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Abstract
Epithelial monolayers are some of the best-studiedmodels for collective cell migration
due to their abundance in multicellular systems and their tractability. Experimentally,
the collective migration of epithelial monolayers can be robustly steered e.g. using
electric fields, via a process termed electrotaxis. Theoretically, however, the question
of how to design an electric field to achieve a desired spatiotemporal movement pattern
is underexplored. In thiswork,we construct and calibrate an ordinary differential equa-
tion model to predict the average velocity of the centre of mass of a cellular monolayer
in response to stimulation with an electric field. We use this model, in conjunction
with optimal control theory, to derive physically realistic optimal electric field designs
to achieve a variety of aims, including maximising the total distance travelled by the
monolayer, maximising the monolayer velocity, and keeping the monolayer velocity
constant during stimulation. Together, this work is the first to present a unified frame-
work for optimal control of collective monolayer electrotaxis and provides a blueprint
to optimally steer collective migration using other external cues.

Keywords Electrotaxis · Optimal control · Collective migration · Epithelial
monolayers

1 Introduction

Electrotaxis is the process by which eukaryotic cells establish a cell polarity and
move directionally in the presence of an electric field (Cohen et al. 2014; Allen et al.
2013; Zajdel et al. 2020). Electrotaxis is strongest in cellular collectives due to E-
cadherin mediated adhesions (Wolf et al. 2022; Li et al. 2013), and displays striking
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similarities between different cell types and electric field stimulation patterns. Previous
studies have focused on using electrotaxis as a means to achieve particular patterns
in collective movement (Cohen et al. 2014; Zajdel et al. 2020). For instance, electric
fields can be programmed to give bespoke migration patterns (Zajdel et al. 2020),
which are along the field lines in converging and diverging electric fields (Cohen et al.
2014). A common theme in all of these experiments is that the average direction of
collective migration can be accurately controlled during electric field stimulation. The
ease with which electric fields can establish directed migration in cellular collectives
has led electrotaxis to be accepted as a robust method of steering collective migration
(Leal et al. 2023). The theoretical interest in modelling collective electrotaxis then
lies in the ability to answer the following question: Given a desired spatio-temporal
movement pattern, how should the electric field be designed to achieve this?

The adoption of electrotaxis as a predictable driver of collective migration has
been stalled by a poor understanding of the temporal dynamics of the collective speed
during electric field stimulation. For example, Wolf et al. (2022) found that MDCK
collectives display a strong, but transient response to the electricfield:while the average
speed in the direction of the field increases quickly after the electric field is turned
on, the collective starts to slow down after approximately one hour, even though the
electric field strength remains constant. In general, the current lack of understanding
of how the speed of the cellular collective will evolve during stimulation with an
electric field poses difficulties in designing bespoke stimulation strategies that can be
used to achieve a predictable migration outcome. This difficulty places the question
of predicting collective speed during electrotaxis among the most pressing issues in
collective electrotaxis. The problemwe seek to address in thiswork is therefore how the
collective speed of MDCK monolayers during stimulation with a given electric field
can be predicted, and how this knowledge could be exploited to design a stimulation
strategy to produce a desired pattern of collective migration?

Both theoretically and experimentally, the question of how to control the temporal
dynamics of the collective velocity has scarcely received attention in the literature,
even though the fact that the temporal dynamics of electrotaxis are non-trivial is
well-documented. Controlling the temporal dynamics of collective velocity remains
challenging, since the subcellular processes governing the evolution of cell polarity
and active force production in response to stimulation with an electric field remain
poorly understood (Allen et al. 2013; Cohen et al. 2014; Wolf et al. 2022; Zajdel et al.
2020). At the subcellular level, electrophoresis of charged membrane components
creates a cell polarity that activates intracellular signalling pathways that are largely
shared with those found in chemotaxis (Allen et al. 2013; Song et al. 2021; Gao
et al. 2015). Subsequent modelling efforts Ifunanya Nwogbaga et al. (2022) have been
able to explain the directional movement of cells during electrotaxis, but the existing
literature is not well positioned to explain the temporal dynamics of cell responses.

In this work, we are interested in constructing a deterministic, continuous-time
model to predict the average velocity of the centre of mass of a cellular monolayer in
response to stimulation with an electric field. We will consider only uniaxial electric
fields, i.e., the field can be described solely by its field strength in the positive or nega-
tive direction. Under these assumptions, the goal of this workwill be to derive a system
of ODEs which predict the collective velocity and the active forces in the monolayer.
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A significant benefit of using ODE models is that there exists a completely developed
theory on how to optimally control ODE solutions according to a given optimisation
problem Lenhart and Workman (2007). In the context of collective electrotaxis, this
means that a well-calibrated and reliable ODE model can be used to solve an opti-
misation problem, whereby the optimality condition is given by the desired temporal
pattern of collective movement and the control is the electric field input.

The current scholarship on collective migration of epithelia provides a convenient
starting point for the construction of such an ODE model – see Alert and Trepat
(2020) for a review of continuum models of collective epithelial migration. For exam-
ple, since the internal signaling pathways for collective electrotaxis are largely shared
with chemotaxis, one can begin to model the internal cellular response to an elec-
tric field with a well-established continuum model for the response to a chemotactic
signal. Erban and Othmer proposed an adaptation-excitation model for the chemo-
tactic response of single cells, whereby cells are excited when initially exposed to an
external signal, and slowly adapt over time Erban and Othmer (2005). In their work,
signal transduction is interpreted as “having two input pathways, an excitatory one that
stimulates the [response], and one [...] which, in turn, shuts off the response”. Simi-
lar models are frequently proposed to describe chemotaxis. The advantage of such a
model is that it is given by a straightforward system of scalar ODEs that describe the
effective signal transduced within a cell upon contact with a chemoattractant (Erban
and Othmer 2005). In this work, we will assume that similar internal signaling dynam-
ics can be used to model the cellular response to an applied electric field. By letting the
strength of the active forces in the monolayer be described using the model of Erban
and Othmer (2005), we can derive a closed system of ODEs to describe the mono-
layer speed. Using experimental data in conjunction with Bayesian inference, we can
interrogate the validity and applicability of using such a system of ODEs to model
collective electrotaxis in response to stimulation with an electric field. Put together,
the model can be used to develop a framework for designing electric fields that lead
to desired outcomes in the form of an optimal control experiment.

