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Abstract
Synchronization is an essential collective phenomenon in networks of interacting oscillators.
Twisted states are rotating wave solutions in ring networks where the oscillator phases wrap around
the circle in a linear fashion. Here, we analyze Hopf bifurcations of twisted states in ring networks
of phase oscillators with nonpairwise higher-order interactions. Hopf bifurcations give rise to
quasiperiodic solutions that move along the oscillator ring at nontrivial speed. Because of the
higher-order interactions, these emerging solutions may be stable. Using the Ott–Antonsen
approach, we continue the emergent solution branches which approach anti-phase type solutions
(where oscillators form two clusters whose phase is π apart) as well as twisted states with a different
winding number.

1. Introduction

Coupled phase oscillators on a network provide essential models to understand synchronization
phenomena [1]. Apart from global phase synchrony, where the phase of all oscillators coincides, twisted
states in nonlocally coupled networks have attracted attention [2]. For example, consider N Kuramoto
oscillators on a ring network, whose phase θk ∈ T := R/2πZ evolves according to

θ̇k :=
d

dt
θk = ω+

1

N

N∑
j=1

G

(
k− j

N

)
sin
(
θj − θk

)
, (1)

where ω ∈ R is the intrinsic oscillator frequency and G : R→ R is a smooth one-periodic function that
determines the strength of the oscillator interaction depending on their relative position on the ring. For
q ∈ N, the q-twisted states

Θ
q
k (t) := 2π q

k

N
+Ωt+β, (2)

with β ∈ T, Ω ∈ R, k= 1, . . . ,N are periodic solutions of (1); see figure 1(a) for an example. These solutions
are also known as rotating wave solutions or, for q= 1, as splay phase configurations. While the stability of
such solutions has been analyzed explicitly [2, 3], the specific form of Kuramoto phase coupling (a single
harmonic without phase shift) imposes a gradient structure, which prevents the emergence of bifurcations to
periodic solutions.

© 2024 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2632-072X/ad5635
https://crossmark.crossref.org/dialog/?doi=10.1088/2632-072X/ad5635&domain=pdf&date_stamp=2024-6-20
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-5238-1146
https://orcid.org/0000-0002-8435-4775
https://orcid.org/0000-0003-0526-1878
mailto:c.bick@vu.nl


J. Phys. Complex. 5 (2024) 025026 C Bick et al

Figure 1. Twisted states in oscillator rings (3) of N= 512 oscillators with distance-dependent coupling (7). Panel (a) shows a
1-twisted (splay) state for K3 ≈ 0.22 and Panel (b) a traveling nonuniformly twisted wave for K3 = 10 for ω= 0, A= 0.9, B= 0.1,
K2 = 1, α2 = π/2− 0.1 and α3 = 0. Panel (c) shows theoretically predicted dependence of the drift speed s of traveling waves
versus the parameter K3 for B= 0.1. The dots indicate values corresponding to phase snapshots in panels (a) and (b).

Richer dynamics and bifurcation behavior are possible for more generic phase interactions that one
would expect from phase reductions [4]. Indeed, phase reductions also give rise to nonpairwise phase
interaction terms [5–7], which can give rise to Hopf bifurcations of splay phase solutions and more
complicated dynamical behavior [8]. A generalization of the Kuramoto model (1) for ring-like networks to
include nonpairwise interaction terms is

θ̇k = ω+
K2

N

N∑
j=1

G

(
k− j

N

)
sin
(
θj − θk +α2

)
+

K3

N2

N∑
j,l=1

G

(
k− j

N

)
G

(
k− l

N

)
sin
(
2θj − θl − θk +α3

)
,

(3)

where K2 ∈ R determines the strength of the pairwise interactions with a phase shift α2 ∈ T and K3 ∈ R
determines the strength of nonlinear interactions between three phase variables. Such phase oscillator
networks with ‘higher-order’ nonpairwise interactions have their intrinsic interest [9, 10] as dynamical
systems on (weighted) hypergraphs where the pairwise phase interaction function sin(θj − θk +α2)
corresponds to interactions along edges and the triplet phase interaction function sin(2θj − θl − θk +α3)
corresponds to interactions along hyperedges.

The typical setup to analyze q-twisted states is the continuum limit of N→∞ oscillators; see already [2].
In the continuum limit the phase of oscillator x ∈ S := [0,1]/(1∼ 0)—the unit interval with end points
identified—at time t is given by a phase θ(x, t) = θx(t) that, for the ring network (3), evolves according to

θ̇x = ω+K2

ˆ
S
G(x− y) sin

(
θy − θx +α2

)
dy

+K3

ˆ
S

ˆ
S
G(x− y)G(x− z) sin

(
2θy − θz − θx +α3

)
dzdy.

(4)

Now q-twisted states

Θq (x, t) := 2π qx+Ωt+β (5)

are periodic solutions with a smooth phase profile (in x). Their stability has been analyzed for networks with
Kuramoto coupling (α2 = 0) without higher-order interactions [2, 11] and more recently also with
higher-order interaction [12].

Here we analyze Hopf bifurcations of q-twisted states in phase oscillator networks (4) with higher-order
interactions. To identify Hopf bifurcation points, we linearize the system at q-twisted states and find
conditions for a complex conjugate pair of eigenvalues to cross the imaginary axis; we focus primarily on
1-twisted states. Computing higher-order derivatives allows to determine whether the Hopf bifurcation is
subcritical or supercritical and estimate amplitude and period of the bifurcating solution. The emergent
periodic solutions are quasiperiodic solutions with nontrivial rotation along the spatial domain S—see
figure 1(b) for an example of the corresponding solution in a finite network. Because of the higher-order
interactions, these emergent solutions can be stable. To continue the solutions further from the bifurcation
point, we consider the dynamics on the Ott–Antonsen manifold [13, 14]. Adapting recent approaches to
continue periodic solutions on the Ott–Antonsen manifold [15, 16], we compute bifurcation branches for
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varying parameters; cf figure 1(c) for an example of branch of periodic solutions bifurcating from a 1-twisted
state. Further bifurcations involve (traveling and stationary) antiphase solutions and some branches appear
to come close to−1-twisted solution.

This paper is organized as follows. In section 2 we specify the dynamical equations as well as relevant
parameters and discuss them in the context of recent related work. In section 3, we linearize the equations
and give the eigenvalues that determine the bifurcations as well as the higher-order derivatives that
determine the bifurcation type. We consider the system on the Ott–Antonsen manifold in section 4 and
outline the continuation technique. In section 5 we describe the bifurcations that arise and conclude in
section 6 with some remarks.

