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Comprehensive characterization 
of cardiac contraction for improved 
post‑infarction risk assessment
Jorge Corral Acero 1*, Pablo Lamata 2*, Ingo Eitel 3,4,5, Ernesto Zacur 1, Ruben Evertz 6,7, 
Torben Lange 6,7, Sören J. Backhaus 8,9, Thomas Stiermaier 3,4,5, Holger Thiele 10, 
Alfonso Bueno‑Orovio 11, Andreas Schuster 6,7,12 & Vicente Grau 1,12

This study aims at identifying risk-related patterns of left ventricular contraction dynamics via 
novel volume transient characterization. A multicenter cohort of AMI survivors (n = 1021) who 
underwent Cardiac Magnetic Resonance (CMR) after infarction was considered for the study. The 
clinical endpoint was the 12-month rate of major adverse cardiac events (MACE, n = 73), consisting 
of all-cause death, reinfarction, and new congestive heart failure. Cardiac function was characterized 
from CMR in 3 potential directions: by (1) volume temporal transients (i.e. contraction dynamics); 
(2) feature tracking strain analysis (i.e. bulk tissue peak contraction); and (3) 3D shape analysis (i.e. 
3D contraction morphology). A fully automated pipeline was developed to extract conventional and 
novel artificial-intelligence-derived metrics of cardiac contraction, and their relationship with MACE 
was investigated. Any of the 3 proposed directions demonstrated its additional prognostic value on 
top of established CMR indexes, myocardial injury markers, basic characteristics, and cardiovascular 
risk factors (P < 0.001). The combination of these 3 directions of enhancement towards a final CMR risk 
model improved MACE prediction by 13% compared to clinical baseline (0.774 (0.771—0.777) vs. 0.683 
(0.681—0.685) cross-validated AUC, P < 0.001). The study evidences the contribution of the novel 
contraction characterization, enabled by a fully automated pipeline, to post-infarction assessment.
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ESV	� End-systolic volume
FT	� Feature tracking
GCS	� Global circumferential strain
GLS	� Global longitudinal strain
GRS	� Global radial strain
IQR	� Interquartile range
IS	� Infarct size
LDA	� Linear discriminant analysis
LGE	� Late gadolinium enhancement
LV	� Left ventricle
LV3D	� LV 3D patterns markers
LVEF	� Left ventricular ejection fraction
MACE	� Major adverse cardiac events
MVO	� Microvascular obstruction
NSTEMI	� Non-ST‐segment-elevation myocardial infarction
PCA	� Principal component analysis
rp	� Pearson correlation coefficient
rs	� Spearman correlation coefficient
RURE	� Radial uniformity ratio estimate
SAx	� Short-axis stack
STEMI	� ST‐segment-elevation myocardial infarction
SV	� Stroke volume
Vt	� Conventional volume temporal transients
VtAI	� AI-derived volume temporal transients

Cardiovascular diseases are the worldwide leading cause of death, with a toll further climbing each decade1. 
Acute myocardial infarction (AMI) plays a major role among them, owing to its prevalence, counted in mil-
lions, yearly, and its high case-fatality2. Despite significant advances in medical treatment towards personalized 
and preventive medicine2,3, the mortality of AMI survivors within 6 months after infarct sits at 12%4. Early and 
improved risk assessment is crucial to reduce this burden.

Left ventricular (LV) remodeling is central to AMI early prognosis prediction5. Consequently, LV macro-
function, quantified as LV ejection fraction (LVEF), is the preferred image biomarker for therapeutic deci-
sion‐making and clinical risk stratification, according to AMI guidelines4,6. Nonetheless, LVEF fails to capture 
contraction dynamics as well as functional and anatomical regional abnormalities7,8. Moreover, LVEF is mainly 
preserved or only moderately reduced in most AMI survivors and therefore recurrent adverse events often occur 
in patients at a theoretical low risk, which further evidences the need of stratification improvements9,10.

Cardiac Magnetic Resonance (CMR) imaging has proven uniquely suitable to assess morphological and func-
tional myocardial alterations and provides prognostic information over and above LVEF11–13. Despite its cost and 
acquisition length limitations, the level of precision of CMR has established it as gold standard for quantitative 
assessment of the heart. Furthermore, CMR uses no ionizing radiation unlike computed tomography imaging14. 
LV micro-myocardial injury, assessed by late gadolinium enhancement (LGE) CMR and usually quantified 
as infarct size (IS) and microvascular obstruction (MVO), has emerged as a robust outcome measure in AMI 
risk assessment13,15. Estimation of local LV remodeling using CMR has been proposed to improve prognostic 
information16,17. Likewise, shape analysis of the LV to identify 3D patterns related to risk has demonstrated its 
additional contribution to risk assessment18. CMR myocardial feature tracking (CMR-FT) has been successfully 
applied for quantification of LV deformation indexes and mechanical uniformity alterations7,19, associated with 
hemodynamic alterations, adverse LV remodeling, and clinical outcomes9,20. In particular, the prognostic value 
of global longitudinal strain (GLS) by CRM-FT has proven superior and incremental to LVEF and other CMR 
markers of infarct severity21. Recent advances in deep learning enable the extraction of CMR-derived volume 
temporal transients, which have proven to be a robust and useful biomarker to characterize cardiac function22.

Building on these advances, and further automating and enhancing the descriptors of contraction, this work 
focuses on the ability to detect novel signatures that predict post-infarction risks from the temporal changes 
observed at chamber level (i.e. LV volume transients). The work additionally explores the complementary value 
of tissue level dynamics (i.e. strains) and, also, the static 3D detail that we have recently demonstrated to bring 
prognostic value in our previous work18, an analysis that is limited to the end-systolic (ES) and end-diastolic (ED) 
instances. Here we expand on the work in17 and complete it by applying related ideas to the characterization of 
CMR-FT strains and the novel use of LV volume transients for post-infarction risk assessment. We assess the 
prognostic contribution of this novel cardiac contraction characterization using all three image-based compo-
nents (strains, transients and 3D LV patterns) on a large multicenter study, including ST‐segment–elevation 
myocardial infarction (STEMI) and non‐STEMI (NSTEMI) patients (see Fig. 1). The study demonstrates the 
potential of the herein proposed fully automated analysis for AMI risk management and identifies novel risk-
related contraction patterns, expanding the understanding of post-infarction remodeling.