This work will be structured as follows. In Sect. 2 we present the experimental data
of collective electrotaxis that will be used for calibration and validation of the ODE
models. Then, in Sect. 3, we derive a simple ODE model that describes the evolution
of the tissue velocity. We then use this system of ODEs to predict the optimal control
policy when a number of targets are considered, and compare our results to the current
standards for electric field stimulation used in the literature. Together, we offer a
mathematical modelling framework to describe, understand, and optimise key cellular
processes involved in the regulation of collective electrotaxis.

2 Methods and Data

In this section, we present the publicly available experimental data from Wolf et al.
(2022). In brief, the experiments of Wolf et al. (2022) involved electrotaxis of 5×5
mm2 MDCK-II epithelial monolayers. In these experiments, a total of nine MDCK
epithelial monolayers were grown to confluence and stimulated with an electric field
of 3V/cm—see stimulation trace in Fig. 1. In each experimental replicate, 5×5mm2
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Fig. 1 Experimental data of MDCKmonolayer electrotaxis with its electric field stimulation protocol. Left
panel: phase field image of an MDCK epithelial monolayer indicating direction of the uniaxial electric field
and bulk region where the mean velocity is measured. Right panel, top: electric field density during the
experiment. Right panel, bottom: bulk velocity corresponding to the electric field trace in the top row

square tissues were seeded onto 10cm tissue-culture plastic dishes (CELLTREAT)
using stencils of 250µm-thick silicone elastomer (Bisco HT6240) cut with a hobbyist
razor-writer (Silhouette Cricut). Suspensions of MDCK cells were seeded into the
stencil patterns at a volume of 10µL and density of 2.5 (±0.15) x 106 cells/mL. Cells
were given one hour to adhere before the dish was flooded with media and incubated
for 18h prior to stencil pull and insertion into the electric bioreactor. Tissue culture
stencilswere pulled approximately 1h before imaging began. Immediately post-stencil
pull, dishes were refilled with fresh culture media followed by direct integration with
the bioreactor. The assembled bioreactor is then placed into the microscope, situated
within a custom-built cage incubatormaintained at 37◦Cand perfusedwith freshmedia
continuously bubbled with 5% CO2 using a peristaltic pump (Instech Laboratories) at
a rate of 2.5 mL/h. Electrotaxis was induced by custom electro-bioreactors developed
by the Cohen group at Princeton University, which are based on the SCHEEPDOG
platform (Zajdel et al. 2020). These bioreactors provide a continuous flowofmedia and
can be programmed to generate electrical fields with custom electric field densities.

Velocity data from each of the experiments were acquired using particle image
velocimetry (PIV) on phase contrast images, where the cell nuclei are used as the
fiduciary markers. Local tissue velocities were computed every 10min. The PIV data
provide a velocity field at a spatial resolution of 32×32 µm2, which corresponds
roughly to 3×3 cell lengths. For a sample velocity heat map, see Fig. 1. For further
details on the PIV data processing and implementation details in FIJI Schindelin et al.
(2012) and MATLAB The MathWorks Inc. (2022), we refer the reader to Wolf et al.
(2022). Experimental PIV data provides detailed spatiotemporal information on the
velocities at a fine spatial resolution. Wolf et al. (2022) previously used this detailed
spatial data to characterise the responses in different tissue locations during collective
electrotaxis. They found that the edges of the MDCK monolayer have a preferred
direction of movement, which is outward of the tissue and is only observed within
approximately 200µmof the tissue boundary. This effect is a hallmark of the collective
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migration of MDCK cells (Wolf et al. 2022; Tlili et al. 2018; Cohen et al. 2014;
Alert and Trepat 2020). Although some attention has been given to understanding
how the preferred migratory direction of the edges interferes with electrotaxis in the
literature (Wolf et al. 2022), it is not necessary to incorporate detailed mechanisms of
edge migration when understanding the average velocity of the centre of mass of the
epithelial monolayer. Since the majority of the tissue does not exhibit the preferred
direction of migration that the edges show, we restrict our analysis to the tissue bulk,
the 3×3 mm2 region in the centre of the tissue characterised byWolf et al. (2022)—for
a schematic, see Fig. 1. We take a spatial average of the velocity in the bulk, which
yields one-dimensional data traces that represent the monolayer velocity in each of
the experiments.

3 An Adaptation-ExcitationModel of Collective Electrotaxis

We use a known model for cellular excitation and adaptation proposed by Erban and
Othmer (2005) to model the internal cellular response to electric field. Since all the
experiments we study consider a uniaxial electric field, we describe the migration of
the monolayer bulk using the x component of the velocity, v, in the positive direction
of the electric field, which is assumed aligned with the x-axis, as shown in Fig. 1.
The goal of this section is to connect a model of cellular adaptation and excitation
to the temporal evolution of the bulk velocity in response to the electric field and
furthermore, to seek to use this model to address the question of how to optimally
control the collective migration of MDCK epithelia by varying the field strength.

3.1 Model Derivation

We assume that cells experience a viscous friction force per unit mass which is propor-
tional to their velocity with a friction coefficient, γ , such that the friction force per unit
mass is given by −γ v. The assumption of linear friction is well-founded for epithelia,
since this corresponds to the polymerisation of adhesions on the substrate Alert and
Trepat (2020). We assume throughout that there will be a uniaxial electric field in the
positive v-direction whose magnitude is given by a scalar signal, s = s(t). In what
follows, we will introduce in detail the Erban and Othmer model Erban and Othmer
(2005) to describe how the electric field creates an intracellular effective signal to the
cytoskeletal machinery to produce an active force in the direction of the electric field.