2. Twisted states in ring networks with higher-order interactions

In the following we analyze q-twisted states in the continuum limit equation (4). Without loss of generality,
we will set ω= 0 by exploiting the phase-shift symmetry θx 7→ θx +β, β ∈ T, that shifts all oscillator phases
by a constant phase angle β. Thus, the dynamical equations are

θ̇x = K2

ˆ
S
G(x− y) sin

(
θy − θx +α2

)
dy (6a)

+K3

ˆ
S

ˆ
S
G(x− y)G(x− z) sin

(
2θy − θz − θx +α3

)
dzdy, (6b)

and the q-twisted states (5) are actually equilibria relative to the phase-shift symmetry action. The 0-twisted
state corresponds to full phase synchrony in the system and the±1-twisted states to the classical (anti)splay
phase configuration. Note that there are dependencies between the parameters: For example with κ ∈ {2,3},
ακ 7→ ακ +π corresponds to Kκ 7→ −Kκ. By rescaling time, we henceforth set K2 = 1.

The network has a ring structure (with orientation) since the system has a spatial rotational symmetry,
where s ∈ S acts on S by s : x 7→ x+ s. Specifically, we consider a network with a coupling kernel function

G(x) = 1+Acos(2π x)+B sin(2π x) . (7)

with only the first nontrivial harmonic being present; see also [17–19]. A nonzero parameter B breaks the
reflectional symmetry of the ring network: For B= 0, the reflection x 7→ −x is also a symmetry of the system.

The higher-order triplet interactions are determined by the triplet coupling kernel

W(x,y,z) = G(x− y)G(x− z) (8)

that is a product of the same coupling kernel function G that determines the pairwise interactions. Such a
product structure is natural if the phase equations are obtained through a phase reduction [7]. However, it is
distinct from other triplet interaction kernels considered in the literature in the context of ring networks.
Specifically, in [12] the authors considered a generalized top-hat coupling kernelW(x,y,z) =Wr(z+ y− 2x)
whereWr(v) = 1 if min(|v|,1− |v|)⩽ r andWr(v) = 0 otherwise. This interaction function lacks a product
structure but generalizes coupling with a finite coupling range considered in the context of twisted states on
rings with pairwise coupling [3]. By contrast, with the triplet coupling kernel (8) and the kernel function (7),
the interactions in (6) only consists of finitely many Fourier modes; this facilitates analytic computations, as
we will see in section 3.

As for the phase interaction function in (6), it only depends on the first harmonic of the state of the
oscillator at x. Hence, the system can be reduced to the Ott–Antonsen manifold [13, 14] as for globally
coupled networks [20, 21].

3. Bifurcations of twisted states

In this section, we study the bifurcation that occurs when a q-twisted state gains or loses its stability under
variation of parameters. As noted above, the system (6) has a T-symmetry that maps a solution θx to a
solution θx +β for a given constant β ∈ T. Thus, the linearization of the right-hand side of (6) always has a
zero eigenvalue, which makes a rigorous bifurcation analysis tedious. In order to avoid this zero eigenvalue,
we change to the system of phase differences and defineΨx(t) := θx(t)− θ0(t). Then, the functionΨx(t)
satisfies

3
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Ψ̇x = K2

ˆ
S
G(x− y) sin

(
Ψy −Ψx +α2

)
dy

−K2

ˆ
S
G(−y) sin

(
Ψy +α2

)
dy (9a)

+K3

ˆ
S

ˆ
S
G(x− y)G(x− z) sin

(
2Ψy −Ψz −Ψx +α3

)
dzdy

−K3

ˆ
S

ˆ
S
G(−y)G(−z) sin

(
2Ψy −Ψz +α3

)
dzdy, (9b)

and

Ψ0 (t) = 0 (10)

for all times t. The process of transitioning from (6) to the system of phase differences (9) reduces the
T-symmetry. In particular, the T-symmetry is present in the system (6) but not in (9), since every function
in the system of phase differences has to satisfyΨ0(t) = 0 and thus cannot be shifted by a constant. After this
symmetry reduction, the q-twisted states (5) are represented by the functionΨ

q
x =Ψq(x) with

Ψq (x) := 2π qx, (11)

which does not depend on the time t, satisfiesΨq(0) = 0, and cannot be perturbed by a constant function.
Consequently, when linearizing the right-hand side of (9), which we denote by G, around a q-twisted
state (11) there is no trivial zero eigenvalue. To make this precise, we define a function Gq : X×P → X as

Gq (v,p) = G (Ψq + v,p) ,

where q ∈ Z is the winding number, p= (K2,K3,A,B,α2,α3) summarizes all parameters and X=H1
0(S,R) is

the space of once weakly differentiable functions on S with zero boundary conditions. Since
H1(S,R)⊂ C(S), these boundary conditions can be imposed in the classical sense. The function Gq

consequently gives the local behavior of the right-hand side of (9) around the q-twisted state, v ∈ X can be
seen as a perturbation of the twisted state, and the condition v(0) = 0 ensures (10). Conducting a bifurcation
analysis of (9) instead of (6) simplifies the setting.

3.1. Linearization
The bifurcation analysis of twisted states is based on a stability analysis, which can be conducted using the
eigenvalues of the linearization of the right-hand side around the twisted state. More precisely, we linearize
Gq(v,p) around v= 0, consider this linearization as an operator DvGq(0,p) from X to itself and determine
the eigenvalues of this operator.

To obtain DvGq(0,p), we take a function η· ∈ X and h ∈ R, and calculate

DvGq (0,p) [η] = lim
h→0

1

h
Gq (hη,p) .

Using the definition of Gq we obtain

DvGq (0,p) [η] = K2

ˆ
S
G(x− y)

(
ηy − ηx

)
cos
(
Ψq

y −Ψq
x +α2

)
dy−K2

ˆ
S
G(−y)ηy cos

(
Ψq

y +α2

)
dy

+K3

ˆ
S

ˆ
S
G(x− y)G(x− z)

(
2ηy − ηz + ηx

)
cos
(
2Ψq

y −Ψq
z −Ψq

x +α3

)
dzdy

−K3

ˆ
S

ˆ
S
G(−y)G(−z)

(
2ηy − ηz

)
cos
(
2Ψq

y +Ψq
z +α3

)
dzdy.

Even though this computation was formal, it can be rigorously shown that DvGq(0,p), as calculated here, is
indeed the Fréchet derivative of Gq(v,p) at v= 0, see [12].

