
3 844.64 1068.68 2005.43 4619.55 8178.25
4 859.73 1241.53 2805.10 5677.50 10544.10
5 870.26 1203.10 2514.50 5370.69 8413.99
6 905.50 1337.48 3125.66 6834.53 10959.20
7 920.83 1165.22 2135.74 4909.34 7419.57
8 802.75 1214.87 2145.57 4411.89 6488.70
9 950.84 1077.02 1979.01 4458.34 8167.68
10 1462.47 1101.70 2166.41 5673.44 8893.79

Average 938.79 1180.80 2304.83 5275.43 8774.59
95% CI LB 802.94 1122.14 2020.09 4731.01 7661.52
95% CI UB 1074.63 1239.45 2589.57 5819.85 9887.66

5.2. Determining the Bundle Size

In this section, we explain the procedure we follow to find the best bundle size used in the first phase of our

algorithm while searching for the initial solution. We fix the bundle size at a level that yields a good compromise

for the trade-off between the optimality gap and computational time. In the subsequent sections, we use this

bundle size in further experiments.

Bundle size is an important parameter, as it directly affects both the initial solution quality and run time

spent to obtain an initial solution. Letting |Ωb| represent the size of a bundle, we first test |Ωb|={2,3,4,5,6}

values in our experiments related to the construction phase of the algorithm. In an experiment, the number of

bundles created, which is denoted by nb, is equal to the following expression:

nb =

⌈
|Ω|
|Ωb|

⌉
(22)

For example, when |Ωb| = 4, there are nb = 25 bundles each including 4 scenarios, as the total number of

scenarios is equal to 100 in an instance. However, when |Ω|/|Ωb| is not an integer, the size of the last bundle is

set a value less than |Ωb|. For instance, when |Ωb| = 6, nb = 17 bundles are created, where 16 of them include

6 scenarios, while the remaining one includes 4 scenarios.

Table 4 shows the run time spent to find the initial solution of our algorithm through solving nb subproblems

associated with each |Ωb| value. The average over 10 instances indicates that the run time significantly increases

as |Ωb| increases. While the average run time is 15.65 minutes when |Ωb| = 2, it reaches 146.24 minutes for

|Ωb| = 6. The algorithm may find an initial solution after spending more than 3 hours when |Ωb| = 6. Since

we set the total time limit as 3 hours for generating the final solution of the algorithm, we eliminate |Ωb| = 6

from further consideration. The average objective values over ten instances for the initial solutions associated

with |Ωb|={2, 3, 4, 5} are found as {10.74, 10.09, 9.77, 9.69}, respectively. The results show that the average

objective value improves as the value of |Ωb| increases.
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Table 5: Individual and average run times of the algorithm (in seconds) and the objective values for different values of |Ωb|, with
lower and upper bounds on the 95% confidence interval for the average

|Ωb| = 2 |Ωb| = 3 |Ωb| = 4 |Ωb| = 5
Instance # Time Objective Time Objective Time Objective Time Objective

1 10800.00 11.52 10800.00 10.96 10800.00 10.96 10800.00 11.19
2 9533.16 8.62 9587.92 8.62 10800.00 8.62 10800.00 8.62
3 10605.30 8.53 7750.63 8.53 10800.00 8.93 10800.00 8.53
4 9535.87 10.50 10214.30 10.50 10800.00 10.52 10800.00 10.50
5 10800.00 9.48 10800.00 9.75 10800.00 9.51 10800.00 9.51
6 10529.70 11.38 10089.20 11.38 10800.00 11.38 10800.00 11.38
7 9794.73 9.74 9125.04 9.74 9643.46 9.74 10800.00 9.74
8 10800.00 10.59 8737.97 8.79 8782.05 8.79 10800.00 8.79
9 9067.15 9.07 9563.38 9.07 9814.51 9.06 10800.00 9.07
10 7241.02 8.93 8968.94 8.93 10310.30 9.09 10800.00 9.09

Average 9870.69 9.84 9563.74 9.63 10335.03 9.66 10800.00 9.64
95% CI LB 9067.86 9.05 8878.57 8.90 9832.00 8.97 10800.00 8.90
95% CI UB 10673.53 10.62 10248.90 10.36 10838.06 10.35 10800.00 10.39