The canonical model for excitation-adaptation proposed by Erban and Othmer
considers an external stimulus, s(t), an effective signal, seff, and an inhibitor, I . The
effective signal, seff, is a scalar quantity that describes the extent to which an exter-
nal signal is transduced within the cell. There is therefore a difference between the
constant electric field supplied and the resulting internal signal. The inhibitor, in con-
trast, represents the strength of the internal signalling pathways that try to inhibit this
response to the external stimulus. The dynamics are given by

ṡeff = s(t) − (seff + I )

τe
, (1)
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İ = s(t) − I

τa
. (2)

In this model, one assumes that the excitation timescale, τe > 0, is far shorter than the
adaptation timescale, τa > 0. The different timescales in this system create a char-
acteristic response to a constant signal Erban and Othmer (2005): when the external
signal, s(t), is a Heaviside function, the solution of Eqs. (1) and (2) is of the form

seff = τa

τa − τe

(
e−t/τa − e−t/τe

)
, I = 1 − e−t/τa . (3)

With other words, as t → ∞, the effective signal wanes, i.e., seff → 0. In particular,
since τe � τa ,

seff ∼ τa

τa − τe
e−t/τa , (4)

whenever t � τe. This implies that on time scales larger than the excitation time,
τe, the field response decays exponentially, so that a constant electric field will not
produce an internal signal that leads to sustained migration at timescales much greater
than the initial excitation time, τe. In this work, we consider s, seff, and I to be
unitless, as we rescale the field strength, s, by dividing by the canonical field strength
of 3V/cm in the experimental set-up. Finally, we make the assumption that whenever
s ≥ 0, the effective signal, seff, equally satisfies seff ≥ 0. The reason for making this
additional assumption is that Eqs. (1) and (2) allow for seff to become negative when
the field is turned off. MDCK epithelial monolayers are not observed to move in the
direction opposite to the electric field when the electric field is turned off, and this
is not physically realistic. For this reason, going forward, unless explicitly noted, we
consider the quantity

s+
eff = max(seff, 0). (5)

To close the system of equations, we now relate the system of effective signal and
inhibitor to the velocity. We assume that the active force per unit mass in the direction
of the electric field is proportional to the effective signal. This assumption follows
canonical models in the literature for coupling polarity and force magnitude Alert and
Trepat (2020), and results in the following expression for the active force per unit
mass, F̃active,

F̃active = αs+
eff, (6)

where α > 0 is a parameter that controls the responsiveness of the bulk to the input
signal. Note that, since s is unitless, α is given in units of µm/h2. In this section, α is
assumed to be a constant, but we will explore different functional forms for the field
response in the next section. By then assuming that the resultant force on the bulk is
given by the sum of the active force per unit mass and the friction force per unit mass,
one obtains a single equation for the velocity,
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v̇ = −γ v + αs+
eff. (7)

We assume that the monolayer is stationary at the beginning of stimulation and the
electric field is turned off, so that the initial condition is given by

v(0) = seff(0) = I (0) = 0. (8)

3.2 Linear Stability Analysis

We begin by noting that Eqs. (1), (2), and (7) can be written as a linear system of
equations such that

d

dt

⎛

⎝
v

seff
I

⎞

⎠ =
⎛

⎝
−γ α 0
0 −τ−1

e −τ−1
e

0 0 −τ−1
a

⎞

⎠

⎛

⎝
v

seff
I

⎞

⎠ +
⎛

⎝
0

τ−1
e s(t)

τ−1
a s(t)

⎞

⎠ , (9)

subject to the initial conditions in Eq. (8). Note that the eigenvalues of the matrix in
the homogeneous part of the right-hand side of Eq. (9) are −γ,−τ−1

e ,−τ−1
a , making

the matrix invertible. At steady state, one has that the left-hand side of Eq. (9) is zero,
and that the steady state solution, (v�, s�

eff, I
�), for a constant field strength, s(t) ≡ s,

is given by taking the inverse,

⎛

⎝
v�

s�
eff
I �

⎞

⎠ =
⎛

⎝
−γ −1 −ατe

γ
−ατa

γ

0 −τe τa
0 0 −τa

⎞

⎠

⎛

⎝
0

τ−1
e s

τ−1
a s

⎞

⎠ =
⎛

⎝
0
0
s

⎞

⎠ . (10)

Therefore, Eq. (9) has a single steady state. Since this steady state is given by zero
velocity and zero effective signal, it can be interpreted as corresponding to a tissue that
has fully adapted to the electric field and exhibits no response. Moreover, this steady
state is stable since all eigenvalues of the matrix on the right-hand side of Eq. (9) are
strictly negative. This explains the waning response with constant stimulation, as there
is no steady state where a non-zero velocity is attained.

3.3 Bayesian Inference of Model Parameters

Our objective is to calibrate the simple adaptation-excitation model in Eq. (9) to the
experimental bulk velocity data ofWolf et al. (2022) by performingBayesian inference
on the unknown model parameters γ, α, τe, τa from the available bulk data.

First, we note that the velocity decay parameter, γ , can be estimated directly from
the data, since Eq. (7) predicts that, given an initial velocity, v0, the bulk velocity
will decay exponentially in the absence of an electric field. Since the experimental
data contain information on the bulk velocity after stimulation with the electric field
is turned off, it follows that the observed velocity decay can be used to immediately
infer the decay rate, γ . From these considerations, we seek to fit an exponential of the
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Fig. 2 Experimental data of bulk
velocity decay post-stimulation
with an electric field pulse of 3
V/cm (black dots) together with
least-squares fit of exponential
decay in the form Ce−γ t (solid
blue line). The least-squares
solution gives an excellent fit to
the data and can be used to
identify the decay rate, γ (color
figure online)

form

v(t) = Ce−γ (t−tend), (11)

to the bulk velocity data in the 2.5h after stimulation with the electric field is turned
off. Here, tend is the time at which the electric field is switched off, and C is given by

C = v(tend). (12)

We perform a least-squares fit for the decay rate, γ , to give an estimate of γ =
1.765h−1. Figure 2 shows that the fitted exponential decay curve is in excellent agree-
ment with the experimental data after pulse stimulation. This motivates us to take the
value of γ as fixed going forward. The benefit of directly estimating γ from data is that
it reduces the dimensionality of the parameter space, thus simplifying the inference
of the remaining parameters.