Henceforth we focus on the twisted state with the smallest winding number, namely q= 1; the case
q=−1 is analogous. We note that the functions uk(x) = sin(2π kx) and wk(x) = 1− cos(2π kx) for k⩾ 1
form a Schauder basis of X, see [12, lemma B.1]. Consequently, we evaluate DvG1(0,p0) on these basis
functions. For k= 1, this yields
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DvG1 (0,p) [u1] =
K2

2
(cos(α2)−Acos(α2)−B sin(α2))u1 +

K2

2
sin(α2)w1

+
K3

4

(
A2 +B2

)
cos(α3)u1 +

K3

4

(
A2 +B2

)
sin(α3)w1,

DvG1 (0,p) [w1] =−K2

2
sin(α2)u1 +

K2

2
(cos(α2)−Acos(α2)−B sin(α2))w1

− K3

4

(
A2 +B2

)
sin(α3)u1 +

K3

4

(
A2 +B2

)
cos(α3)w1,

which implies a complex conjugated pair of eigenvalues

λ±1 =
K2

2
(cos(α2)−Acos(α2)−B sin(α2)± i sin(α2))

+
K3

4

((
A2 +B2

)
cos(α3)± i

(
A2 +B2

)
sin(α3)

)
,

(12a)

where i =
√
−1. Similarly, one can insert the basis functions uk,wk for k⩾ 2 into DvG1(0,p0), which results

in further eigenvalues

λ±2 =
K2

4
(−Acos(α2)− 3B sin(α2)± i(Bcos(α2)+A sin(α2)))

+
K3

4
(2Acos(α3)− 2B sin(α3)± i (2Bcos(α3)+ 2A sin(α3)))

(12b)

λ±3 =−K2

2
(Acos(α2)+B sin(α2))

+
K3

4

((
A2 −B2

)
cos(α3)− 2AB sin(α3)± i

((
A2 −B2

)
sin(α3)+ 2ABcos(α3)

)) (12c)

λ±k =−K2

2
(Acos(α2)+B sin(α2)) (12d)

for k⩾ 4. Moreover, corresponding eigenfunctions are given by v±k = wk ± iuk for k ∈ N.
Whenever Im (λ+ℓ ) 6= 0 but Re (λ+ℓ ) = 0, for some ℓ, we expect a Hopf bifurcation to occur under

variation of parameters. The transverse stability of this bifurcation is then determined by the other
eigenvalues. If there exists k ∈ N with k 6= ℓ such that Re (λ+k )> 0, all equilibria and periodic orbits that
emanate from the Hopf bifurcation are not transversely stable. If on the other hand Re (λ+k )< 0 for all k 6= ℓ,
the equilibria and periodic orbits are at least transversely stable. As we are particularly interested in
transversely stable bifurcations, we assume from now on that this is the case. As one can see in figure 2, there
are parameter regions where the critical eigenvalue is attained for ℓ= 1 and other regions where ℓ= 2 is the
dominant eigenvalue. Here, a Hopf bifurcation can occur. However, there also exist parameter regions, where
ℓ= 4 is the critical eigenvalue. Since Im (λ±4 ) = 0, there is no generic Hopf bifurcation for these parameter
values.

3.2. Bifurcations
Having investigated the linear stability of the 1-twisted state, we now analyze the periodic solutions that
emanate from the 1-twisted state in a Hopf bifurcation.

We use the notation CT(R,X) for all continuous T-periodic functions with values in X. Moreover, we
assume for simplicity that B is the main bifurcation parameter, i.e. we fix all other parameters and vary
only B to initiate the bifurcation, which then occurs at some value B0. We can then write the eigenvalues of
linearization around the 1-twisted state as functions of B. At the critical value B0 we have Re (λ

±
ℓ (B0)) = 0

and we additionally assume that Re (λ±k (B0))< 0 for all k 6= ℓ and Im (λ±ℓ (B0)) 6= 0. In particular, we also
denote λℓ(B) for the critical eigenvalue that has positive imaginary part, i.e. λℓ(B) := λ+ℓ (B) if
Im (λ+ℓ (B0))> 0 and λℓ(B) := λ−ℓ (B) else. Similarly, we denote vℓ for the eigenfunction that corresponds to
this critical eigenvalue.

A general theorem on Hopf bifurcation in Banach spaces [22, theorem I.8.2] guarantees that periodic
solutions bifurcate from the 1-twisted state when B passes through B0. It applies subject to the following
assumptions, which can be confirmed to hold in our setting: first, the map Gq has to be sufficiently smooth,
as higher-order derivatives are necessary for the analysis. Second, the critical eigenvalue λ±ℓ at the bifurcation
point has to be simple, the corresponding eigenvector must not be contained in the range of
λ±ℓ (B0)Id−DvG1(0,p0) and λ

±
ℓ (B0)Id−DvG1(0,p0) have to be Fredholm operators of index 0. Third, the

critical eigenvalue has to pass through the imaginary axis (excluding 0) with non-vanishing speed under

5
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Figure 2. Eigenvalues of the linearization of a 1-twisted state. Panel (a) shows maxkRe (λ
+
k ). In the green regions, the 1-twisted

state is stable, whereas it is unstable in the red regions. At the boundary a bifurcation occurs. Panel (b) depicts which eigenvalue is
the critical one, i.e. for which ℓ we have Re (λ+

ℓ ) =maxkRe (λ
+
k ). Finally, Panel (c) shows |Im (λ+

ℓ )|, i.e. the modulus of the
imaginary part of the critical eigenvalue. Parameter values: K2 = 1,A= 0.9,α2 =

π
2
− 0.1,α3 = 0. Dashed lines in all panels

indicate the parameter values for the numerical continuation shown in figures 4–7 below.

Figure 3. Illustration of the Hopf bifurcation. Note that the vertical axis represents the space C2π/κ(r), which is different from
classical bifurcation diagrams. Thus, there is also no flow around the paraboloid, but each point on the paraboloid represents a
solution. Each point on the black parabola can be reached via the curve r 7→ (B(r),v(r)). Every other periodic solution can be
obtained by a phase shift (B(r),Sτ v(r)) for a suitable τ ∈ R.

parameter variation and for all n ∈ Z \ {−1,1}, nλ±ℓ must not be an eigenvalue of DvG1(0,p0). Fourth, the
operator DvG1(0,p0) has to generate an analytic semigroup [22, equation I.8.8]. If these assumptions are
satisfied, as in our analysis, the theorem guarantees that there is a continuously differentiable function
κ : U→ R, where U is a small neighborhood of 0 ∈ R, such that Im (λℓ(B0)) = κ(0)> 0. Moreover, there is
a continuous curve U 3 r 7→ (B(r),v(r)) ∈ (B0 − δ,B0 + δ)×C2π/κ(r)(R,X), such that for every r ∈ U the
functionΨ1 + v(r) is a solution of (9) when the parameter is set to B(r); see figure 3. This curve satisfies
B(0) = B0 and v(0)≡ 0 ∈ C2π/κ(0)(R,X). Furthermore, every other periodic solution of (6) in a
neighborhood of the 1-twisted state for parameter values B(r) can be obtained as a phase shift from
Ψ1 + v(r), i.e. it is given byΨ1 + Sτ v(r), where (Sτ v(r))(t) := v(r)(t+ τ), see [22].