Table 6: Percentage improvement over the best solution without elimination, number of improvement iterations, and computation
time for the algorithm with variable and constraint elimination, with lower and upper bounds on the 95% confidence interval for
the average

Instance # Gap (%) Improvement iterations Run time (sec)
1 0.00 68 10800.00
2 1.40 100 9587.92
3 4.07 79 7750.63
4 13.18 79 10214.30
5 0.20 67 10800.00
6 2.38 100 10089.20
7 12.55 100 9125.04
8 3.94 79 8737.97
9 1.18 84 9563.38
10 3.51 100 8968.94

Average 4.24 85.60 9563.74
95% CI LB 0.83 76.02 8878.57
95% CI UB 7.65 95.18 10248.90

Since solving bundle subproblems with smaller |Ωb| values requires less time during the construction phase of

the algorithm, a larger amount of time remains for the implementation of the improvement phase. On the other

hand, even though solving subproblems with larger |Ωb| values is more challenging, it is more likely to obtain

promising initial solutions in such cases. In other words, there is a trade-off between (i) spending extensive

amount of time to find good initial solutions followed by a limited effort for improvement, and (ii) finding a

quick initial solution and improving it by spending a large number of improvement iterations.

To determine the best value of bundle size among the remaining |Ωb| values, we solve the instances by

running our algorithm to the end. Table 5 shows the computational time needed to obtain the solutions and

objective values associated with them. When |Ωb| increases from 2 to 3, the objective value improves by more

than 2%. The best result is obtained when |Ωb| = 3, while similar objective values are found when |Ωb| is larger.

However, the computational time needed to find the solution increases significantly when |Ωb| > 3. Therefore,

we set |Ωb| = 3 in our remaining experiments.
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Table 7: Average gap between the optimal solutions and the solutions found by the SBBD algorithm, and the run times (in seconds)
for CPLEX and SBBD algorithm, with lower and upper bounds on the 95% confidence interval for the average

Objective Value Run Time
Instance # CPLEX SBBD Gap (%) CPLEX SBBD

1 8.34 8.34 0.00 9347.47 258.84
2 7.88 7.88 0.00 4312.00 375.48
3 5.90 5.97 1.14 4069.00 319.10
4 8.16 8.92 8.54 9087.83 499.10
5 9.10 9.10 0.00 10619.48 379.08
6 4.40 4.40 0.00 8974.74 296.97
7 7.15 7.15 0.00 8801.66 277.72
8 8.97 9.93 9.62 10524.32 628.73
9 5.27 5.27 0.00 4619.06 269.13
10 7.74 8.37 7.53 9701.17 282.84

Average 7.29 7.53 2.68 8005.67 358.70
95% CI LB 6.15 6.25 -0.25 6141.97 273.13
95% CI UB 8.43 8.82 5.62 9869.38 444.26

5.3. Effect of Variable Elimination and Constraint Reduction on Algorithm Performance

As mentioned in Section 4.3.2, knowing the patient sequences enables the elimination of some variables and

constraints; we use this advantage to expedite the algorithm. Table 6 shows the objective function improvement,

number of improvement iterations, and the computational time with variable and constraint elimination. Our

findings show that reducing the size of the model by constraint and variable elimination significantly enhances

the running time of the algorithm. Without elimination, the algorithm is only able to find an initial solution

by completing the construction phase, and is not able to compute any improvement iterations within 3 hours.

With elimination, the algorithm is able to run until the iteration count limit (instances 2, 6, 7, and 10) or until

all the required number of diversification schemes are performed (instances 3, 4, and 8). On average, variable

and constraint elimination improves the solution quality by 4.24%, and the improvement rate exceeds 10% in

two instances.

5.4. Comparison with Optimal Solutions

To assess the solution quality of our algorithm with regard to optimal solutions, we compare our results with

the optimal solutions for instances with the largest number of scenarios that can be solved to optimality by

CPLEX. Keeping all settings the same as in Section 5.1, CPLEX can solve instances with up to 13 scenarios.

Consequently, the instances in this section consist of 13 scenarios.

Based on the average gap values and computation times in Table 7, CPLEX spends an average time of more

than two hours to find the optimal solutions, whereas the proposed algorithm spends approximately six minutes.

The average optimality gap for the solutions found by the algorithm is 2.68%, while for six out of ten instances

the optimal solution is found. The results show that the proposed algorithm finds good quality solutions in a

reasonable amount of time.