We now keep γ = 1.765h−1 fixed and performBayesian inference of the remaining
parameters, α, τe and τa . We use Markov chain Monte Carlo (MCMC) with a Haario-
Bardenet adaptive covariance and four chains under the assumption of a Gaussian
error implemented in Python with the PINTS pacakge Clerx et al. (2019). For the
distribution of the error, we assume Gaussianity since previous experiments by Wolf
et al. demonstrate that the experimental variability around the mean is approximately
Gaussian Wolf et al. (2022). The (standard) choice of four MCMC chains reflects the
fact that each run of the MCMC algorithm is a random walk, so that the use of several
randomwalks can be used to assess the ability of the algorithm to converge to the region
in parameter space with high posterior probability Clerx et al. (2019). As a metric of
convergenceweuse the R̂ statisticClerx et al. (2019),which is defined as the ratio of the
between- and within-chain variances of the chains (Clerx et al. 2019). The R̂ statistic
summarises mixing and stationarity of the chains, with a value of R̂ = 1 showing
perfect mixing and stationarity of the chains. We use the reference value of R̂ = 1.05
for four chains (Vehtarh et al. 2021) and set a maximum number of MCMC iterations
to 2 · 104. We use as data the velocity profiles from the 3V/cm pulse experiments
from Wolf et al. (2022). The MCMC procedure yields a well-identified posterior
distribution, with marginal posterior means 149.92 µm/h2, 0.260h, and 2.038h, for α,
τe and τa , respectively. These posterior means are in good agreement with previous
intuition that the time scale for adaptation is longer than the time scale for excitation,
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Fig. 3 Bayesian inference on a simplemodel of adaptation and excitation givenbyEq. (9) using experimental
data from an electrotaxis experiment. Left: bulk velocity using a constant field of 3V/cm. Posterior mean
of the model together with a confidence interval between the 5% and 95% quantiles of the model posterior
predictions in cyan, experimental data and their confidence interval in grey. Notice the small width of the
posterior predictive intervals. Right panels, from top to bottom: posterior distributions formodel parameters,
α, τe, τa , respectively (color figure online)

as well as with the data, suggesting that the bulk slows down on a timescale of the same
order of magnitude as τa . Plots of the marginal posterior distributions of the model
parameters are shown in Fig. 3. These show that the parameters can be confidently
identified from the data, given their well-defined posterior distributions.

To assess the predictive capability of the model given the posterior distribution of
the model parameters, we compute the posterior predictive intervals of the model,
i.e. a 95% confidence interval for the model outputs given the posterior distribution
of the model parameters. These posterior predictive intervals are shown in Fig. 3. It
can be seen that the posterior predictive intervals are tightly concentrated around the
mean, showing little model uncertainty in predicting the experimental data, given the
posterior distribution of the model parameters. By overlaying the posterior predictive
intervals for the model onto the experimental data, we observe that the model predic-
tions are in good agreement with the experimental data and lie comfortably within the
standard deviation of the experimental data.We conclude that the adaptation-excitation
model presented in this section, when calibrated to the experimental data, is able to
recapitulate the phenomenon of attenuating velocity during electrotaxis to the field
when the electric field is held constant.

4 Optimal Control

Having established that excitation-adaptation dynamics can be used to describe the
velocity of the tissue bulk during electrotaxis, we turn to the question of designing a
stimulation protocol that is in some way optimal for the experiment. We previously
established that the question of how to design electric field stimulation protocols has
received little attention due to the difficulties in predicting tissue response a priori.
Instead, experiments have been carefully calibrated through trial and error by the

123



   95 Page 10 of 24 S. F. Martina-Perez et al.

experimental laboratories that have performed them over the past few years. At this
point, it is worth noting that these experiments are costly and time-consuming, making
a grid search or other brute-force methods to determine optimal temporal stimulation
patterns infeasible.

In this section, we will consider the problem of predicting an optimal pattern of
stimulation using the adaptation-excitation model, drawing extensively on optimal
control theory. For a legible introduction, we refer the reader to Lenhart andWorkman
(2007).Wewill consider that the optimal control problemcanbe cast as an optimization
problem of a functional, E , that depends continuously on the velocity as well as the
signal,

E(v, s) =
∫ T

0
f (v, s)dt, (13)

and that there is a fixed start and end time of stimulation, given by 0, T , respectively.
We need to penalise for the total amount of electric current administered during the
experiment, as applying large currents throughout the cell medium for large amounts
of time yields damage to the tissue and the experimental set-up. For now, we will
incorporate this by requiring that a proxy of the total amount of charge delivered to
the tissue during stimulation remains constant, i.e.

∫ T

0
s(t)2dt = sbudget. (14)

Later in this section, wewill investigate the role of introducing lower and upper bounds
on the field strength instead. Note also that in Eq. (14) we have introduced a quadratic
to account for the fact that the electric field can be positively or negatively charged,
and that fields of both signs will affect the tissue.

Under the condition of Eq. (14), we set up the first optimal control problem to
maximise the total distance travelled by the tissue. This is a straightforward question
to askwhenone is concernedwith increasing the controllability of collectivemigration.
We therefore consider the optimization problem

max
s

∫ T

0
v(t)dt . (15)

This optimisation problem is then subject to the condition in Eq. (14). In optimal
control theory, this is known as an isoperimetric problem. In this formulation, we
introduce a new variable,

z(t) =
∫ t

0
s(t)2dt, (16)

such that the problem can be described as

max
s

E =
∫ T

0
vdt, subject to (17)

123



Optimal Control of Collective Electrotaxis… Page 11 of 24    95 

ż(t) = s(t)2, (18)

v(0) = 0, (19)

z(0) = 0, z(T ) = sbudget. (20)

Recall that the isoperimetric contraint above has been introduced to enforce a physical
limit on the amount of charge to which cells in the monolayer are exposed. One
might also interpret the isoperimetric constraint as a manner of interrogating how,
given a fixed amount of charge, one might optimally distribute the delivery of this
charge so that the total distance travelled by the monolayer is optimal. To make direct
comparisons with the experiments performed in Wolf et al. (2022), we wish to make
the stimulation pattern have the same integrated charge for constant stimulation at 3
V/cm, so we set sbudget = 27V2h/cm2. For this problem the Hamiltonian is given by

H = v + λv(t)v̇ + λseff(t)ṡeff + λI İ − μz ż

= v + λv(t)
[−γ v + αseff

]

+ τ−1
e λseff(t) [s − seff − I ] + τ−1

a λI (t) [s − I ] − μzs
2,

(21)

where ∂λ•/∂t = −∂H/∂•, such that

dλv

dt
= −∂H

∂v
= −1 + γ λv, (22)

dλseff
dt

= − ∂H

∂seff
= −αλv + τ−1

e λseff , (23)

dλI

dt
= −∂H

∂ I
= τ−1

e λseff + τ−1
a λI , (24)

dμ

dt
= −∂H

∂z
= 0, (25)

subject to the terminal conditions λ•(T ) = 0. Additionally, μ = μ� is a constant. The
optimality condition is given by

0 = ∂H

∂S
= τ−1

e λseff + τ−1
a λI − 2μ�s. (26)

The solution to Eq. (26) yields the optimal stimulation pattern, s�, which is given by

s� = 1

2μ�

(τ−1
e λseff + τ−1

a λI ) = τ−1
e

2μ�

(
λseff + τe

τa
λI

)
= τ−1

e

2μ�

(
λseff + ελI

)
,

where ε = τe/τa . To find the optimal stimulation pattern, s�, one must seek to solve
the linear inhomogeneous system of equations for λ•. Note that Eq. (22), the equation
for λv , decouples from the other adjoint equations, so we can solve directly to find

λv (t) = (γ λv (0) − 1)eγ t

γ
+ 1

γ
.
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Applying the terminal condition, λv(T ) = 0, yields that λv(0) = −(e−γ T − 1)/γ ,
and so we have

λv (t) = (eγ (t−T ) − 1)/γ.