Additionally to the first derivatives of G1, second and third derivatives are required to approximate the
curve (v(r),B(r)), see [22, theorem I.9.1]. In particular, the curve of 2π/κ(r)-periodic solutions can be
approximated as

6
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d

dr
v(r)

∣∣∣
r=0

(t) = 2Re
(
vℓe

iκ(0)t
)
, (13a)

d

dr
κ(r) |r=0 = 0, (13b)

d2

dr2
B(r)

∣∣∣
r=0

=
Re (ζ)

Re
(

d
dBλℓ (B) |B=B0

) , (13c)

where ζ ∈ C can be computed from the first, second and third derivative of the right-hand side G at the
1-twisted state; see appendix A. Further, Re ( d

dBλℓ(B)|B=B0) is the speed with which the real part of the
critical eigenvalue passes through zero. Basically, (13a) helps to approximate the amplitude and profile of
bifurcating periodic solutions, (13b) determines their period, and (13c) connects the parameter B with r and
thereby determines for which parameter value of B these periodic solutions occur. In particular, if (13c) is
positive, these periodic solutions are only existent when B> B0. Conversely, if (13c) is negative, they exist for
B< B0. Using the principle of exchange of stability of the equilibrium with the periodic orbits in a Hopf
bifurcation, one can even determine the stability of the periodic orbits. Specifically, if Re (ζ)> 0 one can
consider two cases depending on the sign of Re ( d

dBλℓ(B)|B=B0). If it is positive, then the 1-twisted state is
unstable for B> B0. Moreover, (13c) is positive and thus the periodic solutions only exist when B> B0. Since
the twisted states are unstable in that parameter regime, the periodic solutions have to be stable. If on the
other hand Re ( d

dBλℓ(B)|B=B0) is negative, the twisted state is unstable for B< B0. Since (13c) is then also
negative, the periodic solutions also exist in the same parameter region and are stable. In both cases the
bifurcation is supercritical. Repeating the argument for Re (ζ)< 0 shows that the bifurcation is then
subcritical, meaning that the periodic solutions that emanate from the bifurcation are then unstable. In
conclusion, the sign of Re (ζ) can be used to distinguish between sub- and supercritical Hopf bifurcations.

Remark 3.1. Note that the index ℓ of the critical eigenvalue determines the periodicity of the eigenfunc-
tions v±ℓ , which in turn relates to the periodicity of the (linear approximation) of the bifurcating solutions.
More specifically, let us consider the Hopf bifurcation corresponding to the critical eigenvalue λ+ℓ with the
eigenfunction v+ℓ = wℓ + iuℓ = 1− e−2πℓi x. In this case, formula (13a) gives

v(r)≈ 2rRe
(
v+ℓ e

iκ(0)t
)
= 2rRe

((
1− e−2πℓi x

)
eiκ(0)t

)
.

Hence, for B≈ B0 equation (9) has a solution curve with an r-parametric asymptotic representation

Ψx (t)≈ 2π x+ 2rRe
(
eiκ(0)t

)
− 2rRe

(
e−2πℓi(x−κ(0)t/(2πℓ))

)
.

Recalling thatΨx(t) = θx(t)− θ0(t), where θx(t) is a solution of equation (6), we conclude that

θx (t)≈ 2π x− 2rcos(2πℓ(x−κ(0) t/(2πℓ))) .

In other words, in the new periodic solution of equation (6), we expect a small-amplitude perturbation
on top of the 1-twisted state with the phase profile cos(2πℓx) drifting with the speed s= κ(0)/(2πℓ) =
Im (λ+ℓ )/(2πℓ).

4. Continuation on the Ott–Antonsenmanifold

It is easy to verify that the dynamics described by equation (6) is equivalent to the dynamics of the
Ott–Antonsen equation

∂

∂t
z(x, t) =

K2

2

(
eiα2Gz− e−iα2z2Gz

)
+

K3

2

(
eiα3Gz2 Gz− e−iα3z2Gz2 Gz

)
, (14)

with a convolution-type integral operator

Gz=
ˆ
y∈S

G(x− y)z(y, t)dy,

after insertion of the ansatz

z(x, t) = eiΘ(x,t).

Equation (14) is useful for two reasons. First, it can be used to perform a linear stability analysis of twisted
states in an alternative way; see appendix B. Second, this equation can be used to compute the solution
branches emanating from the Hopf bifurcations found above. In this section, we outline how to compute
these solution branches; the approach is based on recent results presented in [15] and adapted to our setting.
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4.1. Self-consistency equation for traveling nonuniformly twisted waves
All periodic solutions emerging at the Hopf bifurcations of 1-twisted states have form of quasiperiodically
evolving synchronization patterns

Θ(x, t) = Ωt+Θ0 (x− st)

with someΘ0(x) and s,Ω ∈ R. For equation (14) they correspond to traveling wave solutions of the form

z(x, t) = a(x− st)eiΩt, (15)

where |a(x)|= 1 for all x ∈ S. Such solutions can be efficiently computed, using the self-consistency equation
derived below.

By inserting ansatz (15) into equation (14) we find that the profile function a(x) in (15) is a periodic
solution of the integro-differential equation

−sa ′ (x) =−iΩa+
K2

2
eiα2Ga− K2

2
e−iα2a2Ga+ K3

2
eiα3Ga2 Ga− K3

2
e−iα3a2Ga2 Ga. (16)

If s 6= 0, equation (16) is equivalent to the complex Riccati equation

a ′ (x) = w(x)+ i
Ω

s
a−w(x)a2, (17)

with

w(x) =−K2

2s
eiα2Ga− K3

2s
eiα3Ga2 Ga (18)

contains the network coupling terms. Rather than finding the unknown function a(x), our strategy is to
determine the corresponding mean field w(x) using a self-consistency equation.

First, we recall some facts about equation (17), which were previously proved in [15, section 2] by one of
the authors of this paper. The most important fact is that for an arbitrary periodic function w(x) and an
arbitrary real coefficient Ω/s, the complex Riccati equation (17) usually has two periodic solutions. The
initial conditions of these solutions are determined by the fixed points of the Poincaré map of equation (17).
Moreover, due to the special structure of equation (17), its Poincaré map has the form of a Möbius
transformation

M(z) =
eiθ (z+ b)

bz+ 1

with some b ∈ {z ∈ C : |z|< 1} and θ ∈ 2πS determined by the choice of w(x) and Ω/s. If |b|> | sin(θ/2)|,
then the both fixed points ofM(z) lie on the unit circle and therefore equation (17) has two periodic
solutions satisfying |a(x)|= 1. One of these solutions is asymptotically stable, while the other is
asymptotically unstable. In contrast, if |b|< | sin(θ/2)|, then the fixed points ofM(z) lie inside or outside of
the unit circle. More specifically, in this case, equation (17) has one solution that satisfies the inequality
|a(x)|< 1 and another solution that satisfies the inequality |a(x)|> 1.