As also discussed in Section 4.3.2, the SBBD algorithm runs in considerably shorter times than CPLEX

mainly due to fixing the sequencing variables in the first-stage. To quantify the decrease in run times, we also

21



Table 8: Objective values for the initial solutions of the SBBD, and the percentage gap between these solutions and those of the
sequencing heuristics, with lower and upper bounds on the 95% confidence interval for the average

Objective Value Gap (%)
Instance # SBBD LPT SPT VAR CoVar Random

1 10.96 33.45 80.18 78.91 23.40 57.21
2 8.75 36.90 83.31 81.93 30.26 77.68
3 8.89 37.17 82.34 82.09 37.15 38.26
4 12.10 22.80 76.22 76.72 6.74 65.43
5 9.77 35.04 82.20 82.05 23.22 61.02
6 11.66 32.32 77.79 78.26 2.52 75.07
7 11.14 25.44 78.80 77.09 28.04 74.37
8 9.15 29.23 81.45 81.36 76.91 80.14
9 9.18 34.60 81.03 80.78 25.96 82.28
10 9.26 34.21 81.92 81.33 22.92 79.45

Average 10.09 32.12 80.53 80.05 27.72 69.09
95% CI LB 9.19 28.67 78.91 78.55 13.31 59.24
95% CI UB 10.98 35.56 82.14 81.56 42.12 78.94

run each instance in this set with a fixed sequence under the SBBD algorithm. The results show that the SBBD

algorithm spends between 6.49 and 42.67 seconds for this reduced model over all instances, and 21.58 seconds

on average. This corresponds to less than 0.3% of the average run time of CPLEX, pointing to a significant

increase in efficiency.

5.5. Comparison with Sequencing Heuristics

To justify our claim in Section 4.1 that the construction phase of the SBBD approach is an appropriate

method to identify promising initial solutions, we compare our initial patient sequences with those found by the

sequencing heuristics that are commonly applied in the literature and can be easily used in practice. As bench-

marks, we form the initial sequence using four different sequencing heuristics based on the infusion durations:

(i) decreasing mean (LPT), (ii) increasing mean (SPT), (iii) increasing variance of (VAR), and (iv) increasing

coefficient of variation (CoVar). As the fifth benchmark, we also set the initial sequence randomly.

In Table 8, we show the objective values associated with the initial solutions of the SBBD algorithm for

each instance, and the percentage gap between the initial solutions of the SBBD and heuristics. The results

reveal that the SBBD always provides the best initial solutions. Among the five benchmark approaches, CoVar

performs the best. However, even with this heuristic, the average gap from the SBBD solutions is almost 28%.

These findings suggest that the simple heuristics cannot provide good initial solutions, and the construction

phase of the SBBD perform quite well in comparison to other heuristics.

We next investigate how essential it is to start with a good initial solution while implementing the SBBD

algorithm. For this purpose, we test the improvement phase of the algorithm to reach the final solution by

first starting with the initial sequence obtained by the construction phase of the SBBD, and then by the simple

heuristics. In Table 9, we provide the objective values associated with the final solutions of the SBBD algorithm

for each instance, and the percentage gaps between the final solutions of the SBBD and sequencing heuristics.

Based on these results, the SBBD always yields the best solutions compared to the benchmark heuristics. Among

the simple heuristics, CoVar performs the best, yielding a 7.7% gap with respect to the SBBD. LPT, Random,
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Table 9: Objective values for the final solutions of the SBBD, and the percentage gap between these solutions and those of the
sequencing heuristics, with lower and upper bounds on the 95% confidence interval for the average

Objective Value Gap (%)
Instance # SBBD LPT SPT VAR CoVar Random

1 10.96 17.54 77.93 76.82 0.00 23.55
2 8.62 1.40 81.91 80.44 23.57 58.72
3 8.53 6.55 81.63 81.05 18.75 24.43
4 10.50 0.19 77.19 77.28 0.00 69.98
5 9.75 12.65 80.16 80.41 0.00 32.22
6 11.38 19.13 75.85 75.69 4.84 31.82
7 9.74 16.87 79.84 77.94 22.83 30.18
8 8.79 13.76 80.04 79.90 1.96 79.09
9 9.07 1.99 79.47 79.35 3.27 0.00
10 8.93 0.00 80.41 79.86 1.74 29.25