Methods
Study population
A total of 1235 AMI survivors from the AIDA-STEMI and TATORT-NSTEMI multicenter randomized trials were 
considered for the study23–25. The trials were registered with ClinicalTrials.gov (Registration ID and date: AIDA-
STEMI: NCT00712101, 03/07/2008; TATORT-NSTEMI: NCT01612312, 01/06/2012) and their experimental 
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protocols were approved by the lead ethical committee at the University of Leipzig and by all the local ethics and 
licensing committees of the participating sites (Zentralklinik Bad Berka, Unfallkrankenhaus Berlin, Klinikum 
Frankfurt/Oder, University of Saarland, Institut für Herzinfarktforschung, University of Tübingen, Herz- und 
Gefäß-KLinik Bad Neustadt, Herz und Diabeteszentrum Bad Oeynhausen, Klinikum Links der Weser Bremen, 
Klinikum Coburg, Carl-von-Basedow-Klinikum Merseburg, Klinikum Pirna, Krankenhaus der Barmherzigen 
Brüder, Jochen Wöhrle and Klinikum der Stadt Villingen-Schwenningen). This size of the study is justified in 
Supplemental Material VIII, based on26. Reperfusion therapy with primary percutaneous coronary intervention 
and postinfarction medical treatment were supplied according to state-of-the-art guideline recommendations4. 
The study was conducted according to the Declaration of Helsinki and written informed consent was obtained 
from all subjects and/or their legal guardian for study participation. The data that supports the findings is avail-
able upon reasonable request.

CMR imaging protocol
The patients underwent CMR imaging on 1.5T (Siemens models: Aera, Avanto, Espree, Sonata, SonataVision 
and Symphony; Philips models: Achieva and Intera; GE models: Signa excite) or 3T (Siemens Verio) clinical 
scanners within 10 days after infarct following a standardized protocol6,23,24, that includes ECG-gated balanced 
steady-state free precession sequences (TR = 3.573 ms; TE median of 1.786 (1.649—1.786) ms; Flip angle = 60°) 
and T1-weighted LGE images. All sequences were acquired in horizontal and vertical long-axis views as well as 
continuous short-axis (SAx) stacks capturing the whole LV (Pixel size: 1.25 (1.25—1.48) mm; Spacing between 
SAx: 8.00 (8.00–8.00) mm). Ventricular volumes and infarct characteristics were determined in sequential SAx 
by blinded clinicians6,24, via dedicated software cmr4227. Standard thresholding techniques were applied to assess 
IS and MVO, as explained in6,24.

Study endpoints
The predefined clinical endpoint of the study was the 12-month rate of major adverse cardiac events (MACE), 
consisting of new congestive heart failure, reinfarction and all-cause death, as detailed in23–25. In case of multi-
ple MACE only one contribution per patient to the composite of endpoints was considered (death > reinfarc-
tion > congestive heart failure). The events were adjudicated by a blinded clinical committee based on the data 
collected in the study sites.
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Figure 1.   Comprehensive Characterization of Cardiac Contraction for Improved Post-Infarction Risk 
Assessment. The 3 proposed directions of enhancement of cardiac contraction characterization from CMR, 
enabled by a fully automated pipeline, for improved post-infarction management beyond left ventricular 
ejection fraction (LVEF), the established marker.
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CMR‑FT strain analysis (strain)
CMR-FT was conducted at the University Medical Centre Göttingen core laboratory28, using certified software 
2D Cardiac Performance Analysis MR29. Final values were based on the average of 3 independent analyses30. 
Circumferential and radial strains were determined at basal, midventricular, and apical locations, as described 
in9,20. Longitudinal strains were derived at both 2- and 4-chamber long-axis views. Global longitudinal, circum-
ferential, and radial strains (GLS, GCS and GRS, respectively) as well as circumferential and radial uniformity 
ratio estimates (CURE and RURE), were reported31. CURE and RURE range between 0, complete nonuniform 
contraction, and 1, perfect uniformity, that is, equal strain across the myocardium at any given time point. Cal-
culation details can be found in9.

LV fully automated volume transients analysis
The process, illustrated in Fig. 2, is fully automated and consist of the following steps: (1) LV myocardium seg-
mentation from SAx images and LV volume temporal transient reconstruction from the cavity volume integra-
tion along the cardiac cycle; (2) Computation of conventional metrics from LV volume transient; (3) Definition 
of Artificial Intelligence (AI) based metrics of LV volume transients, by unsupervised construction of statistical 
models and the subsequent selection of the features with best prognostic value.

LV segmentation and volume transients estimation
A 2-step deep learning approach was applied to segment the LV cavity, based on a UNet architecture with 
enhanced pre-processing32,33, that reached the best performance in the 2019 LV Full Quantification Challenge33,34. 
Implementation details are available in Supplemental Material I. Resulting segmentations were arranged in binary 
volumetric images, and the LV cavity volume was derived for each frame via trapezoidal integration.
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Figure 2.   Automated volume transient analysis. LV fully automated volume transient analysis pipeline (top-
left), along with patient S692 sample case, consisting of the following steps: (1.I.) the SAx stack (image I) is pre-
processed normalizing for intensity, resolution and orientation and cropped to the region of interest, following 
the prior detection of the heart; (1.II.) the LV myocardium is fine segmented in the SAx stack (image II); (1.III) 
a volumetric segmentation is synthesized (image III) and the LV volume transient derived; (2) the conventional 
metrics of the volume transient are estimated (top-right); and (3) PCA analysis is applied on the transients to 
facilitate the supervise learning of MACE occurrence related features (AI-derived transient metrics). The red 
circle landmarks on the representative volume transient (top-right) correspond to: a, end-diastole; b, systolic 
peak velocity; c, end-systole; d, passive filling peak velocity; e, beginning of diastasis; f, mid-diastasis; g, end-
diastasis; and h, active filling peak velocity. This figure is available in video format (see Supplementary Video 1).



5

Vol.:(0123456789)

Scientific Reports |         (2024) 14:8951  | https://doi.org/10.1038/s41598-024-59114-3

www.nature.com/scientificreports/

Volume transient conventional metrics (Vt)
The duration, average and peak velocity of the cardiac phases shown in Fig. 2 were derived22. The transients 
were resampled using splines to increase resolution and better capture the slope-sensitive metrics. Diastasis was 
estimated as the mid-diastolic region with a velocity inferior to 80% stroke volume (SV) per second (empiri-
cal threshold). The time to diastasis, measured from end-systole and mid-diastasis, was set as the boundary 
between the passive and active filling contributions. Passive and active filling metrics were not reported in those 
cases where diastasis was not reliably found (diastasis = 0s , n = 212). The average RR-interval and its variability, 
measured as highest minus lowest values, as well as the frame trigger times, were directly retrieved from the 
patient scans metadata.