Direct substitution of the solution for λv into Eq. (23), the equation for λseff , then
yields

λseff = α

γ (γ − τ−1
e )

− α

τ−1
e (γ − τ−1

e )
+ c1e

τ−1
e t − αeγ (t−T )

γ (γ − τ−1
e )

= − α

τ−1
e γ

+ c1e
τ−1
e t − αeγ (t−T )

γ (γ − τ−1
e )

.

We can now fit the terminal condition, λseff(T ) = 0, such that

0 = λseff(T ) = − α

τ−1
e γ

+ c1e
τ−1
e T − α

γ (γ − τ−1
e )

,

which gives

c1 = e−τ−1
e T

(
α

τ−1
e γ

+ α

γ (γ − τ−1
e )

)
= αγ

τ−1
e (γ − τ−1

e )
e−τ−1

e T .

Therefore,

λseff = αγ

τ−1
e (γ − τ−1

e )

(
eτ−1

e (t−T ) − τ−1
e

γ 2 eγ (t−T )

)
− α

τ−1
e γ

.

We can then find λI by solving Eq. (24),

λI = e−τ−1
a t

∫ t

0
λseff(ξ)eτ−1

a ξdξ + CI e
τ−1
a t ,

where CI is determined by setting the terminal condition, λI (T ) = 0, which gives

CI = −e−τ−1
a T

∫ T

0
λseff(ξ)eτ−1

a ξdξ.

Therefore,

s� = τ−1
e

2μ�

λseff + ε
τ−1
e

2μ�

[
e−τ−1

a t
∫ t

0
λseff(ξ)eτ−1

a ξdξ + CI e
τ−1
a t

]
. (27)

To determine the solution of the system, it remains to find the constant μ� such that
the optimal solution integrates to sbudget. We use the marginal posterior means for
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Fig. 4 Stimulation patterns for optimal control of collective electrotaxis. In all plots, red corresponds to
maximum tissue displacement (optimal solution given by Eq. (27)), and yellow corresponds to maximum
terminal velocity (optimal solution given by Eq. (32)). Blue curves represent 3V/cm electric field pulse
stimulation pattern used experimentally. Left: the different stimulation patterns in normalized units. Mid-
dle: corresponding velocity curves using the different stimulation patterns. Right: data from 3V/cm pulse
experiment, compared to posterior distribution for optimal solution for distrance travelled and terminal
velocity. Parameter values correspond to the posterior means for α, τa , τe , and the pre-computed value for
γ (color figure online)

the model parameters α, τe, τa to first compute s� numerically and use numerical
integration to determine the integral during the stimulation window.

We show a prediction for the optimal stimulation pattern in Fig. 4. Interestingly,
the optimal stimulation pattern begins at a nonzero electric field value and increases
for the first half of the stimulation window, when it exceeds the constant electric field
strength of 3V/cm, before dropping below that field strength in the second half of the
stimulation window. The optimal stimulation pattern found in Eq. (27) shows only a
modest increase in the distance travelled by the bulk of the monolayer compared to
the experimental data, since the integrated numerical solution of the velocity is 2.17%
greater than the distance travelled using a constant electric field. This reflects the fact
that electrotaxis experiments have been iterated many times experimentally. Strik-
ingly, the optimal stimulation pattern also results in a bulk velocity that still exhibits
a slowdown during stimulation. Commonly, studies on collective migration induced
by electrotaxis aim to optimise electrotaxis by maximising the velocity at which cells
migrate (Wolf et al. 2022; Leal et al. 2023; Cohen et al. 2014). If maximising the
speed of collective migration is the goal, optimising collective migration during elec-
trotaxis would be incompatible with allowing a significant slowdown during collective
migration. Our findings, however, suggest that the slowdown of the bulk during stim-
ulation does not immediately represent nonoptimality of the stimulation procedure, if
maximising the total distance travelled instead is the aim.

We incorporate parameter and prediction uncertainty by computing the posterior
distribution over the optimal control solution.We take 2·103 samples from theMCMC
posterior distribution and for each sample compute the optimal stimulation protocol
according to Eq. (27) using that given parameter combination and recomputing the
normalising constant, μ�, for each new parameter combination to obtain a normalised
density. We again compute the 5% and 95% percentiles of the velocity distribution at
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each time point and plot them in Fig. 4. We see that the posterior distribution is tight
around the posterior mean, which confirms that the above analysis holds true across
the entire posterior distribution.

4.1 Optimal Control for the Terminal Velocity

Optimising for the total distance travelled predicts that there is only a very moderate
improvement in the optimised outcome compared to stimulation with a constant elec-
tric field of 3V/cm. A striking feature of the optimal stimulation curve shown in Fig. 4
is that the velocity curve under the optimal stimulation protocol, like the pulse stimu-
lation protocol, displays a diminishing response to the field at later times. Therefore,
we pose the additional question of how to maximise the terminal velocity of the tissue,
in other words: How can the stimulation be designed so that the bulk velocity at the
terminal time, T , is maximal? A priori, one would expect this to be a different stimu-
lation pattern than the optima found previously. We change the objective function so
that we maximise the terminal velocity, v(T ),

E(v) =
∫ T

0
v̇dt =

∫ T

0
[−γ v + αseff]dt . (28)

Note that this change in objective function only changes the equations for dλv/dt and
dλseff/dt in the adjoint equations, Equations (22)-(25), since the only additional terms
introduced into the Hamiltonian include the velocity, v, and the effective signal, seff.
We obtain

dλv

dt
= γ + γ λv, (29)

dλseff
dt

= −αλv + τ−1
e λseff , (30)

such that, directly fitting the terminal condition, λv(T ) = 0, we have

λv = eα(t−T ) − 1, (31)

which we substitute into Eq. (23) to find

λseff = α

α − τ−1
e

(
eτ−1

e (t−T ) − eα(t−T )
)