Suppose that the Ott–Antonsen equation (14) has a stable traveling wave solution of the form (15) with
|a(x)|= 1. For this solution, we can calculate its mean field w(x) through (18). Then, considering w(x)
and Ω/s as given, we can try to solve the periodic boundary value problem for equation (17) with the
constraint |a(x)|= 1. Above we have shown that such a problem can either have two solutions (one stable
and one unstable) or none. Moreover, in the first case, depending on the sign of the speed s, only one of the
two solutions can be relevant for a stable traveling wave (15). Indeed, recalling that in (15) we use the moving
coordinate frame ξ = x− st, we easily conclude that if s> 0 (s< 0) then a stable traveling wave (15)
corresponds to an unstable (stable) solution of equation (17). Altogether these facts allow us to say that using
the periodic boundary value problem for equation (17) we can always reconstruct the profile a(x) of a stable
traveling wave (15) if the corresponding mean field w(x) and the ratio Ω/s are known. Denoting the resulting
solution operator by U we can write

a(x) = U (w(x) ,Ω/s) . (19)

Obviously, the last expression agrees with the definition of w(x) if and only if

w(x) =−K2

2s
eiα2GU (w(x) ,Ω/s)− K3

2s
eiα3G [U (w(x) ,Ω/s)]2 GU (w(x) ,Ω/s), (20)

which is an integral self-consistency equation for w(x).
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To complete the definition of equation (20), we show a simple and fast way to calculate the operator U .
The justification of this method, consisting of five steps, is given in [15, section 2]:

(i) Given w(x) and Ω/s, solve equation (17) starting from the initial condition a(0) = 1, and denote
ζ1 = a(1).

(ii) Similarly, solve equation (17) in the backward time starting from the initial condition a(0) = 0, and
denote ζ0 = a(−1).

(iii) Calculate the coefficients b and eiθ of the Möbius transformationM(z) representing the Poincaré map
of equation (17),

b=−ζ0 and eiθ =
ζ0 − 1

ζ0 − 1
ζ1.

(Note that by construction |ζ1|= 1.)
(iv) Check that |b|> | sin(θ/2)| (otherwise the operator U is not well-defined) and then calculate the initial

value a∗ of the periodic solution of interest, namely

a∗ =
i sin(θ/2)−

√
|b|2 − sin2 (θ/2)

|b|2
beiθ/2 if s> 0,

or

a∗ =
i sin(θ/2)+

√
|b|2 − sin2 (θ/2)

|b|2
beiθ/2 if s< 0.

(v) Solve equation (17), starting from the initial condition a(0) = a∗. This yields the periodic solution of
equation (17).

Remark 4.1. If in step (iv) of the above algorithm we choose the formula of a∗ with ‘−’ for s< 0 and the for-
mula with ‘+’ for s> 0, we obtain another solution operator for the periodic boundary value problem associ-
ated with equation (17). But this operator, by construction, gives profile functions a(x) of traveling waves (15),
which are unstable with respect to equation (14).

4.2. Algebraic self-consistency equation
The self-consistency equation (20) is a nonlinear integral equation that can be difficult to solve. However, in
the case of coupling kernel (7), it can be reduced to a finite-dimensional nonlinear system. To see this, let us
denote

ψ1 (x) = 1, ψ2 (x) = cos(2π x) , ψ3 (x) = sin(2π x) ,

ψ4 (x) = cos(4π x) , ψ5 (x) = sin(4π x) .

Then using trigonometric identities we can write

Gu= 〈u,ψ1〉ψ1 +(A〈u,ψ2〉−B〈u,ψ3〉)ψ2 +(A〈u,ψ3〉+B〈u,ψ2〉)ψ3,

where

〈u,v〉=
ˆ
x∈S

u(x)v(x)dx

is the usual L2 inner product. Moreover, for complex numbers a0, a1, a2, b0, b1, b2 we have

(a1ψ1 + a2ψ2 + a3ψ3)(b1ψ1 + b2ψ2 + b3ψ3)

=

[
a1b1 +

1

2
(a2b2 + a3b3)

]
ψ1 +(a2b1 + a1b2)ψ2

+(a3b1 + a1b3)ψ3 +
1

2
(a2b2 − a3b3)ψ4 +

1

2
(a3b2 + a2b3)ψ5.

9
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This relation together with equation (20) implies

w(x) =
5∑

k=1

ŵkψk (x) (21)

with some complex coefficients ŵk. Inserting ansatz (21) into equation (20) and equating the terms
proportional to different ψk separately, we reformulate equation (20) as a system of five complex equations

−2sŵ1 = K2e
iα2a1 +K3e

iα3

(
a1b1 +

1

2
(a2b2 + a3b3)

)
,

−2sŵ2 = K2e
iα2a2 +K3e

iα3 (a2b1 + a1b2) ,

−2sŵ3 = K2e
iα2a3 +K3e

iα3 (a3b1 + a1b3) ,

−2sŵ4 =
K3

2
eiα3 (a2b2 − a3b3) ,

−2sŵ5 =
K3

2
eiα3 (a3b2 + a2b3) ,

(22)

with

a1 =Ψ1, a2 = AΨ2 −BΨ3, a3 = AΨ3 +BΨ2,

b1 =Φ1, b2 = AΦ2 −BΦ3, b3 = AΦ3 +BΦ2,

and

Ψk =

〈
U

(
5∑

k=1

ŵjψj,
Ω

s

)
,ψk

〉
,

Φk =

〈[
U

(
5∑

k=1

ŵjψj,
Ω

s

)]2
,ψk

〉
.

System (22) needs to be solved with respect to s, Ω and ŵk, k= 1, . . . ,5. But it is obviously underdetermined
for this. The problem can be resolved by recalling that the original equation (14) has two continuous
symmetries. Therefore, we may add two pinning conditions to (22). For the sake of convenience, we choose
these pinning conditions in the form

Im ŵ2 = Re ŵ3 = 0. (23)

Now, if we find a solution of the extended system (22) and (23), we can use formula (21) to calculate w(x)
and then (19) to calculate the corresponding a(x). Altogether, two scalars s and Ω and the profile
function a(x) allow us to determine the traveling wave solution (15) of equation (14). Finally, if we want to
show a typical snapshot of the corresponding solution of equation (6), we can useΘ(x) = arg a(x).