Volume transient AI metrics (VtAI)
Principal Component Analysis (PCA) is an unsupervised machine learning technique that inspects the data to 
find the directions of change that maximize the variance observed in the population. The main advantages of the 
PCA strategy are: (I) the ability to extract interpretations from the linear space of features; (II) the unsupervised 
definition of features, that are unbiased to outcome prediction; (III) the ability to minimize the impact of noise 
and the reduced risk of overfitting by working with the principal modes of variation. Independently from the 
above calculations on raw volume transients, PCA was applied to the volume transients (Formulation details 
and a more detailed explanation is available in Supplemental Material III), minmax normalized to standardize 
in ventricle size and SV (see implications in Supplemental Material II). The resulting directions are the so called 
‘PCA modes’, and represent patterns of change with respect to the mean volume transients (e.g. RR-interval 
length, passive vs. active contribution, etc.—See Fig. 3, panel headings representing mode interpretation). Thus, 
the volume transient of each subject can be represented by the average transient of the population plus a weighted 
sum of these modes of variation. The weights used are, therefore, continuous variables which have a unique value 
for each patient and become potential biomarkers to predict MACE. Among them, those with highest prognostic 
value were identified by a stepwise multivariable Fisher linear discriminant analysis (LDA)35, as detailed below, 
on the modes that reconstruct 95% of the total variance of the population.

LV fully automated 3D shape analysis (LV3D)
The analysis is explained in18. In brief, an automated pipeline was developed to automatically obtain the per-
sonalized 3D LV mesh at ES and ED; and a similar AI methodology to the explained above is applied to iden-
tify the MACE-related ES shape and 3D contraction patterns. The contraction was approximated as ED to ES 
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Figure 3.   AI-derived volume transient metrics. AI-derived volume transient features most relevant to MACE 
occurrence prediction, resulting from unsupervised learning (VtAI1, VtAI2, VtAI3 and VtAI5). The MACE 
(red, class 1) and No-MACE (blue, class 0) traces shown correspond to the 10th and 90th percentiles. This 
allows to visualize the pattern of change encoded by each of the unsupervised variables (RR-interval, passive 
vs active filling, etc.), as well as to describe how a representative MACE and No-MACE normalized volume 
transient would theoretically look like according to each of these four unsupervised variables. The P-value, 
re-substitution and leave-one-out AUCs are presented along each mode as MACE and No-MACE distributions, 
further stratified into infarct aetiology (STEMI and NSTEMI). This figure is available in video format, where 
the evolution from the MACE to the No MACE extremes is shown to better appreciate the pattern of change 
encoded in each of the VTAI contraction modes (see Supplementary Video 2).
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displacements. Table 1 summarizes the three ES shape and three contraction descriptors found to be prognostic, 
along with their interpretation18. These 3D LV patterns are illustrated in Fig. SIV.1.

Prognostic value assessment
The additional prognostic contribution of each of the 3 proposed directions of enhancement, CMR-FT strains 
(strains), volume temporal transients (conventional and AI-derived—Vt and VtAI) and LV 3D patterns (LV3D) 
markers, was assessed considering only CMR biomarkers (CMR) and all the clinical variables (ALL) of the study. 
Table 1 lists the ‘CMR’ (e.g. MVO, IS, etc.) and ‘ALL’ (e.g. age, weight, etc.) baseline variables included in the 
analysis as predictor candidates. An additional analysis evaluated the prognostic value of the three proposed 
groups of contraction metrics in combination.

Comparisons were based on the prediction performance resulting from both a multivariable LDA (binary 
classification–MACE occurrence at 12 months) and a multivariable Cox analysis (time to MACE occurrence). 
A backward stepwise strategy (unbiased to univariable associations36) was followed in both analyses to find 
inter-variable synergies and address collinearity: all variables of interest (predictor candidates) were initially 
included, and the less significant in the model iteratively removed, until a 0.05 p‐value threshold was met by all 
of them. Significance in the LDA was approximated as significance in the generalized linear binomial sigmoid 
regression model.

The performance of the resulting configurations was assessed via area under the receiver-operator character-
istic curve (AUC), for binary classifications, and concordance index (C-index)37, for time-dependent curves, to 
account for both specificity and sensitivity, given the MACE class imbalance. Performance in both resubstitution 
(apparent performance—learning and testing with the entire cohort) and cross-validation (optimism corrected 
performance—10 cross-fold-validation repeated for a hundred random data splits) is reported to ensure gen-
erality of findings.

Statistical analysis
The variables of the study are described according to MACE occurrence (Table 2). Continuous variables were 
not normally distributed in a Shapiro–Wilk test, except for the VtAI modes of variation (Gaussian distributed by 
definition), and are therefore presented as median and interquartile range (IQR). Distributions (variable strati-
fications, cross-validated AUC model results, etc.) were compared by the non-parametric Wilcoxon rank sum 
test. The resulting p-value of the MACE vs No MACE comparisons, as well as the univariate-LDA cross-validated 
performance, was reported for each variable. Univariate Cox regression analyses were likewise completed. Hazard 
ratios, 95% confidence intervals and the predictor significance are presented in the results. Correlation between 
variables was assessed via Pearson (rp) and Spearman (rs) coefficients. Patients with missing data in any of the 
model variables are excluded for the development of this particular model. All analyses were implemented in 
Matlab38, except for neural network training and inference; that were implemented in Keras with Tensorflow as 
backend39. The experiments and analyses were run on a standard laptop (RAM: 32Gb; GPU: 16Gb). The study 
follows the guidelines of transparent reporting of multivariable prediction model for individual prognosis or diag-
nosis (TRIPOD) as well as the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) 
Statement for case–control studies36,40. The relevant checklists are included in Supplemental Material VIII.