. (32)

The same computation as in Eq. (27) nowyields predictions of the optimal electric field
stimulation protocol, which results in a terminal velocity of 62.9 µm/h compared to
52.5µm/h for a constant field. The electric field that optimises the terminal velocity is
shown in Fig. 4.Note that the field strength ismonotonically increasing to itsmaximum
intensity at the end of stimulation. We obtain a higher terminal velocity than in the
other experiments, at the cost of a very high field strength at the end of stimulation,
approximately 6 V/cm, which is physiologically and experimentally feasible, albeit
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not for long periods of time. The fact that the optimal control problem for the terminal
velocity yields a ramping pattern suggests that total distance travelled and terminal
velocity are two incompatible requirements to fulfill simultaneously, given the model
and evidence presented. Finally, to address parameter and prediction uncertainty, we
repeat the computation of posterior distributions over the velocities, as done in Sect. 4,
which we display in Fig. 4. Again, the posterior distribution of the velocities is tight
around the posterior mean.

4.2 Optimal Control for Constant Velocity

The optimal control problems for the maximum distance travelled and the maximum
terminal velocity seem to suggest that maximising the distance comes at the cost of a
decrease in velocity during stimulation,while optimising the terminal velocity does not
maximise the total distance travelled. The finding that the optimal stimulation pattern
for total distance travelled does not yield a nondecreasing bulk velocity during the
course of stimulation with the electric field runs counter to intuition in the electrotaxis
community, as the current opinion in the field tends to view a drop in bulk velocity as a
source of nonoptimality in stimulation. From an experimental viewpoint, controlling
field strength so that the migratory velocity is constant is attractive, since electric
fields are often used for ‘cruise control’. Therefore, we set up a final optimal control
problem designed to keep variations in the velocity minimal. We do this by once more
modifying the functional so that we seek solutions that minimise

E(v̇) =
∫ T

0
v̇2dt =

∫ T

0
(−γ v + αseff)

2dt . (33)

As in the previous section, the only adjoint equations affected are those for λv and
λseff . These become

dλv

dt
= 2γ (−γ v + αseff) + γ λv, (34)

dλseff
dt

= −2α(−γ v + αseff) − αλv + τ−1
e λseff . (35)

In addition, we impose a terminal condition for the velocity, so that we prescribe a
desired velocity at the end of stimulation, i.e., v(T ) = v� for some pre-determined
constant, v�, which can be set by the practitioner in accordance with a practical need.
Together with Eqs. (9), (34), (35) and the usual transversality conditions, λ•(T ) = 0,
the optimisation of the function in Eq. (33) creates a nonlinear first-order boundary
value problem (BVP). The complicated coupling between the equations requires a
numerical solution to the problem. Here, we set v� so that it is equal to the average
bulk velocity during stimulation with a single pulse of 3 V/cm.

For numerical solution of the BVP, we use the bvp4c scheme of Kierzenka et
al. implemented in Python through the SciPy package Virtanen et al. (2020). This
scheme implements a fourth-order collocation algorithm with control of the residuals
and uses a damped Newton method with an affine-invariant criterion function. For the
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Fig. 5 Solution to optimal control problem for constant bulk speed (optimal solution for the problem
in Eq. (33)) during stimulation with an electric field. Left: bulk speed for constant velocity (solid line)
plotted alongside experimental data with constant electric field stimulation protocol (dashed line). Middle:
numerical solution of the optimal control problem for constant velocity (solid line) plotted against reference
normalized electric field strength (dashed line). Right: effective signal, seff. Parameter values correspond
to the posterior means for α, τa , τe , and the pre-computed value for γ

implementation, we set a maximum relative tolerance of 10−3, an absolute boundary
value tolerance of 10−6 and specify a maximum of 106 nodes for the collocation
algorithm.

Figure 5 shows that the electric field profile needed to produce a constant velocity
profile is very strong initially and rapidly decays to create a constant effective signal,
seff. In fact, the field strength predicted here is 75 V/cm, which is not physiologically
realistic, as it would lead to toxicity and rapid cell death. This finding suggests that
given the physiological constraints of the problem, it is not possible to design an
optimal control experiment that creates a constant speed profile with the same average
velocity as that arising from pulse stimulation. This large initial peak in electric field
strength arises from the requirement that the tissue hits a constant velocity quasi-
instantly upon stimulation. This finding invites the question of which constant velocity
values are feasible to achieve given that the solution profile needs to be realistic, i.e.
given the physical constraints on the electric field strength. To this end, we perform
a grid search, whereby we solve the optimal control problem for a range of target
velocities, v�, ranging from 0 to 40 µm/h. For each of these terminal velocities, we
solve the BVP for the optimal stimulation protocol and compute the resulting bulk
velocities and optimal stimulation strategy. We summarise the results in Fig. 6.

Figure 6 shows that at each of the values for the terminal velocity, v�, the model pre-
dicts that an optimal stimulation strategy can be designed so that the bulk moves at this
constant speed. Each of these stimulation profiles has the same shape, whereby a very
large current is applied at the beginning of the experiment, which slowly decreases dur-
ing the course of the experiment. We investigate the relationship between the desired
terminal velocity and the field strength at the onset of stimulation as required by the
model. We see that there is a linear increase in the normalised electric field density
with v� and that the initial electric field strength is prohibitively large for velocities
higher than 5 µm/h. This is surprising and experimentally frustrating given that the
mean electric field strength predicted by the model only shows a marginal increase
with the desired terminal velocity, whereby all terminal velocities experience a nor-
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Fig. 6 Stimulation profiles and electric field strengths for varying terminal velocities in optimal solutions
to the problem in Eq. (33)). From left to right. Bulk velocity when using optimal control solution for
constant stimulation using different values of terminal velocity (see legend). Optimal stimulation profile
corresponding to the different terminal velocities in the left panel. Electric field strength at the start of
stimulation. Electric field strength averaged during stimulation. Note the difference in the magnitude of the
axes. Parameter values correspond to the posterior means for α, τa , τe , and the pre-computed value for γ

(color figure online)

malised electric field strength that is physiologically tolerable. We conclude, thus, that
designing a realistic electric field to maintain the tissue bulk at constant velocity, while
keeping the electric field strength within realistic bounds, is not possible.