Average 9.63 9.01 79.44 78.87 7.70 37.92
95% CI LB 8.90 3.45 78.07 77.58 0.64 20.77
95% CI UB 10.36 14.57 80.81 80.17 14.75 55.08

Table 10: Characteristics of the patients considered in the experiments for the VSS calculations in each instance set

Patient Index 1 2 3 4 5 6 7

Set 1
Patient Group 1 2 3 4 1 4 4
Acuity Level 1 1 2 1 1 2 3

Set 2
Patient Group 4 3 3 1 3 1 3
Acuity Level 2 3 1 1 3 1 1

Set 3
Patient Group 4 1 4 1 3 1 4
Acuity Level 3 1 1 3 1 2 2

Set 4
Patient Group 4 1 4 3 1 3 3
Acuity Level 2 3 1 1 2 1 1

Set 5
Patient Group 4 3 1 3 2 1 4
Acuity Level 2 2 1 2 1 1 1

VAR and SPT sequences follow CoVar sequence, respectively, in terms of final solution quality. For SPT and

VAR, we observe that the average gaps are very large, which are around 79%. These results show that it is

important to start with the initial sequence finding mechanism of the SBBD algorithm.

5.6. Comparison with the Baseline Schedules

To assess the value of using SBBD in practice, we compare the SBBD schedules with the baseline schedules.

We create each baseline schedule for the morning shift (08:00-12:00) using the policy applied at the OCC we

study. In the OCC, the patients are either asked to arrive at 08:00 or 10:30, and those with longer expected

Table 11: rn values used in the experiments for the VSS calculations in each instance set

Set # n = 1 n = 2
1 2 3
2 2 3
3 3 3
4 2 3
5 2 2
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Table 12: Average objective, waiting time, overtime, and excess acuity value comparisons between the baseline and SBBD schedules
on different instance sets

Objective Value Overtime Excess Acuity Waiting Time

Instance Set # Baseline SBBD Baseline SBBD Baseline SBBD Baseline SBBD

1 47.39 12.16 10.81 13.36 0.00 0.00 102.26 10.35
2 41.26 5.97 26.25 7.59 0.44 0.64 63.21 2.73
3 44.83 6.62 7.62 7.99 0.69 0.07 100.04 4.50
4 43.56 9.65 28.91 11.81 0.09 0.09 65.42 6.29
5 27.53 2.80 3.23 2.77 0.01 0.01 66.21 2.84

Table 13: Relative percentage VSS for different instance sets

Instance Set # Average zTSMIP Average zMV Relative VSS %
1 12.16 20.62 39.20
2 5.97 13.81 55.44
3 6.62 16.96 54.56
4 9.65 18.17 46.29
5 2.80 10.64 71.38

treatment durations are given higher priority in the appointment sequence. We generate baseline schedules for

five different lists of patients. In particular, we create five new instance sets by sampling new values for acuity

levels, patient groups, and the highest acuity level that a nurse can manage (provided in Tables 10 and 11).

Based on the same sets, we also create the SBBD schedules and obtain the performance measure values. Next,

we assess the performance of the baseline schedules by solving the TSMIP model using CPLEX after fixing all

uij and tis variables.

In Table 12, we compare the SBBD and baseline schedules with respect to average objective value, waiting

time, overtime, and excess acuity. The SBBD schedules significantly outperform the baseline schedules in terms

of the objective value. Due to the use of fixed appointment times in the OCC, the improvement in average

waiting time values are particularly notable. When the averages across all sets are considered, the SBBD

outperforms the baseline schedules with respect to each performance measure.

5.7. Estimating the Value of Stochastic Solution

The value of stochastic solution (VSS) measures the added value of incorporating stochasticity of the problem

environment in the modeling approach. We estimate the VSS using the instance sets provided in Tables 10 and

11. We first solve each instance using the SBBD algorithm to find the TSMIP solution. We then obtain the

solutions of the mean value problem, where the random infusion durations in TSMIP are replaced by the average

values. Let zTSMIP represent the evaluation of the objective function (1) for the TSMIP solution, and zMV be

the objective function (1) value calculated based on the mean value problem solution. Then, we estimate the

VSS by calculating zMV -zTSMIP .