5. Continuation of periodic traveling solutions

The approach outlined in the previous section now allows to continue periodic solutions that emanate from
a Hopf bifurcation of a splay solution. We fix A= 0.9, α2 = π/2− 0.1, α3 = 0 in line with previous studies
and analyze bifurcations in parameters (B,K3), the coupling asymmetry and the (relative) strength of the
nonpairwise interactions. The linear stability analysis of the 1-twisted state (cf section 3) indicates the
location of the Hopf bifurcations; cf figure 2 for the stability diagram of the 1-twisted state in the
(B,K3)-plane for fixed A= 0.9, K2 = 1, α2 = π/2− 0.1, α3 = 0. Where the Hopf bifurcation is supercritical
new types of stable time-dependent synchronization patterns can emerge. We tested this theoretical
prediction in numerical simulations for finite networks (3) of N = 512 phase oscillators and found that the
new solutions take the form of spatially modulated traveling waves. After identifying such solutions, we used
the self-consistency equation (22) with the pinning condition (23) to perform their arc-length continuation.
Figures 4–7 show typical solution branches in terms of the drift speed s and the asymmetry parameter B or
the strength of the higher-order interactions K3. We do not compute stability along the branches explicitly
but summarize stability properties of the branches indicated by direct numerical simulations of finite
networks.

Note that for small values of K3 and B, the supercritical Hopf bifurcation of 1-twisted state is mediated by
the eigenvalue λ+1 with the eigenfunction v+1 (x) = 1− e−2π i x, see figure 2(b). For example, figures 4 and 5

10
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Figure 4. The drift speed s of the solution of equation (20) versus the parameter B for K3 = 0.1. HB indicates the position of Hopf
bifurcation. Panels (a)–(e) show the argumentsΘ(x) = arg a(x) of solutions corresponding to the black dots in the main diagram.

show the solution branches for K3 = 0.1 and B= 0.05, respectively. (These values correspond to the bottom
horizontal and left vertical lines in figure 2.)

The branch for K3 = 0.1, as shown in figure 4, starts at the point (B, s)≈ (0.05,0.079) in which the drift
speed s coincides with the value Im (λ+1 )/(2π) predicted by Remark 3.1. The branch consists of two parts
with different slopes that meet at the fold point (b). Numerical simulations of the finite system (3) suggest
that the upper part is stable whereas the lower part is unstable. Moving along the solution branch, we see that
as the drift speed s decreases, the original straight profileΘ(x) bends down and up in its left and right
sections. Moreover, it seems likely that the solution branch extends asymptotically to B→∞. In this limit,
the speed s vanishes and the phase profileΘ(x) converges to a horizontal line with a phase-slip discontinuity
at one point.

The shape of the branch for fixed B= 0.05, shown in figure 5, is more complex. It is characterized by the
non-monotonic dependence of s on K3 such that at least four different slope parts separated by three fold
points can be found in the corresponding diagram. Numerical simulations of the finite system (3) suggest
that the negative slope parts of the branch are stable whereas those with positive slope are unstable. Moreover,
for large negative values of K3 we observe similar asymptotic behavior as in the B→∞ limit in figure 4.

Now we describe two examples of Hopf bifurcation for larger values of K3 and B, when this bifurcation is
mediated by the eigenvalue λ+2 with the eigenfunction v+2 (x) = 1− e−4π i x. Note that in this case the drift
speed is equal to Im (λ+2 )/(4π) as expected for the linear approximation; cf remark 3.1. Figure 6 shows the
solution branch for K3 = 0.5; see also the top horizontal line in figure 2. The branch starts at the point
(B, s)≈ (0.27,0.024), folds at the point (c) and numerical continuation terminates at the point (e). Using
numerical simulations of the finite system (3), we find that the lower part of the branch is unstable, whereas
the upper part is only stable from the right-most point to some point between (b) and (c). This indicates that
before approaching the fold point (c), the solution is destabilized by some dynamical bifurcation, most likely
a secondary Hopf bifurcation, although we have not checked this hypothesis rigorously. At (e) the numerical
computation of the branch terminates; this is due to the fact that the coefficients b and eiθ of the Möbius
transformation representing the Poincaré map of equation (17) satisfy the limiting relation
|b| − | sin(θ/2)| → 0. Thus, the determinant of the self-consistency system (22), (23) tends to infinity and
numerical continuation of the solution becomes impossible. The nature of the singularity close to point (e) is
unclear and we briefly discuss this in section 6 below.

To complete the description of the solution branch shown in figure 6, we note that in this case all
solutions of the self consistency system (22) and (23) satisfy the identities ŵ1 = ŵ4 = ŵ5 = 0. Therefore, we
have

11
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Figure 5. The drift speed s of the solution of equation (20) versus the parameter K3 for B= 0.05. HB indicates the position of
Hopf bifurcation. Panels (a)–(e) show the argumentsΘ(x) = arg a(x) of solutions corresponding to the black dots in the main
diagram.

Figure 6. The drift speed s of the solution of equation (20) versus the parameter B for K3 = 0.5. HB indicates the position of Hopf
bifurcation. Panels (a)–(e) show the argumentsΘ(x) = arg a(x) of solutions corresponding to the black dots in the main diagram.

w(x) = ŵ2ψ2 (x)+ ŵ3ψ3 (x) = ŵ2 cos(2π x)+ ŵ3 sin(2π x) .

On the other hand, the profiles a(x) determined by (19) satisfy a symmetry relation a(x+ 1/2) =−a(x).
WithΘ(x) = arg a(x) this means that

12
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Figure 7. The drift speed s of the solution of equation (20) versus the parameter K3 for B= 0.2. HB indicates the position of Hopf
bifurcation. Panels (a)–(e) show the argumentsΘ(x) = arg a(x) of solutions corresponding to the black dots in the main diagram.

Θ(x+ 1/2) = Θ(x)+π mod 2π.

The latter relation is clearly seen in the panels (a)–(e) of figure 6.
The last example of this section is the solution branch of (22) and (23) for B= 0.2 as shown in figure 7. It

shows the nonmonotonic dependence of the drift speed s on the parameter K3. Starting from the Hopf
bifurcation point, the speed s decreases up to point (c) and then increases for larger values of K3. Although
there are no fold points on the branch, numerical simulations of the finite system (3) show that the
corresponding solutions become unstable for large values of K3. This is another sign of the existence of
secondary bifurcations in the system. Remarkably, the solution branch in figure 7 seems to have an
asymptotic limit for K3 →∞. In this limit, the speed s tends to some nonzero value and the phase
profileΘ(x) approaches a two-cluster anti-phase state (cf Panel (e)) with a phase-slip discontinuity at one
point.