The source of the unphysically strong electric field at the start of stimulation is the
requirement that the field immediately reaches the desired velocity. At the same time,
the velocity in the period after the onset of stimulation is constant, with a far smaller
field strength than that required at the beginning. Motivated by these two facts, we
ask if we can overcome the problem of non-realistic predictions for the initial field
strength by setting a maximum field strength allowed for s. We expect this might come
at the cost of reaching the target velocity at the beginning of stimulation. We allow for
the field to have a field strength of at most 9V/cm, which is around the limit at which
electric fields are tolerated in vitro. For the optimal control problem in Eq. (33), we
require that the physical optimal solution, s�

phys, satisfies

s�
phys = min

(
s�, smax

)
, (36)

where smax is a parameter we can vary. By considering smax across a range between
3 and 9 V/cm, we solve the optimal control problem and show the results in Fig. 7.
We set v� as the mean velocity in the 3V/cm pulse experiment and now vary smax.
While the solutions are qualitatively similar and the velocity is constant during most
the experiment, the solutions are not identical. A closer inspection of the terminal
velocity error shows that solutions with a weaker initial field have a larger error at the
end, implying that the large initial pulse is what is necessary to create the terminal
velocity, but it is the temporal evolution of the field which is necessary to create a
plateau. While this error decreases rapidly for small values of the maximum field
strength, smax, a close agreement with the desired cruise velocity is only achieved,
once again, with unfeasibly high electric field strengths.
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Fig. 7 Optimal stimulation to keep the velocity constant during stimulation. Field strengths are solutions are
solutions to the problem in Eq. (33) with maximum field strength defined as in Eq. (36). Left: bulk velocity
using different maximum electric field strengths (see legend).Middle: physical electric field profile showing
similar stimulation protocols. Right: terminal velocity error decreases when the maximum normalized
electric field strength increases. Parameter values correspond to the posterior means for α, τa , τe , and the
pre-computed value for γ (color figure online)

4.3 Constant Velocity During a Small Time Interval

When the goal was to optimise to keep the velocity constant, as in the previous section,
we observed that the electric field profile had a non-physically high field density at
the start of stimulation, making this optimal control strategy infeasible in practise.
This comes from requiring that the velocity hits the target velocity, v�, quasi-instantly
upon the start of stimulation. Here, we ask the question of how solutions change
when instead the velocity is only required to be constant on an interval [t1, t2] with
0 < t1 < t2 < T . Here, we will explore how the optimal electric field profile is
affected by this requirement. We will also study how solutions are affected by altering
the values for the start and end of stimulation, t1 and t2, respectively.

The functional in Eq. (33) needs to be modified to address the optimality condition
that the velocity is constant on the interval. This is because minimising the square
of acceleration v̇2 as in Eq. (33) leads to a trivial solution for the velocity: when the
velocity is assumed to be zero by the initial conditions and the velocity is continuous,
the optimal solution will be zero throughout the stimulation time frame. Therefore,
one must consider a functional that directly relates the velocity during the interval
[t1, t2] to the target velocity. Such a functional can be defined as

I (v) =
∫ T

0
I(t ∈ [t1, t2]) · (v − v�)2dt, (37)

where I is an indicator function. This indeed restricts the constant velocity requirement
to the desired interval, but the integrand is no longer a continuous function of time. To
make the optimisation problem admissible, we choose to approximate the indicator
function in the integrand by a smooth bump function, 
, which we define as
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(t) = 1

1 + exp
(− t−t1

ε

) · 1

1 + exp
(− t2−t

ε

) , (38)

where ε determines the length scale of the region where the function 
 transitions
from zero to one. We set ε = 50−1 so that ε � t1 in all of our considered optimisation
problems. Now we obtain an admissible optimal control formulation, given by

E(v) =
∫ T

0

(t) · (v − v�)2dt, (39)

which yields a modified version of the adjoint equations for λv and λseff , which are
Eqs. (34) and (35), respectively. These become

dλv

dt
= 
(t) · 2(v − v�) + γ λv, (40)

dλseff
dt

= −αλv + τ−1
e λseff , (41)

subject to the terminal conditions λ•(T ) = 0. Note that, in contrast to the optimal
control problem for constant velocity in the previous subsection, there is no need to
set up a terminal condition for the velocity. This means that the zero initial conditions
of Eq. (8) can be imposed. As before, we solve this boundary value problem using the
bvp4c numerical scheme introduced in Sect. 4.2.

To determine the range of admissible values for the interval [t1, t2], we make the
assumption that t2 = T−t1, i.e. the stimulation interval is symmetricwithin the interval
[0, T ].A priori, t1 should be chosen sufficiently large that a physically realistic electric
field is optimal, but not so large that the field is off at t = 0. To understand how to
choose t1, then, we note that there exist two characteristic times in this optimal control
problem. First, since constant stimulation for times longer than the adaptation time
scale, τa , results in a waning response from the field, choices for t1 that result in the
stimulation time being too long, i.e., (T − t1)/2 � τa , will require a large value
of the electric field initially to prevent cellular adaption to the field and will hence
provide unphysical solutions that are not realistic stimulation protocols in practice. At
the same time, one might expect that there is a time scale that dictates when the field
is initially on at t = 0h and when it is off: if the waiting time from the beginning of
stimulation, t1, is shorter than this critical time scale, the electric field should be turned
on immediately, since otherwise themonolayerwill not reach the target velocity during
the optimality time window. Intuitively, this time scale should be of the same order as
the time it takes for the velocity to reach its maximum under a constant electric field.
We can estimate of this time scale, τmax, by maximising the expression in Eq. (3),
which yields

τmax = log(τa) − log(τe)

τ−1
e − τ−1

a
. (42)

For t1 > τmax one would therefore expect that the optimal electric field density is zero
at t = 0, while for t1 < τmax one would expect that the density is nonzero. Therefore,
one would expect that choices of t1 in the region
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Fig. 8 Optimal control to keep velocity constant in a small time window (solutions to the optimal control
problem in Eq. (39)). Left: bulk velocity traces using different values of t1 for stimulation. Middle: electric
field strengths with different values of t1. Right: initial electric field strength in the optimal control solution
as a function of t1. Parameter values correspond to the posterior means for α, τa , τe , and the pre-computed
value for γ (color figure online)

t1 ∈
[
T − τa

2
, τmax

]
, (43)

will yield optimal electric field protocols that are high at the onset of stimulation when
t1 is at the left boundary of the interval, or electric field protocols that slowly ramp up
after the onset of stimulation. We also expect values of t1 smaller than the values in
this range to yield physically unrealistic electric field protocols, and solutions for t1
larger than the values in this range to have a near-zero initial electric field strength. In
Fig. 8, we show how the optimal electric field protocol changes when different values
for t1, t2, v� are used.