In Table 13, we report the averages of zTSMIP and zMV over 10 instances for each instance set, as well as

the relative VSS, which shows the percentage improvement in the objective values. The table shows that the

average relative VSS values range between 39.20% and 71.38%, which points to substantial gains by taking into

account the inherent stochasticity of the infusion durations.

24



Table 14: Characteristics of the patients considered while analyzing sensitivity to penalty coefficients

Patient Index 1 2 3 4 5 6 7
Patient Group 1 4 3 3 2 3 4
Acuity Level 3 3 3 3 3 2 3

5.8. Sensitivity Analysis

In this section, we conduct sensitivity analyses to examine the impact of changes in some critical parameters

to the performance measures. In particular, we test various combinations of weight values in the objective

function and change the number of nurses and chairs in our experiments. Furthermore, we investigate how

waiting time and nurse overtime are affected due to the consideration of instantaneous nurse workload limits

while creating schedules.

5.8.1. Sensitivity to penalty coefficients

We analyze the sensitivity of model solutions to the changes in the penalty coefficients in the objective

function. To generate valuable insights, we methodically determine the combinations of penalty values. Through

the parameter that controls the trade-off between waiting time and overtime, we consider the following cases:

(i) waiting time is less important than overtime (λ = 0.2), (ii) waiting time and overtime are equally important

(λ = 0.5), (iii) waiting time is more important than overtime (λ = 0.8). We also focus on the cases where the

sensitivity to excess acuity is low (β = 0.5), medium (β = 5), or high (β = 15). Due to the direct relationship

between nurse workload and the quality of care, we can assume that higher β values represent the setting where

care quality level is also higher. With three potential values of each of λ and β, we test 9 different combinations

of (λ, β) values in total. While creating an instance set, the remaining model parameter values are kept at their

original levels as in Section 5.1, except the following ones: (i) rn = 3 for both nurses, (ii) patient group and

acuity levels are given in Table 14. The new instance set is selected to clearly illustrate the impact of penalty

coefficients.

Table 15 shows the average objective, patient waiting time, nurse overtime and excess acuity values over 10

instances for each combination of (λ, β). As λ increases while β is kept constant, the waiting time decreases

and nurse overtime increases significantly, as expected. Waiting time drops faster as λ increases independent

of the value of β. The sensitivity of overtime to λ is particularly high when β value is high. For example,

average overtime value increases from 28 minutes to 72 minutes when β equals 15 and λ is increased from 0.5

to 0.8. This implies that it becomes very difficult for the OCC manager to limit overtime when both patient

satisfaction and the quality of care are given high importance in the clinic.

As expected, increasing β while keeping λ constant yields lower levels of excess acuity. However, higher

values of overtime are observed in such a case. This result clearly shows the trade-off between excess acuity and

overtime. In other words, this observation suggests that greater care quality can be achieved at the expense

of overtime. This is reasonable because some appointments may need to be delayed to prevent excessive

instantaneous nurse workload. Starting treatments later in the day may then lead to increased overtime.
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Table 15: Sensitivity of average objective value, patient waiting time (in minutes), nurse overtime (in minutes) and excess acuity
value to λ and β

Objective Value Waiting Time Overtime Excess Acuity
λ=0.2, β=0.5 15.73 15.56 13.57 3.53
λ=0.2, β=5 27.51 20.85 15.97 2.11
λ=0.2, β=15 48.32 18.75 17.33 2.05
λ=0.5, β=0.5 14.77 7.47 18.40 3.67
λ=0.5, β=5 25.96 5.43 26.46 2.00
λ=0.5, β=15 46.30 6.24 28.16 1.94
λ=0.8, β=0.5 8.08 1.10 28.76 2.91
λ=0.8, β=5 17.40 0.74 36.69 1.89
λ=0.8, β=15 30.01 0.89 71.50 1.00

Table 16: Characteristics of the patients considered while analyzing sensitivity to the number of chairs and nurses, and nurse
workload limits

Patient Index 1 2 3 4 5 6 7
Patient Group 1 4 1 4 3 3 3
Acuity Level 3 3 3 3 3 3 1

5.8.2. Impact of the Number of Nurses and Chairs

We evaluate the sensitivity of model solutions to the number of chairs and nurses. Since we consider a

chair set that can be simultaneously monitored by a nurse in the same room, we test only |C| = {3, 4, 5, 6}.