Results
Patients
In total, 1021 patients (STEMI: n = 723; NSTEMI: n = 298) of the 1235 cohort were included in the study (No 
CMR: n = 126; incomplete protocol: n = 86; no follow-up: n = 2). Out of them, 73 patients suffered from MACEs 
(congestive heart failure: n = 20; reinfarction: n = 21; death: n = 32) 23–25. The population was predominantly male 
(74.5%) with a median age of 63 (IQR: 52–72) years, LVEF of 50.5% (IQR: 43.3–57.3) and IS of 13.4% of LV mass 
(IQR: 5.4–21.8). Their CMR and baseline clinical characteristics have been reported and discussed previously 
23–25 and are reproduced in Supplemental Material IV.

Table 1.   - Baseline CMR, Baseline ALL and 3D Left-ventricular variables. List and number of variables 
included in the baseline CMR (CMR), baseline ALL (ALL) and LV 3D patterns (LV3D) groups for prognostic 
assessment experiments. Interpretation of each of the LV3D variables is indicated in parenthesis. See18 for more 
details.

Nos

CMR—Baseline CMR variables

 End-systolic volume (mL), End-diastolic volume (mL), Left ventricular ejection fraction (%), Infarct size (mL), Infarct size (%LV mass), Microvascular obstruction (mL) 6

ALL—Baseline ALL variables

 Age (y), Body mass index (Kg/m2), Body surface area (m2), Current smoking, Diabetes, Height (cm), Hyperlipoproteinemia, Hypertension, Killip class on admission, Num-
ber of disease vessels, Sex, TIMI flow grade post-PCI, Weight (kg) and the 6 CMR variables indicated above 19

LV3D—3D Left-ventricular End-systolic shape and Contraction variables

 Mode ES1 (~ Global Impairment, ESV), Mode ES5 (~ Anterior Impairment), Mode ES6 (~ Impaired Thickening), Mode C3 (~ Global Impairment, LVEF), Mode C5 (~ Ante-
rior Impairment), Mode C16 (~ Basal Impairment) 6
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Table 2.   CMR-FT strain, conventional and AI-derived automated volume transient metrics. Data presented as 
median (interquartile range). P-values were calculated for the comparison between patients with and without 
MACE. Univariate Cox regression analyses are presented as HR, Hazard ratios (95% confidence interval), and 
HR P-value, predictor significance. The predictive power of each biomarker is assessed via LDA and presented 
as median AUC 10-cross-fold validated, repeated for a hundred random data splits, AUC​k. MACE indicates 
major adverse cardiac events; and avg, average. The passive and active filling metrics were not reported in those 
cases where diastasis was not found (diastasis = 0 s, n = 212).

Variable ALL patients MACE (n = 73) No MACE (n = 948) AUC​k Pval HR HR Pval

Strain–Strain markers

 Global longitudinal strain 
(%) − 16.5 (− 20.2 to− 12.5) − 11.5 (− 16.8–-8.4) − 16.7 (− 20.4 to − 13.0) 0.710  < 0.001 2.13 (1.68–2.69)  < 0.001

 Global circumferential 
strain (%) − 24.2 (− 28.9 to − 19.2) − 18.6 (− 24.2–-14.6) − 24.4 (− 29.1 to − 19.7) 0.674  < 0.001 1.72 (1.39–2.12)  < 0.001

 Global radial strain (%) 20.4 (15.7–25.9) 16.4 (12.6–22.6) 20.5 (16.0–26.0) 0.626  < 0.001 0.64 (0.50–0.83)  < 0.001

 CURE 0.78 (0.71–0.84) 0.71 (00.7–0.80) 0.79 (0.72–0.84) 0.637  < 0.001 0.62 (0.50–0.76)  < 0.001

 RURE 0.75 (0.67–0.82) 0.69 (00.6–0.78) 0.76 (0.67–0.83) 0.629  < 0.001 0.66 (0.54–0.82)  < 0.001

Vt—Volume transient markers

 RR-interval (ms) 845 (741–952) 780 (674–848) 845 (750–952) 0.644  < 0.001 0.64 (0.51–0.81)  < 0.001

 RR-interval variability 
(%RR) 19.2 (13.1–26.3) 24.6 (14.2–36.7) 18.9 (13.0–25.6) 0.606  < 0.001 1.28 (1.13–1.46)  < 0.001

Systolic phase

 Systolic time (ms) 297 (267–328) 284 (265–321) 298 (268–328) 0.562 0.106 0.70 (0.51–0.98) 0.038

 Systolic velocity avg 
(mL/s) 251 (209–301) 227 (184–271) 252 (212–303) 0.592 0.238 0.61 (0.34–1.11) 0.105

 Systolic velocity avg 
(%SV/s) 337 (305–375) 352 (312–377) 336 (305–373) 0.554 0.314 1.08 (0.93–1.25) 0.315

 Systolic velocity peak 
(mL/s) 570 (451–704) 514 (396–650) 573 (456–711) 0.573 0.030 0.77 (0.60–0.97) 0.029

Diastolic phase

 Diastolic time (ms) 513 (431–602) 462 (394–523) 518 (435–606) 0.611 0.028 0.76 (0.60–0.97) 0.025

 Diastasis (ms) 38 (0–118) 24 (0–83) 44 (0–119) 0.569 0.034 0.74 (0.56–0.98) 0.037

 Diastasis (%) 10.8 (0.0–21.6) 5.4 (0.0–16.2) 10.8 (0.0–21.6) 0.558 0.030 0.74 (0.56–0.97) 0.032

 Time to diastasis (ms) 354 (307–402) 327 (267–366) 356 (309–405) 0.605 0.017 0.70 (0.53–0.93) 0.013

 Time to diastasis (%) 64.9 (62.2–70.3) 64.9 (56.8–70.9) 64.9 (62.2–70.3) 0.512 0.192 0.82 (0.62–1.09) 0.177

 Passive filling (mL) 55.6 (43.0–67.2) 48.1 (37.6–60.1) 56.0 (43.5–67.9) 0.630 0.002 0.64 (0.48–0.85) 0.002

 Passive filling (%SV) 66.5 (58.2–73.5) 67.3 (57.8–78.9) 66.4 (58.2–73.0)  < 0.5 0.767 1.05 (0.77–1.42) 0.776

 Active filling (mL) 26.2 (19.9–33.6) 20.6 (12.7–28.5) 26.7 (20.2–33.9) 0.647  < 0.001 0.71 (0.59–0.87)  < 0.001

 Active filling (%SV) 31.5 (23.8–39.8) 26.6 (17.8–37.7) 31.7 (24.1–39.9) 0.559 0.110 0.81 (0.63–1.04) 0.094