Figure 8 shows that the optimal electric field protocols change qualitatively as t1 is
varied. For small values of t1, close to τa , the optimal electric field protocol exhibits a
sharp overshoot of the velocity prior to reaching a plateau in the desired interval. This
is achieved by the optimal electric field protocols exhibiting a sharp peak initially,
bringing the velocity above the target, and then letting the velocity decrease to the
target. This overshoot disappears whenever t1 > τmax. In this regime, the field allows
the velocity to slowly increase to the desired target velocity. All optimal electric field
protocols exhibit a ramp. This effect is clearly visible in the final plot of Fig. 8, which
shows that there is a sharp decrease in the initial field strength whenever t1 < τmax.We
conclude that a constant velocity can be achieved without having an overshoot when
the waiting time, t1, is sufficiently long. Finally, we note that by performing a grid
search across possible values for the target velocity, v�, we found that these results do
not change qualitatively with the value of v�, as the only change is that the maximum
magnitude of the optimal electric field protocol scales linearly with v�.
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4.4 Comparison to Bang–Bang Control

The modest gain in distance travelled by the tissue predicted when the optimal stim-
ulation protocol is used suggests that naive stimulation by keeping the electric field
at constant field density might be an effective policy. This is not surprising given that
it is the policy converged upon after years of experimental iteration, and that the key
variable here is when to switch off the field. This is reminiscent of bang-bang control
in linear optimisation theory. Bang-bang control occurs when the Hamiltonian, H , of
the optimal control problem is linear in the control variable, so that it disappears from
the optimality condition altogether (Lenhart and Workman 2007). In our problem the
Hamiltonian is nonlinear due to the μz S2 term included to enforce the condition that
a fixed amount of charge is injected into the system. If one now assumes instead that
the field is always positive, the condition could be relaxed so that instead S is bounded
by some maximum strength, 0 ≤ S ≤ Smax. When the isoperimetric constraint is
removed, the Hamiltonian becomes

H = v2 + λv(t)
[−γ v + αseff

] + τ−1
e λseff(t) [s − seff − I ] + τ−1

a λI (t) [s − I ] ,

(44)

with optimality condition

∂H

∂S
= τ−1

e λseff + τ−1
a λI , (45)

so that the optimal control is given by s� = smax, whenever the right-hand side of
Eq. (45) is positive by the Pontryagin optimality criterion. This, we have established
in the previous numerical experiments, holds whenever t < T . In sum, we find that
naive stimulation with a pulse is the optimal stimulation policy when the condition
of total injected charge is relaxed and replaced instead with an upper bound on the
electric field strength.

5 Discussion and Outlook

In this work we have developed and calibrated a canonical model for excitation-
adaptation to describe the cellular response to collective electrotaxis, and we have
identified that the mechanism of excitation and adaption can faithfully describe the
temporal dynamics of the bulk response to electric field stimulation.We have used this
model to optimise for different experimental outcomes, includingmaximising the total
distance travelled by the tissue bulk, maximising the terminal velocity, and keeping
the migration velocity constant.

Our model shows that maximising the distance travelled by the tissue bulk is possi-
ble by changing the temporal distribution of electric field strength, but it only produces
a marginal increase in performance relative to stimulation with an electric field with
constant field strength. In fact, this increase is well within the standard deviation of the
experimental data.We related the near-optimal performance of the constant stimulation
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experiment to the fact that constant stimulation is the solution to a bang-bang control
problem. A similar insight arises from controlling the maximum terminal velocity of
the tissue, which recovers a ramp, but has an unphysically large field strength at the
end of electric field stimulation. Together, this challenges the idea in the electrotaxis
community that a bulk velocity that is not constant during stimulation – but rather
exhibits a sharp peak and a rapid decrease during stimulation –is not optimal, as this
velocity profile is in close agreement with the optimal solution for the maximum
distance travelled for the tissue bulk.

Most importantly, our analysis shows that it is not possible to generate a constant
velocity profile during electrotaxis when the experimental time exceeds the adaptation
time scale, τa . This is reflected in the prediction that an unphysical field strength is
necessary to create a constant velocity profile for the duration of the experiment.
When we relaxed the constraint to allow the tissue to slowly increase to the desired
velocity and then remain constant, such optimal electric field protocols only yielded
velocity profiles without an overshoot whenever the stimulation time satisfied certain
constraints. Together, these findings show that there exist physical limits to howwe can
stimulate, both in terms of duration of the experiment, and physiological constraints
on electric field strength.

In the context of collective electrotaxis, this work can be extended and applied in
several possible ways. Firstly, our framework establishes a reproducible and predic-
tive model for collective cell migration that can be used to develop new experimental
approaches. Conversely, experimental data can help validate and develop the optimal
control framework proposed in this work.More generally, our modelling approach can
be generalised and extended to be used in other contexts where there exists a desired
collective migration outcome and one must find an optimal electric field protocol to
achieve this pattern of migration. This can be achieved directly in our framework by
expressing the desired movement pattern as the optimal solution to a linear control
problem and using the optimal control framework put forth in this work. Secondly, in
this work we have only considered uniaxial electric fields, while experimental set-ups
exist to apply spatially dependent fields (Cohen et al. 2014; Leal et al. 2023; Song et al.
2021). Our framework can be extended to optimise for desired migration outcomes
that vary in both time and space. For the optimisation and control of spatially varying
fields, one must first develop a spatial model of collective electrotaxis that takes into
account the different migratory cues that are present in the different parts of the mono-
layer. Such a spatially resolved model will enable the design and implementation of
physically relevant applications of electrotaxis, such as those used in wound healing
or steering collective migration. Finally, this work provides a blueprint for using opti-
mal control theory in conjunction with external inputs that can be modulated in time,
to control cellular collectives. Such a tunable external input might, for example, be
implemented in the context of chemotaxis, which was the external signal originally
modelled by Erban and Othmer (2005). By carefully setting up an optimal control
problem corresponding to the maintenance and adaptation of a chemical gradient,
one could aid the experimental design of microfluidics or other ways of maintaining
chemical gradients to ensure desired outcomes during chemotaxis.
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