Finally, we briefly discuss possible secondary bifurcations along the continued solution branches, which
were found by numerical simulations of system (3). First note that we did not find any signs of supercritical
secondary bifurcations of traveling nonuniformly twisted states. When such a state becomes unstable, the
solution of system (3) usually relaxes to a distant simple attractor such as the full synchrony or a twisted
state; an indication of a subcritical bifurcation. A more interesting subcritical bifurcation scenario was found
along the branch shown in figure 1(c). As detailed in figure 8, the dynamics of system (3) above the stability
boundary K3 ≈ 51.34 converges to an irregularly oscillating state. The profile of this state (see figure 8(c)) has
several additional wrinkles near the sharp interfaces connecting the two horizontal plateaus. These wrinkles
oscillate irregularly over time, and as a result, the entire pattern moves not at a constant, but at a slightly
fluctuating speed.

6. Discussion

In this paper, we performed an analysis of Hopf bifurcations of twisted states in a ring network of phase
oscillators with nonlocal higher-order interaction. We were able to conduct not only the linear stability
analysis of twisted states, but also to describe the global properties of new periodic solutions emanating from
the Hopf bifurcation. For the numerical continuation, we focused on the strength of the nonpairwise
interactions K3—in line with previous work for α2 = 0 [12]—as well as the asymmetry parameter B of the
coupling kernel that facilitates bifurcations to traveling solutions (see [23, 24]).

While we restricted the bifurcation analysis to compute one-parameter bifurcation diagrams in section 5,
computing these sheds light on potential codimension two bifurcations. Figure 9 shows one parameter
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Figure 8. Numerical simulations indicate secondary bifurcations along the branches. Panel (a) shows an enlargement of
figure 1(c) together with colored dots that indicate the time-averaged drift speed of nonuniformly twisted states in system (3) of
N= 8192 oscillators. For K3 < 51.34 (magenta dots), the behavior of these states coincides with that predicted by the analysis of
the self-consistency equation (20). For K3 > 51.34 (blue dots), the regular twisted states are unstable and system (3) relaxes to a
nonuniformly twisted state that oscillates irregularly. Panels (b) and (c) show two typical examples of regular and irregular
nonuniformly twisted states.

Figure 9. The dependence of the drift speed s of traveling waves versus the parameter B for (a) K3 = 1, (b) K3 = 1.4, and (c)
K3 = 2. Other parameters: ω= 0, A= 0.9, K2 = 1, α2 =

π
2
− 0.1, and α3 = 0.

bifurcation diagrams in the asymmetry parameter B for different strength K3 of the nonpairwise interactions
(cf also figure 6). For K3 ≈ 1.4 it appears that there is a cusp point where the fold point ‘turns over’. Inspecting
the phase profile at the fold point for varying parameter K3 reveals that they are very similar to figure 6(c).

Note that the phase profile at the end of the numerically computed solution branch in figure 6 for small
but finite s resembles a−1-twisted (antisplay) phase configuration up to a single twist around the torus as
shown in Panel (e); similar phase profiles are obtained at the end of the branches in figure 9(not shown).
Indeed, the point in parameter space where numerical continuation terminates is close to a bifurcation of the
(stationary)−1-twisted phase configuration at B≈ 0.09: first, note that the linear stability of the−1-twisted
phase configuration is given by (12) with B replaced by−B. Now the real eigenvalues λ±ℓ for ℓ⩾ 4 pass
through zero at B= A tan(α2)

−1 ≈ 0.09 for the parameter chosen independent of K3. Together with the fact
that s is close to zero where the numerical continuation terminates, one may speculate that these branches
relate to this degenerate bifurcation of the−1-twisted (antisplay) phase configuration. While this may be
possible for networks of finitely many oscillators, in the limit of N→∞ the solutions are topologically
different due to distinct winding numbers and the bifurcation likely involves the essential spectrum.
Clarifying the nature of the singularity requires further investigation and is beyond the scope of the current
work.

In our analysis we focused on specific examples of higher-order interactions and a sinusoidal coupling
kernel that facilitated the analysis. Many variations of the model are possible, such as considering other
interactions in oscillator rings beyond Kuramoto-type pairwise interactions [25, 26] or rings of phase
oscillators with nonidentical intrinsic frequencies [27]. Furthermore, turbulence is one of the complex
dynamical behavior that is observed in the phase oscillator networks [28] and whether this can be
understood in terms of the bifurcation scenarios outlined here is an open question. Of course, new
phenomena related to twisted states can also be expected for more complicated higher-order interactions,
such as adaptive higher-order interactions [29].

The dynamics of phase oscillator networks naturally relate to the dynamics of more general, nonlinear
oscillator networks through phase reduction (see, for example [5–7]). More specifically, higher-order phase
interactions can arise through higher-order corrections to the phase reductions even when the coupling of
the nonlinear oscillators is pairwise. While rings of nonlinear oscillators beyond weak coupling can also be
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analyzed directly [30], we anticipate that the bifurcation mechanisms uncovered here can shed light on the
dynamics of nonlinear oscillator networks such as those discussed in [31, 32]. Making this explicit in a
specific model leaves interesting directions for future research.
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Appendix A. Bifurcation formulas

The variable ζ from formulas (13) can be calculated using the first, second and third derivative of G1 at the
bifurcation point. In order to state a formula for ζ we continue to use the notation from section 3.2.
Moreover, we denote A := DvG1(0,p0) for the linearization at the bifurcation point, v̄ℓ for the complex
conjugate of vℓ, and v ′ℓ for an element in the dual space of X such that

〈vℓ,v ′ℓ〉= 1, and 〈v,v ′ℓ〉= 0,

for all other eigenfunctions of A. According to [22, formula I.9.11] we can then compute ζ as

ζ =−〈D3
vvvG1 (0,p0) [vℓ,vℓ, v̄ℓ] ,v

′
ℓ〉

− 〈D2
vvG1 (0,p0)

[
v̄ℓ,(2iκ(0)−A)−1D2

vvG1 (0,p0) [vℓ,vℓ]
]
,v ′ℓ〉

+ 2〈D2
vvG1 (0,p0)

[
vℓ,A

−1D2
vvG1 (0,p0) [vℓ, v̄ℓ]

]
,v ′ℓ〉.