 Diastolic velocity avg 
(mL/s) 143 (121–170) 141 (109–168) 144 (122–170) 0.535 0.458 0.20 (0.04–0.97) 0.046

 Diastolic velocity avg 
(%SV/s) 195 (166–232) 216 (191–254) 193 (165–230)  < 0.5 0.982 1.00 (0.79–1.26) 0.982

 Passive filling velocity avg 
(mL/s) 155 (122–187) 151 (118–180) 155 (122–188) 0.516 0.291 0.87 (0.69–1.11) 0.274

 Passive filling velocity avg 
(%SV/s) 185 (153–215) 205 (170–239) 184 (153–213) 0.592 0.015 1.35 (1.07–1.71) 0.013

 Passive filling velocity 
peak (mL/s) 427 (307–573) 384 (271–502) 429 (310–575) 0.553 0.143 0.80 (0.59–1.08) 0.143

 Active filling velocity avg 
(mL/s) 128 (92–169) 104 (70–144) 130 (94–169) 0.610 0.011 0.76 (0.62–0.93) 0.008

 Active filling velocity avg 
(%SV/s) 154 (106–205) 142 (94–222) 154 (107–204) 0.521 0.277 0.85 (0.65–1.12) 0.260

 Active filling velocity peak 
(mL/s) 315 (222–456) 246 (176–382) 323 (227–464) 0.629 0.003 0.64 (0.47–0.85) 0.003

VtAI—Volume Transient modes:

  VtAI1 0.03 (− 0.45–0.54) 0.39 (− 00.2–0.66) 0.02 (− 0.47–0.51) 0.570 0.112 1.22 (0.96–1.56) 0.103

  VtAI2 − 0.08 (− 0.17–0.04) 0.00 (-00.1–0.13) − 0.08 (-0.18–0.04) 0.598  < 0.001 1.27 (1.12–1.44)  < 0.001

  VtAI3 0.00 (− 0.22–0.22) 0.11 (-00.1–0.33) − 0.01 (-0.22–0.21) 0.588 0.025 1.34 (1.05–1.71) 0.020

  VtAI5 − 0.02 (− 0.10–0.09) 0.06 (− 00.1–0.17) − 0.02 (− 0.10–0.08) 0.611  < 0.001 1.35 (1.14–1.59)  < 0.001
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CMR‑FT strain analysis (strain)
The CMR-FT strain results are described in Table 2. The MACE subgroup exhibited significantly lower global 
longitudinal, circumferential, and radial strains (P < 0.001) and a less uniform radial and circumferential con-
traction (P < 0.001).

Automated volume transient AI analysis
LV segmentation and volume calculation
The automated segmentation of the SAx resulted in a median Dice score of 0.971 (IQR 0.945–0.981) for the LV 
cavity and 0.975 (IQR 0.959–0.982) for the LV epicardium. The correlation, rs, between the volumes calculated 
from the automated and manual segmentations were 0.916 and 0.919, for end-systolic and end-diastolic volume 
(ESV and EDV), respectively.

Volume transient conventional metrics (Vt)
Results are detailed in Table 2. The MACE subpopulation was characterized by a significantly shorter and more 
variable RR-interval (P < 0.001). Their systolic (P = 0.038), diastolic (P = 0.025), diastasis (P = 0.037) and time 
to diastasis (P = 0.013) was accordingly reduced. Nevertheless, only diastasis was significantly smaller when 
normalizing in time (P = 0.032). The passive (P = 0.002) and active (P < 0.001) contributions to LV filling were 
significantly compromised in MACE patients, as ESV and EF were significant (P < 0.001—See Table SIV.1), but 
not when normalizing by SV. Regarding velocities, the MACE cohort presented significantly lower systolic peak 
(P = 0.029), and active filling average (P = 0.008) and peak (P = 0.003) velocities. However, it was the passive fill-
ing average velocity the only one significant to MACE (P = 0.013) when normalizing by SV. Fig SIV.2 shows the 
average MACE and No MACE volume transients normalized by SV.

Volume transient AI ANALYSIS (VtAI)
95% of the variance was explained by the first 6 unsupervised modes of variation. Among them, modes 1, 2, 3 
and 5 (VtAI1, VtAI2, VtAI3 and VtAI5) were determined the most relevant to MACE by the LDA stepwise analysis. 
These modes are interpreted as RR-interval (VtAI1), systolic velocity (VtAI2), passive vs active filling (VtAI3) 
and diastasis (VtAI5) (see Discussion). Figure 3 illustrates these modes and summarizes their significance, clas-
sification performance and distributions, stratified by MACE occurrence and infarct aetiology. The correlation 
between these AI metrics and the conventional transient ones is summarized in Fig. 4 (Pearson) and Supple-
mental Material VI (Spearman and R2).

LV fully automated 3D shape analysis (LV3D)
The ES shape and 3D contraction descriptors were significant to MACE (P < 0.001) and proved superior to their 
corresponding stand‐alone versions ESV and LVEF18. Their statistics were reported in18, and are reproduced in 
Table SIV.1.

Prognostic contributions
The results of the augmented prognostic contribution of proposed biomarkers to characterize LV contraction 
are shown in Table 3. Both LDA and Cox multivariable analysis converged to a nearly identical selection of vari-
ables for each of the models.

Prediction of MACE occurrence via conventional and AI automated volume transient metrics, strains and 3D 
LV markers proved significantly superior (P < 0.001) to LVEF using either CMR-derived (CMR: 2.49%; CMR + Vt: 
3.66%; CMR + VtAI: 6.3%; CMR + Strain: 5.86%; CMR + LV3D: 8.05% AUC improvement) or ALL clinical features 
(ALL: 6.73%; ALL + Vt: 7.91%; ALL + VtAI: 9.22%; ALL + Strain: 10.1%; ALL + LV3D: 9.37% AUC improvement), 
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Figure 4.   Correlation between AI-derived and conventional transient metrics. Heat map of Pearson correlation 
coefficients between AI-derived (columns) and conventional (rows) volume transient metrics.
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as illustrated in Fig. 5A. Similar results were obtained in Cox analyses. The additional prognostic value was larger 
(P < 0.001) when using AI-derived metrics vs conventional transient ones (Table 3 and Fig. 5A).

The combination of the 3 directions of enhancement led to a major improvement compared to ALL baseline, 
and to the selection of one variable from each of these directions (GLS, C16 and VtAI5 – and VtAI3, in LDA). In 
comparison to LVEF, the AUC improvement was superior to 13% in both LDA and Cox analyses (See Fig. 5A 
and Table 3).