Accordingly, the appropriate number of nurses responsible for a chair set could be |N | = {1, 2, 3}. We test all

combinations of |C| and |N |, but exclude unrealistic ones. In particular, we ignore the cases with: (i) one nurse

with six chairs, (ii) two nurses with three chairs, (iii) three nurses with three or four chairs. We set λ = 0.2 and

β = 5 in our experiments. Other than the following ones, the remaining model parameter values are the same

as the original levels given in Section 5.1: (i) rn = 3 for each nurse, (ii) patient group and acuity levels provided

in Table 16 are used.

Table 17 reports average patient waiting time, nurse overtime, nurse excess acuity and computation times

with respect to different combinations of nurse and chair numbers. The average is calculated over all instances

in the instance set. The results show that increasing the number of nurses leads to improvement in waiting time

(before it is equal to 0) and excess acuity. The positive impact into waiting time is a natural consequence of the

increase in capacity. Greater number of nurses also makes balancing the nurse workload easier and hence excess

acuity decreases. Similarly, nurse overtime can be better controlled when there are higher number of nurses.

However, we observe an exceptional case with five chairs; increasing number of nurses from one to two causes

an increase in nurse overtime. This result is also intuitive due to the trade-off between excess acuity level and

nurse overtime (see Section 5.8.1). Both measures may not improve at the same time especially when overtime

values are very small.

When only one nurse is responsible for all patients (i.e. nurse to patient ratio is 1/7), then either overtime

or excess acuity value may become substantial. For example, the excess acuity is equal to 7 for the case with

four chairs. Since mn = 5 for each nurse, excess acuity value of 7 implies that the instantaneous workload of a
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Table 17: Average patient waiting time (in minutes), nurse overtime (in minutes), nurse excess acuity levels, and computation times
(in seconds) for various nurse-chair combinations. NS represents the unrealistic cases that are not solved

Waiting Time Overtime Excess Acuity Run Time
|N | = 1 |N | = 2 |N | = 3 |N | = 1 |N | = 2 |N | = 3 |N | = 1 |N | = 2 |N | = 3 |N | = 1 |N | = 2 |N | = 3

|C| = 3 17.68 NS NS 90.95 NS NS 4.00 NS NS 6541.90 NS NS
|C| = 4 17.49 14.52 NS 18.45 14.92 NS 7.00 1.41 NS 5140.66 10800.00 NS
|C| = 5 0.71 0.00 0.00 0.39 0.95 0.00 8.04 2.20 1.00 3575.83 10800.00 10800.00
|C| = 6 NS 0.00 0.00 NS 1.74 0.00 NS 1.77 1.00 NS 10800.00 10800.00

nurse is 140% greater than his/her regular workload. The lower limit on the nurse to patient ratio is generally

recommended as 1:4 (i.e., one nurse can monitor up to 4 patients at the same time) in the literature (Castaing

et al., 2016; Demir et al., 2021). In our experiments, when |N | = 2 (i.e nurse to patient ratio is 2:7), waiting

time and overtime amount appear to be at reasonable values. However, the smallest average excess acuity is

found as 1.41, which means that the instantaneous workload of a nurse is 28% greater than his/her regular

workload. This shows that 1:4 nurse to patient ratio may lead to low quality of care. Furthermore, specifying

a patient to nurse ratio for OCCs is not a proper approach; acuity-based patient to nurse assignments must be

made instead.

Table 17 also shows that increasing the number of chairs positively affects waiting time and overtime. On

the other hand, nurse excess acuity is not directly related to the number of chairs in the OCC. Its value varies

mainly due to the trade-off between overtime and excess acuity. This result also signifies the importance of the

number of nurses with regard to the provision of high-quality care. However, since all three measures must be

considered while providing services to patients, it is critically important to control the value of both resources

simultaneously.

Note that increasing the number of nurses significantly worsens the computational performance. This is

reasonable because it results in larger number of binary variables in both the first and second stage of the

model. The time limit of the algorithm is reached even with two nurses. On the other hand, an increase in

the number of chairs has positive impact into the computational performance, as solving the problem becomes

easier.