If ℓ= 1, evaluating this formula explicitly yields

ζ =
{1
2
K2
2[sin(2α2)

(
16A2 + 59iAB− 80A+ 11B2 − 48iB+ 64

)
+ cos(2α2)

(
16iA2 +A(5B− 16i)+ (28− 33iB)B

)
+ 48iA2 + 27AB− 112iA+ 65iB2 − 28B+ 128i]

− 2iK3K2[2cos(α2)[(4cos(α3)(4A
3 +A2(−3− iB)+A(−2B+ i)2

− iB3 − 3B2 + 5iB+ 4)− i sin(α3)(6A
3 +A2(−12+ 5iB)

+A
(
5B2 + 4iB+ 4

)
+ 6iB3 + 4B2 − 20iB− 16)]

+ sin(α2)[cos(α3)
(
40A2(B+ i)+A(43B+ 24i)+ 40B3 + 51iB2 − 8B− 32i

)
+ sin(α3)(20A

3 +A2(−72+ 19iB)+A
(
22B2 − 13iB+ 40

)
+ 25iB3 − 19B2 + 56iB+ 32)]]

+ 4K2
3(B− iA)[−10A3 + 9iA2B+ 8A2 + sin(2α3)(6iA

3 + 5A2B

+A
(
5iB2 + 6B− 8i

)
+ 4B

(
B2 − 2iB− 2

)
)

+ cos(2α3)
(
2A3 +A2(−8− 5iB)+A

(
B2 − 6iB− 8

)
− 4iB

(
B2 − 4iB− 2

))
− 9AB2 + 10iAB+ 8iB3 + 12B2 − 16iB]

}
· {16[K2 (cos(α2)(−B− iA)− sin(α2)(A+ 3iB− 4))

+ 2K3(A+ iB)(i cos(α3)+ sin(α3)(A− iB− 1))]}−1.
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Further, if ℓ= 2, we get

ζ =
{
− 1

2
K2
2[i sin(2α2)

(
A2 − 4iAB+ 3B2

)
+ cos(2α2)

(
A2 − 2iAB− 3B2

)
+ 3A2 + 4iAB+ 9B2]

+K3K2[cos(α2)
(
i sin(α3)

(
2A2 + 9iAB−B2

)
+ cos(α3)

(
8A2 + 11iAB− 9B2

))
+ sin(α2)(B+ iA)(11Acos(α3)+ sin(α3)(−10B+ 7iA))]

+K2
3[cos(2α3)

(
3A2 + 10iAB− 3B2

)
− 9A2

+ i sin(2α3)(3A+ iB)2 + 8iAB− 9B2]
}

· {2K2 (sin(α2)(B+ iA)+ cos(α2)(A+ iB))+ 4iK3 (A sin(α3)+Bcos(α3))}−1
.

Finally, when ℓ= 3 we have

ζ = {B(cos(α2)− cos(α3)) [2K2 (Bcos(α2)−A sin(α2))

+K3

(
sin(α3)

(
−A2 − 6iAB+B2

)
+ i cos(α3)

(
3A2 + 2iAB− 3B2

))]}
· {8(Acos(α2)+B sin(α2))}−1

.

These values of ζ can be used to determine whether a bifurcation is sub- or supercritical.

Appendix B. Stability analysis of 1-twisted states on the Ott–AntonsenManifold

Each 1-twisted state in equation (6) corresponds to a solution

z(x, t) = ei(2π x+Ωt) (24)

of equation (14). More specifically, if we insert (24) into equation (14), we obtain

iΩ=
K2

2
eiα2 ĝ1 −

K2

2
e−iα2 ĝ−1 +

K3

2
eiα3 ĝ2ĝ−1 −

K3

2
e−iα3 ĝ−2ĝ1, (25)

where

ĝk =

ˆ 1

0
G(x)e−2π i kxdx, k ∈ Z,

are complex Fourier coefficients of the function G(x). Taking into account that for any real function G(x) we
have

ĝk = ĝ−k,

the relation (25) can be rewritten as

Ω= K2Im
(
eiα2 ĝ1

)
+K3Im

(
eiα3 ĝ2ĝ−1

)
. (26)

The latter is a formula expressing the relationship between the frequency of 1-twisted states and the coupling
parameters between oscillators.

To perform a linear stability analysis of the solution (24), it is convenient to transform equation (14) into
a co-rotating frame

z(x, t) 7→ u(x, t) , where z(x, t) = u(x, t)ei(2π x+Ωt).

After this transformation, we obtain

∂

∂t
u(x, t) =−iΩu+

K2

2
eiα2e−2π i xG

(
e2π i xu

)
− K2

2
e−iα2u2e2π i xG

(
e−2π i xu

)
+

K3

2
eiα3e−2π i xG

(
e4π i xu2

)
G
(
e−2π i xu

)
− K3

2
e−iα3u2e2π i xG

(
e−4π i xu2

)
G
(
e2π i xu

)
.

(27)
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Inserting the ansatz

u(x, t) = 1+ v(x, t)

into equation (27) and linearizing the result with respect to the small perturbation v, we obtain

∂

∂t
v(x, t) =−ηv+ K2

2
eiα2e−2π i xG

(
e2π i xv

)
− K2

2
e−iα2e2π i xG

(
e−2π i xv

)
+K3e

iα3 ĝ−1e
−4π i xG

(
e4π i xv

)
+

K3

2
eiα3 ĝ2e

2π i xG
(
e−2π i xv

)
−K3e

−iα3 ĝ1e
4π i xG

(
e−4π i xv

)
− K3

2
e−iα3 ĝ−2e

−2π i xG
(
e2π i xv

)
.

(28)

where

η = iΩ+K2e
−iα2 ĝ−1 +K3e

−iα3 ĝ−2ĝ1.

To investigate the decay of different spatial Fourier modes, we insert the ansatz

v(x, t) = v+e
2π i kxeλt + v−e

−2π i kxeλt with v+,v− ∈ C and k ∈ Z

into equation (28) and equate separately the terms at eλt and eλt. Thus, we obtain a spectral problem

λ

(
v+
v−

)
= B(k)

(
v+
v−

)
,

where

B(k) =

(
−η+ p(k) −q(k)
−p(k) −η+ q(k)

)
and

p(k) =
K2

2
eiα2 ĝk+1 +K3e

iα3 ĝ−1ĝk+2 −
K3

2
e−iα3 ĝ−2ĝk+1,

q(k) =
K2

2
e−iα2 ĝk−1 +K3e

−iα3 ĝ1ĝk−2 −
K3

2
eiα3 ĝ2ĝk−1.

The corresponding characteristic equation reads det(λI−B(k)) = 0. It can be solved explicitly, which yields

λ± (k) =
1

2

(
trB(k)±

√
(trB(k))2 − 4detB(k)

)
.

Note that for the coupling function (7) only three leading coefficients are non-zero

ĝ0 = 1, ĝ1 =
A−Bi

2
, ĝ−1 =

A+Bi

2
,

while ĝk = 0 for |k|⩾ 2. These relations imply

η = iK2Im
(
eiα2 ĝ1

)
+K2e

−iα2 ĝ−1 = K2Re
(
eiα2 ĝ1

)
and

λ± (k) =−η =−K2

2
(Acos(α2)+B sin(α2)) for all |k|⩾ 4.

As for the other eigenvalues, they coincide with the expressions obtained in section 3.1. Moreover, a pair of
zero eigenvalues is also determined by the formulas of λ±(k).
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