At a univariate level (see Table 2), GLS was the most prognostic variable (AUC​k = 0.710), followed by GCS, 
active filling contribution, and RR-interval. The AI-derived volume transient metrics were not among the most 
predictive variables, but ended up being the most complementary in multivariable settings.

Discussion
This is the first large-sized multicenter CMR study to date that comprehensively characterizes the LV cardiac 
pump function after AMI using (I) LV volume temporal transient; and that combines it with (II) CMR-FT strain 
and (III) 3D shape analyses for improved risk assessment. We have successfully (a) developed a fully automated 
AI pipeline, available and easy to run, that segments the CMR SAx stacks and identifies the AMI acute contrac-
tion signatures associated to risk; (b) demonstrated the additional prognostic value of cardiac characterization 
via any of the 3 proposed directions of enhancement; and (c) combined these markers with the established CMR 
indexes, cardiovascular risk factors and patient characteristics towards a final CMR prediction model, that out-
does LVEF in a 13% (LDA, cross-validated AUC).

Impact and clinical translation
While multiple trials have shown the incremental prognostic information of CMR-based risk models in AMI 
management, these models have not found their role in clinical practice6,9,15. The more common availability of 
echocardiography, the length of the CMR acquisitions, the requirement for manual interaction, and the increas-
ing complexity of CMR multi-parameter models have been among the barriers for adoption4,9. Nevertheless, 
CMR post-infarction protocols have been shortened and CMR availability has significantly increased in recent 
years. Moreover, complex CMR prognostic predictors can be now synthetized into simple risk scores models9, 
and fully automated as shown in this study. Our work further facilitates the adoption of CMR post-infarction 
risk management by contributing to two of the pillars of healthcare systems: efficacy and efficiency3. That is, it 
leads to an improved prognostic assessment while reducing the analysis time.

Our automated pipeline for volume temporal transients runs on a standard laptop: it receives a CMR scan, 
segments the LV cavity, calculates the volume transient and summarizes the patient contraction dynamics into 
4 biomarkers (VtAI), that are used in the multivariable models to predict risk. The same applies to the automated 

Table 3.   Additional prognostic contribution of the proposed enhanced LV function characterization. 
Backward stepwise LDA and Cox results of additional prognostic metrics for MACE risk assessment. 
Considered features include conventional (Vt) and AI-derived (VtAI) volume transient metrics, CMR-FT 
strains (strains), and LV 3D detail patterns (LV3D) descriptors, each on top of considering only CMR 
biomarkers (CMR) or the cardiovascular risk factors and patient characteristics of the study (ALL). A final 
experiment combines the 3 proposed directions of enhancement. Performance of LVEF is likewise included. 
The resulting significant selection of variables is reported along with performance, expressed as AUC and 
C-index (C) re-substitution (rs) and tenfold cross-validated (k), computed for a 100 random data splits and 
presented as median (interquartile range). All differences in AUC​k and Ck between models were statistically 
significant (P < 0.001), except for the ‘CMR’ and ‘CMR + Vt’ resulting Cox models. BSA indicates body surface 
area (m2); Killip, Killip class on admission; RR, RR-interval (ms); tdiastolic, diastolic time (ms); vdiastolic_avg, average 
diastolic velocity (mL/s); Vessel, number of diseased vessels. Best performing results are highlighted in bold.

Model Linear selection AUC​k AUC​RS Cox selection Ck CRS

LVEF LVEF 0.683 (0.681—0.685) 0.687 LVEF 0.669 (0.668—0.670) 0.669

CMR ESV, EDV 0.700 (0.698—0.702) 0.708 ESV, EDV 0.688 (0.687—0.690) 0.693

CMR + Vt ESV, EDV, RR, tdiastolic 0.708 (0.706—0.710) 0.721 ESV, EDV 0.688 (0.687—0.689) 0.693

CMR + VtAI ESV, EDV, VtAI2, VtAI3, VtAI5 0.726 (0.723—0.730) 0.742 ESV, EDV, VtAI3, VtAI5 0.704 (0.702—0.707) 0.716

CMR + Strain ESV, EDV, GLS 0.723 (0.721—0.725) 0.733 ESV, EDV, GLS 0.710 (0.708—0.711) 0.717

CMR + LV3D ESV, EDV, C5, C16 0.738 (0.736—0.740) 0.750 ESV, EDV, C5, C16 0.728 (0.727—0.730) 0.736

ALL ESV, EDV, Age, Killip 0.729 (0.727—0.733) 0.745 ESV, EDV, Age, Killip 0.714 (0.712—0.717) 0.726

ALL + Vt ESV, Age, Killip, BSA, RR, 
tdiastolic

0.737 (0.734—0.740) 0.759 ESV, Age, Killip, RR, 
vdiastolic_avg

0.717 (0.714—0.721) 0.732

ALL + VtAI
ESV, EDV, Age, Killip, VtAI3, 
VtAI5

0.746 (0.743—0.749) 0.769 ESV, EDV, Age, Killip, VtAI3, 
VtAI5

0.730 (0.727—0.732) 0.747

ALL + Strain ESV, Age, Killip, BSA, 
Weight, Vessels, GLS 0.752 (0.749—0.754) 0.776 ESV, Age, Killip, BSA, GLS 0.732 (0.730—0.736) 0.748

ALL + LV3D
ESV, EDV, Age, Killip, C5, 
C16 0.747 (0.745—0.749) 0.766 ESV, EDV, Age, C5, C16 0.741 (0.739—0.743) 0.753

All + VtAI + Strain + LV3D
ESV, EDV, Age, C16, GLS, 
VtAI3, VtAI5

0.774 (0.771—0.777) 0.796 ESV, EDV, Age, C16, GLS, 
VtAI5

0.760 (0.759—0.763) 0.773
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shape analysis pipeline presented in18. This is done in the order of seconds, removing the burden of manual seg-
mentations, and drastically reducing the analysis time. Moreover, the method is deterministic (i.e. given a scan, 
it always returns the same outputs) which, in turn, eliminates intra- and interobserver variability towards a more 
objective, standardized, and quantitative diagnosis. Conventional metrics extracted from volume transients often 
rely on rather qualitative detection landmarks (e.g. diastasis), which may be problematic especially in pathologi-
cal cases. Importantly, our proposed VtAI markers are robust to outliers and abnormal cases. Furthermore, the 
strong correlation between the automated and manual volumes, along with the high values and small variance 
of the segmentations dice scores (see Results), supports the accuracy and precision of the automated pipeline, 
which additionally outdoes commercially available software in performance41.