5.8.3. Impact of Acuity Consideration

We show how the consideration of acuity while scheduling appointments impact patient waiting time and

nurse overtime. To this end, we set mn to a large enough value (i.e., mn = 10) such that the constraints related

to excess acuity (i.e., constraints (17)) become redundant. Since the excess acuity would never be observed in

the resulting setting, the decision is given only with regard to waiting time and overtime. We compare those

solutions with the solutions obtained for the setting where excess acuity must be considered (i.e., mn = 5). We

set λ = 0.2, β = 5, rn = 3 for each nurse in our experiments. The groups and acuity levels of the patients are

provided in Table 16. The remaining parameter values are at their original levels in Section 5.1.

Table 18 compares the solutions of the cases where mn = 5 and mn = 10 with respect to average patient

waiting time and nurse overtime for each instance. The results show that if patient acuity levels are not con-

sidered while scheduling appointments, nurse overtime would be significantly underestimated, whereas patient
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Table 18: Average patient waiting time and nurse overtime values for each instance when mn = 5 and mn = 10

Waiting time Overtime
Instance # mn = 5 mn = 10 mn = 5 mn = 10

1 23.10 12.75 11.02 8.01
2 16.50 22.65 14.07 7.63
3 16.50 21.60 11.99 6.74
4 12.15 12.30 15.83 9.54
5 5.70 5.85 13.18 11.12
6 11.70 16.05 15.57 10.08
7 20.10 9.00 16.05 10.67
8 11.70 13.50 13.53 8.79
9 13.35 11.55 17.78 12.82
10 14.40 15.60 20.19 10.34

Average 14.52 14.09 14.92 9.57
95% CI LB 11.04 10.38 12.96 8.27
95% CI UB 18.00 17.79 16.89 10.88

waiting time estimation does not significantly change. Consequently, patient acuity levels must be taken into

account to better estimate overtime costs and extra work time amount of nurses while generating schedules.

6. Conclusions

In this article, we study the problem of scheduling chemotherapy appointments and assignment of patients

to nurses by considering patient acuity levels and chair availability under uncertain infusion durations. We

formulate a TSMIP model to minimize the expected weighted sum of excess acuity over the target nurse capacity,

patient waiting time and nurse overtime. We propose a novel algorithm called SBBD, which integrates scenario

bundling with an improvement heuristic in a two-phase approach. We compare the schedules obtained by the

SBBD with the baseline schedules and those found by CPLEX and practically relevant scheduling heuristics.

We assess the sensitivity of the schedules to the weights of excess acuity, waiting time and overtime. We analyze

the impact of acuity consideration and the number of patients and nurses to the model solutions. We also

estimate the value of stochastic solution. The most essential findings of the study are summarized below.

The SBBD algorithm, with the proposed constraint and variable elimination strategies, provides solutions

close to the optimal. The scenario bundling approach used in the construction phase of the SBBD algorithm

significantly outperforms well-known and practically relevant sequencing heuristics in terms of the quality of

initial solutions. The experiments also show that it is critical to start with a good initial solution before the

improvement phase is implemented.

In the literature, it is generally suggested that nurses can be responsible for up to four patients at a given

time during treatment. However, our results show that this ratio may lead to a low quality of care due to excess

acuity. Consequently, the OCC managers should determine the number of patients assigned to each nurse based

on acuity levels rather than general nurse-to-patient ratios.

The estimated VSS shows a significant benefit in the consideration of uncertainty in infusion durations while

creating chemotherapy appointment schedules. The results of sensitivity analysis point out that controlling
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overtime becomes difficult when both patient satisfaction (measured by waiting time) and quality of care (mea-

sured by excess acuity) are given high importance. Furthermore, there exists a clear trade-off between nurse

overtime and excess acuity. To improve any of the three measures, the number of nurses can be increased. On

the other hand, the excess acuity cannot be improved by increasing the number of chairs.

In this article, we randomly select and group scenarios in a scenario bundle in the construction phase of

the SBBD algorithm. A useful extension of this study is to test different scenario bundling strategies based on

different scenario similarity measures, and analyze their impact into the SBBD algorithm performance. Besides,

in this study, we assume that a practical chair assignment policy is in effect in an OCC, and hence propose a

two-stage SP model. As a future work, this assumption can be relaxed to formulate a multi-stage SP model

that would be appropriate for the scheduling of appointments in any OCC.
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