LV contraction dynamics are conventionally based on global function metrics evaluated at two single time 
points (ES and ED, or their ratio, LVEF). The tree proposed approaches to unveil further prognostic value com-
plement each other in the final multi-variate regression model: first, the temporal resolution is increased by the 
volume transient metrics (from two points to the whole cycle); second, the bulk tissue contraction is assessed by 
the strain patterns (CMR-FT—from global function to quantification in longitudinal, radial and circumferential 
directions); and third, the 3D anatomical detail is studied by statistical shape models18. The relevance of looking 
at AMI management from all these different angles is evidenced by the results of the final risk-assessment model 
that combines global function descriptors (ESV, EDV), 3D contraction patterns (C16), strains (GLS), contraction 
dynamics indexes (VtAI3, VtAI5) and patient characteristics (age).

Our model provides a remarkable boost in MACE prediction: 13% AUC improvement, when comparing 
against LVEF (Fig. 5A and Table 3), the reference marker according to AMI guidelines4,6. The implications of 
these AUC improvements, in terms of specificity and sensitivity, are illustrated in Fig. 5B. The large size of the 
cohort of this study, the small gap between resubstitution and cross-validation metrics, and the narrow variance 
when using 100 random data splits (see Fig. 5A and Table 3) suggest the robustness of our method for MACE 
prediction.

The prognostic contribution of the proposed enhanced characterization of cardiac contraction is in line with 
recent publications exploring alternative characterizations to LVEF42,43. For example, Dong et al. demonstrated 
the contribution of CURE and RURE to AMI risk stratification in a cohort of 450 STEMI patients42; and Lange 
et al. proved the incremental prognostic value of an improved myocardial deformation assessment above LVEF 
(a c-index increase from 0.7 to 0.74, p = 0.03) in a trial including 566 STEMI patients43. Our work incorporates 

LV
EF CM

R

CM
R
+ V

t

CM
R
+ V

t AI

CM
R
+ S

tra
in

CM
R
+ L
V 3D AL

L

AL
L +

Vt

AL
L +

Vt A
I

AL
L +

Str
ain

AL
L +

LV 3D

AL
L +

Vt A
I
+ S

tra
in
+ L
V 3D

+13.3%

Prediction of MACE
(Major Adverse Cardiac Events)

A B

A (0.74, 0.80)

C (0.74, 0.96)
D (0.62, 0.91)

B (0.45, 0.80)

Figure 5.   MACE prediction results and interpretation of the AUC differences. (A): MACE prediction 
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variables is based on LDA multivariable stepwise analysis, and results are expressed in AUC resubstitution 
(rs, blue) and AUC 10-cross-fold validation (k, orange), repeated for a hundred random data splits (black 
distributions). All differences in performance were significant (P < 0.001). Note the remarkable improvement 
of the final configuration, combining the 3 proposed directions of enhancement. (B): Interpretation and 
implications of the AUC differences in ROC prediction curves, illustrated by the comparison between LVEF and 
our multivariable model, combining the 3 directions of enhancement. Given a recommended operating point of 
high sensitivity (80%) in the LVEF curve (point A), our model is able to predict MACE at the same sensitivity 
but reducing the false positive rate a 40% (point B), i. e., removing 379 false positive MACE predictions. 
Likewise, when operating at a similar false positive rate than LVEF (point C), our method improves sensitivity 
by 20%, detecting 96% of the MACE cases. Alternatively, the operating point D of our model could be chosen 
for MACE prediction, where both sensitivity and specificity are improved with respect to LVEF. This illustrates 
the potential for risk management improvement associated to superior AUC scores.
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most of the prognostic parameters discussed in these publications; considers a larger cohort of patients, includ-
ing both STEMI and NSTEMI aetiologies; and results in a superior prognostic contribution in comparison to 
LVEF (a c-index increase from 0.67 to 0.76, p < 0.001—See Table 3).

As a result of the automated analysis, we have built a reference LV volume transient atlas from 1000 + AMI 
subjects that captures the average post-infarct contraction behavior along with the main variations (PCA modes). 
The atlas and the associated methods to calculate the herein proposed VtAI markers and the resulting risk models, 
made publicly available (doi.org/https://​doi.​org/​10.​6084/​m9.​figsh​are.​16735​300), will not only allow the valida-
tion of the presented findings but also further AMI studies, computer simulations, and synthetic patient data 
generation for training algorithms or educational use, among others. Moreover, while the AI decomposition 
methodology has been deployed using CMR volume transients, its application to echocardiography is straight-
forward. The segmentation algorithm, extendable to different protocols and scanners to the ones used in this 
study as well as to other cardiac diseases44, is likewise available.

Interpretability: unravelling the AMI contraction
While infarct severity is associated with functional and morphological alterations, and certain acute changes have 
proven significant to AMI prognosis, their interplay in modulating risk remains unsolved6,13,45,46. In this regard, 
we have identified detailed contraction traits, combining strains, LV shape and volume transient, significantly 
relevant to MACE occurrence.

Conventional descriptors of the contraction dynamics have identified the RR-interval length and the active 
and passive contributions to filling, in mL, as particularly related to MACE occurrence (see Table 2). Since 
patients at risk exhibit a decreased LVEF4,6, their passive and active contributions are accordingly reduced and, 
in consequence, their RR-interval shortened to increase cardiac output47. This, in turn, leads to a smaller preload 
and a less effective contraction, with the corresponding drop in LVEF (negative feedback loop).

RR variability was also found to be highly prognostic. It can be hypothesized that this beat-to-beat variation 
could be related to atrial fibrillation, as evidenced in48, especially given the mentioned fast heart rates, related to 
ventricular tachycardia and fibrillation risk according to the MADIT-ICD score49, that characterize our MACE 
population. Nevertheless, and oppositely, the RR variability has been shown beneficial in other atrial fibrillation 
disease models50.

One of the advantages of our AI methodology is that the resulting VtAI variables are not obscure features for 
prediction improvement, but they rather encode explainable contraction patterns, as shown in Fig. 3. Thus, VtAI1 
can be primarily interpreted as RR-interval length (rp = -0.84); VtAI2, as average systolic velocity (rp = 0.60); VtAI3, 
as a balance between the active and passive contributions (passive filling: rp = 0.67); and VtAI5, as diastasis once 
corrected for RR-interval length (diastasis: rp = -0.32; rs = -0.43. See Supplemental Material VI). Nevertheless, 
these contraction variations contain more information than just a single conventional metric, reason why they 
are also correlated to other variables (i.e. in a contraction with reduced RR-interval the diastolic and diastasis 
times will be likewise compromised; therefore, VtAI1, correlated to RR-interval, is also correlated to these indexes) 
and reason why they led to greater prognostic contributions.

In this context, the minmax normalization prior to the AI analysis, standardizing the transients by removing 
ventricle size and SV information, should be considered when visually interpreting the results (See Supplemental 
Material II). This normalization decreases the univariate predictive power of the VtAI markers to the benefit of 
removing cofounding factors and facilitating their contribution to multivariable settings. This is evidenced by 
their significant contribution in any of the considered multivariable approaches (Table 3), unlike, for instance, 
the CMR tissue markers (MVO and IS), which are predictive according to the univariate analysis but do not sig-
nificantly add value to the multivariable models. VtAI3 and VtAI5, both interpreted as related to diastolic function, 
are the AI-derived transient markers that contribute the most towards additional prognosis in the multivariable 
settings (Table 3). While mechanistic explanations are to be further explored, a plausible interpretation is that, 
in patients at risk, RR-interval shortening compromises ventricular relaxation. This may come at the expense of 
diastasis (VtAI5), and/or faster dynamics with a swift in the relative filling contributions (%SV) towards the pas-
sive phase (VtAI3). This in turn explains the consequent significant increase in normalized passive filling velocity 
(note that the actual passive filling velocities, in mL/s, without normalization, are smaller for the MACE popula-
tion, due to a smaller LVEF—see Table 2). This is particularly relevant for the STEMI population (see Fig. 3).

Likewise, the 3D LV patterns, already reported and interpreted in18, demonstrated being consistent with ESV, 
LFEF and ES myocardial thickness45,46 and highlighted the additional prognostic value of a lateral and a basal 
contraction impairment. The interplay between these myocardial 3D shape changes and micro-damage, in the 
form of IS and MVO, was also evidenced.

Strain has been proven an important parameter to evaluate risk after an infarct, as discussed in the introduc-
tion section. This is evidenced in this work, where all the CMR-FT strain metrics reported were highly signifi-
cant to MACE occurrence (Table 2). The compromised GLS, GRS and GCS that the MACE population exhibits 
are in harmony with the LVEF decrease associated to risk4,6. Besides, the observed relationship between risk 
and impaired contraction uniformity (CURE and RURE) is widely discussed in9. The prognostic value of GLS, 
superior to LVEF and incremental to the baseline markers, is in accordance with21, that argues for its adoption 
in clinical practice.

The proposed risk models have superior prognostic value for patients with decreased LV function 
(LVEF < 35%), identified as high-risk group, in accordance with the literature4,10 (Fig. SV.2). With respect to 
infarct aetiology, the risk models that include CMR-FT strain or 3D LV patterns are more predictive for the 
NSTEMI population, despite the study being biased to STEMI patients (see Fig. SV.3 and Results—Patients). 
The final model, that combines strains, AI transient metrics and 3D LV metrics, reports a similar performance 
for STEMI (AUC = 0.795) and NTEMI (AUC = 0.799), and, thus, clinical validity for both infarct types could be 

https://doi.org/10.6084/m9.figshare.16735300
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claimed. If analyzed separately, both systolic and diastolic components significantly contribute to the multivari-
able risk assessment models (see Supplemental Material VII). However, as expected, the combination of systolic 
and diastolic function, that is, the entire transient, is more prognostic than each of the components on its own, 
especially in the systolic scenario (in line with the fact that the modes that provide more additional prognostic 
value, VtAI3 and VtAI5, are related to diastolic function, as mentioned above).

To sum up, patients at risk of MACE occurrence have a compromised cardiac function, which contributes to 
an impaired global contraction (decreased LVEF and GLS) and, therefore, to a reduced RR-interval, in order to 
maintain the cardiac output. This, in turn, leads to diastolic impairment, exhibited in the form of compromised 
diastasis and active filling.

Limitations
Patients were imaged within 10 days after infarction in the absence of optimal post-infarction CMR imaging 
time recommendations9. The effect of this post-infarction imaging time on the proposed AI-derived metrics has 
not been assessed. It is however hypothesized that we are capturing acute injury, whose extent and phenotype 
can predict outcome, and therefore long-term LV adaptions. The main objective of this work was to evaluate this 
hypothesis in a clinical cohort with the proposed enhanced characterization of cardiac contraction, and not to 
optimize MACE prediction. This motivates the herein explained identification of metrics based on linear models 
that eases interpretability. Future research could explore the use of advanced nonlinear classifiers, as illustrated 
in51, to improve performance in MACE prediction at the cost of losing the ability to interpret findings. CMR 
long-axis views were excluded for simplicity, but ideally could be incorporated to correct for SAx misalignment 
and improve the cavity volume calculations. Likewise, while only CMR-FT global strains and uniformity ratio 
estimates have proved prognostic in the literature7,9,13,19,20, future work could consider a more detailed strain 
analysis, in time and by regions, especially given the outstanding prognostic power of GLS. Similar methodologies 
to the PCA analysis formulated in this study could be considered for this. The resolution of the volume transients 
herein derived is limited to the resolution of the CMR scan. Given the limited number of MACE events (class 
imbalance), splitting the cohort into an independent testing dataset would be rather noisy. The combination of 
cross-fold validation, repeated for a hundred data-splits, is therefore preferred as it ensures fair performance 
and robust conclusions reporting, as argued in36,40. The study population is biased towards male sex. Finally, the 
results are limited to AMI patients that can undergo a CMR scan. This is an active field of research and future 
investigations are required to integrate these measures into standard clinical practice.

Conclusion
This large multicenter study evidences the prognostic value of a comprehensive characterization of cardiac 
contraction by the novel use of LV volume transients, combined with metrics of strain and 3D shape, in post-
infarction management. Moreover, it further contributes towards the adoption of CMR multivariable models in 
clinical practice by demonstrating the feasibility of fully automated analysis and the relevance of these models 
in AMI stratification.

Data availability
The data that supports the findings is available upon reasonable request to the corresponding author of this 
manuscript.
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